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Multipath TCP: Analysis, Design and

Implementation
Qiuyu Peng, Anwar Walid, Jaehyun Hwang, Steven H. Low

Abstract—Multi-path TCP (MP-TCP) has the potential to
greatly improve application performance by using multiple paths
transparently. We propose a fluid model for a large class of
MP-TCP algorithms and identify design criteria that guarantee
the existence, uniqueness, and stability of system equilibrium.
We clarify how algorithm parameters impact TCP-friendliness,
responsiveness, and window oscillation and demonstrate an
inevitable tradeoff among these properties. We discuss the impli-
cations of these properties on the behavior of existing algorithms
and motivate our algorithm Balia (balanced linked adaptation)
which generalizes existing algorithms and strikes a good balance
among TCP-friendliness, responsiveness, and window oscillation.
We have implemented Balia in the Linux kernel. We use our
prototype to compare the new algorithm with existing MP-TCP
algorithms.

I. INTRODUCTION

Traditional TCP uses a single path through the network

even though multiple paths are usually available in today’s

communication infrastructure; e.g., most smart phones are

enabled with both cellular and WiFi access, and servers in

data centers are connected to multiple routers. Multi-path TCP

(MP-TCP) has the potential to greatly improve application

performance by using multiple paths transparently. It is being

standardized by the MP-TCP Working Group of the Internet

Engineering Task Force (IETF) [2]. In this paper we present

a fluid model of MP-TCP and study how protocol parameters

affect structural properties such as the existence, uniqueness

and stability of equilibrium, the tradeoffs among TCP friendli-

ness, responsiveness and window oscillation. These properties

motivate a new algorithm that generalizes existing MP-TCP

algorithms.

Various congestion control algorithms have been proposed

as an extension of TCP NewReno for MP-TCP. A straight-

forward extension is to run TCP NewReno on each subpath,

e.g. [3], [4]. This algorithm however can be highly unfriendly

when it shares a path with a single-path TCP user. This

motivates the Coupled algorithm which is fair because it

has the same underlying utility function as TCP NewReno,

e.g. [5], [6]. It is found in [7] however that the Coupled

algorithm responds slowly in a dynamic network environment.

A different algorithm is proposed in [7] (which we refer to

as the Max algorithm) which is more responsive than the
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Coupled algorithm and still reasonably friendly to single-path

TCP users. Recently, opportunistic linked increase algorithm

(OLIA) is proposed as a variant of Coupled algorithm that

is as friendly as the Coupled algorithm but more responsive

[8]. See [9] for more references to early work on multi-path

congestion control.

Our goal is to develop structural understanding of MP-TCP

algorithms so that we can systematically tradeoff different

properties such as TCP friendliness, responsiveness, and win-

dow oscillation that can be detrimental to applications that

require a steady throughput. For single-path TCP, one can

associate a strictly concave utility function with each source so

that the congestion control algorithm implicitly solves a net-

work utility maximization problem [9]–[11]. The convexity of

this underlying utility maximization guarantees the existence,

uniqueness, and stability of most single-path TCP algorithms.

For many MP-TCP proposals considered by IETF, it will be

shown that the utility maximization interpretation fails to hold

in general, necessitating the need for a different approach to

understanding the equilibrium properties of these algorithms.

Moreover the relations among different performance metrics,

such as fairness, responsiveness and window oscillation, need

to be clarified.

The main contributions of this paper are three-fold. First

we present a fluid model that covers a broad class of MP-

TCP algorithms and identify the exact property that allows an

algorithm to have an underlying utility function. This implies

that some MP-TCP algorithms, e.g., the Max algorithm [7],

has no associated utility function. We prove conditions on

protocol parameters that guarantee the existence and unique-

ness of the equilibrium, and its asymptotical stability. Indeed

algorithms that fail to satisfy these conditions, e.g. the Coupled

algorithm, can be unstable and can have multiple equilibria

as shown in [7]. Second we clarify how protocol parameters

impact TCP friendliness, responsiveness, and window oscil-

lation and demonstrate the inevitable tradeoff among these

properties. Finally, based on our understanding of the design

space, we propose Balia (Balanced linked adaptation) MP-

TCP algorithm that generalizes existing algorithms and strikes

a good balance among these properties. This algorithm has

been implemented in the Linux kernel and we evaluate its

performance using our Linux prototype.

We now summarize our proposed Balia MP-TCP algorithm.

Each source s has a set of routes r. Each route r maintains

a congestion window wr and measures its round-trip time τr.

The window adaptation is as follows:

• For each ACK on route r ∈ s,
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wr ← wr +
xr

τr (
∑

xk)
2

(

1 + αr

2

)(

4 + αr

5

)

(1)

• For each packet loss on route r ∈ s,

wr ← wr −
wr

2
min {αr, 1.5} (2)

where xr := wr/τr and αr := max{xk}
xr

.

The rest of the paper is structured as follows. In Section

II we develop a fluid model for MP-TCP and use it to

model existing algorithms. In Section III we prove several

structural properties, focusing on design criteria that determine

the existence, uniqueness, and stability of system equilibrium,

TCP-friendliness, responsiveness, window oscillation, and an

inevitable tradeoff among these properties. In Section IV

we discuss the implications of these properties on existing

algorithms. This motivates our new MP-TCP algorithm and

we explain our design rationale. In Section V we compare

the performance of the proposed algorithm with existing

algorithms using Linux implementations of these algorithms.

We conclude in Section VI.

II. MULTIPATH TCP MODEL

In this section we first propose a fluid model of MP-

TCP and then use it to model MP-TCP algorithms in the

literature. Unless otherwise specified, a boldface letter x ∈
R

n denotes a vector with components xi. We use x−i :=
(x1, . . . , xi−1, xi+1, . . . , xn) to denote the n− 1 dimensional

vector without xi and ‖x‖k := (
∑

xki )
1/k to denote the Lk-

norm of x. Given two vectors x,y ∈ R
n, x ≥ y means

xi ≥ yi for all components i. A capital letter denotes a matrix

or a set, depending on the context. A symmetric matrix P is

said to be positive (negative) semidefinite if xTPx ≥ 0(≤ 0)
for any x, and positive (negative) definite if xTPx > 0(< 0)
for any x 6= 0. For any matrix P , define [P ]+ := (P +PT )/2
to be its symmetric part. Given two arbitrary matrices A and

B (not necessarily symmetric), A � B means [A − B]+ is

positive semidefinite. For a vector x, diag{x} is a diagonal

matrix with entries given by x.

A. Fluid model

Consider a network that consists of a set L = {1, . . . , |L|}
of links with finite capacities cl. The network is shared by a

set S = {1, . . . , |S|} of sources. Available to source s ∈ S is

a fixed collection of routes (or paths) r. A route r consists of

a set of links l. We abuse notation and use s both to denote

a source and the set of routes r available to it, depending on

the context. Likewise, r is used both to denote a route and the

set of links l in the route. Let R := {r | r ∈ s, s ∈ S} be the

collection of all routes. Let H ∈ {0, 1}|L|×|R| be the routing

matrix: Hlr = 1 if link l is in route r (denoted by ‘l ∈ r’),

and 0 otherwise.

For each route r ∈ R, τr denotes its round trip time (RTT).

For simplicity we assume τr are constants. Each source s
maintains a congestion window wr(t) at time t for every route

r ∈ s. Let xr(t) := wr(t)/τr represent the sending rate on

route r. Each link l maintains a congestion price pl(t) at time t.
Let qr(t) :=

∑

l∈LHlrpl(t) be the aggregate price on route r.

In this paper pl(t) represents the packet loss probability at link

l and qr(t) represents the approximate packet loss probability

on route r.

We associate three state variables (xr(t), wr(t), qr(t))
for each route r ∈ s. Let xs(t) := (xr(t), r ∈ s),
ws(t) := (wr(t), r ∈ s), qs(t) := (qr(t), r ∈ s). Then

(xs(t),ws(t),qs(t)) represents the corresponding state vari-

ables for each source s ∈ S. For each link l, let yl(t) :=
∑

r∈RHlrxr(t) be its aggregate traffic rate.

Congestion control is a distributed algorithm that adapts

x(t) and p(t) in a closed loop. Motivated by the AIMD

algorithm of TCP Newreno, we model MP-TCP by

ẋr = kr(xs) (φr(xs)− qr)
+
xr

r ∈ s s ∈ S (3)

ṗl = γl (yl − cl)
+
pl

l ∈ L, (4)

where (a)+x = a for x > 0 and max{0, a} for x ≤ 0. We omit

the time t in the expression for simplicity. (3) models how

sending rates are adapted in the congestion avoidance phase

of TCP at each end system and (4) models how the congestion

price is (often implicitly) updated at each link. The MP-TCP

algorithm installed at source s is specified by (Ks,Φs), where

Ks(xs) := (kr(xs), r ∈ s) and Φs(xs) := (φr(xs), r ∈ s).
Here Ks(xs) ≥ 0 is a vector of positive gains that determines

the dynamic property of the algorithm. Φs(xs) determines the

equilibrium properties of the algorithm. The link algorithm is

specified by γl, where γl > 0 is a positive gain that determines

the dynamic property. This is a simplified model for the RED

algorithm that assumes the loss probability is proportional to

the backlog, and is used in, e.g., [10], [11].

