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Multipath Routing Algorithms for
Congestion Minimization

Ron Banner, Senior Member, IEEE, and Ariel Orda, Fellow, IEEE

Abstract—Unlike traditional routing schemes that route all
traffic along a single path, multipath routing strategies split the
traffic among several paths in order to ease congestion. It has been
widely recognized that multipath routing can be fundamentally
more efficient than the traditional approach of routing along single
paths. Yet, in contrast to the single-path routing approach, most
studies in the context of multipath routing focused on heuristic
methods. We demonstrate the significant advantage of optimal
(or near optimal) solutions. Hence, we investigate multipath
routing adopting a rigorous (theoretical) approach. We formalize
problems that incorporate two major requirements of multipath
routing. Then, we establish the intractability of these problems in
terms of computational complexity. Finally, we establish efficient
solutions with proven performance guarantees.

Index Terms—Computer networks, congestion avoidance,
routing protocols.

I. INTRODUCTION

C
URRENT routing schemes typically focus on discovering

a single “optimal” path for routing, according to some de-

sired metric. Accordingly, traffic is always routed over a single

path, which often results in substantial waste of network re-

sources. Multipath routing is an alternative approach that dis-

tributes the traffic among several “good” paths instead of routing

all traffic along a single “best” path.

Multipath routing can be fundamentally more efficient than

the currently used single-path routing protocols. It can signifi-

cantly reduce congestion in “hot spots,” by deviating traffic to

unused network resources, thus, improving network utilization

and providing load balancing [16]. Moreover, congested links

usually result in poor performance and high variance. For such

circumstances, multipath routing can offer steady and smooth

data streams [6].

Multipath routing algorithms that optimally split traffic be-

tween a given set of paths have been investigated in the con-

text of flow control (e.g., [14], [19], [20]). Yet, the selection

of the routing paths is another major design consideration that

has a drastic effect on the resulting performance. Therefore, al-

though many flow-control algorithms are optimal for a given set

of routing paths, their performance can significantly differ for

different sets of paths. Accordingly, in this paper, we focus on

multipath routing algorithms that both select the routing paths

and split traffic among them.
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Previous studies and proposals on multipath routing in

the previous context have focused on heuristic methods. In

[22], a multipath routing scheme, termed equal cost multipath

(ECMP), has been proposed for balancing the load along mul-

tiple shortest paths using a simple round-robin distribution. By

limiting itself to shortest paths, ECMP considerably reduces

the load balancing capabilities of multipath routing; moreover,

the equal partition of flows along the (shortest) paths (resulting

from the round robin distribution) further limits the ability to

decrease congestion through load balancing. OSPF-OMP [28]

allows splitting traffic among paths unevenly; however, the

traffic distribution mechanism is based on a heuristic scheme

that often results in an inefficient flow distribution. Both [29]

and [31] considered multipath routing as an optimization

problem with an objective function that minimizes the con-

gestion of the most utilized link in the network; however, they

focused on heuristics and did not consider the quality of the se-

lected paths. In [23], a scheme was presented to proportionally

split traffic among several “widest” paths that are disjoint with

respect to the bottleneck links. However, here too, the scheme

is heuristic and evaluated by way of simulations.

Through comprehensive simulations, we show that multipath

solutions obtained by optimal congestion reduction schemes are

fundamentally more efficient than solutions obtained by heuris-

tics. Specifically, we show that if the traffic distribution mech-

anism of the ECMP or OSPF-OMP schemes had been optimal,

the network congestion would have decreased by a factor of

more than 2.5; moreover, these simulations indicate that optimal

traffic distribution mechanisms become significantly more effi-

cient by just slightly alleviating the requirement to route along

shortest paths. Hence, the full potential of multipath routing is

far from having been exploited.

Accordingly, in this study, we investigate multipath routing

adopting a rigorous approach, and formulate it as an opti-

mization problem of minimizing network congestion. Under

this framework, we consider two fundamental requirements.

First, each of the chosen paths should usually be of satisfactory

“quality.” Indeed, while better load balancing is achieved by

allowing the employment of paths other than shortest, paths

that are substantially inferior (i.e., “longer”) may be prohibited.

Therefore, we consider the problem of congestion minimiza-

tion through multipath routing subject to a restriction on the

“quality” (i.e., length) of the chosen paths.

Another practical restriction is on the number of routing paths

per destination, which is due to the following reasons [23].

First, establishing, maintaining, and tearing down paths pose

considerable overhead. Second, the complexity of a scheme that

distributes traffic among multiple paths considerably increases

with the number of paths. Third, often there is a limit on the

1063-6692/$25.00 © 2007 IEEE
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number of explicitly routing paths (such as label-switched paths

in MPLS [26]) that can be set up between a pair of nodes. There-

fore, in practice, it is desirable to use as few paths as possible

while at the same time minimize the network congestion.

Link state protocols [15] constitute an important class of

routing protocols that can be used for the implementation

of multipath solutions. In this class of protocols, each node

maintains a “map” of the network that enables it to compute the

routes. When a network link changes status, a notification is

flooded throughout the network and all nodes recompute their

routes according to their updated maps. It has been noted [15]

that link state protocols have the following desirable properties:

1) they can employ more complicated routing approaches and

can compute more accurate routes than can be computed with

distance vector protocols; 2) they respond faster to changes

and impose less communication overhead than the alternative

(distance vector) protocols; and 3) they are applicable for the

Internet (e.g., both OSPF and IS-IS are link state protocols)

and may be applicable for ad hoc networks (see, e.g., [25]).

