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and

In this paper, an analytical characterization of DS/CDMA global
noise has been presented, which is based on applying HOS-based
concepts to a non-Gaussian parametric distribution model. Results
have been presented for the worst case of deviation from Gaussian-
ity, which demonstrate the different behavior of the chosen HOS
parameter, namely, normalized kurtosis, for different choices of PN
sequences. Moreover, the performed analysis allowed us to show
that the Gaussian approximation, which is usually considered in
literature, underestimates the BER in few-user systems when certain
PN sequences (e.g., Gold sequences) are employed for spreadiﬁ'é,
whereas it can be effectively used in high safety applications when
other sequences are adopted (e.g., EOE-Gold). [2]

V. CONCLUSION

APPENDIX A
[3]

The computation of the second- and fourth-order statistical mo-
ments of the r.vZ for complex PN sequences is here presented. The
value of E(Z; ,) for complex PN sequences is given by
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where Ry, 1 (1) = [ ax(t — 7)ai(7)dr and Ria(r)= jTT ag(t — [6]
7)ai(7)dr. These quantities are linked directly to the aperiodic
cross-correlation functions among complex PN sequences, as seéh
in [4] and [6]. The expression reported in (2.4) is obtained after
mathematical manipulation. The mentiongalynomial functiony, (-)

is analytically defined as
folwoy, z,w) =2 + 4% + 2% + w? + 2y + 2w, (A1.2) [9]

Similar considerations can be made for the computation of the fourth-
order statistical moment. The value d&(Z; ), in the case of
complex PN sequences, is given by
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he(a,y, z,w,m,n,o0,p)
=8wzmo + 4[zz(mp + no) + mo(zw + yz)]

8
+ g[r:np + (zw + yz)(mp + no) + ywmo]
+ 2[np(xw 4+ yz) + yw(mp + no)] + gyump. (A1.6)
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Whereilk,l Aﬁ Re{Rkyl(A’T)}, A1 = RE{Rkl(T)} Bk71 = Im{R,“
(z’)}, and Bk‘l = |I’AT1{R1(»,1(T)}. As A, = (l\k,ITC + ka(T — lTC),
Ak araTe + be(1 = 1T:), Bry = ciiTe + di(r = IT,),
By Crale + Jk,,(r — IT,) for some integeri, for which

IT. <7 < (I+1)T. [1], the expression (2.5.1) can be obtained aft
some purely mathematical computations. Tuynomials functions

fa(4), gq(+), hg(-) of (2.5.1) are defined as
folwyy, z,w) = (@t + 2% + 227y + 2 w)
+2(2y* + 22w?) + (2y® + z0”)
+ é(@f +wh) 4+ 6(22% + 2y + 27 zw)
+ 2(:62102 + y222 + dxyzw)

+ 3(,77_1/11)2 + g/2z71,‘) + gyz'u,f2 (AL1.4)
5
2 5 . ) . .
golw.y, 2 w) = 3y2wz + (wyw’ + y*zw)
+ g(wz'wz + dayzw 4+ y°2%)
[»]
+2(a’ 2w + 2y2®) 4 20727 (A1.5)

Abstract—A transmitted and known signal is observed at the receiver
through more than one path in additive noise. The problem is to estimate
the number of paths and, for each of them, the associated attenuation
and delay. We propose a deconvolution approach with an additive reg-
ularization term built around an ¢; norm. The underlying optimization
problem is transformed into a quadratic program and is, thus, easily and

uickly solved by standard programs. The procedure is able to handle
ore severe conditions than previous methods.

|. INTRODUCTION
Let the observed signal(t) be modeled as
P

z(t) = Zaph(t — 1) + e(t).

p—1

@)

This model describes multipath effects where the emitted sigftal
is observed at the receiver through more than one path in additive

Manuscript received April 1, 1997; revised May 27, 1998. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Ali H. Sayed.

The author is with IRISA/Universi de Rennes |, Rennes, France (e-mail:
fuchs@irisa.fr).

Publisher Item Identifier S 1053-587X(99)00166-X.

