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V. CONCLUSION

In this paper, an analytical characterization of DS/CDMA global
noise has been presented, which is based on applying HOS-based
concepts to a non-Gaussian parametric distribution model. Results
have been presented for the worst case of deviation from Gaussian-
ity, which demonstrate the different behavior of the chosen HOS
parameter, namely, normalized kurtosis, for different choices of PN
sequences. Moreover, the performed analysis allowed us to show
that the Gaussian approximation, which is usually considered in
literature, underestimates the BER in few-user systems when certain
PN sequences (e.g., Gold sequences) are employed for spreading,
whereas it can be effectively used in high safety applications when
other sequences are adopted (e.g., EOE-Gold).

APPENDIX A

The computation of the second- and fourth-order statistical mo-
ments of the r.v.Z for complex PN sequences is here presented. The
value ofE(Z2

k;1) for complex PN sequences is given by
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Similar considerations can be made for the computation of the fourth-
order statistical moment. The value ofE(Z4

k;1), in the case of
complex PN sequences, is given by
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whereAk;1 =̂RefRk;1(�)g; Âk;1 =̂RefR̂k;1(�)g Bk;1 =̂ ImfRk;1

(�)g; and B̂k;1 =̂ ImfR̂k;1(�)g. As Ak;1 = ak;lTc + bk;l(� � lTc);

Âk;1 = âk;lTc + b̂k;l(� � lTc); Bk;1 = ck;lTc + dk;l(� � lTc);

Bk;1 = ĉk;lTc + d̂k;l(� � lTc) for some integerl, for which
lTc � � � (l+1)Tc [1], the expression (2.5.1) can be obtained after
some purely mathematical computations. Thepolynomials functions
fq(�); gq(�); hq(�) of (2.5.1) are defined as
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and
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Multipath Time-Delay Detection and Estimation

Jean-Jacques Fuchs

Abstract—A transmitted and known signal is observed at the receiver
through more than one path in additive noise. The problem is to estimate
the number of paths and, for each of them, the associated attenuation
and delay. We propose a deconvolution approach with an additive reg-
ularization term built around an `1 norm. The underlying optimization
problem is transformed into a quadratic program and is, thus, easily and
quickly solved by standard programs. The procedure is able to handle
more severe conditions than previous methods.

I. INTRODUCTION

Let the observed signalz(t) be modeled as

z(t) =

P

p=1

aph(t� �p) + e(t): (1)

This model describes multipath effects where the emitted signalh(t)
is observed at the receiver through more than one path in additive
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noisee(t). We consider the case whereh(t) is a known deterministic
signal. ap denotes the attenuation and�p the time delay for path
p. The number of pathsP is, in general, unknown. This situation
arises in such fields as sonar, radar, or geophysics. It amounts to
modeling the effect of the propagation and reflexion as an attenuation
and a delay. This model might well be too simple in many situations
since we consider that there are no scattering effects and that the
attenuations are real numbers. Although (1) is written in continuous
time, the processing will deal with discrete time samples, and we
only consider discrete time signals in the sequel. The delays�p are
then noninteger multiples of the sampling period taken equal to one.

The classical method for estimating the arrival times is matched
filtering, which consists of correlating the received with the trans-
mitted waveform. The resolution of this approach is limited by the
width of the main lobe of the autocorrelation of the transmitted
signal. To improve the performance, a number of methods have been
proposed. Some of them are maximum likelihood techniques; they
often suffer from high computational cost and need a precise initial
point. An interesting alternative, combining matched filtering and
deconvolution, is the iterative method of projection onto convex sets
(POCS). The method of complex to real least squares (CRALS) time
delay estimation focuses on the resolution of overlapping signals with
noninteger delays.

In this correspondence, we propose a method that is based on a de-
convolution approach with aǹ1 regularization term. The importance
of this term is established in an original reconstruction theorem [6]
for oversampled signals that shows that minimizing the`1 norm of
the reconstruction function yields a function with much faster decay
than the usual sinus cardinal function. It is this feature that allows
for the resolution of closely spaced paths in more difficult scenarios.
The optimization of the convex criterion is achieved using a standard
quadratic programming routine.

