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Abstract Cross-regional allocation is necessary for the

rational utilization and optimal allocation of resources. It is

also the key to effective and sustainable disaster relief.

Existing research, however, generally centers on emer-

gency resource allocation only within territories or regions.

This article proposes a multiperiod allocation optimization

model for emergency resources based on regional self-

rescue and cross-regional collaborative rescue efforts. The

model targets the shortest delivery time and lowest allo-

cation costs as its efficiency goals and the maximum cov-

erage rate of resource allocation in the disaster-affected

locations as its equity goal. An objective weighting fuzzy

algorithm based on two-dimensional Euclidean distance is

designed to solve the proposed model. A case study based

on the Wenchuan Earthquake of 12 May 2008 was con-

ducted to validate the proposed model. The results indicate

that our proposed model allows for optimal, multiperiod

cross-regional resource allocation by combining interterri-

torial and nearby allocation principles. Cross-regional

relief makes resource allocation more equitable, minimizes

dissatisfaction, and prevents losses. Different decision

preferences appear to significantly affect the choice of

resource allocation scheme employed, which provides

flexibility for decision making in different emergencies.

Keywords Cross-regional collaborative

rescue � Efficiency and equity � Emergency resource

allocation � Multiperiod allocation � Wenchuan

Earthquake

1 Introduction

Large-scale disasters such as earthquakes, floods, wildfires,

and hurricanes have grown increasingly frequent in recent

years (Eshghi and Larson 2008; Qin et al. 2017; Ogie and

Pradhan 2019), causing huge amounts of property damage,

injuries, and fatalities (Chang et al. 2007; Najafi et al.

2013; Zhao and Liu 2017; Green et al. 2019). These dis-

asters typically surpass urban and provincial boundaries

and have significant cross-regional effects. In situations

such as these, cross-regional emergency response becomes

extremely important for post-disaster rescue (Shao et al.

2018). Government agencies have grown increasingly

attentive to cross-regional collaborative emergency rescue

as it can reduce disposal costs, optimize resource allocation

processes, and improve the overall effectiveness of rescue

operations. For example, the Twelfth Five-Year Plan for

Earthquake Emergency Rescue, a guiding document issued

by the China Earthquake Administration, notes that the

emergency rescue agency should ‘‘strengthen cross-re-

gional emergency cooperation, improve regional coordi-

nation mechanism, and promote linkage among

government departments’’ (China Earthquake Administra-

tion 2012, p. 6).

Emergency resource allocation is the key factor to keep

victims safe and facilitate the recovery and development of

a disaster-stricken area (Hu, Wang et al. 2016). Sustainable

emergency resource allocation (ERA) can ensure the

effective operation and rational use of rescue-related

resources while limiting casualties (Guo et al. 2019). In an

actual ERA process in China, cross-regional cooperation is

rare; with the ‘‘territory management’’ model, each region

gives priority only to disaster-affected locations within its

own territorial scope. Cross-regional disasters that result in

multiple disaster-stricken sites require simultaneous ERA
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in many separate locations, while resources may be limited

in the initial stage of an emergency response. It is difficult

to respond properly to a cross-regional disaster by solely

relying on the emergency resources in a single adminis-

trative region. Therefore, it is necessary to develop a sci-

entific and reasonable cross-regional ERA scheme to

improve the overall effects of rescue operations, safeguard

citizens’ lives and property, and reduce the losses other-

wise caused by insufficient total reserves of resources in a

single disaster location.

Compared with traditional intraregional resource allo-

cation problems, the cross-regional ERA problem consti-

tutes a new research topic (Shao et al. 2018). The

preferences of emergency managers play an important role

in the selection and implementation of effective ERA

schemes (Amailef and Lu 2013). The balance of different

relief objectives, such as efficiency and equity, is a matter

of great concern to policymakers (Hu, Liu et al. 2016).

A multiperiod resource allocation optimization model

was established in this study as an extension of the tradi-

tional model from the cross-regional collaborative per-

spective. The proposed model centers on both the

efficiency and equity of cross-regional resource allocation.

The purpose of this model is to obtain an optimal ERA

scheme by balancing these two objectives. The main con-

tributions of this work can be summarized as follows:

• A cross-regional ERA model is developed that simul-

taneously considers efficiency and equity, and the

trade-off between these two decision criteria is

explored.

• An objective weighting fuzzy algorithm based on two-

dimensional Euclidean distance (OWFA-TDED) is

designed to analyze the impact of different managerial

preferences on the multiperiod ERA scheme selection.

