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Abstract 

Under the assumption that each pair of participants 
em communieatc secretly, we show that any 
reasonable multiparty protwol can be achieved if at 
least Q of the Participants am honest. The secrecy 

achieved is unconditional, It does not rely on any 
assumption about computational intractability. 

1. Introduction 

In this paper, we show that essentially any 
general multiparty protocol problem can be solved, 
in such a way that each party’s secrets is uncondi- 
tionally secure, assuming the existence of authenti- 
cated secrecy channels between each pair of partici- 
pants. In general, an input value Xi is uncondition- 
ally secure if gaining information about Xi is impos- 
sible beyond that available from z (so long as no 
more than + of the participants cheat, in our model). 

The problem of multiparty function computation is 
as follows: n participants PI, Pz, . . . . P, agree on a 
multivariable function F and wish to compute and 
reveal to each participant r=F (x1, x2, . .., x,, ), where 
Xi is a Secret input provided by P;. The goal is to 
preserve the maximum privacy of the xi’s and to 
simultaneously guarantee the correctness of the com- 
mon result 2. (An intrinsic property of any solution 
to this problem is that for a non-trivial function F, 
the value of 2 reveals some information about the 
secret Xi ‘S.) 

This is stronger than the notion of cryptographic 
security that is often used for cryptographic proto- 
cols. Under that definition, xi is cryptographically 
secure if gaining information about it, other than that 
available from z is thought to be computationally 
hard. 

As explained below, in our model no more 
than i of the participants may deviate from the pro- 
tocol. Since our solution will tolerate up to this 
number of participants who cheat, it is therefore 
optimal. 

1.1. Related Work 
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Other work has been able to provide uncondi- 
tional privacy in multiparty protocols, but only for 
specific problems. One poker protocol of BArAny 
and Furedi [BF] used a model similar to ours, but 
was unable to tolerate active cheaters. The dining 
cryptographers problem of Chaum [Ch2], was also 
based on a similar model, and provided uncondi- 
tional untraceability of messages even in the pres- 
ence of active disruption. 

The general problem of achieving secure mul- 
tiparty function computation was first posed by Yao 
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[Ya], in a public key cryptographic setting. In this; 
paper, he suggested that a general solution exists in 
his particular model. Goldreich, Micali and Wigder- 
son showed in [GMW] that very general multiparty 
protocols (or mental games) could be achieved in a 
model where security is based on the notion of zero- 
knowledge protocols. Their ~solution, based on the 
existence of trapdoor one-way permutations, 
involves a “compiler” that transforms any mental 
game into a multiparty cryptogmphically secure pro- 
tocol. 

Chaum, Damgtid and Van de Graaf presented 
a more direct and practical solution [CDG] based on 
the existence of “unconditionally secure blobs” (see 
[BCCI) and trapdoor one-way functions. This solu- 
tion was the first one to raise the hope that such pro- 
tocols could be implemented in an unconditionally 
secure way. That paper showed how general mul- 
tiparty protocols provide uncondilional privacy IC 
one participant and that it is the most that can be 
achieved in that model. Our result stems from that 
paper. 

The major limitation of these results is due tc 
the model they use: a setting where only public com- 
munications are possible. All these general con- 
structions rely on trapdoor one-way functions, and 
therefore must assume essentially that public key 
cryptography is possible. 

A much weaker assumption is to assert the 
existence of authenticated secrecy channels, i.e. a 
way of communicating in which the identity of the 
sender is known (authentic:ation) and the data 
transferred is revealed only to the single person it iz 
mcanl for (secrecy). Such channels arc very practical 
and can be implemented easily: for example, by 
writing down messages on pieces of paper and phy 
sically handing them out to the other parties. They 
can also be implemented using conventional cryp- 
tography (secret key systems). 