In the next section, we formalize the problem and introduce the
philosophy of the approach. In Section III, we comment on the
connection between delay estimation and interpolation and state
the interpolation theorem for oversampled bandlimited signals. The
`1 regularized deconvolution criterion is presented in Section IV,
where the whole procedure is described. Some simulation results are
presented in the last section that allow for comparisons with existing
schemes. The proposed method outperforms both POCS and CRALS
by about 20 dB.

II. THE PROBLEM

Observingz(t) in (1), the problem is to detect the number of
replicas and to estimatefap; �pg for each of them. Under the
Gaussian white noise assumption and forP known, the maximum
likelihood (ML) method leads to

min
fa ;� g

T

t=1

z(t)�

P

p=1

aph(t� �p)

2

: (2)

For P = 1, the minimum in � is then obtained by maximizing

t
z(t)h(t��). This amounts to correlation of the observed process

z(t) with the known signalh(t��) and to a search for the maximum,
i.e., to apply the matched filter. WhenP > 1, looking for theP
highest peaks in the output of the matched filter is suboptimal unless
the pairwise differencesj�p��lj are large compared with the temporal
correlation of the signalh(t). If this restriction on the delays is not
satisfied, this technique does not resolve the different paths and is
clearly suboptimal.

To handle these more complex scenarios, the maximum likelihood
approach (2) requires the knowledge ofP (the number of replicas)
and will converge to the global minimum only if an excellent initial

point is known. For the type of situations we consider, i.e., closely
spaced replicas, the maximum likelihood function has many local
extrema, and (2) is essentially unfeasible. As a matter of fact, the ML
criterion is used in our procedure to select the best solution among a
small number of candidate solutions and to decide how many replicas
are needed to explain the observations.

A. The Model

The algorithm we propose uses as observations the output of the
matched filter or the signalz(t) itself if the matched filter cannot be
used. When applying the matched filter toz(t), (1) becomes

y(t) =

P

p=1

aps(t� �p) + n(t)

where y(t), s(t), and n(t) are the outputs of the matched filter
when applied, respectively, toz(t), h(t), ande(t). The signals(t) is
thus the autocorrelation ofh(t), andn(t) is no longer white noise.
Switching to discrete time, we rewrite the previous relation as

yk =

P

p=1

aps(k � �p) + nk: (3)

Since the difficulty we are considering is to resolve closely spaced
paths and not to detect an isolated extremely weak replica, the
localization of one or several limited zones of interest in this output
yk is an easy task since the SNR’s will be reasonable for all the paths.
In the case where there are several well-separated zones, each of them
can be processed separately. We only consider the processing of one
of these zones. Its length will then be reasonable and not exceed a
few hundred samples.

B. The Philosophy of the Approach

Let us denote byL the length of the interesting part ofyk and
by Y the column vector built on these samples. This choice also
fixes the domain in which the delays are to be sought. The potential
delays will generally belong to a time interval around the middle of
Y whose length is a fraction ofL.

Associated withY , there is a noise vectorN built from samples
of nk andP vectorsS� such that (3) can be rewritten as

Y =

P

p=1

apS� +N: (4)

ObservingY and knowing that it admits such a decomposition,
our objective is to reconstruct it as a linear combination of a small
number of such column-vectors built on samples ofsk. We denote
Sm these vectors of lengthL that are built similarly toS� . Each of
it is associated with a given delay. These delays to be chosen among
M preassigned values cover the potential domain of interest. We thus
seek a reconstruction ofY of the form

Y = Sw +E (5)

whereS is an (L;M) matrix, andw is anM -dimensional column-
vector containing the unknown weightswm. E denotes a vector
modeling the reconstruction error that has yet to be specified. If the
true delays�p are among theM preassigned values, (4) is precisely
of this form. TakingE = N , a possible weighting vectorw then has
exactlyP nonzero components. ForM > L, other weighting vectors
do exist in general, even in this ideal case.

For M > L, there are many solutionsw to (5), and the problem
is then to find a criterion that allows retrieval of thebestone, i.e.,
one with few nonzero components at the true locations. The delay
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estimates are then hidden in the indices of the nonzero components
of w and the number of replicas in the number of clusters of nonzero
weights.