B. Existing MP-TCP algorithms

We first show how to relate the fluid model (3) to the

window-based MP-TCP algorithms proposed in the literature.

On each route r the source increases its window at the return

of each ACK. Let this increment be denoted by Ir(ws) where

ws is the vector of window sizes on different routes of source

s. The source decreases the window on route r when it sees

a packet loss on route r. Let this decrement be denoted by

Dr(ws). Then most loss based MP-TCP algorithms take the

form of the following pseudo code:

• For each ACK on route r, wr ← wr + Ir(ws).
• For each loss on route r, wr ← wr −Dr(ws).

We now model the above pseudo codes by the fluid model

(3). Let δwr be the net change to window on route r in each

round trip time. Then δwr is roughly

δwr = (Ir(ws)(1− qr)−Dr(ws)qr)wr

≈ (Ir(ws)−Dr(ws)qr)wr

since the loss probability qr is small. On the other hand

δwr ≈ ẇrτr = ẋrτ
2
r

Hence

ẋr =
xr
τr

(Ir(ws)−Dr(ws)qr)
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From (3) we have
{

kr(xs) = xr

τr
Dr(ws)

φr(xs) = Ir(ws)
Dr(ws)

(5)

We now apply this to the algorithms in the literature. We

first summarize these algorithms in the form of a pseudo-code

and then use (5) to derive parameters kr(xs) and φr(xs) of

the fluid model (3).

Single-path TCP (TCP-NewReno): Single-path TCP is a

special case of MP-TCP algorithm with |s| = 1. Hence xs
is a scalar and we identify each source with its route r = s.
TCP-NewReno adjusts the window as follows:

• For each ACK on route r, wr ← wr + 1/wr.

• For each loss on route r, wr ← wr/2.

From (5), this can be modeled by the fluid model (3) with

kr(xs) =
1

2
x2r, φr(xs) =

2

τ2r x
2
r

We now summarize some existing MP-TCP algorithms, all

of which degenerate to TCP NewReno if there is only one

route per source.

EWTCP [3]: EWTCP algorithm applies TCP-NewReno like

algorithm on each route independently of other routes. It

adjusts the window on multiple routes as follows:

• For each ACK on route r, wr ← wr + a/wr.

• For each loss on route r, wr ← wr/2.

From (5), this can be modeled by the fluid model (3) with

kr(xs) =
1

2
x2r, φr(xs) =

2a

τ2r x
2
r

where a > 0 is a constant.

Coupled MPTCP [5], [6]: The Coupled MPTCP algorithm

adjusts the window on multiple routes in a coordinated fashion

as follows:

• For each ACK on route r, wr ← wr +
wr/τ

2
r

(
∑

k∈s
wk/τk)2

.

• For each loss on route r, wr ← wr/2.

From (5), this can be modeled by the fluid model (3) with

kr(xs) =
1

2
x2r, φr(xs) =

2

τ2r (
∑

k∈s xk)
2

Semicoupled MPTCP [7]: The Semi-coupled MPTCP al-

gorithm adjusts the window on multiple routes as follows:

• For each ACK on route r, wr ← wr +
1

τr(
∑

k∈s
wk/τk)

.

• For each loss on route r, wr ← wr/2.

From (5), this can be modeled by the fluid model (3) with

kr(xs) =
1

2
x2r, φr(xs) =

2

xrτr(
∑

k∈s xk)

Max MPTCP [7]: The Max MPTCP algorithm adjusts the

window on multiple routes as follows:

• For each ACK on route r, wr ← wr +

min
{

max{wk/τ
2
k}

(
∑

wk/τk)2
, 1
wr

}

.

• For each loss on route r, wr ← wr/2.

From (5), this can be modeled by the fluid model (3) with

kr(xs) =
1

2
x2r, φr(xs) =

2max{xk/τk}

xrτr(
∑

k∈s xk)
2

TABLE I: MP-TCP algorithms

C0 C1 C2, C3 C4 C5

EWTCP Yes Yes Yes Yes Yes

Coupled Yes Yes No Yes Yes

Semicoupled No Yes Yes Yes Yes

Max No Yes Yes Yes Yes

Generalized No Yes Yes Yes Yes

Theorem 3.1 3.2, 3.3, 3.5 3.4 3.6

where we have ignored taking the minimum with the 1/wr

term since the performance is mainly captured by
max{wk/τ

2
k}

(
∑

wk/τk)2
.

Recently, OLIA MP-TCP algorithm [8] is shown to achieve

good performance in many scenarios. OLIA uses complicated

feedback congestion control signals and cannot be modeled

by (3)-(4). We do, however, include OLIA in our Linux-based

performance evaluation in Section V.

III. STRUCTURAL PROPERTIES

Throughout this paper we assume, for all xs, r ∈ s, s ∈ S,

kr(xs) > 0 and φr(xs) = 0 only if xk =∞ for some k ∈ s.
A point (x,p) is called an equilibrium of (3)–(4) if it satisfies,

for all r ∈ s, s ∈ S and l ∈ L,

kr(xs) (φr(xs)− qr)
+
xr

= 0

γl (yl − cl)
+
pl

= 0

or equivalently,

xr ≥ 0, φr(xs) ≤ qr and φr(xs) = qr if xr > 0 (6)

pl ≥ 0, yl ≤ cl and yl = cl if pl > 0 (7)

We make two remarks. First an equilibrium (x,p) does not

depend on Ks, but only on Φs. The design (Ks, s ∈ S)
however affects dynamic properties such as stability and

responsiveness as we show below. Second, since kr(xs) > 0
and φr(xs) = 0 only if xk = ∞ for some k ∈ s by

assumption, any finite equilibrium (x,p) must have qr > 0
for all r. In the following we always restrict ourselves to finite

equilibria.

In this section we denote an MP-TCP algorithm by

(K,Φ) := (Ks,Φs, s ∈ S). We characterize MP-TCP designs

(K,Φ) that guarantee the existence, uniqueness, and stability

of system equilibrium. We identify design criteria that deter-

mine TCP-friendliness, responsiveness and window oscillation

and prove an inevitable tradeoff among these properties. We

discuss in the next section the implications of these structural

properties on existing algorithms. All proofs are relegated to

the Appendices.

A. Summary

We first present some properties of an MP-TCP algorithm

(K,Φ) that we have identified. We then interpret them and

summarize their implications.

C0: For each s ∈ S and each xs, the Jacobians of Φs(xs) is

continuous and symmetric, i.e.,

∂Φs

∂xs
(xs) =

[

∂Φs

∂xs
(xs)

]T
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C1: For each s ∈ S there exists a nonnegative solution xs :=
xs(p) to (6) for any finite p ≥ 0 such that qr > 0 for all

r. Moreover,

∂ysl (p)

∂pl
≤ 0, lim

pl→∞
ysl (p) = 0

where ysl (p) :=
∑

r∈sHlrxr(p) is the aggregate traffic

at link l from source s.
C2: For each s ∈ S and each xs, Φs(xs) is con-

tinuously differentiable; moreover the symmetric part

[∂Φs(xs)/∂xs]
+ of the Jacobian is negative definite.

C3: For each r ∈ R, φr(xs) =∞ if and only if xr = 0. The

routing matrix H has full row rank.

C4: For each r ∈ s, s ∈ S,
∑

j∈s[Ds]jr(xs) ≤ 0 where

Ds(xs) :=
[

∂Φs

∂xs
(xs)

]−1

.

C5: For each r ∈ R and each x−r, limxr→∞ φr(xs) = 0.

These design criteria are intuitive and usually (but not

always) satisfied; see Table I.

Condition C0 guarantees the existence of utility functions

Us(xs) that an equilibrium (x,p) of a multipath TCP/AQM

(3)–(4) implicitly maximizes (Theorem 3.1). It is always

satisfied when there is only a single path (|s| = 1 for all

s) but not when |s| > 1.

Conditions C1–C3 guarantee the existence, uniqueness, and

global asymptotic stability of the equilibrium (x,p) (Theo-

rems 3.2 and 3.3). C1 says that the aggregate traffic rate

through a link l from source s decreases when the conges-

tion price pl on that link increases, and it decreases to 0
as pl increases without bounds. C2 implies that at steady

state, if xs,qs are perturbed by δxs, δqs respectively, then

(δxs)
T δqs < 0. In the case of single-path TCP (|s| = 1 for

all s), C2 is equivalent to the curvature of the utility function

Us(xs) being negative, i.e., Us(xs) is strictly concave. C3

means that the rate on route r is zero if and only if it sees

infinite price on that route.

Condition C4 is natural and satisfied by all the algorithms

considered in this paper. It allows us to formally compare

MP-TCP algorithms in terms of their TCP-friendliness (see

formal definition below): under C1–C4, an MP-TCP algorithm

(K,Φ) is more friendly if φr(xs) is smaller (Theorem 3.4).