• The advantages of cross-regional ERA in achieving

equitable resource allocation and sustainable relief are

illustrated by comparing the multiperiod schemes of

cross-regional and intraregional allocation.

The remainder of this article is organized in the fol-

lowing fashion. Section 2 introduces and analyzes the

related work through a literature review. Section 3

describes the problem and assumptions. In Sect. 4, a cross-

regional multiperiod ERA model is proposed. Section 5

designs the OWFA-TDED to solve the model. A case study

of the Wenchuan Earthquake is used to test the feasibility

and effectiveness of the proposed model in Sect. 6. Finally,

the conclusion is stated in Sect. 7.

2 Literature Review

Many researchers have explored resource allocation in

emergency logistics scenarios in recent years as the fre-

quency and severity of disasters have continued to increase

(Sheu and Pan 2014). Emergency resource allocation is a

special type of resource allocation problem that mainly

refers to the process of distributing limited resources to

potentially competitive institutions and individuals in an

optimized manner (Luss 1999; Yi and Özdamar 2007).

Previous research on ERA models has centered mainly

on two objectives: efficiency and equity (Hoyos et al. 2015;

Özdamar and Ertem 2015). The efficiency goal of the ERA

model is primarily reflected in the shortest delivery time

(Berkoune et al. 2012; Wex et al. 2014; Wang and Sun

2020) or the lowest allocation costs (Haghani and Oh 1996;

Equi et al. 1997; Barbarosoğlu et al. 2002; Özdamar et al.

2004; Balcik and Beamon 2008; Arrubla et al. 2014; Minas

et al. 2015; Zhou and Erdogan 2019). For example, Wang

and Sun (2020) proposed an ERA model for natural haz-

ard-related disaster rescue with the goal of minimizing the

total delivery time for essential rescue and support

resources. Zhou and Erdogan (2019) developed an integer

two-stage stochastic goal programming model for wildfire

response, which considers the lowest total emergency

operation costs as an objective. Other models combine

delivery time and allocation cost indicators—for example,

Zhan et al. (2014) constructed an ERA model for super-

typhoon emergency rescue based on disaster scenario

information updates that minimizes both the total operating

time and the resource transportation/procurement costs.

Sheu and Pan (2014) designed a seamless centralized

supply network for emergency logistics operations in

response to large-scale natural hazard-related disasters, the

main goals of which are minimal travel time and opera-

tional costs.

In addition to efficiency, another important objective of

an ERA model in humanitarian relief operations is equity.

When resources are limited in the early post-disaster

stages, equitable allocation is very important for improving

overall rescue effects (Huang and Rafiei 2019). Holguı́n-

Veras et al. (2013) introduced deprivation cost into an ERA

optimization model for post-disaster humanitarian logis-

tics, which mainly depicts equity through a series of neg-

ative impacts caused by a lack of resources for certain

victims. Wang et al. (2019) reflected equity through disu-

tility losses in the case of emergency resource shortages.

Cotes and Cantillo (2019) built a facility location model for

prepositioning and allocating resources after flood disas-

ters, where equity is measured by the lowest total social

costs (including facilities costs, deprivation costs, inven-

tory costs, and transportation costs).

123

Int J Disaster Risk Sci 395



More recent ERA researchers have considered both

equity and efficiency (Bertsimas et al. 2012; Hu, Liu et al.

2016; Zhou et al. 2017). Tzeng et al. (2007) designed a

multiobjective ERA model for natural hazard-related dis-

aster relief that minimized total costs and total travel time

while maximizing satisfaction. The first two objectives

represent efficiency criteria and the third represents fair-

ness (equity). Wang and Sun (2018) proposed a multiob-

jective ERA model for earthquake disaster relief, where

efficiency is measured by allocation costs and equity is

measured by losses due to insufficient resources. Liu et al.

(2019) proposed a bi-objective medical resource allocation

model that considers minimizing total operational costs as

well as maximizing the number of expected survivals.

These studies all centered on the intraregional allocation of

emergency resources.

There is also a real need for large-scale, disaster emer-

gency response that may be satisfied by effective cross-

regional rescue operations (Groothedde et al. 2015). Tüfeki

(1995) built a cross-regional comprehensive rescue system

for hurricane response. Green and Kolesar (2004) found

that cross-regional collaboration is an important develop-

ment direction in the emergency management field.