Accordingly, in this paper, we assume a link-state routing

environment and formulate our problems accordingly.

Our Results: Consider first the problem of minimizing the

congestion under the requirement to route traffic along paths of

“satisfactory” quality. We first show that the considered problem

is NP-hard, yet admits a pseudo-polynomial solution. Accord-

ingly, we design two algorithms. The first is an optimal algo-

rithm with a pseudo-polynomial running time and the second

approximates the optimal solution to any desired degree of pre-

cision at the (proportional) cost of increasing its running time

(i.e., an -optimal approximation scheme). In addition, we show

that these algorithms can be extended to offer solutions to reli-

ability related problems. Consider now the requirement of lim-

iting the number of paths per destination. We show that mini-

mizing the congestion under this restriction is NP-hard as well.

However, we establish a computationally efficient two-approx-

imation scheme for the problem, i.e., our algorithm provides a

solution that, in terms of congestion, is within a factor of at most

two away from the optimum.

Organization: In Section II, we introduce some terminology

and definitions, and formulate the main problems considered

in this study. In Section III, we consider the problem of min-

imizing congestion under path quality constraints and provide

both accurate as well as approximate solutions. In Section IV,

we investigate the problem of minimizing congestion subject to

a restriction on the number of paths per destination; we show

that the problem is NP-hard and provide a computationally effi-

cient two-approximation scheme. In Section V, we present sim-

ulation results that demonstrate the major advantage of optimal

congestion reduction schemes over two well-known heuristics.

Finally, Section VI summarizes the main results and discusses

future directions for future research.

II. MODEL AND PROBLEM FORMULATION

A network is represented by a connected directed graph

, where is the set of nodes and is the set

of links. Let and . A path is a finite

sequence of nodes , such that, for 0

. A path is simple if all its nodes

are distinct. Given a source node and a target node

is the set of (all) directed paths in from

to . Let represent the set of (all) simple paths

in from to . Finally, for each path and

link , define a link-path indicator , which is 1 if link

is contained in , and is 0 otherwise.

We consider a link-state routing environment, where each

source node has an image of the entire network. Each link

is assigned a length and a capacity . Given a

(nonempty) path , the length of is defined as the sum of

lengths of its links, namely, .

We consider two types of network flow representations. In

the path flow representation, each variable is the flow on

some simple path . Given two nodes and

a (flow) demand , we say that a path flow is feasible iff it

satisfies the flow demand requirement, i.e.,

and the capacity constraints, i.e.,

for each . In the link flow representation, each variable

is the flow on some link . Given two nodes

and a demand , a link flow is feasible iff there

exists some feasible path flow for the given instance such that

for each .

We proceed to formulate the criterion for congestion. Given

a network and a link flow , the value is the

link congestion factor and the value is the net-

work congestion factor. As noted in [2], [16], and [29], the net-

work congestion factor provides a good indication of conges-

tion. In [4], we show that the problem of minimizing the net-

work congestion factor is equivalent to the well-known max-

imum flow problem [1]. Hence, when there are no restrictions on

the paths (in terms of the number of paths or the length of each

path), one can find a path flow that minimizes the network con-

gestion factor in polynomial time through a standard max-flow

algorithm.

We are ready to formulate the two problems considered in

this study. The first problem aims at minimizing the network

congestion factor subject to a restriction on the “quality” (i.e.,

length) of each of the chosen paths.

Problem RMP (Restricted Multipath): Consider a network

, two nodes , a length , and a capacity

for each link , a demand , and a length

restriction for each routing path. Find a feasible path flow

that minimizes the network congestion factor such that, if

is the set of paths in that are assigned a positive

flow, then, for each , it holds that .

Remark 1: For convenience, and without loss of generality,

we assume that the length of each link is not larger

than the length restriction . Clearly, links that are longer than

can be erased.

The next problem considers the requirement to limit the

number of different paths over which a given demand is

shipped while at the same time minimizing the network con-

gestion factor.

Problem KPR (K-Path Routing): Given are a network

, two nodes , a capacity for each link
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, a demand , and a restriction on the number of

routing paths . Find a feasible path flow that minimizes the

network congestion factor, such that, if is the set of

paths in that are assigned a positive flow, then .

Remark 2: In both problems, the source destination pair

is assumed to be connected, i.e., .

Remark 3: In both problem formulations, it is possible to

limit the link congestion factor of each to any desired

congestion level by replacing the given capacity value

with a new capacity value . Clearly, the capacity constraint

(that both problems must satisfy) assures that the

link congestion factor would be at most .

III. MINIMIZING CONGESTION UNDER PATH

QUALITY CONSTRAINTS

In this section, we investigate Problem RMP, i.e., the problem

of minimizing congestion under path quality constraints. In

Section III-A, we prove that Problem RMP is computational

intractable. Accordingly, in Section III-B, we establish a

pseudo-polynomial solution and in Section III-C we design an

-optimal approximation scheme for the problem.

A. Intractability of Problem RMP

We show that Problem RMP can be reduced to the Partition

Problem [12].

Theorem 1–Problem RMP is NP-hard:

Proof: Consider the following instance of the Partition

problem; given a set of elements that constitute

a set with size for each , find a subset

such that contains exactly one element of

for every and .