1053-587X/99$10.00) 1999 IEEE



238 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 1, JANUARY 1999

noisee(t). We consider the case wheli€t) is a known deterministic point is known. For the type of situations we consider, i.e., closely

signal. ¢, denotes the attenuation ang the time delay for path spaced replicas, the maximum likelihood function has many local

p. The number of pathg is, in general, unknown. This situationextrema, and (2) is essentially unfeasible. As a matter of fact, the ML

arises in such fields as sonar, radar, or geophysics. It amountsctiterion is used in our procedure to select the best solution among a
modeling the effect of the propagation and reflexion as an attenuatgmall number of candidate solutions and to decide how many replicas
and a delay. This model might well be too simple in many situatiorsse needed to explain the observations.

since we consider that there are no scattering effects and that the

attenuations are real numbers. Although (1) is written in continuous The Model

time, the processing will deal with discrete time samples, and we . .

. . . . . The algorithm we propose uses as observations the output of the
only consider discrete time signals in the sequel. The defgyare ) . . ) !

- . . h matched filter or the signal(¢) itself if the matched filter cannot be
then noninteger multiples of the sampling period taken equal to one,

The classical method for estimating the arrival times is matchgged' When applying the matched filter4tr), (1) becomes
filtering, which consists of correlating the received with the trans-
mitted waveform. The resolution of this approach is limited by the y(t) = Za‘ps(t —7p) +n(t)
width of the main lobe of the autocorrelation of the transmitted p=l1

signal. To improve the performance_, a nurr_]be_r of method§ have bg@here y(t), s(t), and n(t) are the outputs of the matched filter
proposed. Some o_f them are maximum likelihood technlqges;_ t_h_ﬁ,}ﬁen applied, respectively, tat), k(t), ande(t). The signals(t) is
often suffer from high computational cost and need a precise initiglys the autocorrelation df(t), andn(t) is no longer white noise.

deconvolution, is the iterative method of projection onto convex sets

(POCS). The method of complex to real least squares (CRALS) time
delay estimation focuses on the resolution of overlapping signals with
noninteger delays.

In this correspondence, we propose a method that is based on aSlece the difficulty we are considering is to resolve closely spaced
convolution approach with af regularization term. The importancepaths and not to detect an isolated extremely weak replica, the
of this term is established in an original reconstruction theorem [B]calization of one or several limited zones of interest in this output
for oversampled signals that shows that minimizing thenorm of yx is an easy task since the SNR'’s will be reasonable for all the paths.
the reconstruction function yields a function with much faster decdg the case where there are several well-separated zones, each of them
than the usual sinus cardinal function. It is this feature that allove@n be processed separately. We only consider the processing of one
for the resolution of closely spaced paths in more difficult scenaricsf. these zones. Its length will then be reasonable and not exceed a
The optimization of the convex criterion is achieved using a standdev hundred samples.
guadratic programming routine.

In the next section, we formalize the problem and introduce th® The Philosophy of the Approach

philosophy obf the ap(pj)rcI)ach. In Section I:jl, we colmment 0(;‘ the | ot us denote by the length of the interesting part gf. and
connection between delay estimation and interpolation and St@(ey- yhe column vector built on these samples. This choice also

the interpolation theorem for oversampled bandlimited signals. Th& < tha domain in which the delays are to be sought. The potential
£, regularized deconvolution criterion is presented in Section | elays will generally belong to a time interval around the middle of
where the whole procedure is described. Some simulation results #Chose length is a fraction .

presented in the last section that allow for comparisons with existing s o< ciated withy", there is a noise vecta¥ built from samples

schemes. The proposed method outperforms both POCS and CRAélrSm and P vectorsS,. such that (3) can be rewritten as
by about 20 dB. ‘ v

P

Yk = Zaps(k —Tp) + ng. ?3)

p=1

P

Y = S N. 4

[l. THE PROBLEM ;a, » 4 (4)
Observingz(¢) in (1), the problem is to detect the number of
replicas and to estimata,,7,} for each of them. Under the
Gaussian white noise assumption and forknown, the maximum

likelihood (ML) method leads to

ObservingY” and knowing that it admits such a decomposition,
our objective is to reconstruct it as a linear combination of a small
number of such column-vectors built on samplesspf We denote
S, these vectors of length that are built similarly toS-,. Each of

2

T r ’ it is associated with a given delay. These delays to be chosen among
{jniTﬂ z(t) — Z aph(t —7p)| . (2) M preassigned values cover the potential domain of interest. We thus
Prrt=t p=1 seek a reconstruction df of the form
For P = 1, the minimum in7 is then obtained by maximizing Y=Sw+ E (5)