The existence of Ds in C4 is ensured by C2. To interpret C4,

note that Lemma B.2 in Appendix B implies that Φs(x
∗
s) =

q∗
s at equilibrium. The implicit function theorem then implies

1T ∂xs

∂qr
=
∑

j∈sDjr at equilibrium for all r ∈ s. Hence C4

says that the aggregate throughput 1Txs at equilibrium over

all routes r ∈ s of an MP-TCP flow is a nonincreasing function

of the price qr.

Condition C5 is also satisfied by all the algorithms consid-

ered in this paper. It means that the sending rate on a route r
grows unbounded when the congestion price qr is zero. Under

C1–C3, an MP-TCP algorithm (K,Φ) is more responsive (see

formal definition below) if the Jacobian of Φs(xs) is more

negative definite (Theorem 3.5). C5 then implies an inevitable

tradeoff: an MP-TCP algorithm that is more responsive is

necessarily less TCP-friendly (Theorem 3.6).

We now elaborate on each of these properties.

B. Utility maximization

For single-path TCP (SP-TCP), one can associate a utility

function Us(xs) ∈ R+ → R with each flow s (xs is a scalar

and |s| = 1) and interpret (3)–(4) as a distributed algorithm

to maximize aggregate users’ utility, e.g. [9]–[12]. Indeed, for

SP-TCP, an (x,p) is an equilibrium if and only if x is optimal

for

maximize
∑

s∈S

Us(xs) s.t. yl ≤ cl l ∈ L (8)

and p is optimal for the associated dual problem. Here yl ≤ cl
means the aggregate traffic yl at each link does not exceed its

capacity cl. In fact this holds for a much wider class of SP-TCP

algorithms than those specified by (3)–(4) [12]. Furthermore

all the main TCP algorithms proposed in the literature have

strictly concave utility functions, implying a unique stable

equilibrium.

The case of MP-TCP is much more delicate: whether an

underlying utility function exists depends on the design choice

of Φs and not all MP-TCP algorithms have one. Consider the

multipath equivalent of (8):

maximize
∑

s∈S

Us(xs) s.t. yl ≤ cl l ∈ L (9)

where xs := (xr, r ∈ s) is the rate vector of flow s and

Us : R
|s|
+ → R is a concave function.

Theorem 3.1 (utility maximization): There exists a twice

continuously differentiable and concave Us(xs) such that an

equilibrium (x,p) of (3)–(4) solves (9) and its dual problem

if and only if condition C0 holds.

Condition C0 is satisfied trivially by SP-TCP when |s| = 1.

For MP-TCP (|s| > 1), the models derived in Section II-B

show that only EWTCP and Coupled algorithms satisfy C0

and have underlying utility functions. It therefore follows

from the theory for SP-TCP that EWTCP has a unique

stable equilibrium while Coupled algorithm may have multiple

equilibria since its corresponding utility function is not strictly

concave. The other MP-TCP algorithms all have asymmetric

Jacobian ∂Φs

∂xs
and do not satisfy C0.

C. Existence, uniqueness and stability of equilibrium

Even though a multipath TCP algorithm (K,Φ) may not

have a utility maximization interpretation, a unique equilib-

rium exists if conditions C1–C3 are satisfied.

Theorem 3.2 (existence and uniqueness):

1) Suppose C1 holds. Then (3)–(4) has at least one equi-

librium.

2) Suppose C2 and C3 hold. Then (3)–(4) has at most one

equilibrium

Thus (3)–(4) has a unique equilibrium (x∗,p∗) under C1–C3.

Conditions C1-C3 not only guarantee the existence and

uniqueness of the equilibrium, they also ensure that the

equilibrium is globally asymptotically stable, when the gain

kr(xs) is only a function of xr itself, i.e., kr(xs) ≡ kr(xr)
for all r ∈ R. This is satisfied by all the existing algorithms

presented in Section II-B.
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c

MP-TCP

Flow
MP-TCP

Flow

SP-TCP

Flow
SP-TCP

Flow

Fig. 1: Test network for the definition of TCP friendliness. The

link in the middle is the only bottleneck link with capacity c.

Theorem 3.3 (stability): Suppose C1-C3 hold and

kr(xs) ≡ kr(xr) for all r ∈ R. Then the unique equilib-

rium (x∗,p∗) is globally asymptotically stable. In particular,

starting from any initial point x(0) ∈ R
|R|
+ and p(0) ∈ R

|L|
+ ,

the trajectory (x(t),p(t)) generated by the MP-TCP algorithm

(3)–(4) converges to the equilibrium (x∗,p∗) as t→∞.

Our proposed algorithm does not satisfy kr(xs) ≡ kr(xr)
even though it seems to be stable in our experiments. This

condition is only sufficient and needed in our Lyapunov

stability proof; see Appendix C. When kr(xs) depends on

xs, one can replace kr(xr) in the definition of the Lyapunov

function V in (21) with kr(x
∗
s) evaluated at the equilibrium

and the same argument there proves that (x∗,p∗) is (locally)

asymptotically stable. Also see Theorem 3.5 below for an

alternative proof of local stability.

D. TCP friendliness

Informally, an MP-TCP flow is said to be ‘TCP friendly’ if it

does not dominate the available bandwidth when it shares the

same network with a SP-TCP flow [2]. To define this precisely

we use the test network shared by a SP-TCP flow and a MP-

TCP flow under test as shown in Fig. 1.

All paths traverse a single bottleneck link with capacity c,
with all other links with capacities strictly higher than c. The

links have fixed but possibly different delays. To compare

the friendliness of two MP-TCP algorithms M̂ := (K̂, Φ̂)
and M̃ := (K̃, Φ̃), suppose that when M̂ shares the test

network with a SP-TCP it achieves a throughput of ‖x̂‖1
in equilibrium aggregated over the available paths (the SP-

TCP therefore attains a throughput of c− ‖x̂‖1). Suppose M̃
achieves a throughput of ‖x̃‖1 in equilibrium when it shares

the test network with the same SP-TCP. Then we say that M̂
is friendlier (or more TCP-friendly) than M̃ if ‖x̂‖1 ≤ ‖x̃‖1,

i.e., if M̂ receives no more bandwidth than M̃ does when

they separately share the test network in Fig. 1 with the same

SP-TCP flow.

From the theory for single-path TCP (|s| = 1 for all s ∈ S),
it is known that a design is more TCP-friendly if it has a

smaller marginal utility U ′
s(xs) = Φs(xs). The same intuition

holds for MP-TCP algorithms even though the utility functions

may not exist for MP-TCP algorithm.

Theorem 3.4 (friendliness): Consider two MP-TCP algo-

rithms M̂ := (K̂, Φ̂) and M̃ := (K̃, Φ̃). Suppose both satisfy

C1–C4. Then M̂ is friendlier than M̃ if Φ̂s(xs) ≤ Φ̃s(xs) for

all s ∈ S.

E. Responsiveness around equilibrium

Suppose conditions C1–C3 hold and there is a unique

equilibrium z∗ := (x∗,p∗). Assume all links in L are active

with p∗l > 0; otherwise remove from L all links with prices

p∗l = 0. Let δz(t) := z(t)−z∗. The behavior of (3)–(4) around

the equilibrium is defined by the linearized system:

δż = J∗ δz(t) (10)

Here J∗ is the Jacobian of (3)–(4) at the equilibrium z∗:

J∗ := J(x∗) :=

[

Λk
∂Φ
∂x −ΛkH

T

ΛγH 0

]

where Λk = diag{kr(x
∗
s), r ∈ R}, Λγ = diag{γl, l ∈ L},

and ∂Φ
∂x is evaluated at x∗.

The stability and responsiveness of the linearized system

(10) (how fast does the system converges to the equilibrium

locally) is determined by the real parts of the eigenvalues

of J∗. Specifically the linearized system is stable if the real

parts of all eigenvalues of J∗ are negative; moreover the more

negative the real parts are the faster the linearized system

converges to the equilibrium. We now show that the linearized

system (10) is stable (i.e., converges exponentially fast to z∗

locally) and characterize its responsiveness in terms of the

design choices (K,Φ).
Let Z = {z := (x,p) ∈ C

|R|+|L| | ‖z‖2 = 1}.
Theorem 3.5 (responsiveness): Suppose C1–C3 hold. Then

1) The linearized system (10) is stable, i.e., Re(λ) < 0
for any eigenvalue λ of J∗. Moreover Re(λ) ≤ λ(J∗)
where

λ(J∗) := max
z∈Z

{

xH
[

∂Φ
∂x

]+
x

xHΛ−1
k x+ pHΛ−1

γ p

}

≤ 0

where Λk and ∂Φs

∂xs
are evaluated at the equilibrium point

z∗.

2) For two MP-TCP algorithms (K̂, Φ̂) and (K̃, Φ̃),
λ(Ĵ∗) ≤ λ(J̃∗) provided

K̂s ≥ K̃s and
∂Φ̂s

∂xs
�
∂Φ̃s

∂xs
for all s ∈ S

Theorem 3.5 motivates the following definition of respon-

siveness. Given two MP-TCP M̂ and M̃ , we say that M̂ is

more responsive than M̃ if λ(Ĵ∗) ≤ λ(J̃∗). Theorem 3.5(2)

implies that an MP-TCP algorithm with a larger Ks(x
∗
s) or

more negative definite
[

∂Φs

∂xs
(x∗

s)
]+

is more responsive, in the

sense that the real parts of the eigenvalues of the Jacobian J∗

have a smaller more negative upper bound.