We transform Partition to RMP as follows (see also Fig. 1).

1) Given an element with size , define a unit

capacity link with length .

2) For each link define a link

and a link . Assign to both

a unit capacity and a zero length.

3) For each link define a link

and a link . Assign to both a

unit capacity and a zero length.

4) Define links and links

. Assign to each a unit capacity and a zero length.

5) Set: and .

We shall prove that it is possible to transfer two flow units

over paths whose lengths are not larger than without ex-

ceeding a network congestion factor of iff there is a subset

such that contains exactly one element of

for every and .

(Remark: We refer to elements and their sizes interchange-

ably.) Suppose there exists a subset such that

contains exactly one of for each and

. Then, it is easy to see that the

selection of the links that represents the elements in and the

zero length links that connect those links constitutes a path.

Also, it is easy to see that this path is disjoint to the path that

the complement subset defines. Since all capacities are

equal to 1, we have two disjoint paths that can transfer together

exactly two units of flow without violating the congestion

Fig. 1. Reduction of partition to RMP.

constraint . The length restriction is preserved since the

two defined paths have length of , which was

defined to be the length restriction . Suppose there is a

path flow that transfers two flow units over paths that are not

longer than . Select one path that transfers a positive flow

and denote it as . Define an empty set . For every link in ,

with length , insert the element into . Since all links

in the graph have one unit of capacity, the selected path is

not able to transfer more than one unit of flow. Now, delete

all the links that constitute path . Since transfers at most

one unit of flow, there must be another path that is disjoint to

the selected path and transfers a positive flow over the links

that were left in the graph. For each link in that path with

size , insert the element into a different set . We

will now prove that , and, finally,

.

Since and were constructed out of disjoint paths, it is

obvious that . Since every path must traverse either

or for each and since both paths are
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Fig. 2. Program RMP.

disjoint, . Finally, since both paths have

lengths that are not longer than , we have

(1)

Since and , we get

(2)

Note that if variables satisfy and in

addition , it follows that .

Accordingly, we conclude from (1) and (2) that

.

Thus, problem RMP is NP hard.

B. Pseudo-Polynomial Algorithm for Problem RMP

The first step towards obtaining a solution to Problem RMP

is to define it as a linear program. To that end, we need some

additional notation.

Recall that we are given a network , two nodes

, a length , and a capacity for each link ,

a demand and a length restriction for each routing

path. Let be the network congestion factor. Denote by the

total flow along that has been routed from

to through paths with a total length . Finally, for each

, denote by the set of links that emanate from , and

by the set of links that enter that node, namely,

and . Then,

Problem RMP can be formulated as a linear program over the

variables as specified in Fig. 2.

The objective function (1) minimizes the network congestion

factor. Constraints (2), (3), and (4) are nodal flow conservation

constraints. Equation (2) states that the traffic flowing out of

node , which has traversed through paths of length

, has to be equal to the traffic flowing into node ,

through paths and links , such

that ; since , the length restriction is

obeyed; finally, (2) must be satisfied for each node other than

the source and the target . Equation (3) extends the validity

Fig. 3. Single link flow can be decomposed into several path flows. Some of
them satisfy the length restriction and the rest violate it.

of (2) to hold for traffic that encounters source after it has al-

ready passed through paths with non-zero length. Informally, (3)

states that “old” traffic that emanates from not for the first time

(through a directed cycle that contains the source ) must sat-

isfy the nodal flow conservation constraint of (2), which solely

focuses on nodes from . Equation (4) states that the

total traffic flowing out of source , which has traversed paths

of length , must be equal to the demand . Informally, (4)

states that the total “new” traffic that emanates from the source

for the first time must satisfy the flow demand . Equation (5)

is the link capacity utilization constraint. It states that the max-

imum link utilization is not larger than the value of the variable

, i.e., the network congestion factor is at most . Expression

(6) rules out nonfeasible flows and Expressions (7) and (8) re-

strict all variables to be nonnegative.

We can solve Program RMP (Fig. 1) using any polynomial

time algorithm for linear programming [18]. The solution to the

problem is then achieved by decomposing the output of Pro-

gram RMP (i.e., link flow into a path flow that satisfies

the length restriction . Standard flow techniques that transform

flows along links into flows along paths (e.g., the flow decompo-

sition algorithm [1]), cannot be used for our purpose since they

do not respect the length restrictions. This is illustrated by the

following example.

Example 1: Consider the network depicted in Fig. 3. Sup-

pose that the flow along each link is equal to one unit, i.e.,

for each . Moreover, assume that the length

restriction is 4. There are several path flows that can be decom-

posed out of the link flow . For example, one such is the

path flow that assigns one unit of flow to each of the paths

; indeed, since transfers one unit

of flow along each link, its link flow representation is .

However, since the length of the path is 6, the path

flow violates the length restriction. On the other hand, if we

decompose the link flow into the path flow that assigns one

unit to each of the paths , the length

restriction is satisfied on all paths.

Our goal is, therefore, to establish an efficient algorithm

that decomposes link flow into a path flow that satisfies

the length restrictions. Accordingly, consider Algorithm PFC,

which is specified in Fig. 4. This algorithm is an iterative algo-

rithm that identifies at each iteration a single path with a length

of at most whose corresponding link flows are all posi-

tive; the path is identified through procedure path construction,

which is specified in Fig. 5. The flow over the corresponding

path is defined to be equal to the smallest flow that belongs

to the path. Then, the algorithm subtracts the flow that traverses

through that path from the demand and from each variable

in the path. The (iterative) algorithm repeats this process until
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Fig. 4. Algorithm PFC.