>, z(t)h(t—T7). This amounts to correlation of the observed process
z(t) with the known signak(t—) and to a search for the maximum,whereS is an(L, M) matrix, andw is an M -dimensional column-
i.e., to apply the matched filter. WheR > 1, looking for the P vector containing the unknown weights,.,. E denotes a vector
highest peaks in the output of the matched filter is suboptimal unles®deling the reconstruction error that has yet to be specified. If the
the pairwise differencels,, — ;| are large compared with the temporatrue delaysr, are among thél{ preassigned values, (4) is precisely
correlation of the signak(¢). If this restriction on the delays is not of this form. Takingtl = IV, a possible weighting vector then has
satisfied, this technique does not resolve the different paths andei@ctly P nonzero components. Féf > L, other weighting vectors
clearly suboptimal. do exist in general, even in this ideal case.

To handle these more complex scenarios, the maximum likelihoodFor M > L, there are many solutions to (5), and the problem
approach (2) requires the knowledge iBf(the number of replicas) is then to find a criterion that allows retrieval of thestone, i.e.,
and will converge to the global minimum only if an excellent initialone with few nonzero components at the true locations. The delay
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estimates are then hidden in the indices of the nonzero components+
of w and the number of replicas in the number of clusters of honzero
weights.
0.8
I1l. DELAY ESTIMATION AND INTERPOLATION
0.6
A. Introduction

There are two sampling periods involved in the modelization (5). o4k
The first is the sampling period of the data that is taken equal to
one, and the second is equal to the delay, which we dehotes
existing between two consecutive colunfs andS,,.+i of S in (5). 02
To simplify the exposition, let us consider the simplest case where
Y = S;. A typical equation (row) in (5) then has the form

s(t—71) = Z s(t — mh)w,,. (6)

m

This clearly indicates that the weigh{su..} we are seeking are 0% = = = 0 i 2 3 4

samples from an 'me_rpOIat'on .or rgconstrut_:tlon func’Flon. The _mq§1b. 1. Central parts of two interpolating functions in case of an oversam-
well-known interpolating function is the sinus cardinal functionpiing ratio of two. The sampling period is equal to one half. The minimal
which works for the reconstruction of functions whose Fourig2 norm interpolating function is a sinus cardinal function, decreases slowly
transform is bandlimited, provided the sampling period is smdpward zero, and uses all the samples. The minifiahorm interpolating
enough to satisfy the Nyquist (Shannon) rate. Indeed(#f is a function decreases rapidly to zero and uses one sample out of two.

signal whose Fourier transform vanishes [t > fuwax and if the ’
sampling period: satisfiesh < ;——, the standard reconstruction

2 fmax’

or interpolation theorem yieldsd'

0.8 1

“+oo
s(t—7)= :Z_ s(t —mh) sinc(%(mh — T)) @)

06 1
where sin¢-) denotes the (unscaled) sinus cardinal given by
singz) = o)

Comparing (6) and (7) confirms this interpretation of the weights 04
in w. Our approach thus amounts to estimating the samples of an
interpolating function and deducing the number of replicas and their .l
characteristics from the peaks of the estimated interpolating function.
This is exactly what was proposed for a different problem in [5] and

solved using a least squares approach. ol T o i
In general, using weights that are samples of the interpolating \}/ W

function, we reconstruct the value of the signal at a given point

from its values at an infinite number of equispaced points. In the02; > 0 P p s 3

present context, we work the other way around. We know both the - ) ) )
. 2. Same as in Fig. 1 for an oversampling ratio of three. The resulting

interpolating values(t — ) and the sequence of values at equispac mpling period is equal to one third. The minimal norm interpolating

sampless(t — mh) and seek the samplag from an interpolating function is the same as in Fig. 1, decreases slowly toward zero, and uses all
function. To make the problem solvable, we actually know a largke samples. The minimél norm interpolating function decreases rapidly to

numberL of interpolating values and seek the common sequenceZ§fo and uses one sample out of three.
weightsw that simultaneously permits the reconstructions.

