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Abstract—In wireless multihop networks, techniques such as
multipath, local retransmissions and network coding have been
successfully used to increase throughput and reduce losses. How-
ever, while these techniques improve forwarding performance for
UDP, they often introduce side effects such as packet reordering
and delay that heavily affect TCP traffic.

In this paper we introduce CoMP, a network coding multipath
forwarding scheme that improves the reliability and the perfor-
mance of TCP sessions in wireless mesh networks. CoMP exploits
the wireless mesh path diversity using network coding, performs
congestion control and uses a credit-based method to control
the rate at which linear combinations are transmitted. CoMP
uses a simple algorithm to estimate losses and to send redundant
linear combinations in order to maintain the decoding delay at
a minimum and to prevent TCP timeouts and retransmissions.

We evaluate CoMP through extensive simulations and compare
it to state-of-the-art protocols. We show that CoMP not only
achieves a higher throughput, but also is more efficient than
existing protocols, making TCP sessions feasible for wireless mesh
networks even under heavy losses.

Index Terms—network coding, wireless, TCP, multipath

I. INTRODUCTION

Wireless mesh networks (WMN) are emerging as the next-
generation systems to connect communities. As these networks
proliferate, it is expected that users will start demanding
more versatile applications such as video streaming and VoIP.
Unfortunately, the performance of TCP degrades very fast in
WMN [4]. When losses occur in a wireless environment, TCP
considers them as being caused by congestion, and triggers its
congestion avoidance mechanism which reduces the sending
rate to adapt to the new network conditions. Still, the actual
capacity of the network has not changed, and hence the
network becomes underutilized.

A typical approach to address the problem of improving
TCP performance in WMN is to exploit the path diversity in
the mesh. One example is Horizon [7], which also implements
a mechanism to signal congestion to TCP, but it does not
offer any reliability and every loss is recovered through
retransmissions at TCP layer.

However, multiple paths pose further challenges. Consider
the simple scenario from Fig. 1, where the source S can
communicate with destination D using 3 neighbors, A, B and
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Fig. 1. Multipath example. The source S can reach the destination D through
three neighbors, A, B and C.

C. Assume that S sends three packets, P1, P2, P3, and the
three relays receive the packets as illustrated in the figure. In
this situation, the nodes need to coordinate and schedule the
packets transmissions so that the destination receives all of
them without duplicates.

Network coding [3] can effectively be employed to solve the
relay coordination and the packet scheduling problems. In the
above example, each of the relays can use network coding to
simply forward a linear combination of the received packets.
Once the destination D receives the three linear combinations,
it solves a linear system and recovers the original packets.

Typical network coding techniques divide traffic in gen-
erations [6] and a coded packet is a linear combination of
the packets that belong to the same group, e.g. MORE [5].
This approach introduces a coding delay, because the source
can send coded packets only after it has all the packets
from a group, and a receiver can decode native packets only
after it receives a number of independent linear combinations.
Furthermore, this delay in the coding operations has a negative
impact on the TCP performance in wireless environments.

In order to avoid the coding delay, [8] presents online
coding, where the source mixes the packets from the TCP
congestion window and the receiver acknowledges every in-
novative linear combination it receives, even if it cannot
decode a native packet immediately. This approach gives a
new interpretation of the ACKs, and allows for a TCP-sliding
window scheme for coding. However, this scheme is single
path and the coding operations are performed end-to-end. For
the rest of the paper we refer to this approach as TCP-ARQ.

With these considerations in mind, we introduce CoMP,
a network coding multipath protocol for WMN that extends
current state-of-the-art and combines network coding with
multipath routing to increase throughput for TCP sessions in
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WMN. CoMP is situated below TCP/IP in the protocol stack.
The main features of our protocol are as follows:

• a multipath online network coding scheme that exploits
the path diversity in a mesh network, and eliminates the
delay problems introduced by coding (section II-A);

• an algorithm to estimate the loss probability in the
network and to adjust online the rate of sending linear
combinations (section II-B);

• a hybrid credit-based algorithm, where nodes compute
distributedly the rate of generating linear combinations
(section II-C);

• a congestion control mechanism based on back-pressure
(section II-D).