Fig. 5. Procedure path construction.

the demand is zeroed. Thus, the resulting path flow transfers

flow units along paths with length of at most . Finally, since

procedure path construction might return nonsimple paths, the

algorithm converts all nonsimple paths in the resultant path

flow into simple paths by eliminating their loops.

We turn to explain the main idea behind procedure

path construction (Fig. 5). The procedure identifies a path

, whose cor-

responding variables are all

positive. Consider the positive variable . Since

(6) of Program RMP zeroes each variable with a length

, it holds for the positive variable

that ; hence, .

In other words, each path with a corresponding

sequence of positive variables

has a length . Thus, in order

to establish a path with a length of at most

, it is sufficient to find a sequence of positive variables

such that the link emanates

from source and the link enters into the destination

, i.e., and . To that end, we employ

the following property that characterizes the solutions of

Program RMP. If a positive flow enters through the

link into the node , it follows that

there is some link such that . Therefore,

since for some link ; that emanates from the

source , it is possible to follow positive flows (variables)

from in order to construct a sequence of positive variables

such that . We

now prove that, by following these positive variables for a

finite number of times, we eventually encounter a positive

variable such that enters the destination , i.e.,

we eventually identify a directed path from to with a length

of at most .

Lemma 1: Consider the nodes identified by procedure

path construction (step 1). There exists an , such that

the sequence is a path from to .

Proof: It follows from constraint (4) that, since ,

there exists some link such that the variable

is positive. Then, from constraints (2) and (3), it follows that, if

, then there exists some link such that the

variable is positive. Thus, applying constraints (2) and (3)

for any index , it follows that, if there exists a positive variable

, where , then, unless , there exists

a link such that the variable is

positive. Therefore, if for each , it must hold

that there exists an index , such that . Hence, in

order to establish the lemma, it is sufficient to show that

for each .

Indeed, since for each , it follows that

for any index ; hence, for each . There-

fore, since it follows from constraint (6) that for each

, it holds that for each .

For completion, in Fig. 6, we specify Algorithm RMP, which

solves Problem RMP.

Next, we consider the complexity of Algorithm RMP. First,

it follows from [18] that the complexity incurred by solving the

linear program of step 1 is polynomial both in the number of

variables and in the number of constraints needed to for-

mulate Program RMP. Thus, since both of these numbers are

in the order of , the complexity of step 1 is polynomial

in . Consider now the complexity incurred by step 2

(Algorithm PFC). Since, by construction, each iteration of Al-

gorithm PFC zeroes at least one variable , it follows that Al-

gorithm PFC iterates for no more than the number of variables

. Moreover, since the complexity of each iteration is domi-

nated by the complexity of procedure path construction, which,

according to Lemma 1, consumes operations, the com-

plexity of Algorithm PFC is . Thus,

we conclude that the overall complexity of Algorithm RMP is

polynomial in , i.e., Algorithm RMP is a pseudo-poly-

nomial time algorithm [12]. Whenever the value of is poly-

nomial in the size of the problem, Algorithm RMP is a poly-
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Fig. 6. Algorithm RMP.

nomial optimal algorithm for Problem RMP. One such case is

when the hop-count metric is considered (i.e., ), since

then .

C. -Optimal Approximation Scheme for Problem RMP

In Section III-B, we established an optimal polynomial solu-

tion to Problem RMP for the case where the length restrictions

are sufficiently small. In this section, we turn to consider the

solution to Problem RMP for arbitrary length restrictions. As

Theorem 1 establishes that Problem RMP is NP-hard for this

general case, we focus on the design of an efficient algorithm

that approximates the optimal solution.

Our main result is the establishment of an -optimal ap-

proximation scheme, which is termed the RMP approximation

scheme. This scheme is based on Algorithm RMP, specified in

Section III-B, which was shown to have a complexity that is

polynomial in . Given an instance of Problem RMP and

an approximation parameter , the RMP approximation scheme

reduces the complexity of Algorithm RMP by first scaling down

the length restriction by a factor and then rounding

it into an integer. Obviously, as a result, it must also scale

down the length of each link. However, in order to ensure that

the optimal network congestion factor does not increase, the

RMP approximation scheme relaxes the constraints of the new

instance with respect to the constraints of the original instance.

Specifically, after the RMP approximation scheme scales down

the length restriction and the length of each link by the factor

, it rounds up the length restriction and rounds down the

length of each link. Then, it invokes Algorithm RMP over the

new instance, in order to construct a path flow that minimizes

congestion while satisfying the relaxed length restrictions. In

Theorem 2, we establish that the resulting path flow violates

the length restriction by a factor of at most and has a

network congestion factor that is not larger than the optimal

network congestion factor. The RMP approximation scheme is

specified in Fig. 7.

Theorem 2: Given an instance of

problem RMP and an approximation parameter , the RMP ap-

proximation scheme has a complexity that is polynomial in

and in the size of the network. Moreover, the output of the

scheme is a path flow that satisfies the following.

1) , i.e., the flow demand requirement is

satisfied.