III. D ELAY ESTIMATION AND INTERPOLATION

A. Introduction

There are two sampling periods involved in the modelization (5).
The first is the sampling period of the data that is taken equal to
one, and the second is equal to the delay, which we denoteh, as
existing between two consecutive columnsSm andSm+1 of S in (5).
To simplify the exposition, let us consider the simplest case where
Y = S� . A typical equation (row) in (5) then has the form

s(t� �) =
m

s(t�mh)wm: (6)

This clearly indicates that the weightsfwmg we are seeking are
samples from an interpolation or reconstruction function. The most
well-known interpolating function is the sinus cardinal function,
which works for the reconstruction of functions whose Fourier
transform is bandlimited, provided the sampling period is small
enough to satisfy the Nyquist (Shannon) rate. Indeed, ifs(t) is a
signal whose Fourier transform vanishes forjf j � fmax and if the
sampling periodh satisfiesh � 1

2f , the standard reconstruction
or interpolation theorem yields

s(t� �) =

+1

m=�1

s(t�mh) sinc
1

h
(mh� �) (7)

where sinc(�) denotes the (unscaled) sinus cardinal given by
sinc(x) = sin(�x)

�x
.

Comparing (6) and (7) confirms this interpretation of the weights
in w. Our approach thus amounts to estimating the samples of an
interpolating function and deducing the number of replicas and their
characteristics from the peaks of the estimated interpolating function.
This is exactly what was proposed for a different problem in [5] and
solved using a least squares approach.

In general, using weights that are samples of the interpolating
function, we reconstruct the value of the signal at a given point
from its values at an infinite number of equispaced points. In the
present context, we work the other way around. We know both the
interpolating values(t��) and the sequence of values at equispaced
sampless(t � mh) and seek the samplesw from an interpolating
function. To make the problem solvable, we actually know a large
numberL of interpolating values and seek the common sequence of
weightsw that simultaneously permits theL reconstructions.

Another major difference is that we are allowed to adjust the
sampling periodh that intervenes in the interpolating function (7, 6).
We expect that the smallerh is, the easier the interpolation problem
will be. For h small enough, linear interpolation should correspond
to a close-to-perfect reconstruction.

B. Interpolation in Case of Oversampling

Assumings(t) is bandlimited,h has to be chosen small enough to
satisfy the Nyquist rate, but it can indeed be chosen much smaller.
There are an infinite number of ways to reconstruct an oversampled
signal. Indeed, consider, for instance, an oversampling ratio of two.
We can then reconstruct the function at any point using just the
odd samples, or the even samples, or any convex combination of
these two ways. Here, since we estimate the interpolating function,
the precise function that will come out of the estimation procedure,
in case of oversampling, entirely depends on the criterion we use
to solveY = Sw. Our objective is thus to define a criterion that

Fig. 1. Central parts of two interpolating functions in case of an oversam-
pling ratio of two. The sampling period is equal to one half. The minimal
l2 norm interpolating function is a sinus cardinal function, decreases slowly
toward zero, and uses all the samples. The minimall1 norm interpolating
function decreases rapidly to zero and uses one sample out of two.

Fig. 2. Same as in Fig. 1 for an oversampling ratio of three. The resulting
sampling period is equal to one third. The minimall2 norm interpolating
function is the same as in Fig. 1, decreases slowly toward zero, and uses all
the samples. The minimall1 norm interpolating function decreases rapidly to
zero and uses one sample out of three.

will single out an interpolating function that takes advantage of the
oversampling and comes as close as possible to an impulse. For such
a function, it is then easy to deduce the number of replicas and the
delays from the weights.

1) Minimum`2 Norm: When a problem has an infinite number of
solutions, a common way to select a specific solution is to choose a
minimum norm solution. The usual choice is to consider the`2 norm
because it is easy to compute. Unfortunately, we can prove that in
our case, this leads to weights that are samples from the standard
sinus cardinal function scaled by the Nyquist rate, regardless of the
true oversampling rate. Diminishingh though allowing intuitively
for a more localized reconstruction will simply lead to further
oversampling thesamesinus cardinal function. In our context, this
is, thus, probably the worst way to select a solution.

