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Jean-Yves Tourneret , Senior Member, IEEE, and Willy Vigneau

Abstract— Multipath (MP) remains the main source of error
when using global navigation satellite systems (GNSS) in a
constrained environment, leading to biased measurements and
thus to inaccurate estimated positions. This paper formulates the
GNSS navigation problem as the resolution of an overdetermined
system whose unknowns are the receiver position and speed,
clock bias and clock drift, and the potential biases affecting
GNSS measurements. We assume that only a part of the satellites
are affected by MP, i.e., that the unknown bias vector has
several zero components, which allows sparse estimation theory
to be exploited. The natural way of enforcing this sparsity
is to introduce an `1 regularization associated with the bias
vector. This leads to a least absolute shrinkage and selection
operator problem that is solved using a reweighted-`1 algorithm.
The weighting matrix of this algorithm is designed carefully as
functions of the satellite carrier-to-noise density ratio (C/N0) and
the satellite elevations. Experimental validation conducted with
real GPS data show the effectiveness of the proposed method as
long as the sparsity assumption is respected.

Index Terms— GNSS, multipath mitigation, sparse, LASSO,
reweighted-l1 algorithm.

I. INTRODUCTION

M
ULTIPATH (MP) is one of the most difficult error

sources that needs to be tackled for GNSS posi-

tioning [2], [3]. Indeed, MP signals are generally due to

reflections on various obstacles, and thus strongly depend

on the geometric configuration of the scene in which the

receiver is located. More precisely, in the absence of obstacle,

the receiver is not affected by MP. Conversely, when the

receiver is located close to buildings, the received GNSS

measurements are very likely to be subjected to MP. The

problem of mitigating MP effects in GNSS measurements has

received a considerable attention in the literature. MP can

be mitigated at the antenna level, by exploiting the fact that

reflections change the polarization of the received signals. As a
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consequence, antennas can be designed to be more sensitive to

the right polarization [4], [5]. Another important characteristic

of reflected signals is their low or negative elevation that can

be used at the antenna level to attenuate MP signals [4], [5].

Methods using antenna arrays also exist [6]–[8]. A recent

technique combines the two latest methods mentioned [9].

MP can also be mitigated at the receiver level, by modifying

the correlator, e.g., by using narrow correlators [10], double

delta correlators [11], early late slope [12] or vision corre-

lators [13]. Other techniques work at the discriminator level,

such as the Maximum likelihood techniques based on an MP

estimating delay lock loop (MEDLL) [14]–[16], the coupled

amplitude DLL (CADLL) [17], or the Multipath Insensitive

DLL (MIDLL) [18] have also been developed for MP sig-

nals. All the previously mentioned techniques need specific

and expensive hardware that cannot always be purchased.

Mitigating MP at a measurement or position level is thus an

interesting alternative. A first solution is to take advantage of a

3D model of the environment to predict MP signals [19]–[23],

and even to combine these techniques to other sensors, such

as cameras. However, this 3D model is not always available in

practical applications. A second option is to use the informa-

tion available at the receiver, such as pseudoranges, Doppler

shifts, satellite ephemeris and C/N0 . A widespread technique

is to smooth the code measurements with phase measurements

that are more robust to MP [24]. Other techniques consist

in exploiting different measurements from the same satellite,

for instance code and phase measurements leading to the

code minus carrier (CmC) [4], or the difference between

the measurements from two receivers leading to differen-

tial GNSS [5] or even from two different users (collabo-

rative or cooperative positioning) [25], [26]. An interesting

family of MP mitigation methods rely on statistical tests trying

to exclude or correct the faulty measurements. The receiver

autonomous integrity monitoring (RAIM) method belongs to

this class of strategies [27], [28]. More recent technique uses

a-contrario modeling for discarding bad satellites [29]. Note

that these techniques require redundant measurements, that are

not always available in urban environment, and that the user

will only be able to detect/estimate up to two faulty measure-

ments. Other techniques consider non-gaussian error terms,

such as Gaussian mixtures, Markov process [30] or Dirichlet

process mixtures [31], [32].

The point of view considered in this work is to model

the effect of MP signals on GNSS measurements as additive
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biases as in [33]. These biases have then to be estimated

and subtracted from the GNSS measurements to mitigate MP

effects. Sequential Monte Carlo methods also referred to as

particle filters were investigated in [33] for this estimation.