Our work has drawn inspiration from and 
relies on a number of other earlier contributions. The 
Byzantine Generals problem proposed and solved by 
Lamport, Shostak and Pease @-PSI cart be thought of 
as underlying our work and Iprovided a foundation 
for our model. So called secret sharing schemes pro- 
posed by Blakely [Bl] and !;hamir [Sh] are basic 
building blocks. A very clever extension of these 
schemes was proposed by .McEliece and Sarvawate 
[MS] that provides some fault-tolerance to active 
cheaters. The more specific notion of verifiable 

secret sharing (VSS) schemes was introduced to 
cryptography by Chor, Goldwasser, Micali and 
Awerbuch [CGMA]. The usefulness of the 
homomorphic structure of Shamir’s secret sharing 
scheme was observed by Benaloh [Be], who pro- 
posed techniques very similar to ours in is own ver- 
sion of a VSS scheme. 

Some concurrent and independent work 
[BGW] has been performed on the topic of our 
paper: during discussions with Shati Goldwasser 
and Avi Wigderson, we learned that they were work- 
ing with Michael Ben-Or on results similar to ours. 
At that time, all of us had results in a very early 
stage. By the time of submission to this conference, 
both groups had found almost identical results by 
quite different means. 

1.2. Algorithm 

The gcncral structure of the algorithms is simi- 
lar to the ones of [CDG] & [GMWI in the sense that 
it takes place in two steps: Commitment and Compu- 
tation. First the participants enter a stage in which 
they commit to their inputs. This commitment is per- 
formed by means of a new non-cryptographic 
verifiable secret sharing (VSS) scheme. Up to now, 
all previous implementation of VSS schemes have 
relied on public key cryptography. We introduce the 
first scheme that does not rely on such assumptions. 

If some participants try to commit to some- 
thing improper or simply do not cooperate, this tirst 
phase will identify them and the remaining partici- 
pants will take the appropriate action. This is the 
very best we can hope for. What else can you do 
with someone who does not want to participate? 
Once every one commits to his input, and that every 
participant gets a share of everybody else’s secret, 
they enter the second phase in which they evaluate 
the function. The computation is performed locally 
by each participant on the shares he receives from 
the others. 

Our construction satisfies the following pro- 
pWt.ieS: 

l Unconditional Secrecy: In both stages, it is 
impossible for any subset of participants of 
size less than + to gain any information about 

anyone else’s inputs. 

l Built-In Fault Tolerance: In the second phase, 
no such subset can prevent the honest partici- 
pants from correctly evaluating the function. 
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Again, our solution does not depend on res- 
tricting the computing power of the participants. Ear- 
lier solutions relied on cryptographic assumptions 
for both secrecy of the inputs and correctness of the 
computation. Even if these assumptions turned out 
to be we, the secrecy and correctness would still be 
dependent on the limitations in computing power of 
the participants. 

2. The Model 

For convenience, the number of participants 
will be called II, which can always be written as 
n =3d+a,wherea=1,2or3. 

Our assumptions about at least 2d+a of the partici- 
pants are that: 

l they do not leak secret information to other 
participants; and 

l they send the correct messages defined by the 
protocol. 

We call a participant satisfying the above properties 
reliable. At the start of the protocol, it is of course 
not generally agreed which participants are reliable. 
Let PI, Pa, -. . , P, be the participants. Our basic 
assumptions about the communication between reli- 
able participants PA and Pe are that: 

l when PA sends a message to Ps, nobody else 
can leam anything about its content; 

l when PB receives a message from PA, PB can 
be certain that nobody but PA could have sent 
the message; and 

l messages sent will be received in a timely 
manner. 

Finally, we complete our model by assuming the fol- 
lowing: 

l all participants agree on the protocols to be 
followed; and 

l participants can determine whether messages 
sent to them were sent before deadlines set in 
the protocol. 