Then the next result suggests an inevitable tradeoff between

responsiveness and friendliness.

Theorem 3.6 (tradeoff): Consider two MP-TCP algorithms

(K, Φ̂) and (K, Φ̃) with the same gain K. Suppose both satisfy

C1-C3 and C5. Then for all s ∈ S

∂Φ̂s(xs)

∂xs
�

∂Φ̃s(xs)

∂xs
⇒ Φ̂s(xs) ≥ Φ̃s(xs)

In light of Theorems 3.4 and 3.5, Theorem 3.6 says that a

more responsive MP-TCP design is inevitably less friendly if

they have the same K.
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The theorem is easier to understand in the case of SP-TCP,

i.e., when |s| = 1 for all s ∈ S and Φs(xs) = U ′
s(xs). Then

it implies that a more concave utility function Us(xs) has a

larger marginal utility, and hence less friendly.

F. Window oscillation

Window oscillations are inherent in loss-based additive

increase multiplicative decrease (AIMD) TCP algorithms. We

close this section by discussing informally why a larger design

Ks(xs) generally creates more severe window oscillations.

This implies a tradeoff between responsiveness (which is

enhanced by a large Ks(xs)) and oscillation (which is reduced

with a small Ks(xs)).
The effect of Ks(xs) on window fluctuations can be un-

derstood by studying how it affects the decrease Dr(ws) per

packet loss in the following packet level model:

• For each ACK on route r, wr ← wr + Ir(ws).
• For each loss on route r, wr ← wr −Dr(ws).

Let Zr ∈ {0, 1} be an indicator variable of whether a packet

loss is observed on route r at an arbitrary time in steady state.

Then

Ds(xs) :=
1

‖xs‖1
E

(

∑

r∈s

Dr(ws)

τr
Zr

∣

∣

∣

∣

∣

∑

k∈s

Zk ≥ 1

)

represents the expected relative reduction in aggregate

throughput
∑

r∈sDr(ws)/τr, given that there is at least one

packet loss on some route r ∈ s. It is a measure of throughput

fluctuation for each packet loss that an application experiences.

For TCP-NewReno (for which s = {r} and ws is a scalar), the

window size is halved on each packet loss, Dr(ws) = wr/2,

and hence Ds(xs) = 1/2.

To understand Ds(xs) for MP-TCP algorithms, we need the

following result.

Lemma 3.1: Let Ai := {ai1, ai2, . . .} with |Ai| elements.

Each element aij is an independent binary random variable

with P(aij = 1) = 1 − P(aij = 0) = qi. Define Di(Ai) :=
di1(

∑
j
aij≥1). Then

E





∑

k

Dk(Ak)

∣

∣

∣

∣

∣

∣

∑

i,j

aij ≥ 1



 =

∑

k dkqk|Ak|
∑

k qk|Ak|
+ o

(

∑

k

qk

)

Suppose each route has a fixed loss probability qr. Then

within each RTT, Lemma 3.1 implies

Ds(xs) =
1

‖xs‖1

(

∑

r∈s wrqrDr(ws)/τr
∑

r∈s qrwr
+ o

(

∑

r∈s

qr

))

Substituting wr = xrτr and xrDr(ws) = τrkr(xs) from (5),

we get, ignoring the high-order terms,

Ds(xs) =
1

‖xs‖1

(
∑

r∈s τrqrkr(xs)
∑

r∈s τrqrxr

)

(11)

to the first order. Note that kr(xs) does not affect the equi-

librium rates xs. Hence, with the assumption that τr are

constants, Ds(xs) is determined by the functions kr(xs) in

steady state.

Specifically an MP-TCP algorithm with a larger Ks(xs)
tends to have a larger Ds(xs) and hence more severe win-

dow oscillations. Theorem 3.5 however suggests that a larger

Ks(xs) also leads to better responsiveness, suggesting an

inevitable tradeoff between responsiveness and window oscil-

lation.

IV. IMPLICATIONS AND A NEW ALGORITHM

In this section we discuss the implications of these structural

properties on the behavior of existing MP-TCP algorithms.

They are further illustrated in experiment results in Section

V. The discussion motivates a new design that generalizes the

existing MP-TCP algorithm.

A. Implications on existing algorithms

Recall Table I that summarizes the conditions satisfied by

the various algorithms. Only EWTCP and Coupled algorithms

satisfy C0. Their equilibrium properties can be studied in

the standard utility maximization model as done for single-

path TCP. Semicoupled and Max algorithms do not satisfy

C0 and therefore analysis through utility maximization is not

applicable. However Theorem 4.1 below implies that, both

Semicoupled and Max algorithms satisfy C1–C3 provided they

enable no more than 8 routes. Theorem 3.2 and 3.3 then imply

that they have a unique and globally stable equilibrium. It is

also easy to show that EWTCP satisfies C1-C3. The Coupled

algorithm does not satisfy C2 and is found to have multiple

equilibria in [5].

Next we discuss friendliness of existing MP-TCP algo-

rithms. It can be shown that the φr(xs) corresponding to these

algorithms satisfy:

φewtcp
r (xs) ≥ φ

semicoupled
r (xs) ≥ φ

max
r (xs) ≥ φ

coupled
r (xs)

for all xs ≥ 0 if all routes r ∈ s have the same round trip time.

Since all of them satisfy C4, Theorem 3.4 implies that their

friendliness will be in the same order, i.e., their throughputs

in the test network of Fig. 1 are ordered as follows:

EWTCP(a ≥ 1)1 ≥Semicoupled≥Max≥Coupled

This is confirmed by the Linux-based experiment.

Third we will discuss responsiveness of existing MP-TCP

algorithms. These algorithms have the same gain function

kr(xs) = 0.5x2r and

(
∂Φs

∂xs
)ewtcp � (

∂Φs

∂xs
)semicoupled � (

∂Φs

∂xs
)max � (

∂Φs

∂xs
)coupled

Theorem 3.5 then implies that their responsiveness should be

in the same order, as confirmed by our experiments in section

V.

Finally we discuss window oscillation of existing MP-TCP

algorithms using Ds(xs) as the metric. As mentioned in

Section III-F, Ds(xs) = 0.5 for TCP NewReno, a benchmark

1When a < 1, the MP-TCP source can obtain even smaller throughput
than the competing single-path TCP source.
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single-path TCP algorithm. According to (11), if kr(xs) ≤
0.5xr‖xs‖1, we have, to the first order

Ds(xs) ≤
1

2

∑

r∈s τrqrxr‖xs‖1

‖xs‖1
∑

r∈s τrqrxr
=

1

2

All existing MP-TCP algorithms have the same kr(xs) =
0.5x2r ≤ 0.5xr‖xs‖1, with strict inequality if |s| > 1 and

xr > 0 for at least two r ∈ s. Thus enabling MP-TCP always

tends to reduce window oscillation for existing algorithms

compared to TCP NewReno. Moreover, the window oscil-

lation is always reduced compared to TCP NewReno when

kr(xs) ≤ 0.5xr‖xs‖1.

B. A generalized algorithm

Consider the class of algorithms parametrized by (β, n, η)
as follows:
{

kr(xs) = 1
2xr(xr + η(‖xs‖∞ − xr)), η ≥ 0

φr(xs) = 2((1−β)xr+β‖xs‖n)
τ2
rxr‖xs‖2

1

, n ∈ N+, β ≥ 0
(12)

This class includes the Max (β = 1, η = 0, n =∞), Coupled

(β = 0, η = 0), and Semicoupled (β = 1, η = 0, n = 1)
algorithms as special cases when all RTTs on different paths

of the same source are the same, i.e., τr = τs, r ∈ s.
The next result characterizes a subclass that have a unique

and locally stable equilibrium point.

Theorem 4.1: Fix any η ≥ 0 and n ∈ N+. For any s ∈ S,

the φr(xs) in (12) satisfies

1) C1 if β ≥ 0.

2) C2–C3 if 0 < β ≤ 1, |s| ≤ 8 and τr are the same for

all r ∈ s (assuming H has full row rank).

The requirement that |s| ≤ 8 is not restrictive since in practice

a device may typically enable no more than 3 paths. The

requirement that τr are the same for all r ∈ s is used in

proving the negative definiteness of the (symmetric part of the)

Jacobian of Φs(xs). Since a negative definite matrix remains

negative definite after small enough perturbations of its entries,

Theorem 4.1 holds if the RTTs of the subpaths do not differ

much. This (sufficient) condition seems reasonable as two

paths between the same source-destination pair often have sim-

ilar RTTs if both are wireline paths. Note that our experiments

in Section V show that the algorithm also converges even if

the RTTs on different paths differ dramatically, e.g. the RTT

of WiFi is usually much smaller than that of 3G.

For the class of algorithms specified by (12), Theorem 4.1

motivates a design space defined by β ∈ (0, 1], η ≥ 0, n ∈ N+,

where β and n control the tradeoff between friendliness and

responsiveness and η controls the tradeoff between responsive-

ness and window oscillation. In Table II, we summarize how

the parameters (β, η, n) affect the performance.