However, these methods are computationally intensive, making

a real time implementation very complicated in practical appli-

cations. The main contribution of this paper is to exploit sparse

estimation theory to estimate these biases with a significantly

reduced computational complexity. The main hypothesis mak-

ing this theory applicable is that many satellites are not

affected by MP making the biases sparse with respect to

number of received measurements. Note that sparse estimation

for mitigating multipath has already been considered in Radar

theory [34], [35], and that sparse assumption was also consid-

ered for GNSS applications in [36]. However, the proposed

approach is different. It results from the application of a

penalized least squares approach method taking advantage of

the recent developments in sparse estimation theory. Since the

measurement equation is linear with respect to the state vector,

we estimate it directly from the data and the biases term in

order to form a profile likelihood that is used to estimate

the MP biases. This sparse estimation formulation avoids to

consider an augmented state vector for bias estimation as

in [36]. Instead, the bias vector is directly obtained by the

minimization of a a penalized least-squares criterion resulting

from a sparse MP prior.

This paper is organized as follows: Section II summarizes

some basic principles on satellite navigation, describing how

measurements (code measurements and Doppler rates) are

related to the state vector (position, velocity) and the possible

MP biases. This section also recalls the Kalman filtering steps

that will be used to track the receiver position. Section III

summarizes the main ideas of sparse estimation theory and

the main estimation methods (LASSO, reweighted-`1 and

generalized LASSO) that can be used to estimate sparse

vectors. Section IV presents our contributions, i.e., how to

estimate MP biases using GNSS measurements with some

sparsity constraints. More precisely, we propose to consider a

linearized navigation equation and to assign some sparsity con-

straints on the biases possibly affecting GNSS measurements.

The positioning problem is then formulated as a penalized

least squares problem with an `1 regularization inspired by

the reweighted-`1 algorithm [37]. However, contrary to [37],

the weighting matrix used in this work is designed using

important information available at the receiver, based on the

value of the carrier-to-noise density ratio (C/N0) and the

satellite positions. Experiments are presented in Section V

comparing the proposed algorithm with other navigation strate-

gies (Kalman filter, robust Kalman filter, classical LASSO,

coded filter [36]). Conclusions and future work are reported

in Section VI.

II. GNSS FUNDAMENTALS

A. Observation Model

The navigation problem considered in GNSS consists in

estimating the position of a receiver from signals sent by

different satellites. More precisely, measuring the propagation

delay between the receiver and a given satellite, the receiver is

able to build a so-called pseudorange defined as follows [38]

ρi = kx i − xuk2 + b + εi (1)

where

• ρi denotes the pseudorange between the receiver and the

i th satellite, with i ∈ {1, . . . , N}, N being the number of

in-view satellites,

• xu = (x, y, z)T is the receiver position to be estimated,

• x i = (x i , yi , zi )T is the known i th satellite position,

• kx i − xuk2 =
�

(x i − x)2 + (yi − y)2 + (zi − z)2 is the

distance between the user and the i th satellite,

• b is the receiver clock bias, common to all measure-

ments (hence the name of pseudorange),

• εi is the error term associated with the i th propagation

canal (modeling ionospheric delay, tropospheric delay,

satellite clock bias, satellite position uncertainty, MP and

receiver noise).

A classical way of estimating the receiver position from

N measurement equations as defined in (1) is to use an

iterative algorithm, which linearizes (1) around the previous

computed position. The resulting linearized problem for GNSS

navigation can be classically expressed as [39] and [40]

yp = Gx + mp + np (2)

with

• yp ∈ R
N the difference between the measured and

estimated pseudoranges (the subscript p is used for

pseudoranges),

• G ∈ R
N×4 the Jacobian matrix associated with the

linearized system,

• x ∈ R
4 the difference between the state (position and

receiver clock bias) estimated at the previous position and

the current state value,

• mp ∈ R
N an error term due to the possible presence of

MP affecting the pseudoranges (we assume that all errors

except MP have been corrected),

• np ∼ N (0, Rp) ∈ R
N a zero-mean Gaussian noise vector

with covariance matrix Rp.

The expression of the matrix G can be found in many

textbooks such as [39] and is recalled here for completeness

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a1
1 a1

2 a1
3 1

a2
1 a2

2 a2
3 1

...
...

...
...

aN
1 aN

2 aN
3 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

with

	

ai
1, ai

2, ai
3


T
=

x0 − x i

kx0 − x ik
(4)

where x0 is the point around which (1) has been linearized.