The proof is not presented. An illustration is given in Figs. 1 and 2.
2) Minimum`1 Norm: Another norm for which the solution is not

too difficult to compute is thè1 norm. It happens that minimizing
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the `1 norm of the interpolating function (weights) is one criterion
that leads to fairly localized reconstruction formulas, i.e., to an
interpolating function thatnarrows and tends toward animpulseas
h decreases.The details of this result and its proof are omitted.More
information can be found in [6], where the functional optimization
problem is further detailed. The interpolating functions (t) are
shown in Figs. 1 and 2, together with those of minimal`2 norm
for oversampling factorsl equal to 2 and 3, respectively.

In Fig. 1, l = 2, and the resulting sampling period is, thus, one
half. One of the curves is the standard sinus cardinal (divided by two),
which is the interpolating function with minimal`2 norm. The�’s on
this curve indicate the weights to be assigned to the samples when
the midpoint between two samples has to be reconstructed. Only the
weights to be assigned to the eight neighboring points on both sides
are presented, however. Of course, an infinite number of samples
and weights are needed to achieve a perfect reconstruction. The
other curve is the interpolating function	(t) with minimal `1 norm.
The o’s on this curve are the weights to be assigned to the samples
when the midpoint between two samples has to be reconstructed. The
function vanishes forjtj 2 [k�1=2; k] with k > 0, and we can notice
that except for the two neighboring points with abscissae�0:25, only
one in every second sample point is used in the reconstruction so that
there are only fouro’s on both sides. In Fig. 2, the same curves are
drawn for an oversampling ratiol = 3. The resulting sampling period
is now one third. As explained above, miminizing the`2 simply leads
to different samples of the same function in the continuous time scale,
whereas minimizing thè1 norm further improves the localization
of the interpolating function. We can see on Fig. 2 that except for
the two neighboring samples at�1=6, the weights attributed to the
other samples are already quite small. If one further increases the
oversampling ratio, minimizing thè1 norm of the weights almost
leads to linear interpolation.

C. Comments

The `1 norm appears to achieve what we want pretty well. It
chooses among all the possible solutions toY = Sw (a linear variety)
an extremely parsimonious one. It is known [8] that minimizing the
`1 norm leads to sparse solutions. Here, in an interpolation context,
we have shown that it further leads to solutions that are localized.
In the presence of several replicas, we will, of course, estimate a
linear combination of such sampled reconstruction functions, and the
localizationproperty is thus important in order to evaluate the number
of replicas and the associated delays.

IV. DEVELOPMENT

From the results described above, we conclude that minimizing the
`1 norm of the weights should lead to quite an efficient algorithm.
The first idea is thus to solve the optimization problem

min
w

kwk1

s.t. Y � Sw = 0
(LP1)

where kwk1 stands for thè 1 norm of w. This problem can be
converted into a linear program [7]. It has a unique mininum that is
easily and quickly obtained, even for largeL andM using standard
programs such as the Simplex algorithm, which is available in any
scientific program library. This is, however, somehow too simple
an approach since it does not take into account the presence of the
additive noiseN in (4). It is thus unjustified to ask for a perfect
match betweenY and Sw.

Remember that this noise is either white noise or filtered white
noise (3) and may have quite a large variance. This latter case happens
when the white noise corrupting the datafztg in (1) passes through

the matched filter to becomefnkg in (3). We should indeed take
into account this information towhiten the observation vectorY .
Let �2e� denote the covariance matrix of the noiseN in (4). �
is a known symmetric Toeplitz matrix built from the signalfhtg
and models the effect of the matched filter. We propose to take the
symmetric square root of this order-L matrix and to premultiply
both Y and the(L;M) matrix S by ��1=2 to obtain ~Y and the
matrix ~S. From a statistical point of view, it is then natural to
replace the constraintY � Sw = 0 with a constraint on the sum
of the squared residuesk~Y � ~Swk22 � B. A similar constraint is
actually proposed in [2]. Thè2 norm, especially for Gaussian random
variables, has an appealing interpretation since for parametric models,
it often corresponds to a maximum likelihood type approach.