Another major difference is that we are allowed to adjust th&ill single out an interpolating function that takes advantage of the
sampling periodh that intervenes in the interpolating function (7, 6) oversampling and comes as close as possible to an impulse. For such
We expect that the smallér is, the easier the interpolation problema function, it is then easy to deduce the number of replicas and the
will be. For & small enough, linear interpolation should correspondelays from the weights.

to a close-to-perfect reconstruction. 1) Minimum{; Norm: When a problem has an infinite number of
solutions, a common way to select a specific solution is to choose a
B. Interpolation in Case of Oversampling minimum norm solution. The usual choice is to considerthaorm

Assumings(t) is bandlimited/: has to be chosen small enough t?6cause it is easy to compute. Unfortunately, we can prove that in
satisfy the Nyquist rate, but it can indeed be chosen much small@fr case, this leads to weights that are samples from the standard
There are an infinite number of ways to reconstruct an oversampfBus cardinal function scaled by the Nyquist rate, regardless of the
signal. Indeed, consider, for instance, an oversampling ratio of tw#Je oversampling rate. Diminishing though allowing intuitively
We can then reconstruct the function at any point using just tfi@r a more localized reconstruction will simply lead to further
odd samples, or the even samples, or any convex combinationogersampling thesamesinus cardinal function. In our context, this
these two ways. Here, since we estimate the interpolating functid®, thus, probably the worst way to select a solution.
the precise function that will come out of the estimation procedure, The proof is not presented. An illustration is given in Figs. 1 and 2
in case of oversampling, entirely depends on the criterion we use2) Minimum¢; Norm: Another norm for which the solution is not
to solveY = Sw. Our objective is thus to define a criterion thatoo difficult to compute is thé; norm. It happens that minimizing
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the £, norm of the interpolating function (weights) is one criteriorthe matched filter to becomén;} in (3). We should indeed take
that leads to fairly localized reconstruction formulas, i.e., to anto account this information tavhiten the observation vecto¥ .
interpolating function thaharrows and tends toward aimpulseas Let 2% denote the covariance matrix of the noidg in (4). ¥
I decreasesThe details of this result and its proof are omittéddore is a known symmetric Toeplitz matrix built from the signft;}
information can be found in [6], where the functional optimizatiomnd models the effect of the matched filter. We propose to take the
problem is further detailed. The interpolating functiongt) are symmetric square root of this ordér-matrix and to premultiply
shown in Figs. 1 and 2, together with those of minindalnorm both Y and the(L. M) matrix S by ¥~'/2 to obtainY and the
for oversampling factor$ equal to 2 and 3, respectively. matrix S. From a statistical point of view, it is then natural to

In Fig. 1,7 = 2, and the resulting sampling period is, thus, oneeplace the constraint’ — Sw = 0 with a constraint on the sum
half. One of the curves is the standard sinus cardinal (divided by twof, the squared residue” — Sw]|3 < B. A similar constraint is
which is the interpolating function with minimét norm. Thex’s on  actually proposed in [2]. Th& norm, especially for Gaussian random
this curve indicate the weights to be assigned to the samples whvamiables, has an appealing interpretation since for parametric models,
the midpoint between two samples has to be reconstructed. Only theften corresponds to a maximum likelihood type approach.
weights to be assigned to the eight neighboring points on both side§he new optimization problem then reads
are presented, however. Of course, an infinite number of samples
and weights are needed to achieve a perfect reconstruction. The
other curve is the interpolating functiol(¢) with minimal ¢; norm. stV —Sw|i < B
The o’s on this curve are the weights to be assigned to the samples
when the midpoint between two samples has to be reconstructed. YereB stands for a bound that has yet to be fixed. This optimization
function vanishes foft| € [k—1/2, k] with k > 0, and we can notice problem is again convex and straightforward to solve. It is equivalent
that except for the two neighboring points with abscissfe25, only {0 the deconvolution criterion
one in every second sample point is used in the reconstruction so that TR - T
there are o)rllly fourn’s on Eothpsides. In Fig. 2, the same curves are e IR = Swllz + Allwll,. ©)

drawn for an oversampling ratio= 3. The resulting sampling period  The equivalence between (D) and (LS1) can be established in the
is now one third. As explained above, miminizing thesimply leads following way. Let\ be fixed, and denote* as the optimum of (D).