2) If is the network congestion factor of the op-

timal solution, then, for each , it holds that

, i.e., the network conges-

tion factor is at most .

Fig. 7. RMP approximation scheme.

3) For each path , if then is simple and

, i.e., the length restriction is violated

by a factor of at most .

Proof: We first show that the complexity of the RMP ap-

proximation scheme is polynomial in and in the size of the

network. To that end, recall that we have shown in Section III-B

that the complexity incurred by invoking Algorithm RMP over

any instance (of Problem RMP) with a length restriction is

polynomial in . Therefore, since the RMP approximation

scheme invokes Algorithm RMP over an instance with a length

restriction , it follows that its complexity

is polynomial in . We turn to prove parts (1), (2),

and (3) of the Theorem.

1) Since (4) in Program RMP specifies that ,

it follows that every path flow representation of the

link flow must satisfy that .

2) Let be the network congestion factor of the output

. We have to show that . In Section III-B,

we have shown that Algorithm RMP returns an op-

timal solution to Problem RMP. Thus, we only have to

show that the space of feasible solutions of the instance

(that constitutes an input to

Algorithm RMP in step 4) contains the space of feasible

solutions of the given instance .

Hence, it is sufficient to show that the length restrictions in

are relaxed with respect to the

length restrictions in . Specif-

ically, given a path in that satisfy

with respect to , we now show that

with respect to . By the selection of it holds that

; hence, . Therefore,

it holds that ; hence, by definition,

.

3) First, note that, by construction, the output of Algorithm

RMP carries positive flow only over simple paths; hence,

is simple. We turn to show that .

Since transfers a positive flow, it holds that

; hence, by definition . Therefore, it
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holds that ; hence,

, where is the hop count of path .

Finally, since is simple, it holds that ; hence,

.

Thus, the Theorem is established.

D. Extensions

In the following, we outline two important extensions to

Problem RMP.

Multicommodity Extensions: In order to simplify the

presentation of the solution to Problem RMP, we focused, in

this paper, only on the single commodity case, i.e., we assume

that only one source destination pair exists in every instance

of Problem RMP. Following basically the same lines as in

Sections III-A and III-B, we present in [4] a pseudo-polynomial

solution and an -optimal approximation for the multicom-

modity extension of Problem RMP.

End-to-End Reliability Constraints: When traffic is split

among multiple paths, a failure in any of these paths may re-

sult in the failure of the entire transmission. As a result, mul-

tipath routing may be more sensitive to network failures than

single-path routing. One solution is to assign to each link

a failure probability (which can be estimated out of avail-

able failure statistics of each network component) and then to

minimize the network congestion factor such that the traffic is

routed solely along paths with a success probability larger than

some given lower bound . Based on Algorithm RMP, it is

possible to construct an -optimal approximation scheme for

such a problem. Specifically, for any approximation parameter

, the -optimal approximation scheme constructs an instance

of Problem RMP by assigning a length

to each link and a length restriction ; then, it

invokes Algorithm RMP over the resulting instance. In [4], we

show that the solution is obtained within a time that is polyno-

mial in ; moreover, it is shown to minimize the network con-

gestion factor while violating the requirement on the end-to-end

success probability by a factor of at most . Due to space

limits, the details are omitted here.

IV. MINIMIZING CONGESTION WITH ROUTING PATHS

In this section, we investigate Problem KPR, which mini-

mizes congestion while routing traffic along at most dif-

ferent paths. In Section IV-A, we prove that Problem KPR is

NP-hard in the general case but admits a (straightforward) poly-

nomial solution when the restriction on the number of paths is

larger than the number of links (i.e., . Accordingly, in

Sections IV-B and IV-C, we devise a two-approximation scheme

for the more interesting case, where .

A. (In)tractability of Problem KPR

The following Theorem establishes the intractability of

Problem KPR for the general case.

Theorem 3—Problem KPR is NP-hard:

Proof: We reduce Problem KPR to the single-source un-

splittable flow problem that was shown to be NP hard in [21]

Fig. 8. Reducing the single-source unsplittable flow problem into Problem
KPR.

and is defined as follows: given are a network , a ca-

pacity for each link , a set of source-destina-

tion pairs associated with demands

; is there an assignment of traffic to paths such

that for each the demand is routed over a single

path without violating the capacity constraints?

The single source unsplittable flow problem is transformed

to Problem KPR as follows (see Fig. 8). Add an “aggregated”

target . Then, for each add a link with a

capacity .

We shall prove that it is possible to find an assignment of the

demands to paths such that for each

the demand is routed over a single path without

violating the capacity constraints iff there exists a path flow that

transfers flow units from to over at most

paths without exceeding a network congestion factor of .

For each , there is exactly one path from

to that carries flow units without violating the capacity

constraints. Hence, there are exactly paths from to that

transfers together flow units without exceeding

a network congestion factor of . There exists a path

flow that transfers flow units from to over at

most paths without exceeding a network congestion factor of

. Consider the cut , where and .

Since the capacity of the cut is equal to the demand ,

the path flow employs each link , where .

Yet, since it employs at most paths, must have exactly one

path with positive flow between and for each ;

moreover, since the flow over each link must equal to

the capacity of that link, it holds for each that the

(single) path that employs in order to carry traffic from to

transfers flow units.

Thus, Problem KPR is NP-hard.