After differentiating (1), the following result can be

obtained [39]

ρ̇i =
	

ai
1, ai

2, ai
3




(ẋu − ẋ i ) + ḃ + ε̇i (5)



which leads to the following linear equation that is associated

with pseudorange rates and is very similar to (2)

yr = Gẋ + mr + nr (6)

where

• yr ∈ R
N is the difference between the measured and

estimated pseudorange rate (the subscript r is used to

indicate pseudorange rates),

• ẋ ∈ R
4 is the difference between the state (velocity and

receiver clock drift) estimated at the previous position and

the current state value,

• mr ∈ R
N is an error term due to the possible presence

of MP affecting the pseudorange rate,

• nr ∼ N (0, Rr ) ∈ R
N is a zero-mean Gaussian noise

vector with covariance matrix Rr .

The main idea investigated in this paper is to exploit the

property that few satellites are suffering from MP such that

m = (mp , mr )
T is a sparse vector, i.e., a vector containing a

lot of zeroes. As a consequence, sparse estimation theory can

be used to estimate m and x jointly. Note that the terms mp

and mr in (2) and (6) are both resulting from the possible

presence of MP. However, as the receiver computes these

two measurements differently, there is a priori no relation

between these two terms. Before providing more details about

the proposed sparse estimation method, we recall some basic

elements about the extended Kalman filter that will be used

for state estimation.

B. Extended Kalman Filter for GNSS

The EKF considered in this work is very classical and

has been studied in many papers or textbooks including,

e.g. [41, p. 195] or [42]. The state vector at time instant k,

denoted as sk (for k = 1, . . . , K , where K is the sample size),

contains the receiver position and velocity expressed in the

ECEF frame, and the clock bias and drift (derivative of

clock bias), i.e.,

sk =
	

xk, ẋk, yk, ẏk, zk, żk , bk, ḃk


T
(7)

where

• the subscript k denotes the time instant,

• (xk, yk, zk)
T is the receiver position at time instant k,

• (ẋk, ẏk, żk)
T is the receiver velocity at time instant k,

• bk is the clock bias at time instant k,

• ḃk is the clock drift at time instant k.

The relationship between the state vectors sk and sk−1,

is defined by a propagation equation that is used to design

the Kalman filter. Let’s denote

Ck =

�

1 1tk
0 1

�

(8)

and

Fk =

⎡

⎢

⎢

⎣

Ck 02×2 02×2 02×2

02×2 Ck 02×2 02×2

02×2 02×2 Ck 02×2

02×2 02×2 02×2 Ck

⎤

⎥

⎥

⎦

. (9)

The propagation equation considered in this work is

sk = Fk−1sk−1 + uk−1 (10)

with

• Fk the state transition matrix at time instant k,

• 1tk the duration between two consecutive measurements,

• uk−1 ∼ N (0, Qk−1) the process noise at time instant

k − 1, supposed to be zero-mean Gaussian with known

covariance matrix Qk−1 (see [43] for a closed-form

expression).

The receiver can have access to various measurements depend-

ing on the application. In this paper, we focus on the code

pseudorange (ρi ) and the Doppler rate (1 f i ), even if the

proposed methodology is quite general and can be applied

to any kind of measurement affected by sparse additive

biases. Assuming that the receiver has access to N satellite

signals (N > 4), the measurement vector can be defined as
�

ρ

ρ̇

�

=
	

ρ1, . . . , ρN , ρ̇1, . . . , ρ̇N

T

(11)

where ρ̇i = −λL11 f i is the i th pseudorange rate, with

λL1 the wavelength of the received signal. As explained in

Section II-A, the measurements are related to the state vector

thanks to (2) and (6) and can be concatenated into a single

equation defined as

yk = Hk xk+mk + nk (12)

where

• yk ∈ R
2N contains the difference between the actual and

predicted pseudoranges and pseudorange rates at time k,

• Hk is the joint observation matrix for pseudoranges and

pseudorange rates at time k (see technical report [43] for

a closed-form expression),

• xk = sk − ŝk ∈ R
8 is the difference between the state

vector (receiver position, velocity, clock bias, and clock

drift) estimated at the previous position and the current

state vector at time k,

• mk ∈ R
2N is a bias term due to the possible presence of

MP at time k,

• nk ∼ N (0, Rk) ∈ R
2N is a zero-mean Gaussian noise

vector at time k with covariance matrix Rk (see technical

report [43] for a closed-form expression).