We extensively evaluate CoMP using the ns-2.33 network
simulator [1], and compare it to state-of-the-art protocols:
Horizon [7], MORE [5], and TCP-ARQ [8]. The results show
that CoMP not only achieves a higher throughput, but it is also
more efficient, due to exploiting path diversity and re-encoding
packets on a hop-by-hop basis.

The paper is organized as follows. In section II we present
our protocol with a detailed description of its features. Sec-
tion III provides the results of our simulations and a compari-
son to Horizon, MORE, and TCP-ARQ. Section IV concludes
with some final remarks.

II. PROTOCOL DESCRIPTION

In this section we describe the main aspects of CoMP.

A. Multipath online coding

For our multipath coding scheme, we use a similar approach
as the one in [8], but with some essential differences. First,
TCP-ARQ uses only one path to forward the packets from
sender to receiver, while CoMP takes advantage of the path
diversity characteristic of WMN and forwards packets along
multiple paths. Second, in TCP-ARQ relays only forward the
packets received from the upstream nodes and the coding is
performed end-to-end. In our scheme, intermediate nodes re-
encode packets received from different upstream neighbors, on
a hop-by-hop basis. In the next sections we discuss in more
detail the mechanisms that we use to enable online network
coding for multipath schemes.

B. Online loss estimation and rate adaptation

The rate at which nodes need to forward linear combinations
to recover from losses remains an open research question. If
the rate is too low, due to the unreliability of the wireless
medium, receivers may not be able to decode. On the other
hand, if the rate is too high, nodes may receive redundant
linear combinations that consume network resources, but are
not innovative. Moreover, since the wireless channel is variable
in time, the rate of sending coded packets needs to be
updated frequently enough to take into account current channel
conditions. With these considerations in mind, we introduce
an algorithm to estimate the loss between any two nodes and
to distributedly compute the rate at which each node should
forward linear combinations.
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Fig. 2. Evaluation of the loss estimation algorithm for the topology in Fig. 1.

In order to estimate the loss, each node Nk keeps the
following information:

• pi: a list of the ids of the packets sent to each of its
downstream neighbors, Ni;

• ri: the total number of packets that each of its down-
stream neighbors Ni reports it had received from Nk;

• skl: the id of the last packet that node Nk received from
each of its upstream neighbors, Nl;

• tkl: the total number of packets that Nk received from
each of its upstream neighbors, Nl.

Node Nk updates the pi list whenever it sends a packet
to downstream node Ni. skl and tkl are updated with each
reception of a new packet from upstream neighbor Nl. Note
that the update is done even if the packet is not innovative.

Due to the broadcast nature of the wireless medium, a node
may overhear the transmissions of its downstream neighbor,
and we take advantage of this feature as follows. Whenever
Nk has to send a packet, it piggybacks skl and tkl in the
header for each of its upstream nodes, Nl. Next, its upstream
neighbors can pick up the packet and find out the information
they need to estimate the loss. Since the destination does not
forward any linear combination, the previous approach cannot
be used. However, the destination needs to send TCP ACKs
to the sender, so it piggybacks skl and tkl on these packets.

Once a node Nk receives feedback from one of its next hops,
say Ni, it updates the information for the corresponding hop
and computes the loss towards that hop, according to Alg. 1.
If the node determines that a packet has been lost, it sends
a redundant linear combination and adjusts the sending rate
taking into account the total estimated loss. The total loss
that Nk sees is given by: lossk =

∏nh

j=1 losskj , where nh

represents the number of downstream nodes of relay Nk.
We evaluate our loss estimation algorithm for the topology

in Fig. 1, where two relays forward packets to destination.
For the optimal curve, the nodes send packets at the optimal
redundancy rate, which is computed based on the given loss
probability. For the real case when the nodes use Alg. 1, the
throughput is very close to the optimal one, see Fig. 2. Note
that our loss estimation algorithm is accurate, and it does not
incur any cost, since it piggybacks the needed information on
the packets sent in the network.