The new optimization problem then reads

min
w

kwk1

s.t. k~Y � ~Swk22 � B
(LS1)

whereB stands for a bound that has yet to be fixed. This optimization
problem is again convex and straightforward to solve. It is equivalent
to the deconvolution criterion

min
w

k~Y � ~Swk22 + �kwk1: (D)

The equivalence between (D) and (LS1) can be established in the
following way. Let� be fixed, and denotew� as the optimum of (D).
If we now takeB in (LS1) equal tok~Y � ~Sw�k22, then (LS1) has
this same optimumw�. Inversely, the� in (D) that corresponds to a
givenB in (LS1) is nothing but the inverse of the Lagrange multiplier
of (LS1) [7] at the optimum. FixingB in (LS1) or � in (D) is thus
equivalent, although, of course, the relation existing between both
variables is implicit.

The criterion (D) is the one we retain in the sequel. It is a
deconvolution criterion with a penalization or regularization term
using the`1 norm.

V. DECONVOLUTION WITH AN `1 REGULARIZATION TERM

Let us adapt the model in order to include the whitening step of the
observations. We can now consider that we observe aL-dimensional
vector ~Y that admits a model [compare with (4)]

~Y =

P

p=1

ap ~S� + E (8)

where the expression of~S� as a function of� is known, andE is a
zero mean random vector with covariance matrix�2eI. The problem
is to identify bothP and thefap; �pg. To do so, we propose to solve

min
w

k~Y � ~Swk22 + �kwk1 (D)

where the positive scalar parameter� has yet to be fixed. If we
introduce new variablesw+i = max(wi; 0); w

�

i = max(�wi;0) and
replacewi by w+i � w�i and jwij by w+i + w�i , this unconstrained
nonsmooth optimization problem is converted into a quadratic pro-
gram where these new variablesw+i and w�i are constrained to
be greater or equal to zero [7]. Its unique solution is easily and
quickly obtained, even for large number of unknowns, using standard
programs available in any scientific program library.

A. Tuning the Parameter�

For � too small or too large, the optimal solutionw� of (D)
is useless. Indeed, if� is taken equal to zero, we are left with
minw k~Y � ~Swk22, and since there are, generally, more unknowns
than equations(M > L), the minimum is zero and is attained for
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all points in a linear variety with, generically, betweenL and M
nonzero components. No useful conclusion can be drawn from them.
If � is taken too large (larger than2k~ST ~Y k1), all the components
of the solutionw� will be zero. Somewhere in between these two
values, there may be a set of values of� for which the solution to (D)
easily leads to theexactvalues ofP; fap; �pg. Such a solutionw�

has its nonzero weights concentrated inP clusters around the true
delaysf�pg. A cluster will consist typically of two nonzero weights
from which the delay is deduced by linear interpolation. This ideal is,
however, difficult to expect for difficult scenarios so that we rather
look for a � that slightly overestimates the number of replicas that
yields one or two false replicas. This strategy does not allow us
to miss a true replica. The false replicas are easily eliminated by
simple thresholding or a better statistical test since their amplitudes
are generally quite small.

The simplest idea is to solve (D) for several values of� and to try
to detect the optimal value of� and true solutionw� by other means
such as statistical tests. Except for the computational cost, this is
an extremely efficient way to solve the estimation and identification
problem whose performance constitutes a upper limit to those we can
expect. A possible way to achieve the selection is described below
in Section V-B.

Let us present an approach that allows us to tune�. Using the
same reasoning as in Section IV, we can verify that� in (D) is
the Lagrange multiplier associated with the unique constraint in the
equivalentoptimization problem

min
w

k~Y � ~Swk22

s.t. kwk1 � B0
: (LS2)

It is with this interpretation of� that we use to tune it. For fixed(B0),
(LS2) has a unique optimum attained at, say,w

�(B0). The value of
the associated Lagrange multiplier��(B0) gives the sensitivity of the
optimal value of the criterionk~Y � ~Sw