The classical EKF used to estimate the state vector from the

state equation (10) and the measurement equations (1) and (5)

can be summarized as follows

1) one step prediction

ŝk|k−1 = Fk−1 ŝk−1|k−1

2) one step prediction error covariance

Pk|k−1 = Fk−1 Pk−1|k−1 FT
k−1 + Qk−1

3) Kalman gain

Kk = Pk|k−1 HT
k




Hk Pk|k−1 HT
k + Rk

�−1

4) state estimation

ŝk|k = ŝk|k−1 + Kk yk

5) state error covariance

Pk|k = (I − Kk Hk) Pk|k−1 .

In this paper, we have adopted the square root implementation

of the Kalman filter discussed in [41, p. 181] for its known

robustness.

Remark: In order to compensate for relativistic effects,

time group delays and clock biases for the different satellites,

we followed [44]. Ionospheric delays and their derivatives



were compensated using the well known Klobuchar

model [45]. Zenith values were computed as in [46] and

mapped with the Niell global mapping function [47] to remove

the effects of tropospheric delays and their derivatives. Based

on these compensations, the residual error was considered as

Gaussian centered with variance σ 2
UERE = σ 2

Ephemeris +σ 2
Iono+

σ 2
Tropo + σ 2

Clock for the pseudoranges and σ̇ 2
UERE =

σ̇ 2
Ephemeris + σ̇ 2

Iono + σ̇ 2
Tropo + σ̇ 2

Clock for pseudorange rates,

see [39, p. 326] for justification and [39, p. 273] for typical

values. However, other additive biases due for instance to

errors in ionospheric or tropospheric corrections can also

affect the received measurements as additive biases. The

proposed method will include these errors in the vector mk

and will correct them, providing the sparsity assumption

is satisfied.

III. SPARSE ESTIMATION THEORY

This section recalls the principles of sparse estimation

theory and the main algorithms that can be used to estimate

sparse vectors. Assume that we have a vector of measurements

ỹ ∈ R
2N defined as ỹ = H̃θ + ñ, where H̃ ∈ R

2N×q is

a known regression matrix, θ ∈ R
q is an unknown sparse

vector (to be estimated) and ñ ∈ R
2N is an unknown error

term.1 A classical way of estimating θ from the observed

measurement vector ỹ is to consider a data fidelity term
1
2
k ỹ− H̃θk2

2 penalized by an additive regularization promoting

the sparsity of θ . One can think of defining this additive

regularization as the `0 pseudo-norm of θ defined by

kθk0 = #{θi 6= 0, i = 1, . . . , q}. (13)

This problem can be formulated in different ways [48] and we

choose the unconstrained one defined by

θ̂ = argmin
θ∈R

q

1

2
k ỹ − H̃θk2

2 + λkθk0 (14)

where λ ∈ R is a fixed constant referred to as regularization

parameter. However, the problem (14) is NP-hard and non-

convex. Therefore, many relaxations have been proposed in

the literature to bypass this difficulty, as summarized below.

A. The LASSO Problem

A classical way of estimating a sparse vector from a linear

regression is to replace the `0 pseudo-norm in (14) by an `1

norm, i.e., to consider the so-called LASSO problem [49]

argmin
θ∈R

q

1

2
k ỹ − H̃θk2

2 + λkθk1. (15)

However, algorithms used to solve this problem can provide

solutions that are far from the solution of (14) [37]. This

has motivated the study of many different sparse estimation

strategies described in the next sections.

1The meaning of the different vectors ỹ, θ , ñ in the GNSS context will be
clarified in Section IV.

B. The Reweighted-`1l1 and the Generalized LASSO

Candès et al. [37] investigated a so-called reweighted-`1

method defined as follows

argmin
θ∈R

q

1

2
k ỹ − H̃θk2

2 + λkWθk1 (16)

where W ∈ R
q×q is a diagonal weighting matrix. Ideally,

the weights contained in W should be inversely proportional

to the magnitude of the true unknown vector θ0, i.e., such that

wi =

�

1
|θ0,i |

, θ0,i 6= 0,

∞, θ0,i = 0.
(17)

However, this weight definition cannot be used in practice

since θ0 is an unknown vector. One solution proposed by

Candès et al. [37] is summarized in the following iterative

algorithm

1) set ` = 0 and w
(0)
i = 1, i = 1, . . . , q ,

2) solve the problem

θ (`) = argmin
θ∈R

q

1

2
k ỹ − H̃θk2

2 + λkW (`)θk1, (18)

3) update the weights as

w
(`+1)
i =

1

|θ
(`)
i | + ε

, (19)

4) end when ` reaches a maximum value `max.

This algorithm requires to adjust the two parameters ε and

`max. An adhoc choice was suggested in [37], namely ε = 0.1

and `max = 2.