C. Hybrid credit-based scheme

When multiple paths are used in parallel, one important
decision is how much of the traffic needs to be sent through
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Algorithm 1 Loss estimation. Node Nk uses the feedback
received from Ni to estimate the loss towards Ni, losski

1: if node Nk receives sik and tik from downstream neighbor
Ni then

2: count no. pkts that Nk sent to Ni, ws = |C|, where
C = {pi(j)/pi(j) ≤ sik, j = 1 : size(pi)}

3: compute no. pkts that Ni received from Nk, wr ←
tik − ri

4: losski = ws−wr

ws

5: ri ← tik
6: erase pi(j) for which pi(j) ≤ sik

7: end if

each path. For the example in Fig. 1, if each node A, B and C
generates a linear combination every time it receives a packet
from the source, it results in an explosion of the rate, with the
destination receiving several packets that are not innovative.

To address this issue, [5] and [6] associate a credit with
each packet sent in the network. The credits are created by
the source, transfered to the downstream nodes and consumed
at the destination. For CoMP, we use a hybrid credit-based
scheme which has two parts. First, credits are generated
at source and transfered to the forwarders, as the schemes
mentioned above do. Second, credits can be generated by
intermediate nodes as well whenever they detect a loss, which
differentiates our approach from the existing ones. This second
part enables each node to compute locally and distributedly the
rate that it needs to send to recover the losses.

D. Congestion control

For multipath schemes in WMN, where multiple flows can
traverse the same set of links, one must ensure fairness and
balance the load among the available paths. To this end, we in-
troduce a congestion control mechanism to select a forwarder
for a packet, based on the backpressure methodology [9],
which allows a node to send packets to a neighbor as long
as the neighbor is less congested. The level of congestion
is given by the size of the queue, i.e. the more packets are
queueing at a node, the more congested the node is. For
the congestion control mechanism, each node Nk keeps the
following information for every flow that it forwards:

• an output queue, output bufferi, i = 1 : nf , where nf is
the number of flows that node Nk forwards;

• the queue sizes of its next hops for each flow, qij , i = 1 :
nf , j = 1 : nhi, where nhi is the number of next hops
that Nk has for flow i.

Whenever the node has the opportunity to transmit a packet
in the wireless medium, it first selects the flow for which to
forward a packet, as the one for which it queues the highest
number of packets (see Alg. 2). After the flow is selected, Nk

chooses the forwarder to be the node with the shortest output
queue, say Nh, as long as the backpressure condition holds.

Next, Nk removes the first packet from the output bufferf

and it adds the packet id in ph, the list of packets sent to
Nh. It adds in the header of the packet the size of its own
queue, qfk for backpressure computation and for each of its
upstream neighbors Nl, the id of the last received packet,

Algorithm 2 Flow scheduling and forwarder selection.
When sending a packet, node Nk selects a flow f and chooses
the forwarder for that flow. Next, it updates the state informa-
tion and it sends the first packet from the output bufferf .

1: select the flow f such that:
2: f = argmax

i
size(output bufferi), i = 1 : nf

3: select forwarder: Nh = argmin
j

qfj , j = 1 : nhf

4: remove P0 from output bufferf
5: add id(P0) in ph list
6: add qfk and (skl, tkl) for each upstream neighbor Nl, in

the header of P0

7: send P0

skl, and the total number of received packets, tkl, for loss
estimation. Finally, Nk sends the packet.

E. System Design

For each flow f , every node keeps a coding bufferf and
an output bufferf . The coding bufferf contains packets that
the node uses to generate linear combinations. The source
stores here native, uncoded packets, while the other nodes
store linear combinations. The output bufferf contains coded
packets that will be sent in the network. Packets are removed
from the output bufferf whenever the node has the possibility
to transmit a packet. In this case, a node first runs Alg. 2
to select a flow f and a forwarder Nh. After that, the node
removes the first packet from the output bufferf , it updates
the statistics for node Nh and it sends the packet.

Sender. When a native packet of flow f is produced,
the source stores it in the coding bufferf . Note that source
performs online coding, which means that it generates a new
linear combination every time it receives a new packet. To
generate a coded packet, the source mixes all the packets from
the coding bufferf and stores the resulting linear combination
in the output bufferf (see Alg. 3). When the source receives
a TCP ACK for flow f , it removes the oldest packet from the
coding bufferf , thus sliding the coding window.