�
(B0)k22 to a variation ofB0

[7]. The maximum likelihood (ML) approach applied to our model
(8), for a fixed numberQ of replicas, amounts to a solution of

min
fa ;� g

~Y �

Q

q=1

aq ~S�

2

2

:

If this problem is solved forQ > P , false replicas modeling
the additive noiseE will be present in the solution. Such a false
replica that models the noise solvesminfa;�g kE � a ~S�k

2

2. The
optimum attained for a delay, which is denoted��, has amplitude
ET ~S� = ~ST� ~S� and the decrease it induces in the criterion is
(ET ~S� )2=~ST� ~S� . In order to allow for a few false replicas and
using the sensitivity interpretation of the Lagrange multilpler, we
thus propose to take� equal to the order of magnitude ofET ~S� ,
which is the inverse of the ratio of these two values:

� = O(�ek ~S�k2): (9)

B. Summary of the Procedure

For datafzng following a model like (1), we propose to first
process them using the matched filter if this remark applies. This
lets us to improve the SNR and generally leads to a smaller set of
observationsfykg that verify a similar model (3). In matrix form,
we now have (4), whereY , the observation vector, is of dimension
L. The additive noiseN is then no longer white, and we propose
to rewhiten it to obtain the model in (8), where the noiseE is
white again. The model in (8) indeed has the same form as the
model we started with (1). We also build a(L;M)-matrix ~S with
accordingly filtered column-vectors~Sm. To each column, with index

m, is associated a delay so thatM different preassigned delays are
proposed to allow for the reconstruction of the observations~Y .

We then solve (D) for one (or several) value of� of the order
given in (9). The optimumw� has, in general, a small number of
nonzero weights (typically between2P+4 and2P+10). The nonzero
weights are either isolated or appear in pairs, and to each “cluster,”
we associate an unique replica with an amplitudeâp equal to the sum
of the weights and a delaŷ�p obtained by linear interpolation. We
order these replicas by decreasing amplitudes. Due to the additive
regularization term in (D), the amplitudes are biased, and we re-
evaluate them from the data for an increasing numberQ of potential
replicas by solving the linear least squares fit

C(Q) = min
fa g

~Y �

Q

1

aq ~S(�̂q)

2

2

: (10)

To decide on the number of replicas needed to explain the obser-
vations, we use a minimum description length type test (MDL) [9].
For an increasing numberQ of replicas, letC�(Q) denote the value
of the minimum of (10). MDL applied to this situation amounts to
taking P̂ , which is the estimate of theP number of replicas in the
observations as

P̂ = argmin
Q

C�(Q) + 2QLogL�̂2e : (11)

If (D) is solved for several values of�, the same scheme is applied
for each�, and we have to select the best representation among
these competing ones. The corresponding valuesC�(Q) are again
used to achieve this selection. In this last case, we can say that our
approach yields a small number of potential representations/solutions
and that the maximum likelihood criterion, together with an MDL
like detection test, is used to choose the one to be retained.

VI. SIMULATION RESULTS

We now present some simulation results to allow for comparisons
with two other approaches [1], [2]. Our method may be computation-
ally more demanding than the others but appears to work at much
lower SNR’s. For the scenario in [1], where the threshold SNR is
clearly indicated, we gain about 20 dB, i.e., the SNR below which
outliers start to appear is lowered by about 20 dB. The first approach
is known as the method of complex to real least squares time delay
estimation (CRALS). The second approach is based on the method
of projection onto convex sets (POCS) [4] that is applied to the
present context in [2]. In both cases, the transmitted signalh(t) is a
linear FM signal, and the received signalz(t) is generated with three
replicas having integer delays and real amplitudes (attenuations).
z(t) = 3

1
aph(t � �p) + e(t).