Our protocols ensure that all reliable partici- 
pants obtain the correct result. It is proved construc- 
tively in [LPSI, under a model like ours, that a 
necessary and sufficient condition for all reliable 
participants to agree on a message--such as the 
result of a protocol-is that at least 2d+a of the par- 
ticipants am reliable. Hence, our two-thirds 

assumption is optimal. A polynomial algorithm 
solving this problem is presented in [DS]. Their 
construction allows us to obtain an efficient “broad- 
cast” channel: a means allowing any participant to 
make a message known to all participants, in such a 
way that all reliable participants will obtain the same 
value of the message. (Assuming a broadcast chan- 
nel, moreover, would not enable us to to weaken our 
other requirements.) 

For simplicity in the following descriptions, 
we use the terminology of information theory 
because we make the assumption that the channels 
are unconditionally secure. Notice however that in 
fact we get protocols as strong as the secrecy and 
authentication of the channels used. If the channels 
were not unconditionally secure, for example, the 
protocol would not be unconditionally secure for all 
participants but its correctness would still be 
guaranteed. 

3. Implementing Blobs using Secret Sharing 

In [BCC], a fundamental protocol primitive is 
described: the blob. The purpose of blobs is to 
allow a participant PA to commit to a bit in such a 
way that she cannot later change her mind about the 
bit, but nobody else can discover it without her help. 
The defining properties of blobs are as follows: 

(i) PA can obtain blobs representing 1 and blobs 
representing 0. 

(ii) When presented with a blob, nobody can tell 
which bit it represents. 

(iii) PA can open blobs by showing the other parti- 
cipants the single bit each represents; there is 
no blob she is able to “open” both as 0 and as 
1. 

(iv) Any other participant can at will obtain blobs 
representing 0 and 1. Moreover, these blobs 
must look exactly like the blobs obtained by 
PA. 

To implement blobs in our model, we use a 
variation on Shamir’s secret sharing scheme [Sh]. 
This variation was proposed by Blakely [BI], who 
independently discovered secret sharing schemes, 
and it is more efficient than Shamir’s original con- 
struction. 

For our purposes, the scheme may be 
described as follows: a polynomial f of degree at 
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most d over GF (2’) is chosen uniformly, where k i;r 
an integer such that 2k >n . The secrtzt to be shared i;r 
defined for convenience as the value off at 0. The 
protocol also assigns a distinct non-zero point is in 
the field to each participant Ps . The secret can now 
be divided among the II participants by providing 
each PB with the value off (&a). It is not hard to see 
that more than d shares completely determine f , and 
therefore the secret, while no Shannon information 
about the secret is revealed by any number of share:% 
not exceeding d. 

We generalize slightly by allowing blobs to 
represent any value in GF (29. Blobs are now 
readily achieved: 

(9 

(ii) 

(iii) 

(iv) 

To obtain a blob representing the value v , par- 
ticipant PA chooses uniformly a polynomial f’ 
with deg (f ) I d, such lbat f (0) = v. She then 
calculates n shares as above and distributes 
one to each participant. Using the subprotocol 
described below, she convinces the other parti- 
cipants that she has distributed a consistent set 
of shares. 

Since the number of unreliable participants is 
smaller than d, no collusion will gain an:/ 
information in the Shannon sense about th(: 
value represented by a blob. 

To open a blob, PA first broadcasts what its 
shares should be ((is IllSB In )). Then each 
participant broadcasts a message stating 
whether they agree with their share that was 
broadcast by PA. If a participant does net 
agree, he is said to be complaining about PA. 
It is required that at least 2d+a of the partici- 
pants do not complain. By the remarks below, 
this condition ensures that PA can only open .a 
blob to reveal the single value it represents. 

Any participant can choose a polynomial and 
distribute shares of it, whence it is impossible 
to tell from a blob who generated it. 