Although Problem KPR is NP-hard in the general case, we

now show that it admits a polynomial solution when the restric-

tion on the number of paths is larger than the number of links

(i.e., ). Specifically, in the Appendix, we show that it is

possible to obtain a flow that minimizes the network congestion

factor with a single execution of a max-flow algorithm. More-

over, using the flow decomposition algorithm [12], it is possible

to transform in polynomial time every link flow representation

into a path flow representation that admits at most routing

paths. Therefore, with a single execution of a max-flow algo-

rithm followed by a single execution of the flow decomposition
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algorithm, it is possible to solve Problem KPR in polynomial

time in the case .

B. Integral Routing Problem

Our approximation scheme (for the case ) is based on

solving an auxiliary problem that minimizes congestion while

restricting the flow along each path to be integral in . In

order to formulate the corresponding problem, consider first the

following definition.

Definition 1: Given a network , a capacity

for each link , a demand and an integer , a

feasible path flow is said to be -integral, if for each path

, it holds that is a multiple of .

Problem Integral Routing: Given a network , two

nodes , a capacity for each link , a

demand , and an integer , find a -integral

path flow that minimizes the network congestion factor, such

that the demand is satisfied.

The following observation shall be used in order to construct

a polynomial solution to the integral routing problem.

Lemma 2: Given an instance of the

integral routing problem, the optimal network congestion factor

is included in the set .

Proof: In order to prove the lemma, it is sufficient to

show that the set contains the network congestion factor of

all -integral path flows that transfer flow units from

to over . Assume that is one such path flow (i.e.,

-integral path flow that transfers flow units from to ),

and denote by its network congestion factor. In order to prove

the Theorem, we now show that . Since is a -inte-

gral path flow it holds by definition that is a multiple of

for each path . Hence, the flow over each link

must also be a multiple of , i.e., for each there exists

an integer in the range such that ; therefore,

for each it holds that .

In particular,

; hence, .

Remark 4: Observe that the size of is polynomial in the

network size, i.e., .

We now introduce procedure test (Fig. 9), which is given an

instance of the integral routing problem

and a restriction on the network congestion factor. If there ex-

ists a -integral path flow for the given instance with a net-

work congestion factor of at most , then the procedure returns

it (and is said to succeed). Otherwise, the procedure returns Fail.

We turn to explain the main idea behind procedure test. Ini-

tially, the procedure multiplies all link capacities by a factor of

in order to impose the restriction on the network congestion

factor; indeed, multiplying all capacities by assures that the

flow along each link is at most ; therefore, the

link congestion factor for each , and, thus, the net-

work congestion factor , are at most . Next, the

procedure rounds down the capacity of each link to the nearest

multiple of ; since the flow over each path in every so-

lution to the integral routing problem is -integral, such a

rounding has no effect on the capability to transfer the flow de-

mand . Finally, the procedure applies any standard maximum

Fig. 9. Procedure test.

flow algorithm that returns an integral link flow when all ca-

pacities are integral. Since all capacities are -integral, the

maximum flow algorithm determines a -integral link flow

that transfers the maximum amount of flow without violating

the restriction on the network congestion factor. If this link

flow succeeds to transfer at least flow units from to , then

the procedure returns it. Otherwise, the procedure fails.

Theorem 4: Given an instance of the

integral routing problem and a restriction in the network con-

gestion factor, denote by the corresponding optimal network

congestion factor. Then, procedure test succeeds for the instance

with the restriction iff .

The proof appears in [4].

Theorem 4 has two important implications that enable to con-

struct an efficient solution to the integral routing problem. First,

the theorem establishes that the smallest for which procedure

test succeeds with the input is equal to

the optimal network congestion factor . Therefore, if is a

finite set that includes and is the smallest network conges-

tion factor in such that procedure test succeeds for the input

, then . This fact, together with

the fact that the set includes (as per Lemma 2), imply

that, for every instance of problem in-

tegral routing, the optimal network congestion factor is the

smallest such that procedure test succeeds, for the input

. Moreover, since in the case of a suc-

cess procedure test returns the corresponding link flow, finding

the smallest , such that procedure test succeeds, identifies

a link flow with a network congestion factor of .

The second implication of Theorem 4 enables to employ a

binary search when we seek the smallest such that pro-

cedure test succeeds. Indeed, it follows from Theorem 4 that,

when procedure test succeeds for , it succeeds for all

; and when it fails for , it fails for all

; thus, if procedure test succeeds for

(alternatively, fails for it is possible to eliminate from

further consideration all the elements of that are larger than

(correspondingly, smaller than ).
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Fig. 10. Algorithm integral routing.

Remark 5: Note that performing a binary search over

requires sorting all the elements of , which consumes

operations [10].

Thus, we conclude that the employment of a binary search

so as to find the smallest for which procedure test suc-

ceeds, establishes a link flow that has the minimum network

congestion factor. The optimal solution is then achieved by de-

composing the resulting link flow into a path flow via the flow

decomposition algorithm [1]. Algorithm integral routing, pre-

sented in Fig. 10, specifies these steps.

Our previous discussion is summarized by the following the-

orem, which establishes that algorithm integral routing solves

problem integral routing.

Theorem 5: Given an instance of

problem integral routing, algorithm integral routing returns a

-integral path flow that transfers at least flow units from

to , such that the network congestion factor is minimized.

Proof: Consider algorithm integral routing (Fig. 10). By

construction, the value , identified in step (3) of the al-

gorithm satisfies .