We define the SNR for thepth path to be

SNRp = 10 log
a2p h2t
�2e

(12)

This definition (10 log [energy of the signal/variance of the noise])
is also the one used in [1]. It is generally considered when it comes
to detection of a known deterministic signal in white noise and is
actually the SNR at the output of the matched filter. In [2], another
definition is considered:10 log (variance of the signal/variance of the
noise) with variance of the signal defined as its energy divided by
the number of samples. The difference with (12) is quite important
and is a function of the number of points in the signal. For a signal
length of 450 samples as in [2], the second definition yields a value
that is10 log 450 ' 26 dB below the one given by (12).
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A. Example 1

This example is taken from [1]

ht = ut � sin(2�(�t
2 + �t)) t = 0; 1; . . .N � 1 (13)

whereN = 750; � = (f2 � f1)=2N; � = f1 = 0:1; f2 = :15, and
wt is a window function equal to

ut = 0:5� 0:5 cos �
t

Nw

t = 0; 1; . . . ; Nw � 1

ut = 1: t = Nw; . . . ; N �Nw � 1

ut = 0:5� 0:5 cos �
t�N

Nw

t = N �Nw; . . . ; N:

A three path received signal is generated as

zt = ht�200 � :8ht�204 + :4ht�220 + et; t = 0; . . . ; 999 (14)

and the Gaussian white noise variance�2e is tuned to yield the desired
SNR’s according to (12).

Some simulation results obtained using the above described al-
gorithm are presented below. The datafztg are processed by the
matched filter. The number of samples that are used to build theY
vector isL = 250 samples. They are taken symmetrically around
the global maximum of the output of the matched filter. This vector
is whitened using the inverse of the symmetric square root of the
covariance matrix� of Y computed once and forever usingfhkg.
The potential delays cover a domain placed symmetrically around
the maximum of the output of the matched filter of size 60. This
means that if the oversampling ratio is taken equal to 5, we have
M = 301 potential values of the delays. Three different values of�
are considered for each realization. They correspond to 80, 100, and
120% of(�̂ek ~S�k2)=10 [see (9)], wherê�e is an estimate evaluated
on the data. For each of them, the ML criterion (10) is used to re-
estimate the amplitudes and to detect the number of replicas (11).
The best ML solution is retained among these candidates for each
realization.

We performed 500 independent trials of the scenario (14) with a
noise variance�2e = 64:10�4. The SNR’s (12) are then 47, 45, and
39 dB. There are typically about ten nonzero weights among the2M
components ofw. This is a difficult configuration since it is 20 dB
below the threshold SNR observed in [1]. The results are presented
in Table I for M = 301 corresponding toh = 0:2. The test (11)
correctly decided that the number of replicas was three for all the
500 realizations.

Results closer to the Cram´er–Rao (CR) bound can easily be
obtained, if desired, by performing a local search using our results
as initial estimates since these are always in the domain of attraction
of the true optimum. If we further decrease the SNR’s some outliers
appear: Either the detection test decides wrongly, or a false path is
retained. For some realizations, due to the highly oscillatory nature
of s(t), the global optimum is then no longer around thetrue value.
The CR bounds, which consider only the curvature of the highest
peak, are then no longer relevant, and more elaborate bounds should
be considered.

B. Example 2

This example is taken from [2] and has also been considered in
[3]. The linear frequency-modulated signal has time radial-bandwidth
product equal to 450 and a frequency bandwith equal toBf =
1=(2�). The carrier frequency is taken equal to1=�. A three-

TABLE I
RESULTS OVER 500 TRIALS FOR THE THREE REPLICAS PROCESS OFEXAMPLE 1

path channel with delaysf10; 12; 50g (in samples) and amplitudes
f1; 0:9; 0:5g in white Gaussian noise is simulated. Refer to [2] and
[3] for details on the scenario. The replicas with delay 10 and 12 are
too close to be resolved in the baseband matched filter output since
the standard resolution is1=Bf ' 6 samples. Our approach uses, as
theY vector, the real and imaginary part of the matched filter applied
to the signal around the carrier frequency. For comparison purposes,
as in [2] and [3], we takeL = 60 andM = 60, i.e., only integer
delays are considered. As indicated in [3], noninteger delays are an
important issue, and proposing only integer delays in the estimation
part may introduce some prior information when the true delays are
integers.

In Fig. 3, we present the (modulus of the) output of the matched
filter at SNR= 21 dB (�5 dB for the SNR definition used in [2]), and
the correspondingM -dimensional weight vectorw that we obtain is
presented in Fig. 4. In this case, 17 out of the 60 weights are nonzero.
This quite high number of nonzero weights is due to the fact that no
oversampling(l = 1) is performed. For this SNR, that is, 20 dB
below the one considered in [2], our approach solves the three paths,
except for about one realization in 500 for which the detection test
makes a wrong decision.