to different samples of the same function in the continuous time scajewe now takeB in (LS1) equal to||§’ — gw*”; then (LS1) has
whereas minimizing thé: norm further improves the localization this same optimunw™. Inversely, the\ in (D) that corresponds to a

of the interpolating function. We can see on Fig. 2 that except fgfven B in (LS1) is nothing but the inverse of the Lagrange multiplier
the two neighboring samples atl /6, the weights attributed to the of (LS1) [7] at the optimum. Fixing3 in (LS1) or A in (D) is thus

other samples are already quite small. If one further increases Bfuivalent, although, of course, the relation existing between both
oversampling ratio, minimizing thé; norm of the weights almost variables is implicit.

min ||w|1
w

(LS1)

leads to linear interpolation. The criterion (D) is the one we retain in the sequel. It is a
deconvolution criterion with a penalization or regularization term
C. Comments using thef; norm.
The {; norm appears to achieve what we want pretty well. It
chooses among all the possible solution¥te- Sw (a linear variety) V. DECONVOLUTION WITH AN £; REGULARIZATION TERM

an extremely parsimonious one. It is known [8] that minimizing the | o 5 adapt the model in order to include the whitening step of the

¢1 norm leads to sparse solutions. Here, in an interpolation contexhservations. We can now consider that we obserfiedimensional
we have shown that it further leads to solutions that are localiz§tstor v that admits a model [compare with (4)]

In the presence of several replicas, we will, of course, estimate a

linear combination of such sampled reconstruction functions, and the . .
o _ ) . V=% a8, +F (8)

localizationproperty is thus important in order to evaluate the number - P

of replicas and the associated delays. p=!

P

where the expression ¢f, as a function ofr is known, andE is a
IV. DEVELOPMENT zero mean random vector with covariance matrpd. The problem

From the results described above, we conclude that minimizing ti§et© identify both”” and the{a,, 7, }. To do so, we propose to solve
i norm Qf the_ weights should lead to quite an efficient algorithm. min || — Swl|Z + Al|w||: (D)
The first idea is thus to solve the optimization problem w

where the positive scalar parameterhas yet to be fixed. If we
(LP1) introduce new variables; = max(w;,0), w;” = max(—w;,0) and
st. Y -Sw=0 replacew; by w;t — w; and|w;| by w; 4w, this unconstrained

where |[w]l: stands for thef; norm of w. This problem can be nonsmooth optimization prot_)Iem I—E convert_ed into a qua_dratlc pro-
ram where these new variables™ and w; are constrained to

converted into a linear program [7]. It has a unique mininum that . Co -
brog [7] g e greater or equal to zero [7]. Its unique solution is easily and

easily and quickly obtained, even for largeand M using standard ~ . . .
programs such as the Simplex algorithm, which is available in anwckly obtained, even for large number of unknowns, using standard
' ograms available in any scientific program library.

scientific program library. This is, however, somehow too simpl

an approach since it does not take into account the presence of the

additive noiseN in (4). It is thus unjustified to ask for a perfectA- Tuning the Parametek

match betweerl” and Sw. For A\ too small or too large, the optimal solutiom™ of (D)
Remember that this noise is either white noise or filtered white useless. Indeed, ik is taken equal to zero, we are left with

noise (3) and may have quite a large variance. This latter case happeis., ||Y — Sw/||Z, and since there are, generally, more unknowns

when the white noise corrupting the ddta } in (1) passes through than equationgA/ > L), the minimum is zero and is attained for

min ||w]|1
w
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all points in a linear variety with, generically, betwednand M m, is associated a delay so thf different preassigned delays are

nonzero components. No useful conclusion can be drawn from themnoposed to allow for the reconstruction of the observatbns

If A is taken too large (larger that|S™Y ||.), all the components  We then solve (D) for one (or several) value bfof the order

of the solutionw™ will be zero. Somewhere in between these twagiven in (9). The optimunmw™ has, in general, a small number of

values, there may be a set of values\dbr which the solution to (D) nonzero weights (typically betwe@d+4 and2P+10). The nonzero

easily leads to thexactvalues ofP, {a,,7,}. Such a solutiorw™ weights are either isolated or appear in pairs, and to each “cluster,”

has its nonzero weights concentratedRnclusters around the true we associate an unique replica with an amplitagesqual to the sum

delays{7,}. A cluster will consist typically of two nonzero weights of the weights and a dela§, obtained by linear interpolation. We

from which the delay is deduced by linear interpolation. This ideal isyder these replicas by decreasing amplitudes. Due to the additive

however, difficult to expect for difficult scenarios so that we ratheegularization term in (D), the amplitudes are biased, and we re-

look for a A that slightly overestimates the number of replicas thavaluate them from the data for an increasing nunépef potential

yields one or two false replicas. This strategy does not allow weplicas by solving the linear least squares fit

to miss a true replica. The false replicas are easily eliminated by

simple thresholding or a better statistical test since their amplitudes

are generally quite small. c@) = ?;ili
The simplest idea is to solve (D) for several values\@nd to try !