By distributing inconsistent shares to reliabl: 
participants, a coalition of unreliable participants 
could allow PA to open a bllob in two or more dif- 
ferent ways. The following proof, which we infor- 
mally call a “cut-and-choose procedure” (and is 
similar to the construction of [Be]) enables us to 
remove this inconsistency. Let the original bldb 
chosen by PA be p. Then the cut-and-choose works 
as follows: 

(a) PA establishes a new indcpcndcntly chosen 
blob 6. 

(b) One of the other participants Hips a coin and 
asks PA tLr 
-openS,orto 
- open Stp, where St/3 denotes the blob 
defined by the sum of corresponding shares of 
Sandj3. 

(c) Steps (a) and (b) are repeated until no com- 
plaints have occurred in M consecutive 
rounds, or until more than d participants have 
comphdned about PA. In the first case the 
proof is accepted, otherwise it is rejected. 

The participants take turns in executing step 
(b). By assumption, this means that PA will be 

2d+a unable to predict the coinflips at least n of the 

time. 

Note that the proof will always terminate: even 
if all unreliable participants work against an honest 
PA, they cannot enlarge the number of rounds by 
morethanmd. 

When p is later opened, the shares held by 
complaining participants arc of course ignored. 

If the proof is accepted, then the following 
holds with probability exponentially close to 1 in m : 
all reliable participants who did not complain (of 
which there are at least d+a) have shares consistent 
with one polynomial of degree at most d . 

Thus, with very high probability, PA cannot 
convincingly claim that her blob contains anything 
but the secret determined by the d-t-u valid shares 
guarantied by the fact above, since otherwise the 
condition in step (iii) would be violated. 

To see why this is satisfied, it suffices to con- 
sider the behavior of reliable participants, 
corresponding to the worst case assumption that all 
unreliable participants will try to help PA by always 
agreeing with her. For any blob y, consider a poly- 
nomial consistent with a maximal number of shares 
of y, and let C(y) be the number of remaining shares 
held by reliable and non complaining participants. 
Thus C(y) may vary over time, In other words, no 
matter how PA tries to open y, at last C(y) partici- 
pants will complain. The case where PA created y 
correctly corresponds of course to C(y) = 0. 

In any of the rounds of the subprotocol above, 
it is easy to see that because the sum of S and 6e@ is 

14 



just j3, C (S)+C (S+p) 2 C(p) must hold. So if at any 
point C (p) > 0, then I’,, cannot go through m rounds 
without complaints unless she can predict roughly 

+J. coinflips. 

In LBCC]. it is shown how one can construct, 
using only blobs, efficient minimum disclosure 
proofs for membership in a very large class of 
languages, including NP and BPP. Since we can 
construct blobs in our model, we can also perform all 
such proofs directly. 

4. VSS and Fault Tolerant Blobs 

When opening a blob, PA was to broadcast the 
shares she distributed in creating it. If PA is trying to 
prove some statement using the techniques of 
[BCC], the previous section’s results imply that it is 
in PA’S interest to create and broadcast the shares 
properly. But in other cases, communication failures 
or a change of heart, for example, might keep PA 
from ultimately broadcasting the shares. Even if the 
other participants were to make PA ‘s shares public in 
efforts to open the blob without PA’S help, they 
would be left with a computational problem: unreli- 
able participants might make public false values for 
their shares, and finding the value represented may 
require searching the exponentially many subsets of 
shares of size 2d-t~ for one consistent with one 
polynomial of degree smaller than d. Even worse, if 
PA was already cheating when she created the blob, 
the majority of complainers could be reliable. In 
such cases, unreliable participants could choose at 
the time of opening between broadcasts that would 
leave no unique solution for the secret or other 
broadcast that would yield a particular value unarn- 
biguously. 

This is where the secret sharing scheme 
becomes insufficient and a VSS is needed. To avoid 
the problems mentioned above, and assist with things 
to be presented later, we provide for the “sharing of 
the shares of a blob” (as was done for similar rea- 
sons in [Ch]). Thus, to create a double blob 6, PA 
proceeds as follows: 

(1) She creates an ordinary blob in the same way 
as in the previous section. This blob is called 
the top level blob, and contains the secret she 
commits to. 