We now describe our design philosophy. As discussed

above the design of MP-TCP algorithms involves inevitable

tradeoffs among responsiveness, friendliness, and the severity

of window oscillation. Specifically a design is more responsive

if it has a higher gain Ks or a more negative definite Jacobian

[∂Φs/∂xs]
+

(Theorem 3.5). However a larger Ks usually

creates a bigger window oscillation; a more negative definite

[∂Φs/∂xs]
+

implies a larger Φs, usually hurting friendliness

TABLE II: How design choices affect MP-TCP performance.

Performance Parameter Parameters in (12)

TCP friendliness φr(xs) ↓ β ↓, n ↑
Responsiveness kr(xs) ↑, −∂Φs/∂xs ↑ β ↑, n ↓, η ↑

Window oscillation kr(xs) ↓ η ↓

Fig. 2: Network for our Linux-based experiments on TCP

friendliness and responsiveness, with N1 MP-TCP flows and

N2 single-path TCP flows sharing 2 links of capacity c1, c2
and propagation delay (single trip) T1, T2. MP-TCP flows

maintain two routes with rate x1, x2. Single-path TCP flows

maintain one route with rate x3.

(Theorems 3.6 and 3.4). This is summarized in Table II. Since

enabling multiple paths already reduces window oscillation

compared to single-path TCP (section IV-A), MP-TCP can

afford to use a relatively large gain Ks for responsiveness. This

does not compromise too much on window oscillation, but

allows us to use a less negative definite Jacobian [∂Φs/∂xs]
+

with a smaller Φs to maintain sufficient TCP friendliness.

Moreover, responsiveness is mainly affected by subpaths with

small throughput while window oscillation is mainly affected

by subpaths with large throughput. The parameter η in the

generalized algorithm (12) scales kr(xs) in the right way: a

path r that has a large xr has kr(xs) ≈ 0.5x2r and hence a

similar degree of window oscillation as existing algorithms,

while a path r with a small xr has larger kr(xs) than that

under a design with zero η and therefore is more responsive.

Our experiments show that Max algorithm ((β, η, n) =
(1, 0,∞)) overtakes too much of the competing single-path

TCP flows. Hence, we can only use a smaller β since n is al-

ready infinite in order to improve friendliness. To compensate

the responsiveness performance, we will use a larger η, which

will sacrifice window oscillation performance. The Balia MP-

TCP algorithm given at the end of Section I corresponds to

the choice (β, η, n) = (0.2, 0.5,∞). Instead of allowing the

window size to drop to 1 for a packet loss, we add a cap for the

decrement of window size, which improves the performance

according to our experiments. Note that there is no “best”

parameter settings since there are tradeoffs among all the

performance metrics and we choose (β, η, n) = (0.2, 0.5,∞)
based on our experiments in Section V, which show that this

parameter setting strikes a good balance among responsive-

ness, friendliness, and window oscillation.

V. EXPERIMENT

In this section we summarize our experimental results

that illustrate the above analysis. In addition to the MP-

TCP algorithms illustrated in section II-B, we also include
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the recently developed OLIA MP-TCP algorithm [8]. We

evaluate the MP-TCP algorithms using a reference Linux

implementation of MP-TCP, Multipath TCP v0.88 [13]. Since

it currently includes only Max and OLIA algorithms, we

implement EWTCP, Semicoupled, Coupled, and the proposed

Balia algorithm in the reference implementation. For the

Coupled and our algorithm, the minimum ssthresh is set to

1 instead of 2 when more than 1 path is available.

The network topology is shown in Fig. 2. In the testbed, all

nodes are Linux machines with a quad-core Intel i5 3.33GHz

processor, 4GB RAM and multiple 1Gbps Ethernet interfaces,

running Ubuntu 13.10 (Linux kernel 3.11.8). The network

parameters such as c1, c2, T1, and T2 are controlled by

Dummynet [14].

Our experiments are divided into three parts. First we

compare TCP friendliness of Balia algorithm and prior algo-

rithms. The result confirms that the Couple algorithm is the

friendliest, Balia algorithm is close to the Coupled algorithm

and friendlier than the other algorithms. Second we compare

the responsiveness of each algorithm in a dynamic environ-

ment where flows come and go. The result shows that the

Coupled and OLIA algorithms are unresponsive (illustrating

the tradeoff between responsiveness and friendliness). EWTCP

is the most responsive; Balia is similar in responsiveness but

friendlier to single-path TCP flows. Finally we show that all

MP-TCP algorithms have smaller average window oscillations

than single-path TCP.

These experiments confirm our analytical results and sug-

gest our design choice strikes a good balance among friendli-

ness, responsiveness, and window oscillation.

A. TCP friendliness

We study TCP friendliness of each algorithm, first with

paths of similar RTTs and then with paths of different RTTs,

which emulates the wireless scenario. We assume all the flows

are long lived and focus on the steady state throughput.

In the first set of experiments, we let T1 = T2 = 5ms,

c1 = c2 = 60Mbps and N1 = N2 = 30. We repeat the

experiments 20 times, the average aggregate throughput of

MP-TCP and single-path TCP users and the 95% margin of

error for confidence interval (CI) are shown in Table III. The

Coupled algorithm is the friendliest and Balia algorithm is

closer to Coupled algorithm than the others.

TABLE III: TCP friendliness (same RTTs): Average through-

put (Mbps) and 95% confidence interval of MP-TCP and

single-path TCP users. (T1 = T2 = 5ms, c1 = c2 = 60Mbps

and N1 = N2 = 30)

ewtcp semi. max balia coupled olia

mp-tcp
(throuput)

2.75 2.65 2.60 2.52 2.44 2.61

mp-tcp (CI) 0.005 0.004 0.005 0.006 0.005 0.004

sp-tcp
(throuput)

0.951 1.07 1.13 1.22 1.29 1.12

sp-tcp (CI) 0.005 0.007 0.008 0.006 0.005 0.004

In the second set of experiments, we assume a highly

heterogeneous RTTs by emulating the scenario of a mobile

device with both 3G and WiFi access. WiFi access usually has

higher capacity and lower delay compared to 3G. Specificially,

we set T1 = 10ms, c1 = 8Mbps for the first link to emulate

WiFi access and T2 = 100ms, c2 = 2Mbps for the second

link to emulate 3G access. When there exists single-path TCP

flows, i.e. N2 > 0, the behaviors of all the algorithms are

similar to the equal RTT case in the first set of simulation.

The Coupled algorithm is the friendliest and Balia algorithm is

closer than other algorithms. However, when there is no single-

path TCP flow, i.e. N1 = 1 and N2 = 0, the performance of

OLIA is not stable to effectively take all the available capacity

while the other algorithms do not have such problem. We

repeat the experiments 20 times and we find sometimes OLIA

does not use the 3G access link. The average throughput of

MP-TCP user and the 95% margin of error for confidence

interval is shown in Table IV.

TABLE IV: Basic behavior (WiFi/3G): throughput (Mbps) of

a MP-TCP user and 95% confidence interval. (T1 = 10ms,

T2 = 100ms, c1 = 8Mbps, c2 = 2Mbps and N1 = 1, N2 = 0)

ewtcp semi. max balia coupled olia

throughput 9.26 9.27 9.26 9.27 9.28 9.19

confidence interval 0.008 0.006 0.006 0.01 0.01 0.09

B. Responsiveness

We use the network in Fig. 2 with c1 = c2 = 20Mbps,

T1 = T2 = 10ms and N1 = 1, N2 = 5. To demonstrate the

dynamic performance of each algorithm, we assume the MP-

TCP flow is long lived while the single-path TCP flows start

at 40s and end at 80s. We record the aggregate throughput

of the single-path TCP flows from 40-80s, which measures

the friendliness of MP-TCP. We also measure the time for the

congestion window on the second path to recover2 of MP-TCP

users. It measures the responsiveness of MP-TCP. These mea-

surements are shown in Table V and the congestion window

and throughput trajectories of all algorithms are shown in Fig.

4. To clearly show the responsiveness performance, we record

the longest convergence time found in our experiment in Table

V and the corresponding trajectories are shown in Fig. 4.

TABLE V: Responsiveness: convergence time (s) of MP-TCP

and total throughput (Mbps) of all single-path TCP users.

(T1 = T2 = 10ms, c1 = c2 = 20Mbps and N1 = 1, N2 = 5)

ewtcp semi. max balia coupled olia

Convergence 3.25 7.46 17.75 14.73 94.36 58.5
SP-TCP 13.89 15.35 15.8 16.28 16.64 16.97

EWTCP is the most responsive among all the algorithms.