Algorithm 3 Online coding at source. If a data packet arrives,
the source stores it and generates a linear combination. m
represents the size of the coding bufferf . The coefficients ci

are randomly chosen from GF (216). If it receives a TCP ACK,
the source removes the oldest packet from the coding bufferf .

1: receive packet Pk of flow f
2: if Pk is DATA packet then
3: store packet in the coding bufferf
4: generate LCk =

∑m
i=1 ciPi

5: store LCk in the output bufferf
6: else
7: Pk is TCP ACK
8: remove P0 from coding bufferf
9: end if

Relays. When receiving a coded packet LCr from
flow f , an intermediate node Nk first removes from the
coding bufferf those linear combinations that contain native
packets older than those mixed in LCr. Then, he updates the
state for the upstream neighbor Nl who sent LCr. The updated
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information is the id of the last received packet skl, and the
total number of received packets, tkl. Next, if the coded packet
is innovative, Nk stores it in the coding bufferf , otherwise
Nk drops it (see Alg. 4). A relay generates and forwards a
linear combination when it receives a credit. Note that a linear
combination of coded packets is also a linear combination of
the original packets.

Algorithm 4 Coding at relays. The relay Nk receives a packet
of flow f from neighbor Nl. m represents the size of the
coding bufferf . The coefficients ci are chosen from GF (216)
at random.

1: receive coded packet LCr of flow f
2: update coding bufferf
3: skl = id(LCr); tkl ← tkl + 1
4: if LCr is innovative then
5: store LCr in the coding bufferf
6: if receive credit associated to LCr then
7: generate LCj =

∑m
i=1 ciLCi

8: store LCj in output bufferf
9: end if

10: else
11: drop LCr

12: end if
Receiver. When destination Nd receives a linear combina-

tion of flow f , it updates the id of the last received packet
and the total number of received packets for the sender. Next,
it stores the coded packet only if it is linear independent with
all the packets received previously. Since the source is coding
online, then the destination decodes a native packet on the fly,
if possible, and passes it up to the TCP layer (see Alg. 5). If
no native packet can be decoded, the destination acknowledges
the reception of the current packet to the source.

III. PERFORMANCE EVALUATION

We evaluate our protocol through extensive simulations in
ns-2.33 [1] and compare it to improved versions of Hori-
zon [7], MORE [5], and TCP-ARQ [8]. Horizon estimates
the TCP window and signals congestion to the TCP sender
whenever the estimated value reaches a certain threshold.
In our simulations, we feed Horizon with the actual TCP
window size, not an estimate. Also, MORE sends probe
packets periodically to estimate the loss in the network and
adjusts the rate of sending linear combinations accordingly.
For our implementation of MORE we use our algorithm to
estimate losses instead, eliminating the overhead of sending
probes. For TCP-ARQ, only the source sends redundant linear
combinations and the authors state that the redundancy factor
R should be adjusted online. Since the authors do not give
any indication on how to adjust R online, we use our loss
estimation algorithm Alg.1.

A. Simulation Setup

We run the protocols over the Roofnet topology provided
at [2]. The losses are given by the Shadowing propagation
model and depend on the distances between the nodes. We
choose randomly 100 pairs of (source, destination) nodes and
compute the routing information in MATLAB using a modified

Algorithm 5 Decoding at destination. The destination Nd

receives a linear combination.
1: receive coded packet LCk of flow f from neighbor Nl

2: sdl = id(LCk); tdl ← tdl + 1
3: if LCk is innovative then
4: store LCk in the coding bufferf
5: if a packet can be decoded then
6: deliver the decoded packet to the TCP layer
7: else
8: send an ack to the sender
9: end if

10: else
11: drop packet LCk

12: end if

version of the directed diffusion algorithm, reinforcing up to
d paths [10]. By varying the number of reinforced paths d,
we vary the number of downstream neighbors that a node can
pick as next-hops for the packets. The average path length is
of 2.5 hops.