(2) For each participant PB. the following is 
done: suppose PA sent rhe share se of her 

(3) 

original bIob to PB. Then PB CrCalCS a .su/>- 

blob, i.c. hc creates a blob 8~ containing his 
share &. 

By the remarks in the previous section, all par- 
ticipants are now committed to their share ol 
the top-level blob. A cut-and-choose pro- 
cedure is now used to check that everybody 
has committed to the proper share: PA creates 
a number of additional double blobs 
Sl,SL. * * . ,6, (for which each participant 
creates his own sub-blobs), and according to 
coin flips made by other participants, either all 
shares of the new double blob are made public 
or the sum of corresponding shares of the new 
and the original double blob are broadcast. 
Thus in each round, every participant opens a 
sub-blob of his own (either a new one or a 
sum) to confirm his agreement or disagrec- 
ment with PA on what she Sent him originally. 
In order for the proof to be accepted, a subset 
consisting of at least 2d+a participants must 
agree with PA in all rounds. If a participant 
disagrees with PA at any point, then his share 
and sub-blob will be ignored when the original 
double blob is later opened. 

11 is easily seen that if the proof in (3) above is 
accepted, then the following holds with probability 
exponentially close to 1 in the number of coin flips: 

all sub-blobs accepted by the cut-and-choose 
contain a uniquely defined share of the top- 
level blob; and 

* all these shares are consistent with one polyno- 
mial. 

To open a double blob, all participants broad- 
cast their shares of the top level blob as well as all 
shares of their sub-blobs. The result of the opening 
is uniquely and easily determined, since in this case 
the effect of the sub-blobs is to prevent unreliable 
participants from issuing improper shares of the top 
level blob: if a participant cannot confirm his share 
by opening his sub-blob correctly, it will just be 
ignored. 

5. Multiparty Computations 

This section considers general multiparty com- 
putations. These may involve secret input from each 
participant, and a single output which should become 
known to all reliable participants. 
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In the first step of the protocol, all participant3 
commit to their secret input bits by distributing: 
shares of them to all participants. The basic idea i:; 
now to do the computation by having each parki., 
pant perform a corresponding computation on the 
shares he received. There are two problems with thi!; 
idea: first, we cannot trust all participants to do the 
correct computation. Therefore participants must b: 
committed to their shares, so that they can prove that 
the protocol was followed. ‘llhis suggests a structure 
similar to that of a double blob. Secondly, for techn- 
ical reasons explained later, all reliable participants 
must be able to complete the computation on chek 
shares. Thus we cannot tolerate any complainti; 
about the shares distributed, since there may be no 
way to tell whether a complainer is reliable or not. 
This leads to the following definition of a roburr 
double blob: 

like a double blob, a robust double blob has ;I 
top-level blob and sub-blobs, where the top- 
level contains the bit committed to. 

all sub-blobs contain valid shares of the top- 
level blob. 

The double blob as described in the previous 
section clearly does not always satisfy these proper- 
ties. We can, htiwever, get robustness by using the 
fact that a double blob, once verified by cut-and- 
choose, can always be opened without the help of its 
creator, and even in spite of unreliable participants. 
First, notice that the content of a top-Ievel blob is 
completely determined by the shares of the sub-blobs 
(called sub-shares), if these are consistent. Thus, to 
create a robust double blob p. PA creates a set 
S=(S&, * . . J,,) of double blobs, each one is sup- 
posed to contain a share of p (note that the sub-blobs 
in SB are created by PB after receiving shares from 
PA) Once each 6~ is verified as in the previous scc- 
tion, it is opened to PB. Remember that this opera- 
tion can be achieved without the help of PA. At this 
point PB commits to the share hidden in the double 
blob 6~ using a single blob pg. A gigantic cut-and- 
choose is then used over this StruChre to prove its 
correctness. Two things have to be proven about this 
structure: 

All double blobs in S contain shares of p con- 
sistent with one polynomial. 