C. Robustness Issues

The choice of the location and the size of the observations that are
used to buildY is one of these issues. Our approach is quite robust
in this respect. The results presented for Example 1 are obtained
by taking a quite large set placed symmetrically around the global
maximum of the output of the matched filter. This choice has been
made to highlight the robustness of our approach and to be sure to
introduce no prejudice. Since the true delays all lie on one side of this
maximum, better performances could be obtained by focusing the set
more closely around the true locations. A second issue is the selection
of the size and the location of the potential delays that have to be
proposed. This is the main issue in standard deconvolution approaches
and is known as the indicator set selection problem. It is the subject
of much effort. It directly influences the conditioning of theS matrix
and, thus, the results of most approaches. Due to the presence of the
additive`1-norm regularization term in (D), our method is again quite
unsensitive in this respect. This selection is somehow automatically
done by the`1-norm that induces parsimony, as shown in Section
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Fig. 3. Modulus of the output of the matched filter for Example 2 as a
function of the delay in samples.

Fig. 4. Typical weight-vectorw by the proposed method for Example 2.

III-B2. Again, in the simulations of Example 1, the potential delays
simply cover a domain placed symmetrically around the maximum
of the output of the matched filter. Choosing a better placed, smaller
set would certainly help.

Two further parameters that are specific to our approach and need
to be tuned are the oversampling ratel and the hyperparameter�. The
choice ofl is not crucial; it has to be taken to allow for performances
comparable to the CR bounds and is thus easily fixed. The choice
of the parameter� is more delicate, and we systematically solve the
problem for several values of� of the order given in (9) and then
select the solution using the ML criterion and the MDL test. The order
of magnitude given in (9) is obtained using many angles of attack,
but a more precise result would be helpful. Further investigations are
under progress. This is indeed more a computational load issue than
a robustness issue.

D. Computational Complexity

Although the conditioning of the matrixS has little influence on the
result of the algorithm, its influence on the computational complexity
might be important, and the number of iterations needed to converge
to the unique optimum depends on it. Little is said in the litterature
about the computational cost of a quadratic programming algorithm

(we use the NAG E04NCF program). It seems that the number of
operations required to perform one iteration of the quadratic program
is, in our case, proportional to the square ofmin(L;M) and that
the number of iterations is, in general, considered to be linear in this
same number. The computational load would thus mainly be cubic in
min(L;M). It is difficult to compare these figures with those of the
other techniques. Let us note that according to [10], to solve a stan-
dard linear least squares problem withn unknowns andm equations
(m > n), the number of flops is equal to(n2=2)(m+ n=3), where
cubic terms are also present. The difference in computational load
between the proposed method and others may thus be quite small.

VII. CONCLUSION

We have considered signals that can be represented as the sum of
an unknown number of amplitude-scaled and time-shifted replicas of
a known pulse shape. For such situations, we present an algorithm
that determines both the number of such replicas and the amplitude
and arrival time of the individual paths.

Our method has several advantages over most existing ones. It
does not rely on an initialization procedure and does not require an
initial point. The indicator set selection problem that determines the
performance of most deconvolution methods has a minor influence
in our case. Diminishing its size in order to improve the conditioning
of the S matrix and the variance of the estimates is not an issue in
our approach. The proper selection is somehow done by the additive
`1-norm regularization term, which ensures that only a small number
of the available weights will be nonzero at the optimum. Moreover,
since the proposed method includes a detection scheme that discards
weak spurious paths, it requires no prior knowledge about the number
of paths.

The computational complexity is reasonable. If only degraded
performance is needed, we can diminish the resolution of the method,
and this will decrease the computational load. The method is, in fact,
extremely versatile in this respect.

Simulation results on classical examples taken from the litterature
indicate that the performance of the method are excellent. As for
most other similar methods, no theoretical analysis of the statistical
performance is available at the moment. Investigations are underway.
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