We disable RTS/CTS for all experiments. In order to simu-
late heavy loss conditions, we also disable MAC layer retrans-
missions for all the experiments. The rest of the parameters
have the default ns-2.33 values.

We use the following metrics to evaluate our protocol:
• throughput measured at destination (decoded rate);
• efficiency, defined as the ratio of the goodput at destina-

tion to the total throughput transmitted in the network;
• relative improvement of CoMP over the other protocols,

defined as the ratio of the throughput obtained with CoMP
to the throughput obtained with the other protocols;

• aggregate throughput only for the case when multiple
flows are running in parallel in the network. The aggre-
gate throughput is computed as the sum of the individual
throughput of all flows that run simultaneously.

For all the figures, each point is the average of at least
10 runs such that the standard deviations for the different
protocols do not overlap.

B. Overall Results

In this section we discuss the results for different scenarios.
1) Multiple paths: In this case, there is only one flow

active in the network at a time. Note from Fig. 3(a) that
CoMP achieves significantly higher throughput than the other
protocols, and it can yield an improvement of 10x over TCP-
ARQ and more for Horizon and MORE (see Fig. 3(c)). There
are about 20% of flows in the network for which the source
and the destination are one hop away, and for those flows
TCP-ARQ has a similar performance to CoMP. If the paths
are longer, then TCP-ARQ is more sensitive to losses. Horizon
achieves a lower throughput because it relies on TCP retrans-
missions to recover every lost packet. MORE’s throughput
decreases significantly if the generation size increases due to
the additional delay introduced by coding.

Regarding the efficiency, we compute it as the ratio of
the decoded rate at destination to the total rate sent into the
network, and therefore for a 2-hop long flow, the maximum
efficiency can be equal to 0.5. CoMP generally outperforms
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Fig. 3. Roofnet topology with only one flow active in the network. Nodes have at most two downstream neighbors (i.e. two reinforced paths, d = 2).
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Fig. 4. Roofnet topology with multiple flows running in parallel. Nodes have at most two downstream neighbors (i.e. two reinforced paths, d = 2).

the other protocols, except for the 20% flows that are one-hop
long and TCP-ARQ is equally efficient (see Fig. 3(b)).

2) Multiple flows: In Fig. 4 we show the results for the
case when multiple flows run in parallel in the network. Since
MORE’s performance degrades very quickly as the generation
size increases, we do not take it into account for this case.

Notice from Fig. 4(a) that for 60% of the flows, the aggre-
gate throughput obtained when two sessions run concurrently
in the network is higher with CoMP than with TCP-ARQ. This
happens for performance-challenged flows, where paths are
long and experience high losses. For these situations, using
one extra path together with coding hop-by-hop instead of
end-to-end increases throughput. On the other hand, for the
case when paths are short and possibly physically overlapping,
using one more path increases the interference, thus having a
negative effect on the throughput obtained with CoMP. The
effect of the interference can also be noticed from Fig. 4(c),
where 20% of flows have a relative improvement less than 1,
meaning the throughput is lower with CoMP than with TCP-
ARQ. Horizon achieves a throughput close to 0 for almost
80% of the flows, due to the fact that it does not offer any
reliability in an extremely volatile environment.

In terms of efficiency, CoMP outperforms the other proto-
cols for 55% of the flows. For the 20% of one-hop flows, TCP-
ARQ achieves equal efficiency, since multiple paths cannot be
exploited. There are another 25% of flows for which CoMP
is slightly less efficient than TCP-ARQ, because even if with
CoMP the destination receives a higher throughput, there are
also more packets sent into the network, lowering efficiency.

IV. CONCLUSIONS

In this paper we presented CoMP, a network coding multi-
path protocol that improves TCP performance in lossy environ-

ments by combining online coding and multipath techniques.
CoMP uses an online algorithm to estimate current loss
conditions in the network and to adjust the rate of sending
coded packets. CoMP relies on a feedback mechanism for
TCP, where destination acknowledges the independent linear
combinations that it receives, instead of decoded packets. All
these features allow a seamless interaction between CoMP and
TCP. We show through extensive simulations the advantages
of our protocol over the current state-of-the-art in terms of
throughput and efficiency.
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