Researchers have since begun to prioritize cross-regional

collaborative emergency response, achieved mainly via

qualitative framework descriptions and quantitative mod-

eling analyses. The former centers mostly on policy for-

mulation (Rose and Kustra 2013), coordination modes

(Calixto and Larouvere 2010; Xu et al. 2017), linkage

systems (Wang and Lv 2016), collaborative mechanisms

(Ansell et al. 2010; Liu et al. 2018), influencing factors

(Boin et al. 2014; Olsson 2015), and decision support

systems (Kutanoglu and Mahajan 2009; Li et al. 2014). The

latter includes quantitative approaches such as the emer-

gency coordination super-network model (Cao and Zhu

2014), fractal emergency coordination organization model

(Li et al. 2017), system dynamics model of collaborative

emergency (Zhu et al. 2017), regional collaborative game

strategy selection model (Zhang et al. 2016; Qiu et al.

2019), and resource allocation model (Arora et al. 2010;

Toro-Dı́azet al. 2013; Lv et al. 2018; Cao et al. 2019). Cao

and Zhu (2014) developed a supernetwork model of urban

agglomeration emergency coordination based on the

stochastic user equilibrium assignment theory; they tested

it via a case study of a cyanobacteria event at Taihu Lake in

Jiangsu Province in 2007. Li et al. (2017) used fractal

theory to build an emergency coordination organization

model with the emergency task, emergency capacity, and

emergency command units as key elements. They verified

the flexibility and efficiency of the model by using a pro-

duction safety accident in Tianjin Port as an example. Zhu

et al. (2017) constructed a system dynamics model for the

cross-regional, collaborative allocation of infectious

disease emergency materials, which could be adjusted

according to the demand in different regions. Zhang et al.

(2016) presented a cross-regional emergency scheduling

model for farm machinery with the goal of minimizing

costs, and then designed a scheduling algorithm based on

noncooperative game theory. Qiu et al. (2019) proposed an

adaptive regional coordinated response strategy choice

model for safety accidents under longitudinal administra-

tive constraints based on evolutionary game theory; the

primary concern of Qiu et al. was the impact of such

constraints on cross-regional coordination. They analyzed

the collaborative strategy selection and evolution path of

local governments accordingly. Arora et al. (2010) pro-

posed a resource allocation model for public health emer-

gencies that prioritized equitable distribution through

mutual aid between regions. Toro-Dı́az et al. (2013)

established a cross-regional joint location and distribution

model for emergency medical services with the goal of

minimizing the average response time. Lv et al. (2018)

developed a cross-regional petroleum emergency distribu-

tion model based on a supernetwork theory that targeted

minimal allocation costs and time. Cao et al. (2019) built a

cross-regional emergency material allocation model cen-

tered on equity that considers survivors’ risk acceptability

and perceived satisfaction.

In summary, it is crucial to consider both efficiency and

equity in the allocation of emergency resources. This brief

review of research on cross-regional rescue operations

provides a theoretical basis for our proposed cross-regional

ERA model. There are still gaps in the existing quantitative

cross-regional modeling research. Previous researchers

have, for instance, mostly focused on public health events

or safety accidents; there is a lack of cross-regional ERA

research on earthquake disasters. Cross-regional ERA

modeling analyses have rarely included both the efficiency

and equity of multiple periods across their decision criteria

and objectives. This article proposes a multiperiod and

multiobjective ERA optimization model for earthquake

disaster relief based on regional self-rescue and cross-re-

gional collaborative rescue operations. The proposed

model was designed to consider both the efficiency and the

equity of the cross-regional ERA model. New metrics were

developed to support these two criteria. This model allows

decision makers to strike a balance between time and cost

with the coverage rate in a manner that balances the effi-

ciency and equity of ERA. An OWFA-TDED algorithm

was established to solve the proposed model. This OWFA-

TDED also reveals the impact of different decision-making

preferences on the selection of multiperiod ERA schemes,

which makes the proposed model applicable in different

contexts.
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3 Problem Description and Basic Assumptions

This section introduces the research problem in this study

and presents the assumptions of model formulation.

3.1 Problem Description

As shown in Fig. 1, the research problem discussed in this

article is the process of a large-scale disaster emergency

rescue in which there are two or more administrative areas.