A generalized version of (15) referred to as “generalized

LASSO” was introduced in [50]

argmin
θ∈R

q

1

2
k ỹ − H̃θk2

2 + λkWθk1 (20)

where W ∈ R
p×q is an appropriate penalty matrix that is

not necessarily square (p denotes the number of constraints

associated with the unknown parameter vector θ ) and needs

to be specified by the user. Of course, when p = q and W is

diagonal, the generalized LASSO reduces to the reweighted-`1

method.

IV. A NEW MULTIPATH MITIGATION METHOD FOR GNSS

A. Problem Formulation

The proposed MP mitigation method assumes that the bias

vector m = (mp , mr )
T resulting from (2) and (6) is sparse.

Exploiting this sparsity property, we propose to solve the

following problem

argmin
x,m

1

2
ky − H x − mk2

2 + λkWmk1 (21)

in order to detect and correct measurements affected by MP,

i.e., measurements affected by the presence of additive biases.

Note that these corrected measurements will be used as input

of the EKF presented in II-B. In order to obtain a formulation

similar to (16), it is interesting to note that the minimization



of (21) with respect to x for a fixed m admits a closed-form

expression defined by

x = (HT H)−1 HT (y − m) (22)

which is the classical least squares solution. After replacing

this expression of x in (21), we obtain the so-called profile

likelihood

L(m) =
1

2
k(I2N − P)(y − m)k2

2 + λkWmk1 (23)

where I2N is the 2N × 2N identity matrix and P is the

following projection matrix

P = H(HT H)−1 HT . (24)

Remark: It is interesting to note that the matrix P is a

projection matrix associated with the subspace spanned by the

columns of H , denoted as Vec{H} = { y ∈ R
2N , ∃x ∈ R

8,

y = H x}. As a consequence, the matrix I2N − P in (23) is

the projection matrix on the orthogonal of Vec{H}. Recalling

the observation equation

y = H x + m + n (25)

we can observe that the profile likelihood estimates the

bias vector m, by projecting the bias-corrected measurements

y−m onto the orthogonal of H , which makes sense, since it is

clearly impossible to distinguish the bias components located

in Vec{H} from the term Hx .

After introducing the following notations

ỹ = (I2N − P)y (26)

H̃ = (I2N − P)W−1 (27)

θ = Wm (28)

the original problem (21) reduces to

argmin
θ∈R

q

1

2
k ỹ − H̃θk2

2 + λkθk1 (29)

where we have to note that θ = Wm is a sparse vector as the

weighting matrix W is diagonal. As a consequence, we have to

solve a LASSO problem whose solution can be obtained using

classical efficient algorithms [49], [51], [52] and an example

of algorithm is given in [43] from [53]. The resulting MP

mitigation strategy can be summarized as follows

1) estimate the unknown parameter vector θ as the solution

of the LASSO problem (29) yielding θ̂ ,

2) estimate the bias vector as m̂ = W−1θ̂ ,

3) correct the pseudorange and pseudorange rate measure-

ments by removing the estimated bias vector to the

pseudorange and pseudorange rates (i.e., y ← y − m̂).

These corrected measurements are then processed using

the EKF described in Section II-B.

B. Choosing the Weighting Matrix

A major issue, which is an important contribution of this

work, is to design the weighting matrix appearing in (21).

In this paper, we propose to build the weighting matrix W

using some key parameters, somehow representative of the

measurements quality, provided by most GNSS receivers,

Fig. 1. Weighting function w1(C/N0) for various values of a (A = 30,
F = 20 dBHz and T = 45 dBHz).

namely the carrier-to-noise density ratio C/N0 [40] and the

satellite elevations (that reflect the good or bad positions of

the different satellites). More precisely, we want to consider

a reweighted-`1 method favoring satellites with large C/N0

values (the higher C/N0 , the better, as the tracking noise is

reduced) and high satellite elevations (the higher the elevation,

the better, as linked to the C/N0 and tracking noise, and as

less subject to multipath). Of course, there are several ways of

building weights in agreement with these two considerations.

For the parameter C/N0, we propose to consider the approach

suggested in [54] using the following weighting function

w1(x)

=

⎧

⎪

⎨

⎪

⎩

10
x−T

a

��

A × 10
F−T

a − 1
�

x−T
F−T

+ 1
�−1

, x < T

1, x ≥ T

(30)

where

• x is the value of C/N0 expressed in dBHz,

• T is a threshold after which the weight is set to 1

(indicating that the measurements are “good”),

• a allows the bending of the curve to be adjusted, as illus-

trated in Fig. 1,

• F defines the value of C/N0 for which the function w1

is forced to have the weight defined by parameter A

• A controls the value of the function w1 for x = F

(w1(F) = 1/A).