Ours is as responsive as the Max algorithm, yet significantly

friendlier than EWTCP. Both Coupled and OLIA algorithms

take an excessively long time to recover. For Coupled al-

gorithm, the excessively slow recovery of the congestion

window on the second path (see Fig. 4) is due to the design

that increases the window roughly by wr/(
∑

k∈s wk)
2 on

each ACK assuming the RTTs are similar. After the single-

path TCP flow has left, w2 is small while w1 is large, so

2Defined as the first time the congestion window on the second path reaches
the average congestion window (e.g., 60) after the single-path users have left.
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that w2/(w1 + w2)
2 is very small. It therefore takes a long

time for w2 to increase to its steady state value. In general,

under the Coupled algorithm, a route with a large throughput

can greatly suppress the throughput on another route even

though the other route is underutilized. The reason of the poor

responsiveness performance of OLIA can be explained using

similar argument as Coupled algorithm since they have the

same increment/decrement for each ACK/loss in this scenario.

C. Window oscillation

We use a single-link network model to compare window

oscillation under MP-TCP and single-path TCP. First a MP-

TCP flow initiates two subpaths through that link, and we

measure the window size of each subpath and their aggregate

window size. Then a TCP-Reno flow traverses the same link

and we measure its window size. The results are shown in Fig.

3 for our algorithm in comparison with single-path TCP (other

MP-TCP algorithms have a similar behavior). They confirm

that enabling multiple paths reduces the average window

oscillation compared with only using single path.
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Fig. 3: Window oscillation: the red trajectories represent

throughput fluctuations experienced by the application in the

case of MP-TCP and the case of single-path TCP.

VI. CONCLUSION

We have presented a model for MP-TCP and identified

designs that guarantee the existence, uniqueness and stability

of the network equilibrium. We have characterized the de-

sign space and study the tradeoff among TCP friendliness,

responsiveness, and window oscillation. We have proposed

Balia MP-TCP algorithm that generalizes existing algorithms

and strikes a good balance among these properties. We have

implemented Balia in the Linux kernel and used it to evaluate

the performance of our algorithm.
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APPENDIX A

PROOF OF THEOREM 3.1 (UTILITY MAXIMIZATION)

The Lagrangian of (9) is:

L(x,p) =
∑

s∈S

Us(xs)−
∑

l∈L

pl(yl − cl)

=
∑

s∈S

Us(xs)−
∑

l∈L

pl(
∑

r∈R

Hlrxr − cl)

=
∑

s∈S

(

Us(xs)−
∑

r∈s

xrqr

)

+
∑

l∈L

plcl

where p ≥ 0 are the dual variables and qr :=
∑

r∈RHlrpl.
Then the dual problem is

D(p) =
∑

s∈S

max
xs≥0
{Bs(xs,p)}+

∑

l∈L

plcl p ≥ 0

where Bs(xs,p) = Us(xs)−
∑

r∈s xrqr. The KKT condition

implies that, at optimality, we have

∂Us(xs)

∂xr
< qr ⇒ xr = 0 and xr > 0⇒

∂Us(xs)

∂xr
= qr

(13)

yl < cl ⇒ pl = 0 and pl > 0⇒ yl = cl (14)

Comparing with (6)–(7) we conclude that, if a MP-TCP

algorithm defined by (3)–(4) has an underlying utility function

Us, then we must have

∂Us(xs)

∂xr
= φr(xs) r ∈ s, xr > 0 (15)

Given φr(xs), (15) has a continuously differentiable solutions

Us(xs) if and only if the Jacobian of Φs(xs) is symmetric,

i.e., if and only if

∂Φ(xs)

∂xs
=

[

∂Φ(xs)

∂xs

]T

APPENDIX B

PROOF OF THEOREM 3.2 (EXISTENCE AND UNIQUENESS)

A. Proof of part 1

For any link l ∈ L, let

p−l = {p1, . . . , pl−1, pl+1, . . . , p|L|},

whose component composes of all the elements in p except

pl. For l ∈ L, let

gl(p) := cl −
∑

r:l∈r

xr = cl −
∑

s:r∈s,l∈r

ysl (pl,p−l)

and hl(p) := −g
2
l (p). According to C1, we have the following

two facts, which will be used in the proof.

• gl(p) is a nondecreasing function of pl on R+ since ysl (p)
is a nonincreasing function of pl.

• limpl→∞ gl(pl,p−l) = cl since limpl→∞ ysl (p) = 0.

Next, we will show that hl(p) is a quasi-concave function

of pl. In other words, for any fixed p−l, the set Sa := {pl |
hl(p) ≥ a} is a convex set. If gl(0,p−l) ≥ 0, then

gl(pl,p−l) ≥ gl(0,p−l) ≥ 0 ∀pl ≥ 0,

which means hl(pl,p−l) is a nonincreasing function of pl,
hence is a quasi-concave function of pl and

argmax
pl

hl(pl,p−l) = 0. (16)

On the other hand, if gl(0,p−l) < 0, then there exists a

p∗l > 0 such that gl(p
∗
l ,p−l) = 0 since gl(·) is continuous

and limpl→∞ gl(pl,p−l) = cl > 0. Note that gl(p) is a non-

decreasing function of pl, then hl(pl,p−l) is nondecreasing

for pl ∈ [0, p∗l ] and nonincreasing for pl ∈ [p∗l ,∞). Hence,

hl(pl,p−l) is also a quasi-concave function of pl in this case

and

max
pl

hl(pl,p−l) = 0. (17)

By Nash theorem, if hl(pl,p−l) is a quasi-concave function

of pl for all l ∈ L and p is in a bounded set, then there exists

a p⋆ ∈ R
|L|
+ such that

p⋆l = arg max
pl∈R+

hl(pl,p
∗
−l).

According to (16) and (17), for any l ∈ L, either p∗l > 0
or g∗l (p

∗) > 0 but not both holds at any time. Therefore p∗

satisfies Eqn. (7). Since q = RTp, there exists an x∗ to (6).

Hence there exists at least one solution (x,p) that satisfies (6)

and (7).

http://multipath-tcp.org
http://multipath-tcp.org
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B. Proof of part 2

Lemma B.1: Assume a function F : R
n → R

n is

continuously differentiable and
[

∂F
∂x (x)

]+
is negative definite

for all x. Then for any x1 6= x2 ∈ R
n,

(x1 − x2)
T (F (x1)− F (x2)) < 0.

Proof: Fix any x1 6= x2 ∈ R
n. Define A(t) :=

F (tx1 + (1− t)x2). Since ∂F/∂x is continuous, there exists

a λ < 0 such that the eigenvalues of [∂F/∂x]+ ≤ λ over the

compact set {tx1 + (1− t)x2 | 0 ≤ t ≤ 1}. Then

(x1 − x2)
T (F (x1)− F (x2))

=

∫ 1

0

(x1 − x2)
T dA

dt
(τ) dτ

=

∫ 1

0

(x1 − x2)
T ∂F

∂x
(τx1 + (1− τ)x2) (x1 − x2) dτ

≤ λ‖x1 − x2‖
2
2 < 0

Lemma B.2: Suppose C3 holds. Then x∗r > 0 at equilibrium

for all r ∈ R.

Proof: Suppose x∗r = 0. Then q∗r ≥ φr(x
∗
r) = ∞ by C3

and hence there is a link l ∈ r with p∗l =∞. But then, for all

paths r′ ∋ l, q∗r′ =∞ and hence x∗r′ = 0 by C3. This implies

y∗l = 0 < cl, and hence p∗l = 0 by (7), contradicting p∗l =∞.

Recall the vector notations that x := (xs, s ∈ S) :=
(xr, r ∈ s, s ∈ S) and Φ(x) := (Φs(xs), s ∈ S) :=
(Φr(xs), r ∈ s, s ∈ S). To prove uniqueness of the equi-

librium, suppose for the sake of contradiction that there

are two distinct equilibrium points (x,p) and (x̂, p̂). By

Lemma B.2 we have x > 0 and x̂ > 0. Hence (6) implies

Φ(x) = q = HTp and Φ(x̂) = q̂ = HT p̂. By Lemma B.1

and assumption C2 we then have

0 > (x− x̂)T (Φ(x)− Φ(x̂))

= (x− x̂)THT (p− p̂)

= (p− p̂)T (y − ŷ)

Hence

pTy + p̂T ŷ < pT ŷ + p̂Ty (18)

Equilibrium condition (7) implies

pT (c− y) = 0 and p̂T (c− ŷ) = 0 (19)

y ≤ c and ŷ ≤ c (20)

Substituting (19) into (18) yields

pT c+ p̂T c < pT ŷ + p̂Ty

pT (c− ŷ) + p̂T (c− y) < 0

But (20) implies that the left-hand side of the last inequality

is nonnegative (since p ≥ 0, p̂ ≥ 0), a contradiction. Hence

the equilibrium is unique.