Hence, by the construction of procedure test, the link flow that

procedure test returns for the success with transfers flow

units from to ; moreover, since we have shown in the Proof of

Theorem 4 that this link flow is -integral, the flow decom-

position algorithm of step 4 decomposes it into a -integral

path flow.

It remains to be shown that is the optimal network

congestion factor for the given instance. However, this is ob-

vious, since is defined to be the smallest such that

. Therefore, it follows

from Theorem 4 that equals to the smallest such

that , where is the optimal network congestion factor

of the given instance. However, since we established in Lemma

2 that , it follows that .

We now establish the computational complexity of algo-

rithm integral routing. As was shown in Remark 5, step 1

of the algorithm consumes operations. Step

2 consumes ,

where is the computational complexity of the push

relabel algorithm that procedure test employs for an -node,

-link network. Step 3 consumes O(1) operations. The

flow decomposition algorithm executed in step 4 consumes

operations [1]. Finally, since the repre-

sentation of a path flow consists of

bits,1 step 5 consumes operations.

Thus, we conclude that, since is connected (i.e.,

), the overall complexity of algorithm integral

routing is . We note that

the push relabel algorithm has an implementation with a

running time of [13]. With this imple-

mentation, the complexity of algorithm integral routing is

.

C. Two-Approximation Scheme for Problem KPR

Finally, we are ready to establish a solution for Problem KPR.

To that end, we show that the solution of the integral routing

problem can be used in order to establish a constant approxi-

mation scheme for Problem KPR. The approximation scheme

is based on the following key observation, which links between

the optimal solution of problem integral routing and the optimal

solution of Problem KPR.

Theorem 6: Consider a network and a demand of

flow units that has to be routed from to . If is a -inte-

gral path flow that has the minimum network congestion factor

and is a path flow that minimizes its network congestion

factor while routing along at most paths, then the network

congestion factor of is at most twice the network congestion

factor of .

Proof: Suppose that and satisfy the assumptions of

the Theorem. Let and denote the network congestion

factor of path flows and , respectively. We have to show

that .

Out of the path flow , we construct a -integral path flow

that ships at least flow units from to and has a network

congestion factor of at most . Clearly, such a construc-

tion implies that the network congestion factor of every optimal

-integral path flow that ships flow units from to is at

most ; in particular, since is one such optimal -inte-

gral path flow, such a construction establishes that .

With this goal in mind, define the following construction.

First, double the flow along each routing path that employs;

obviously, the resulting path flow transfers flow units from

to along at most routing paths while yielding a network

congestion factor of . Then, round down the (doubled) flow

along each routing path to the nearest multiple of ; in this

process, the flow along each path is reduced by at most

flow units. Hence, since there are no more than routing paths,

the total flow from to is reduced by at most units; there-

fore, since before the rounding operation exactly flow units

were shipped from to , it follows that after the rounding is

performed, the resulting path flow transfers at least flow units

from to .

1f consists of O(M) routing paths, each path consists of O(N) links, and
each link is represented by O(logN) bits. Therefore, the collection of all pairs
(p; f(p)) such that f(p) 6= 0 consists of O(M � N � logN) bits.
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Fig. 11. Tight performance guarantees for algorithm integral routing.

Thus, we have identified a -integral path flow that trans-

fers at least flow units from to . In addition, since prior to

the rounding operation the network congestion factor is

and the rounding can only reduce flow, the network congestion

factor of the constructed path flow is at most .

Note that, given a network and a demand that

needs to be routed over at most paths, every -integral

path flow satisfies the requirement to ship the demand on at

most different paths. On the other hand, it has been estab-

lished in Theorem 6 that the network congestion factor obtained

by an optimal -integral path flow is at most twice the net-

work congestion factor of an optimal flow that admits at most

routing paths. Thus, computing a -integral path flow that

has the minimum network congestion factor satisfies the restric-

tion on the number of routing paths and obtains a network con-

gestion factor that is at most twice larger than the optimum. We

summarize the previous discussion in the following corollary,

which yields an approximation scheme for Problem KPR.

Corollary 1: Consider a network , a demand , and a

restriction on the number of routing paths . The employment

of algorithm integral routing for the establishment of a -in-

tegral path flow that minimizes the network congestion factor

provides a two-approximation scheme for Problem KPR with a

complexity of .

Finally, we note that the performance guarantee obtained in

Corollary 1 for algorithm integral routing is tight, i.e., there are

instances for which the network congestion factor obtained by

algorithm integral routing is asymptotically twice the optimal

network congestion factor. The following example presents one

such instance.

Example 2: Consider the parallel-links network in Fig. 11.

Assume that the upper link has a capacity and each other

link has a capacity for some small value . Fur-

thermore, assume that the flow demand is equal to and the

maximum number of paths over which traffic can be assigned

is also . Consider first the solution obtained by algorithm in-

tegral routing. The algorithm first rounds all capacities down to

the nearest multiple of , namely, 1; hence, all link capacities

are zeroed except for the capacity on the upper link that remains

to be equal to . Accordingly, the solution returned by algo-

rithm integral routing assigns flow units over the upper link,

hence, resulting with a network congestion factor of 1. On the

other hand, it is easy to see that for a sufficiently small value of

, a solution that assigns flow units to the upper link and

flow units to each other link is feasible and has a network

congestion factor of . Thus, the ratio between the two

network congestion factors is for and

0.