Fig. 1 displays typical evolutions of the weighting function

w1 for different values of a. As can be seen, this function

equals 1 for the nominal value of C/N0 (∼ 45 dBHz) and

is an increasing function of C/N0 (mitigating the impact of

the measurements associated with small values of C/N0).

Appropriate values of (T, a, F, A) in the weight function

w1 have to be determined. Multiple experiments allowed us

to obtain (T, a, F, A) = (45, 80, 20, 30) by cross-validation.

Fig. 2 shows the variations of the estimated position RMSE

as a function of one of these parameters (the other ones being

fixed). As can be seen, the results are not very sensitive to the



Fig. 2. Variations of the estimated RMSE versus (T, a, F, A): East (blue
dotted), North (red dashed) and Up (yellow, continuous). Selected values are
indicated by vertical black dot-dashed lines.

Fig. 3. Elevation weighting function w2.

values of T, a, F and A providing these parameters are not

too small.

A second important information that can be considered to

mitigate the MP effects is related to the satellite elevations. It is

very common [38] to define an elevation mask of 5 degrees,

i.e., to exclude satellites with elevation lower than 5 degrees

before computing the receiver position. However, in urban

environment, it is important to preserve the largest number

of satellite measurements. As a consequence, we propose to

reduce the impact of satellites with low elevations without

excluding them. There are many possibilities to define weight-

ing functions satisfying this property. Following [54] and with

the idea of penalizing satellites whose elevations are smaller

than 5◦, we consider the following weighting function

w2(x) =

⎧

⎨

⎩

sin2 (x)

sin2 (5◦)
x < 5◦

1 x ≥ 5◦
(31)

which is displayed in Fig. 3.

The final weight introduced in the reweighted-`1 approach

is defined as the product of the two previous functions for

each satellite, i.e.,

w [(C/N0)i , ei ] = w1 [(C/N0)i ] w2(ei ) (32)

where (C/N0)i and ei are the C/N0 and elevation associated

with the i th satellite. We also propose to assign the same

weights for the i th pseudorange and i th pseudorange rate

since these two measurements result from the same satellite,

leading to wN+i = wi . Note that by construction the weights

w [(C/N0)i , ei ] belong to the interval ]0, 1]. Finally, it is

important to mention that the parameters C/N0 and e are eas-

ily available at each receiver, since C/N0 is directly estimated

by the receiver and that the elevation can be computed using

the actual and previous positions of each satellite (that are

known thanks to the ephemeris contained in the navigation

message).

V. SIMULATION RESULTS

This section studies several experiments conducted with

simulated and real data allowing the performance of the

proposed algorithm to be appreciated.2

A. Synthetic Data

The synthetic data considered in this section have been

generated using a reference position according to (10), and

with noisy measurements resulting from (1) and (5). The

sample size is K = 500 and 200 Monte Carlo runs have

been considered for each scenario. In the first experiment,

we have generated artificial additive biases, modelling mul-

tipath conditions, affecting pseudoranges and pseudorange

rates between times instants k = 50 and k = 150 for

satellite channels #1, #5 and #6. The bias amplitudes have been

adjusted to 80, 60 and 40 meters for pseudoranges and to 5,

12 and 4 meters per seconds for pseudorange rates. Note that

the satellite positions have been created from real ephemeris

to work with realistic synthetic data. Additive noise was then

generated (with σ = 5m for pseudoranges and σ = 0.5m.s−1

for pseudoranges rate) in order to account for the receiver

noise and the residual model errors (ionospheric, tropospheric,

satellite clock, ephemeris and relativity). Finally, we generated

C/N0 uniformly between 45 dBHz and 48 dBHz in absence

of MP, and between 30 dBHz and 33 dBHz in presence of MP

(i.e., in channels #1, #5 and #6).

The proposed method was compared to the classical LASSO

method, the reweighted-`1 algorithm [37] and our implemen-

tation of the coded filter [36]. The sparse method investigated

in this work requires to tune the regularization parameter λ.

Fig. 4 shows the RMSEs of the estimated position in the (East,

North, Up) frame versus parameter λ. The value λ = 1 seems

to provide to a good compromise between the RMSE value

and the computation time for this example.