Each administrative area has multiple resource supply

points (rescue sites) and multiple resource demand points

(affected locations). The multiperiod ERA optimization

decision-making process is based on regional self-rescue

and cross-regional collaborative rescue. To allocate emer-

gency resources sustainably, a multiobjective optimization

problem must be solved to minimize both the delivery time

and costs and to maximize the ERA coverage rate across

the disaster-affected locations. Sustainable rescue should

not only meet the resource demand of the disaster-stricken

locations in the current emergency period to the greatest

extent, but also ensure that the ability of the rescue site to

meet the needs of the disaster-stricken points will not be

harmed in the future emergency period. It refers to making

a scientific emergency resource allocation plan to achieve

the multiperiod global optimal rescue effect. It is to for-

mulate a resource allocation plan from the perspective of

the optimal rescue effect of the entire emergency period

(not only considering the resource allocation plan of a

certain emergency period).

3.2 Basic Assumptions

Assumption 1 The administrative regions are indepen-

dent of one another and emergency relief resources can be

transported among them.

Assumption 2 Each rescue site carries out ERA activities

independently; there is no transfer and exchange of

resources between them nor is there any interference

between allocation routes.

Assumption 3 Large-scale disasters damage public

infrastructure (for example, roads, bridges). The road from

the rescue site to the disaster-affected location is consid-

ered here to be passable, but it may be damaged to some

extent due to the disaster.

4 Model Formulation

This section explains the notation for model formulation

and proposes a cross-regional multiperiod emergency

resource allocation (ERA) model.

4.1 Notation

The notation (sets, indices, parameters, and variables) for a

cross-regional multiperiod emergency resource allocation

model is listed in Table 1.

4.2 Mathematical Model

The proposed cross-regional multiperiod emergency

resource allocation (ERA) model aims to allocate all

emergency resources to all demand points during all time

periods with the shortest total delivery time (objective

function 1), the lowest total costs (objective function 2),

and the maximum coverage rate (objective function 3).

Objective functions (1) and (2) pursue the efficiency goal

and objective function (3) pursues the equity goal.

minZ1 ¼
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Fig. 1 Schematic diagram of emergency resource allocation (ERA)

based on regional self-rescue and cross-regional collaborative rescue
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Constraint (4) shows the demand constraint, which

ensures that the total amount of resources allocated to an

affected location in a given period should not exceed the

actual demand at this affected location. Constraint (5)

indicates the supply constraint, which guarantees that the

amount of resources allocated from a rescue site to a

demand point in a given period cannot exceed the actual

available supply of the rescue point. Constraint (6)

demonstrates the constraint to satisfy as much need as

possible, which confirms that all relief resources should be

allocated when demand outstrips supply in a given period.

Constraint (7) defines that the ERA should meet the

minimum allocation coverage rate. Constraint (8) denotes

the dynamic change of the demand for emergency

resources at the affected location in each time period.

Constraint (9) represents the dynamic change of the supply

at the rescue site in each time period. Constraint (10) is a

formula for measuring the allocation coverage rate.

Constraint (11) gives the nonnegative constraints of the

decision variables.

5 Solution Method

This section analyzes the reasons for the selection of the

solution method, introduces the basic definition of the

objective weighted fuzzy algorithm based on two-dimen-

sional Euclidean distance (OWFA-TDED), and designs an

OWFA-TDED algorithm to solve the proposed model.

Table 1 Notation for a cross-regional multiperiod emergency resource allocation model

Sets and indices

K Set of all administrative regions, K ¼ 1; 2; . . .; i; j; . . .; nf g; i; j 2 K; i 6¼ j

S Set of supply points (rescue sites), S ¼ sjs ¼ 1; 2; . . .pf g; s 2 S, where Si is the set of rescue sites in administrative region i 2 K

D Set of demand points (affected locations), D ¼ djd ¼ 1; 2; . . .vf g; d 2 D, where Dj is the set of affected locations in administrative region

j 2 K

U Set of types of emergency relief resources, u 2 U

T Set of time periods of ERA, t 2 T

Parameters

h0
ut
dj

New demand for emergency resource u at affected location d in administrative region j during time period t

hutdj Actual demand for emergency resource u at affected location d in administrative region j during time period t

q0
ut
si

New supply of resource u at rescue site s in administrative region i during time period t

qutsi Actual supply of resource u at rescue site s in administrative region i during time period t

cutsidj Variable cost per unit of allocating resource u from site s in region i to location d in region j during time period t

wu
sidj

Normal transporting time per unit of resource u from site s in region i to location d in region j during time period t

dutdj Preset minimum coverage rate of resource u at location d in region j during time period t

btsidj Road damage coefficient from site s in region i to location d in region j during time period t, where btsidj � 1; when the value is larger, the

road condition is worse

Variables

xutsidj Amount of resource u allocated to location d in region j from site s in region i during time period t

o
ut
dj

Actual allocation coverage rate of resource u at location d in region j during time period t