APPENDIX C

PROOF OF THEOREM 3.3 (STABILITY)

We will construct a Lyapunov function and use LaSalle’s

invariance principle [15] to prove global asymptotic stability

of the unique equilibrium point (x∗,p∗). Define δx := x−x⋆,

δp := p− p⋆. Consider the candidate Lyapunov function:

V (x,p) =
∑

r∈R

∫ xr

x∗
r

z − x∗r
kr(z)

dz +
1

2

∑

l∈L

δp2l
γl

(21)

By definition, V (x,p) > 0 for all (x,p) 6= (x∗,p∗) and

V (x,p) = 0 if (x,p) = (x∗,p∗). Furthermore V is radially

unbounded, i.e., V (x,p)→∞ as ‖(x,p)‖2 →∞. Finally

V̇ (x,p) =
∑

r∈R

1

kr(xr)
δxrẋr +

∑

l∈L

1

γl
δplṗl

If δxr 6= 0 then we have (since kr(xs) = kr(xr))

1

kr(xr)
δxrẋr = δxr (φr(xs)− qr)

+
xr

≤ δxr (φr(xs)− qr)

= δxr (φr(xs)− φr(x
∗
s)− δqr)

The first inequality holds since (φr(xs)−qr)
+
xr

= φr(xs)−qr
if xr > 0 and φr(xs) − qr ≤ 0, δxr = −x∗r if xr = 0. The

last equality holds since φr(x
∗
s) = q∗r by Lemma B.2 and (6).

Hence
∑

r∈R

1

kr(xr)
δxrẋr ≤ δxT (Φ(x)− Φ(x∗))− δxT δq

< −δxTHT δp

where the last inequality holds since δxT (φ(x)− φ(x∗)) < 0
by Lemma B.1 and assumption C2. Similarly

1

γl
δplṗl = δpl(yl − cl)

+
pl
≤ δpl(yl − cl) ≤ δplδyl

where the last inequality holds since δplcl ≥ δply
∗
l by the

equilibrium condition (7). Hence

∑

l∈L

1

γl
δplṗl ≤ δpTHδx

Therefore if δx 6= 0 then

V̇ (x,p) < −δxTHT δp+ δpTHδx = 0

and if δx = 0 then V̇ (x,p) = 0. This means V̇ (x,p) ≤ 0
and V is indeed a Lyapunov function.

Consider the set

Z := { (x(t),p(t)) | V̇ (x(t),p(t)) = 0 for all t ≥ 0 }

of trajectories on which V̇ ≡ 0. If the only trajectory in Z is

the trivial trajectory (x,p) ≡ (x∗,p∗) then LaSalle’s invari-

ance principle implies that (x∗,p∗) is globally asymptotically

stable. We now show that this is indeed the case.

As shown above V̇ ≡ 0 implies δx ≡ 0, i.e., any trajectory

(x(t),p(t)) in Z must have x(t) = x∗ for all t ≥ 0. This

means ẋ ≡ 0 and hence, for all t ≥ 0, q(t) = Φ(x(t))
since x(t) = x∗ > 0 by Lemma B.2. That is, for all t ≥ 0,

HTp(t) = Φ(x∗) and hence p(t) = p∗ since H has full row

rank by C3. Therefore (x,p) ≡ (x∗,p∗) is indeed the only

trajectory in Z. This completes the proof of Theorem 3.3.
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APPENDIX D

PROOF OF THEOREM 3.4 (FRIENDLINESS)

Let the MP-TCP source be defined by

φr(xs;µ) = µφ̃r(xs) + (1− µ)φ̂r(xs), µ ∈ [0, 1]

Algorithm M̂ and M̃ corresponds to µ = 0 and µ = 1
respectively. Let xg and τg be the throughput and RTT of the

TCP NewReno source in Fig. 1. The equilibrium is defined

by F (x, µ) = 0 where x := (xs, xg) and F is given by:

Φs(xs;µ)−
1

τ2g x
2
g

1 = 0

1Txs + xg = c

where the first equation follows from

p∗ =
1

τ2g x
2
g

= φr(xs;µ), r ∈ s

and p∗ is the congestion price at the bottleneck link. Applying

the implicit function theorem, we get

dx

dµ
= −

(

∂F

∂x

)−1
∂F

∂µ

= −

[

∂Φs

∂xs

2
x3
g
1

1T 1

]−1
[

Φ̃s(xs)− Φ̂s(xs)
0

]

where the inverse exists by condition C2. C2 also guarantees

the inverse of ∂Φs

∂xs
(xs;µ), denoted by D(µ); C4 ensures

∑

i∈sDij(µ) ≤ 0. Let

A :=
∂Φs

∂xs
−

2

x3g
11T and d := 1−

2

x3g

∑

i,j

Dij(µ)

Then
[

∂Φs

∂xs

2
x3
p
1

1T 1

]−1

=

[

A−1 −D1d
−d1TA−1 d−1

]

Thus

1T ∂xs

∂µ
= −[1T 0]

(

∂F

∂x

)−1
∂F

∂µ

= −1TA−1(Φ̃s(xs)− Φ̂s(xs)) (22)

By matrix inverse formula,

A−1 =

(

∂Φs

∂xs
−

2

x3g
11T

)−1

= D(µ) +
1

x3
g

2 − 1TD(µ)1
D(µ)11TD(µ)

Substitute it into (22), we have

1TA−1(Φ̂s(xs)− Φ̃s(xs))

=

(

1 +
1TD(µ)1

x3
g

2 − 1TD(µ)1

)

1TD(µ)(Φ̃s(xs)− Φ̂s(xs))

=
x3g

x3g − 21TD(µ)1

∑

r∈s

(

∑

i∈s

Dir(µ)

)

(φ̃r(xs)− φ̂r(xs))

≤0

where the inequality follows because D(µ) is negative definite,
∑

i∈sDir(µ) < 0 and φ̃r(xs) − φ̂r(xs) ≥ 0. Thus we have

1T ∂xs

∂µ ≥ 0 for µ ∈ [0, 1], i.e., the aggregate throughput of the

MP-TCP over its available paths is increasing in µ. This means

M̃ (corresponding to µ = 1) will attain a higher throughput

than M̂ (corresponding to µ = 0) when separately sharing the

test network in Fig. 1 with the same SP-TCP.

APPENDIX E

PROOF OF THEOREM 3.5 (RESPONSIVENESS)

A. Proof of part 1

Fix any eigenvalue λ of J∗. Let z := (x,p) ∈ Z be the

corresponding eigenvector with ‖z‖2 = 1. Then we have

λ

[

x

p

]

=

[

Λk 0
Λγ

] [

∂Φ
∂x −HT

H 0

] [

x

p

]

Hence

λ

[

Λ−1
k 0

Λ−1
γ

] [

x

p

]

=

[

∂Φ
∂x −HT

H 0

] [

x

p

]

Premultiplying zH on both sides, we have

λ =
xH ∂Φ

∂x x + (pHHx− xHHTp)

xHΛ−1
k x+ pHΛ−1

γ p

The denominator is real and positive, and (pHHx−xHHTp)
in the numerator is imaginary. Hence

Re(λ) =
Re
(

xH ∂Φ
∂x x

)

xHΛ−1
k x+ pHΛ−1

γ p

=
xH
[

∂Φ
∂x

]+
x

xHΛ−1
k x+ pHΛ−1

γ p
< 0

where the last inequality holds because the numerator is

negative by condition C2 and the denominator is positive.

Since this holds for all eigenvalues λ of J∗, the linearized

system (10) is stable. Moreover Re(λ) ≤ λ(J∗) ≤ 0 as

desired.

B. Proof of part 2

Consider two MP-TCP algorithms (K̂, Φ̂) and (K̃, Φ̃) such

that

K̂s ≥ K̃s and
∂Φ̂s

∂xs
�
∂Φ̃s

∂xs
for all s ∈ S

For any (nonzero) z = (x,p) ∈ Z we have

0 ≤ xHΛ̂−1
k x ≤ xHΛ̃−1

k x (23)

xH

[

∂Φ̂

∂x

]+

x ≤ xH

[

∂Φ̃

∂x

]+

x < 0 (24)

Hence λ(Ĵ∗) ≤ λ(J̃∗).
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APPENDIX F

PROOF OF THEOREM 3.6 (TRADEOFF)

Fix an s. Let fr(xs) := φ̂r(xs) − φ̃r(xs) and F (xs) :=
(fr(xs), r ∈ s) = Φ̂s(xs) − Φ̃s(xs). Suppose for the sake

of contradiction that ∂Φ̂s(xs)/∂xs � ∂Φ̃s(xs)/∂xs but

Φ̂s(xs) ≥ Φ̃s(xs) does not hold, i.e., there exists a finite x0
s

and a r ∈ s such that

fr(x
0
s) = φ̂r(x

0
s)− φ̃r(x

0
s) < 0 (25)

Since [∂F/∂xs]
+
� 0 by assumption, a trivial modifi-

cation of Lemma B.1 shows that, for all xs 6= x0
s, (xs −

x0
s)

T (F (xs)− F (x
0
s)) ≤ 0, i.e.,

0 ≥
∑

r′∈s

(xr′ − x
0
r′) (fr′(xs)− fr′(x

0
s)) (26)

Choose an xs as follows: for all r′ 6= r, choose xr′ = x0r′
and then use condition C5 to choose an xr <∞ large enough

so that xr > x0r and fr(xs) > fr(x
0
s)/2. With this xs, (26)

becomes

0 ≥ (xr − x
0
r) (fr(xs)− fr(x

0
s))

> (xr − x
0
r)

(

−
fr(x

0
s)

2

)

> 0

where the last inequality follows from (25). This is a contra-

diction and hence Φ̂s(xs) ≥ Φ̃s(xs).