Figs. 5 and 6 show the estimated pseudorange and pseudo-

range rate biases for four representative channels. These

figures show that the classical LASSO and reweighted `1

algorithms can potentially estimate biases in channels that are

2Matlab codes are available at http://perso.tesa.prd.fr/jlesouple/codes.html



Fig. 4. RMSE of East North Up errors versus λ.

Fig. 5. Estimated bias and ground truth for representative pseudoranges.

not contaminated by MP, e.g., for the pseudorange of satel-

lite #2, that they can also miss some channels affected by MP,

as for the pseudorange of satellite #5, or can underestimate

the bias value as for the pseudorange rate of satellite #5.

This is no longer the case with the proposed reweighed `1

algorithm, which tends to estimate the biases more precisely.

This conclusion is confirmed by the results of Fig. 7 showing

the impact of proposed MP mitigation method on localization

errors. Note that the robust Kalman filter described in [42]

was also considered for this last comparison.

To summarize, the simulations conducted in the first part

of this section show that the performance of the proposed

algorithm are very satisfactory when the measurements and

the state vector are in agreement with the measurement and

state equations (10) and (12). The next sections consider

experiments conducted with more realistic and real datasets.

Fig. 6. Estimated bias and ground truth for representative pseudorange rates.

Fig. 7. Position root mean square errors (RMSEs) on each axis in the
(East, Norh, Up) ENU frame without measurement corrections (dotted line),
and with the proposed MP mitigation method (continuous line).

B. Realistic Data

This section studies a more realistic simulation scenario

with a trajectory obtained from real data provided by a very

accurate receiver (Novatel SPAN) (and no longer generated

according to (10)) depicted in Fig. 8. The measurements

associated with this trajectory have been generated using (12),

and a bias has been added to the measurements of three

satellites between the time instants k = 200 and 300 (with

the same amplitudes as in the previous example). Fig. (9)

displays the positioning errors obtained for this scenario. The

performance of the proposed algorithm is similar to what

was obtained using synthetic data, showing the algorithm



Fig. 8. Trajectory considered for the realistic dataset.

Fig. 9. Position RMSEs on each axis of the ENU frame without mea-
surements corrections (dotted), for the REKF (dashed) and the proposed
method (continuous).

robustness to a vehicle dynamics that does not exactly respect

the state equation (10). The results illustrated in Fig. 10 allow

us to appreciate the loss of performance obtained when the

number of satellites affected by MP increases. The results

obtained with the proposed sparse estimation method are

satisfactory when there is less than 5 satellites out of 8 that are

contaminated by MP. Conversely, the algorithm performance

degrades significantly when the number of biased channels

is larger than 6 out of 8, which defines the limit of the

sparsity assumption for this simulation scenario, when too

many satellites are affected by multipath.

C. Real Data

The proposed algorithm was finally evaluated on real

measurements provided by a Ublox AEK-4T receiver, and

compared with the robust EKF described in [42] and the

Ublox solution. A reference solution was obtained during

the measurement campaign using a very accurate (high-cost)

receiver, i.e., a Novatel SPAN composed of a GPS receiver

Propak-V3 and an inertial measurement unit (IMAR). The

performance of the different algorithms is compared using

Fig. 10. Influence of the number of satellites affected by MP.

TABLE I

QUANTITATIVE RESULTS FOR THE HORIZONTAL AND VERTICAL ERRORS.
(a) FULL CAMPAIGN, (b) OPEN SKY AND (c) URBAN ENVIRONMENT

Fig. 11. Cumulative distribution functions of planar and altitude errors after
weighting (continuous red) or discarding (blue dotted) low-elevation satellites.

data from the global campaign, but also using data result-

ing from specific portions of the trajectory corresponding to

pretty clear sky and urban environment. Note that the Ublox

receiver is a standalone receiver (it only uses its own GPS

measurements to compute its position), and that its estimation

algorithms used for positioning and computing the different

measurements (correlators/discriminators) are not provided.

The performance of the different methods is evaluated in

terms of root mean square error (RMSE) for the different

errors in the East, North and Up directions. The empirical

cumulative distribution functions (cdfs) of these errors are



Fig. 12. Trajectory of the first real experiment plotted using Google Earth©.

Fig. 13. Skyplot configuration (the green annulus represents elevations lower
than 5◦) and numbers of satellites all along the experiment. The green area
corresponds to the “near open sky” scenario, and the red one is for the “urban”
scenario.

also shown for each method. We also decided to show the

horizontal and altitude errors in the different figures. Finally,

some quantitative results (minimum, maximum and median

of horizontal and vertical errors) are summarized in Table I.