P 
_/... 

Structure of a robust double blob 
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Each Pe has committed to the same share as is 
contained in the double blob PA made for him 
( Contents (pa ) = Contents (6, ) ). 

We leave it as an exercise to design a cut- 
and-choose procedure that will establish this fact. 

Note that this protocol leaves no possibility for 
PA to cheat and blame the resulting disagreement on 
some other participant: if less than d participants 
complain about PA, then a valid commitment has 
(with very high probability) been constructed, and 
otherwise it is obvious that PA is unreliable. 

When this first phase including creation of 
commitments for all input bits and proofs of validity 
is completed successfully, the protocol is fault- 
tolerant: there is no way the unreliable participants 
can stop any reliable participant from computing the 
correct result. 

The computation is specified by a boolean cir- 
cuit composed of XOR and AND gates. It is then 
clearly sufficient to be able to safely compute from 
two robust double blobs a new one both as the XOR 
of the two inputs and also as the AND. 

Computing the XOR of two double blobs is 
easy, based on the remarks in previous sections: ail 
participants simply add their shares, both for the 
toplevel blobs representing the actual bits, and for 
the sub-blobs. The outcome is just a new double 
blob representing the XOR of the inputs. 

Basically, computing the AND is just as sim- 
ple: the participants merely multiply the shares. But 
this raises some technical problems, since the com- 
putation involves polynomials of degree larger than 
d ; polynomials of this large degree will not be robust 
enough against unreliable participants. 

Consequently, the AND is instead done in two 
steps: 

(1) Each participant multiplies his shares of the 
two top-level blobs and commits to the pro- 
duct using a sub-blob. He then proves by a 
cut-and-choose (to be described below) that 
the multiplication was done correctly. 

The result of (1) is a double blob containing the 
AND of the two bits, but with a large degree polyno- 
mial in the top-level blob. We cannot continue the 
computation with this blob, since for one thing the 
degree would eventually grow too large for the 
secrets to be uniquely determined. Therefore, this 
degree is brought down below d as follows: 

(2) Each participant chooses a pair of robust dou- 
ble blobs constructed as in the beginning of 
this section, and such that the top level 
involves a pair of randomly chosen polynomi- 
als (f.g), where deg(f) <2d, deg(g) cd. 
and f(O)=g (0)~ (0,l). We leave as an 
(easy) exercise construction of a cut-and- 
choose for proving correctness of such a pair. 
When all these pairs are added, the result will 
be a pair still satisfying the conditions above, 
but such that nobody knows the common value 
off and g in 0. Finally, the double blob con- 
structed with f is x-ored with the one com- 
puted in (I), and the result is opened. If this 
result is 0, then the computation continues 
with the blob from g , otherwise l+g (the com- 
plemented bit) is used. 

We have now only to describe the cut-and- 
choose mentioned in (1). In principle, this procedure 
is essentially the same as the computation protocols 
of [BC]: the prover has committed to sl,.sz and sg. 
and claims that sts2 = ~3. He then commits to a 
row-permuted version of the multiplication table for 
the field used. The other participants, responsive to 
their coin flips, now ask him either to open the entire 
table or to prove that one of the rows contains com- 
mitments to the tuple (~1, ~2, ss). This is repeated to 
attain the desired level of certainty. Note that since 
the size of the field need only just exceed n , only a 
number of messages quadratic in n are sent. 

We call attention to the possibility of a trade 
off between vulnerability to disruption and efficiency 
of the protocol. The initial commitment phase could 
in fact be completed correctly using only ordinary 
double blobs, if we require that nobody complains 
about anybody during the initial phase. This require- 
ment is easily seen to imply that all the double blobs 
constructed are (with very high probability) robust. 
With this method, however, it is not possible to find 
out who has not been following the protocol in the 
first phase, if complaints do occur. 