V. SIMULATION RESULTS

The goal of this section is to demonstrate how much is

gained by employing optimal multipath routing algorithms for

congestion minimization. To that end, we present a comparison

between the congestion obtained by an optimal multipath

routing algorithm to the congestion obtained by the popular

heuristics ECMP and OMP. Through comprehensive simu-

lations, we show that multipath routing solutions obtained

by optimal congestion reduction schemes are fundamentally

more efficient. We generated two classes of random networks:

Power-law topologies [11] and Waxman topologies [30]. For

each class, we generated 10 000 networks and conducted the

following measurements over each network: 1) the network

congestion factor produced by invoking ECMP; 2) the

network congestion factor produced by invoking OMP;

and 3) the network congestion factor produced by

an optimal assignment of traffic to paths with a length of

at most

, where

is the length of a shortest path. In all runs, we assumed that the

link capacities are uniformly distributed in [5, 150] MB/s, the

bandwidth requests is uniformly distributed in [1, 5] MB/s, and

the length of each link is uniformly distributed in [1, 50]. The

following definition is used to evaluate the gain in the use of

optimal multipath routing algorithms.

Definition 2: Given a network a pair of nodes

, a demand , and a length restriction , define by the

ratio between the optimal network congestion factor and that

obtained by ECMP; similarly, define by the ratio be-

tween the optimal network congestion factor and that obtained

by OMP, i.e.,

We proceed to specify the way we generated each class of

topologies, starting with Waxman topologies. Our construction

follows the lines of [30]. We first located the source and the

destination at the diagonally opposite corners of a square area of

unit dimension. Then, we randomly spread 198 nodes over the

square. Finally, we introduced a link between each two nodes

and , with the following probability, which depended on the

distance between them,

using and . The previous approach resulted in

200 nodes and approximately 1800 links per network topology.

We now refer to the way we generated power-law topologies.

Our construction followed the lines of [11]. First, we randomly

assigned a certain number of out-degree credits to each node,

using the power-law distribution , where and

. Then, we connected the nodes so that every node ob-

tained the assigned out degree. More specifically, we randomly

picked a pair of nodes and , and assigned a directed link

from to if had some remaining out-degree credits and link

had not been defined already. Whenever a link

was placed between the corresponding nodes, we also decre-

mented the out-degree credit of node . When the selected pair
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Fig. 12. Ratio between the network congestion produced by an optimal multi-
path routing assignment and the network congestion produced by ECMP.

Fig. 13. Ratio between the network congestion produced by an optimal multi-
path routing assignment and the network congestion produced by OMP.

of nodes was not suitable for a link, we continued to pick pairs of

nodes until finding one that was suitable. The previous strategy

resulted in 200 nodes and approximately 1200 links per network

topology.

Our results are summarized in Figs. 12 and 13. Note that,

for power-law topologies, if the ECMP or OMP heuristics had

an optimal mechanism to distribute traffic among the shortest

paths, the network congestion factor would have been reduced

by a factor of at least 2.5; moreover, for Waxman topologies,

this factor of improvement is greater than 3 for OMP and greater

than 9.5 for ECMP. Next, observe that optimal traffic distribu-

tion mechanisms that allow relaxing the requirement to route

along shortest paths by just 20% produce a network congestion

factor that, in power-law topologies, is at least 3.3 times smaller

than with OMP and ECMP; moreover, for Waxman topologies,

this factor of improvement is more than 4.5 for OMP and is more

than 12 for ECMP. Thus, for , Algorithm RMP or

its -optimal approximation can drastically reduce network con-

gestion at the price of routing along paths that are just slightly

longer than the shortest.

VI. CONCLUSION

Previous multipath routing schemes for congestion avoidance

focused on heuristic methods. Yet, our simulations indicate that

optimal congestion reduction schemes are significantly more

efficient. Accordingly, we investigated multipath routing as an

optimization problem of minimizing network congestion and

considered two fundamental problems. Although both have

been shown to be computationally intractable, they have been

found to admit efficient approximation schemes. Indeed, for

each problem, we have established a polynomial time algorithm

that approximates the optimal solution by a (small) constant

approximation factor.

A common feature that both approximations share is the dis-

cretization of the set of feasible solutions. Whereas the solu-

tion to Problem KPR is established by restricting the flow along

each path to be integral in , the solution to Problem RMP

is established by restricting all lengths to be integral in some

common scaling factor. These discretizations enable to reduce

the space of feasible solutions and therefore obtain polynomial

running time algorithms.

While this study has laid the algorithmic foundations of two

fundamental multipath routing problems, there are still many

challenges to overcome. One major challenge is to establish an

efficient unifying scheme that combines the two problems. Fur-

thermore, it is interesting to consider the distributed implemen-

tation of our solutions. Since algorithm integral routing (that is

used to solve Problem KPR) invokes a set of successive com-

putations of a max-flow algorithm, its distributed implementa-

tion is straightforward due to [3] that provides distributed im-

plementations for max-flow algorithms. The distributed imple-

mentation of Algorithm RMP remains an open issue for future

investigation. Finally, as discussed in [4], multipath routing of-

fers a rich ground for research also in other contexts, such as

survivability, recovery, network security, and energy efficiency.

We are currently working on these issues and have obtained sev-

eral results regarding survivability [5].
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