These results confirm the good performance of the proposed

sparse estimation algorithm.

1) Full Campaign: The trajectory considered during the

full campaign is shown in Fig. 12 whereas the corresponding

skyplot and numbers of satellites versus time are displayed

in Fig. 13. Note that the trajectory contains some areas

characterized by a quasi-constant number of satellites (equal

to 8 or 9) and others where this number changes rapidly

(between 5 and 8). Note also that only two satellites

(#5 and #22) had sometimes an elevation lower than 5◦,

Fig. 14. Position error versus time for the Ublox solution, the REKF and
the proposed method.

Fig. 15. Cumulative distribution functions of the position errors for the Ublox
solution, the REKF and the proposed method.

Fig. 16. Trajectory of the open sky scenario plotted using Google Earth©.
The reference is in blue, the Ublox and REKF solutions are displayed in green
and orange, whereas the proposed method is in cyan.

corresponding to the green annulus in Fig. 13. In order to

appreciate the interest of the elevation constraint, we tested

the performance of the proposed algorithm after discarding

the satellites with elevation less than 5◦(on a part of the whole

trajectory). The corresponding cdfs are displayed in Fig. 11,

showing that it is better to keep all the satellites including

those with small elevation. Planar and altitude errors are shown

in Fig. 14 whereas the corresponding cdfs can be observed

in Fig. 15. The proposed method outperforms the REKF for

both planar and altitude errors for this simulation scenario



Fig. 17. Skyplot configuration and number of satellites for the open sky
scenario.

Fig. 18. Position errors versus time for the Ublox solution, the REKF and
the proposed method for the open sky scenario.

Fig. 19. Position error cumulative distribution functions for the Ublox
solution, the REKF and the proposed method for the open sky scenario.

and seems to be competitive with respect to the Ublox built-

in solution, at least for the full campaign. Table I confirms

the good performance of the proposed sparse estimation

method.

Fig. 20. Trajectory of the urban scenario plotted using Google Earth©. The
reference is in blue, the Ublox and REKF solutions are in green and orange,
whereas the proposed method is in cyan.

Fig. 21. Skyplot configuration and number of satellites for the urban scenario.

Fig. 22. Position errors versus time for the Ublox solution, the REKF and
the proposed method for the urban scenario.

2) Light Urban: The trajectory corresponding to a “light

urban” environment and the corresponding skyplot are

depicted in Fig. 16 and Fig. 17. horizontal and altitude errors

as well as the quantitative results of Table I show that the



Fig. 23. Position error cumulative distribution functions for the Ublox
solution, the REKF and the proposed method for the urban scenario.

proposed method outperforms both the Ublox and the REKF

solutions for this clean environment.

3) Urban Canyon: The trajectory associated with the

urban scenario and the corresponding sky plot are displayed

in Figs. 20 and 21. The corresponding horizontal and altitude

errors and their cdfs are displayed in Figs. 22 and 23, whereas

some quantitative results are summarized in Table I. All these

results show that the proposed method outperforms the REKF

and performs similarly to the Ublox solution for this simula-

tion scenario.

VI. CONCLUSIONS

This paper investigated a new GNSS estimation method

exploiting the sparsity of channels affected by MP. We have

shown via numerous experiments conducted on synthetic,

realistic and real data that this method is very competitive

with respect to more classical robust estimation strategies and

to some extent to low-cost industrial solutions. The proposed

method also showed some limits when the number of chan-

nels affected by multipath increased, i.e., when the sparsity

assumption exploited by the proposed algorithm was no longer

satisfied. Of course, the number of zero components of the MP

vector is implicitly controlled by the value of the regularization

parameter (since the value of this parameter allows the weights

of the data fidelity and regularization terms to be balanced).

However, investigating methods allowing this hyperparameter

to be estimated directly from the data and from key parameters

such as the average C/N0 is clearly an important prospect.

Methods based on the Stein risk [55] or on Markov chain

Monte Carlo methods [56] would for instance deserve to be

explored in the context of navigation using GNSS measure-

ments. Another interesting future work concerns the automatic

determination of the weight matrix used in the reweighted-`1

algorithm and the choice of the regularization enforcing

sparsity of the MP components. Recent works conducted

in [48] and [57] are clearly interesting to solve this issue.

Finally another interesting point to investigate is the interest of

the proposed method when coupled with other navigation algo-

rithms, such as those adjusting the noise covariance matrix Rk

adaptively [58] or using multiple models [59], or when the

nature of the additive bias differs from multipaths.
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