to detect the optimal value of and true solutiorw™ by other means . . .
P y To decide on the number of replicas needed to explain the obser-

such as statistical tests. Except for the computational cost, this IS. . o
- S . . __vations, we use a minimum description length type test (MDL) [9].
an extremely efficient way to solve the estimation and |dent|f|cat|qp ' ) . o
or an increasing numbé) of replicas, letC*(Q) denote the value

roblem whose performance constitutes a upper limit to those we c e . e .
P P PP gfnthe minimum of (10). MDL applied to this situation amounts to

expect. A possible way to achieve the selection is described bel?g&ingﬁ which is the estimate of th& number of replicas in the

in Section V-B. observations as
Let us present an approach that allows us to tdnéJsing the

same reasoning as in Section IV, we can verify thain (D) is 5 - 2
the Lagrange multiplier associated with the unique constraint in the P = arg ménc (Q)+2QLog L5 (11)
equivalentoptimization problem

. (10)

2

~ Q ~
Y- Zaqs(%q)

o If (D) is solved for several values of, the same scheme is applied
min [|Y — Swl|3 for each\, and we have to select the best representation among
(LS2)  these competing ones. The corresponding vallié&®) are again

used to achieve this selection. In this last case, we can say that our
It is with this interpretation of\ that we use to tune it. For fixed3’), ~@Pproach yields a small number of potential representations/solutions
(LS2) has a unique optimum attained at, say/,( B'). The value of gnd that the maxwpum likelihood criterion, together WIt!’] an MDL
the associated Lagrange multipligt(B') gives the sensitivity of the like detection test, is used to choose the one to be retained.
optimal value of the criteriof{Y” — Sw (B')||3 to a variation ofB’
[7]. The maximum likelihood (ML) approach applied to our model VI. SIMULATION RESULTS
(8), for a fixed number) of replicas, amounts to a solution of

st.lwlh < B

We now present some simulation results to allow for comparisons
Q 2 with two other approaches [1], [2]. Our method may be computation-
Y — Zaqﬁrq . ally more demanding than the others but appears to work at much
q=1 . lower SNR’s. For the scenario in [1], where the threshold SNR is
. . . . clearly indicated, we gain about 20 dB, i.e., the SNR below which
If this pr_oblem_ IS sol_ved for@ > P false re_pllcas modeling outliers start to appear is lowered by about 20 dB. The first approach
the .addmve noiser” will be .present n the solution. §UC2h a falsels known as the method of complex to real least squares time delay
rep_llca that '.“Ode's the noise so_lvas_m{a,,.} 1B — aSe|ls. The estimation (CRALS). The second approach is based on the method
%F’Ttg"‘fmgi“?'r]e" fgr ti dedlay, Wh'Ch.t'S. ?jenoteﬁ_, h?ﬁ amfi"“_’de .of projection onto convex sets (POCS) [4] that is applied to the
& 3 / )275 T EI” n o‘rsderegejllsswlfolrnaufceej fi:lse ?eéirézg'ognéf)resent context in [2]. In both cases, the transmitted sigtal is a
T TR linear FM signal, and the received signdt) is generated with three

using the sensitivity interpretation of the Lagrange multipler, Wheplicas having integer delays and real amplitudes (attenuations
thus propose to také equal to the order of magnitude @& S, -, Z(?) _ Zg a hg(t _ Tg) n €(f)y P ( ):
) = > aph » ).