APPENDIX G

PROOF OF THEOREM 4.1

We will show the results hold for any n ∈ N+. Since

limn→∞ ‖xs‖n = ‖xs‖∞, the results also hold for n = ∞.

When β = 0, it is easy to show that φr satisfies C1 and
[

∂Φs

∂xs

]+

is negative semidefinite under the conditions of the

theorem. We hence prove the theorem for β > 0.

A. Proof of part 1

Fix any n ∈ N+ and β > 0. Fix any finite p ≥ 0 such that

qr > 0 for all r. Fix any s ∈ S. We now show that there exists

an xs > 0 that satisfies (6), in particular φr(xs) = qr, in two

steps.

First, there exists an xs that satisfies φr(xs) = qr if and

only if

φr(xs) =
2

τ2r ‖xs‖21

(

1 + β

(

‖xs‖n
xr

− 1

))

= qr, (27)

which is equivalent to

xr
‖xs‖n

=
2β

2β + qrτ2r ‖xs‖21 − 2
(28)

Since this holds for all r ∈ s, we have

1 =
∑

r∈s

(

xr
‖xs‖n

)n

(29)

=
∑

r∈s

(

2β

2β + qrτ2r ‖xs‖21 − 2

)n

=: ψ
(

‖xs‖
2
1

)

Clearly ψ (C)→ 0 as C →∞. Let

C :=
2

minr∈s qrτ2r
(30)

Then C <∞ since qr > 0 for all r by assumption. Moreover

qrτ
2
rC ≥ 2 for all r ∈ s and hence

ψ (C) = 1 +
∑

r 6=r

(

2β

2β + qrτ2rC − 2

)n

> 1

where r is a minimizing r ∈ s in (30). Since ψ(C) is

continuous, there exists an C̃ ∈ [C,∞) with ψ(C̃) = 1.

Moreover such a C̃ is unique since ψ(C) is strictly decreasing.

Finally consider the set of xs with ‖xs‖
2
1 = C̃. All such xs

satisfy (28) with

xr =
2β

2β + qrτ2r C̃ − 2
‖xs‖n =: ar ‖xs‖n (31)

But C̃ = ‖xs‖
2
1 =

(
∑

r∈s ar ‖xs‖n
)2

, implying

‖xs‖n =

√

C̃
∑

r∈s ar

In summary, given any finite p ≥ 0 such that qr > 0 for all

r, a solution xs > 0 to (28) is uniquely given by

xr =
ar

∑

k∈s ak

√

C̃, r ∈ s (32)

where

ar :=
2β

2β + qrτ2r C̃ − 2

and C̃ = ‖xs‖
2
1 is the unique value at which ψ(C̃) = 1.

We now prove the other conditions in C1:

∂ysl (p)

∂pl
≤ 0, lim

pl→∞
ysl (p) = 0

According to (29), we can show that C̃ is a decreasing function

of qr and qrτ
2
r C̃ is an increasing function of qr for r ∈ s.

Thus, C̃ is a decreasing function of pl and qrτ
2
r C̃ is an

increasing of pl if l ∈ r because qr =
∑

l∈LHlrpl. For each

l ∈ L, let sl := {r | l ∈ r, r ∈ s}, then by definition and (32),

we have

ysl (p) =

∑

r∈sl
ar

∑

r∈s ar

√

C̃ =

∑

r∈sl
ar

∑

r∈sl
ar +

∑

r 6∈sl
ar

√

C̃.

Since ar is a decreasing function of qrτ
2
r C̃, it is also a

decreasing function of pl if l ∈ r. Recall that
√

C̃ is also a

decreasing function of pl, y
s
l (p) is thus a decreasing function

of pl, in other words,
∂ys

l (p)
∂pl

≤ 0.

On the other hand, as pl → ∞, qr → ∞ for all paths r
traversing l. Then xr → 0 by (27) for l ∈ r, which shows

limpl→∞ ysl (p) = 0.
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B. Proof of part 2

To prove φr(xs) satisfies C2 and C3 for β > 0, we will

show that the Jacobian ∂Φs(xs)/∂xs is negative definite if

0 < β ≤ 1, |s| ≤ 8 and τr are the same for r ∈ s. Other

properties of C2 and C3 are easy to prove and we omit the

proof. Fix an s and let τr = τ , the common round-trip time

for all r ∈ s.

Let Λs := diag{xs} and

as :=

(

2xr
‖xs‖1

−
xnr
‖xs‖nn

, r ∈ s

)

Then the Jacobian of Φs at xs is

∂Φs

∂xs
= −

4(1− β)

τ2‖xs‖31
11T − 2β

‖xs‖n
τ2‖xs‖21

Λ−1
s

(

I|s| + 1aTs
)

Λ−1
s

and it is negative definite for β > 0 if
[

I|s| + 1aTs
]+

is positive

definite. We now show that this is indeed the case when |s| ≤
8, i.e., for any zs ∈ R

|s|,

zTs (I|s| + 1aTs )zs = ‖zs‖
2
2 +

∑

r∈s

zr
∑

r∈s

arzr > 0 (33)

By Lemma G.1 below, 1Tas = 1 and ‖as‖
2
2 ≤ 1. Then (33)

follows from Lemma G.2 below provided |s| ≤ 8. Hence the

Jacobian is negative definite.3 The proof of Theorem 4.1 is

complete after Lemmas G.1 and G.2 are proved.

To show that it satisfies C3, it follows directly from (27)

that if xr = 0 then φr(xs) = ∞. It is also clear from (27)

that the converse holds. This proves C3.

Lemma G.1: Fix any integer p ≥ 1. Given any x ∈ R
m
+ ,

define a vector a in R
m as follows:

ai =
2xi

∑m
j=1 xj

−
xpi

∑m
j=1 x

p
j

, 1 ≤ i ≤ m

Then
∑m

i=1 ai = 1 and
∑m

i=1 a
2
i ≤ 1.

Proof: It is obvious that
∑m

i=1 ai = 1. To show
∑m

i=1 a
2
i ≤ 1, we have

m
∑

i=1

a2i =

∑

i x
2p
i

(

∑

j x
p
j

)2 +
4
∑

i x
2
i

(

∑

j xj

)2 −
4
∑

i x
p+1
i

(

∑

j x
p
j

)(

∑

j xj

)

≤ 1 +
4
∑

i x
2
i

(

∑

j xj

)2 −
4
∑

i x
p+1
i

(

∑

j x
p
j

)(

∑

j xj

)

= 1− 4

∑

1≤i<j≤m xixj(xi − xj)
(

xp−1
i − xp−1

j

)

(

∑

j xj

)2 (
∑

j x
p
j

)

≤ 1

3If β = 0 the Jacobian degenerates to

∂Φs

∂xs

= −
4

τ2‖xs‖31
11

T , (34)

which is merely negative semidefinite.

Lemma G.2: Let a ∈ R
m that satisfies

∑m
i=1 ai = 1 and

∑m
i=1 a

2
i ≤ 1. Then for any nonzero z ∈ R

m we have

f(z) :=

m
∑

i=1

z2i +

m
∑

i=1

zi

m
∑

i=1

aizi > 0

provided m ≤ 8.

Proof: Given any M let ZM := {z |
∑m

i=1 zi = M}. It

then suffices to show that, for every M ∈ R, f(z) > 0 for

z ∈ ZM . Given any M , consider

min
z∈ZM

f(z) = min
z∈ZM

m
∑

i=1

z2i +M

m
∑

i=1

aizi (35)

Its Lagrangian is

L(z, µ) =

m
∑

i=1

z2i +M

m
∑

i=1

aizi + µ

(

m
∑

i=1

zi −M

)

where µ is the Lagrange multiplier. Setting ∂L/∂zi = 0 for all

1 ≤ i ≤ m and substitute it into
∑m

i=1 zi =M , we obtain the

unique minimizer given by µ = −3M/m and zi =
M
2 ( 3

m −
ai). Then

min
z∈ZM

f(z) =
M2

4

(

9

m
−

m
∑

i=1

a2i

)

≥
M2

4

(

9

m
− 1

)

Hence, when M 6= 0, minz∈ZM
f(z) > 0 if n < 9. When z

is nonzero but M = 0, then f(z) > 0 from (35).

APPENDIX H

PROOF OF LEMMA 3.1

By the definition of Dk(Ak), we have

E



Dk(Ak) |
∑

i,j

aij ≥ 1



 =dkP





∑

j

akj ≥ 1 |
∑

i,j

aij ≥ 1





=dk
P(
∑

j akj ≥ 1)

P(
∑

i,j aij ≥ 1))

=dk
qk|Ak|
∑

i qi|Ai|
+ o

(

∑

i

qi

)

,

where the last equality follows from the independence of aij
and P(

∑

j akj ≥ 1) = 1 − (1 − qk)
|Ak| = |Ak|qk + o(qk),

P(
∑

ij aij ≥ 1) = 1−
∏

i(1−qi)
|Ai| =

∑

i |Ai|qi+
∑

i o (qi).
Thus,

E





∑

i

Dk(Ak) |
∑

i,j

aij ≥ 1



 =

∑

k dkqk|Ak|
∑

k qk|Ak|
+ o

(

∑

k

qk

)

.
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