6. Generalizations 

The one third assumption on the number of 
unreliable participants is necessary to ensure that 
Byzantine agreement is possible. It is natural, how- 
ever, to ask what can be done if we ensure this sim- 
ply by assuming the existence of a broadcast channel 
as part of the model? 
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In fact, even with this ;assumption, it is impoa- 
sible to implement unconditionally secure blobs 
while tolerating more than d unreliable participants. 
Informally, this is so, since if PA tries to commit to 
some secret, she must send a set of messages cor- 
mining enough Shannon information to determine 
her secret completely. She cannot use the broadcast 
channel for this, since her secret would then become 
public immediately. Moreover, if there are U unreli - 
able participants, then no subset of this size clr 
smaller must be given enough information to deter,- 
mine the secret, since the set of unreliable partici- 
pants is unknown. When later the participants try to 
determine which secret P,, is in fact committed to, 
the unreliable participants are free to fabricate some 
set of messages which they will claim PA sent them 
originally. Since any subset of U messages leaves 
the secret completely undetermined, it is easy to corl- 
struct the set of false messages such that it is car- 
sistent with the messages .sent to U reliable pa&:.- 
pants. We thus have a situaltion. where 2U partic- 
pants seem to agree on something, while the rest, say 
R, participants are complaining. But if we allow 
U > n l3, then R I II, and thus there is no way of 
finding out whether the situation is in fact as 
described above, or the R participants am just unrel- 
able ones, complaining for no good reason! More- 
over, this ambiguous situation could result, even :d 
PA has followed the protocol, 

It is also possible to tolerate more unreliable 
participants, if we change the model by restricting 
their behavior. If we assume that no participant wilI 
ever send an incorrect message during the protocol, 
then two forms of behavior remain, that may cause 
problems in the protocol: 

1) Sharing secret informa&.ion with other partici- 
pants; and 

2) Stopping the protocol too early. 

In the following, assume that at least C parti- 
cipants will complete the protocol, while at most L 
participants will leak secrets to others. 

Clearly, information about the inputs to a com- 
putation must be distributed in such a way that any 
subset of C participants or more can recover ail 
inputs, since otherwise there is no guaranty that the 
computation can be complekd. But if the inputs are 
to remain unconditionally protcctcd, this means that 
we must have L 4. 

One can now make the simplifying assumption 
that the set of participants is partitioned in one subset 
in which partici.,ants may show both forms of unreli- 
able behavior mentioned above, and another subsct, 
where there is no deviation from thr: protocol at all. 
This means that C+L = n, and therefore that 
L = 1 (n -1)/2] < C . Hence the best a protocol can 
bope to do in this case is to tolerate the situation 
where L = L (n -1)/2J and C =n-L. But this can 
easily be accomplished using our basic protocol with 
polynomials of degree L . Because of the inequality 
on L , multiplication of polynomials will not lead to 
loss of information. As usual, protection against 
early stopping is effective after the initial commit- 
ment phase, where double blobs are used. If a parti- 
cipant stops, the remaining ones can use the 
corresponding subshares as input to a separate 
instance of the basic protocol which will simulate the 
missing participant. 

Without the assumption that C+L = n , things 
seem to become more complicated. ‘It is clear that as 
long as L I [(n-1)/2] , then the solution outlined 
above still works, but without this condition, it is not 
clear what happens. The method with multiplication 
of polynomials does not work any more, because it 
leads to polynomials of a degree huger than the 
number of available shares. Therefore the construc- 
tion of a general computation protccol under these 
special assumptions remains an open problem. 

7. Open Problem 

Is it possible to extend our result such that 
more unreliable participants can be tolerated if we 
are willing to revert to a cryptographic assumption in 
the case where n/3 < U < n l2. (Therefore achiev- 
ing an “Obliviously cryptographic” multiparty 
unconditionally secure protocol.) 
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