which is the inverse of the ratio of these two values: We define the SNR for theth path to be

o
[

min

{ag,7q}

2

A= O(0.||S-]2). 9
SNR, = 10log —5— (12)
B. Summary of the Procedure 7
For data{z.} following a model like (1), we propose to first This definition (0 log [energy of the signal/variance of the noise])
process them using the matched filter if this remark applies. Thisalso the one used in [1]. It is generally considered when it comes
lets us to improve the SNR and generally leads to a smaller settofdetection of a known deterministic signal in white noise and is
observations{y; } that verify a similar model (3). In matrix form, actually the SNR at the output of the matched filter. In [2], another
we now have (4), wher&", the observation vector, is of dimensiondefinition is consideredt0 log (variance of the signal/variance of the
L. The additive noiseV is then no longer white, and we proposenoise) with variance of the signal defined as its energy divided by
to rewhiten it to obtain the model in (8), where the noidé is the number of samples. The difference with (12) is quite important
white again. The model in (8) indeed has the same form as thed is a function of the number of points in the signal. For a signal
model we started with (1). We also build (&, M)-matrix S with  length of 450 samples as in [2], the second definition yields a value
accordingly filtered column-vectors,,. To each column, with index that is 101log 450 ~ 26 dB below the one given by (12).
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A. Example 1 TABLE |
This example is taken from [1] ResuLTs OVER 500 TRIALS FOR THE THREE REPLICAS PROCESS OFEXAMPLE 1

. replica number 1 2 3
hy = u, -sin(2x(at® + 4t)) t=0,1,...N -1 (13) P
replica SNR in dB 47 45 39
whereN = 750 o= (fz - f1)/21\7, 8= f1 = 01, fz =.15, and
we IS @ window function equal to true delay 200 204 220
estimated delay 200.009 | 203.987 | 219.996

w = 05— O.5cos<ﬁ%) t=0,1,...,Ny—1

Nw

est. stdt dev. delay 10449 0653 .0569

w=1. t=Ngy...,N=N,—1

t— N CR stdt dev. delay 0251 .0334 0212

EAKTY

Uy :0.5—0.5cos<7r ) t=N—Ny,...,N.

true amplitude 1 -0.8 0.4

A three path received signal is generated as estimated amplitude | 1.0057 | -7954 | .3085

zt = hi_200 — .8hi_204 + .4hi_220 + e+, t= 0, ..., 999 (14) est. stdt dev. amplit. .0234 0252 0077

. o L . . _amplit. | 0200 | .0213 | .0067
and the Gaussian white noise varian¢eis tuned to yield the desired CR stdt dev. ampli

SNR’s according to (12).

Some simulation results obtained using the above described al-
gorithm are presented below. The ddta} are processed by the path channel with delay$10, 12,50} (in samples) and amplitudes
matched filter. The number of samples that are used to build’'the{1,0.9,0.5} in white Gaussian noise is simulated. Refer to [2] and
vector is L = 250 samples. They are taken symmetrically aroungB] for details on the scenario. The replicas with delay 10 and 12 are
the global maximum of the output of the matched filter. This vectapo close to be resolved in the baseband matched filter output since
is whitened using the inverse of the symmetric square root of thige standard resolution i/ By ~ 6 samples. Our approach uses, as
covariance matriX of ¥ computed once and forever usif@.}. theY vector, the real and imaginary part of the matched filter applied
The potential delays cover a domain placed symmetrically arougslthe signal around the carrier frequency. For comparison purposes,
the maximum of the output of the matched filter of size 60. Thigs in [2] and [3], we takel. = 60 and M = 60, i.e., only integer
means that if the oversampling ratio is taken equal to 5, we hadelays are considered. As indicated in [3], noninteger delays are an
M = 301 potential values of the delays. Three different values. of important issue, and proposing only integer delays in the estimation
are considered for each realization. They correspond to 80, 100, gt may introduce some prior information when the true delays are
120% of (6.5~ |=)/10 [see (9)], wheres. is an estimate evaluated integers.
on the data. For each of them, the ML criterion (10) is used to re-|n Fig. 3, we present the (modulus of the) output of the matched
estimate the amplitudes and to detect the number of replicas (1fijer at SNR= 21 dB (-5 dB for the SNR definition used in [2]), and
The best ML solution is retained among these candidates for eanb corresponding/-dimensional weight vectow that we obtain is
realization. presented in Fig. 4. In this case, 17 out of the 60 weights are nonzero.

We performed 500 independent trials of the scenario (14) withTais quite high number of nonzero weights is due to the fact that no
noise variancer? = 64.10~". The SNR's (12) are then 47, 45, andoversampling(! = 1) is performed. For this SNR, that is, 20 dB
39 dB. There are typically about ten nonzero weights among@ife below the one considered in [2], our approach solves the three paths,
components ofv. This is a difficult configuration since it is 20 dB except for about one realization in 500 for which the detection test
below the threshold SNR observed in [1]. The results are presentfglkes a wrong decision.
in Table | for M = 301 corresponding tdh» = 0.2. The test (11)
correctly decided that the number of replicas was three for all the rRobustness Issues
500 realizations.

Results closer to the CramRao (CR) bound can easily be The choice of the location and the size of the observations that are
y ngd to buildY” is one of these issues. Our approach is quite robust

obtained, if desired, by performing a local search using our resu . :
- . . . . N this respect. The results presented for Example 1 are obtained
as initial estimates since these are always in the domain of attractjon, . : -
taking a quite large set placed symmetrically around the global

of the true optimum. If we further decrease the SNR’s some outliefs . ) . .
e : . maximum of the output of the matched filter. This choice has been
appear: Either the detection test decides wrongly, or a false path IS S
. o - : made to highlight the robustness of our approach and to be sure to
retained. For some realizations, due to the highly oscillatory natu

r S : . - .
of s(t), the global optimum is then no longer around thee value. |n‘?roduce no prejudice. Since the true delays all lie on one side of this

The CR bounds, which consider only the curvature of the highe@taXImum’ better performances CO.UId be obtalnec_i by chusmg the §et
re closely around the true locations. A second issue is the selection

m
peak, are then no longer relevant, and more elaborate bounds Sh%lf'?ﬂw size and the location of the potential delays that have to be

be considered. proposed. This is the main issue in standard deconvolution approaches
and is known as the indicator set selection problem. It is the subject
B. Example 2 of much effort. It directly influences the conditioning of tBematrix
This example is taken from [2] and has also been consideredand, thus, the results of most approaches. Due to the presence of the
[3]- The linear frequency-modulated signal has time radial-bandwid#aditive(; -norm regularization term in (D), our method is again quite
product equal to 450 and a frequency bandwith equalBjo = unsensitive in this respect. This selection is somehow automatically
1/(2x). The carrier frequency is taken equal igw. A three- done by the/;-norm that induces parsimony, as shown in Section
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Fig. 3. Modulus of the output of the matched filter for Example 2 as
function of the delay in samples.
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Fig. 4. Typical weight-vectow by the proposed method for Example 2.

[1-B2. Again, in the simulations of Example 1, the potential delaysj]
simply cover a domain placed symmetrically around the maximum
of the output of the matched filter. Choosing a better placed, smalle[5

set would certainly help.
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(we use the NAG EO04NCF program). It seems that the number of
operations required to perform one iteration of the quadratic program
is, in our case, proportional to the squarerofn(L, M) and that

the number of iterations is, in general, considered to be linear in this
same number. The computational load would thus mainly be cubic in
min(L, M). It is difficult to compare these figures with those of the
other techniques. Let us note that according to [10], to solve a stan-
dard linear least squares problem withunknowns andn equations

(m > n), the number of flops is equal {@?*/2)(m + n/3), where
cubic terms are also present. The difference in computational load
between the proposed method and others may thus be quite small.

VIL.

We have considered signals that can be represented as the sum of
an unknown number of amplitude-scaled and time-shifted replicas of
a known pulse shape. For such situations, we present an algorithm
that determines both the number of such replicas and the amplitude
gnd arrival time of the individual paths.

Our method has several advantages over most existing ones. It
does not rely on an initialization procedure and does not require an
initial point. The indicator set selection problem that determines the
performance of most deconvolution methods has a minor influence
in our case. Diminishing its size in order to improve the conditioning
of the S matrix and the variance of the estimates is not an issue in
our approach. The proper selection is somehow done by the additive
£1-norm regularization term, which ensures that only a small number
of the available weights will be nonzero at the optimum. Moreover,
since the proposed method includes a detection scheme that discards
weak spurious paths, it requires no prior knowledge about the number
of paths.

The computational complexity is reasonable. If only degraded
performance is needed, we can diminish the resolution of the method,
and this will decrease the computational load. The method is, in fact,
extremely versatile in this respect.

Simulation results on classical examples taken from the litterature
indicate that the performance of the method are excellent. As for
most other similar methods, no theoretical analysis of the statistical
performance is available at the moment. Investigations are underway.

CONCLUSION
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