123

398 Wang. Multiperiod Optimal Allocation of Emergency Resources



5.1 Basis for Method Selection

The proposed model is a multiobjective programming

model that can be solved under multiobjective optimization

theory. Commonly used solving methods mainly include

the ideal point method, stratified sequencing method, step

method, linear weighted method, constraint method, and

minimax method (Xu and Li 2005). These approaches

generally neglect decision-maker preferences in the pro-

cess of multiobjective transformation (Yao and Xiao 2006).

The various preferences of the decision maker influence the

optimal solution of the model. In the proposed multiperiod

ERA model, decision makers can choose a scientific

resource allocation plan based on the actual disaster

information of each time period in order to optimize the

resource allocation in the entire period. The objective

weighted fuzzy algorithm based on two-dimensional

Euclidean distance (OWFA-TDED) can effectively resolve

multiobjective optimization problems (Tang et al. 2012);

an OWFA-TDED algorithm was designed in this study to

solve the proposed multiobjective model, to obtain a highly

scientific ERA scheme in various time periods, and to

achieve sustainable disaster relief.

5.2 Basic Definition of the Objective Weighted

Fuzzy Algorithm Based on Two-Dimensional

Euclidean Distance (OWFA-TDED)

Definition 1 For a general model of multiobjective

decision problems,

max=min ZðxÞ ¼ Z1ðxÞ; Z2ðxÞ; . . .; ZnðxÞ½ � ð12Þ

s:t:x 2 ZðxÞ ð13Þ

let

Upy ¼ large
x2X

ZyðxÞ
� �

Downy ¼ small
x2X

ZyðxÞ
� �

8

<

:

y ¼ 1; 2; . . .; n ð14Þ

then, Upy and Downy are the upper and lower bounds of the

objective ZyðxÞ in X, respectively.

Definition 2 The optimal membership degree (satisfac-

tion function) kyðxÞ of the decision maker to the objective

yðy ¼ 1; 2; . . .; nÞ is defined as follows:

For benefit-oriented objectives ZyðxÞ,

kyðxÞ¼ ZyðxÞ�small ZyðxÞ
� �� ��

large ZyðxÞ
� �

�small ZyðxÞ
� �� �

ð15Þ

For cost-oriented objectives ZyðxÞ,

kyðxÞ ¼ large ZyðxÞ
� �

�ZyðxÞ
� ��

large ZyðxÞ
� �

� small ZyðxÞ
� �� �

ð16Þ

Definition 3 The fuzzy negative ideal solution x� and

fuzzy positive ideal solution xþ make kyðxÞ of all ZyðxÞ

take the minimum value and the maximum value,

respectively. The optimal membership degree vectors at

the fuzzy negative and positive ideal solutions are,

respectively,

u ¼ k1ðx
�Þ; k2ðx

�Þ; . . .; knðx
�Þð ÞT¼ ð0; 0; . . .; 0ÞT

kyðxÞ ¼ 0; y ¼ 1; 2; . . .n
ð17Þ

v ¼ k1ðx
þÞ; k2ðx

þÞ; . . .; knðx
þÞð Þ

T
¼ ð1; 1; . . .; 1ÞT

kyðxÞ ¼ 1; y ¼ 1; 2; . . .n
ð18Þ

5.3 Solution Steps and Procedures

Step 1 Calculate the maximum and minimum values (upper

and lower bounds) of each objective function ZyðxÞ within

the given constraints, which are recorded as large ZyðxÞ
� �

and small ZyðxÞ
� �

, respectively.

Step 2 Calculate the optimal membership degree kyðxÞ

of each objective function ZyðxÞ.

Step 3 Determine the ideal weight (decision preference

coefficient) xy of each objective function ZyðxÞ and satisfy
Pn

y¼1 xy ¼ 1. The weighting coefficient can be determined

by decision makers according to various factors such as the

severity of the disaster, the urgency of demand, and the

actual situation of supply in the time period at hand. The

effective solution of the model should be as close as pos-

sible to the positive fuzzy ideal solution. A two-dimen-

sional Euclidean distance is used here to represent the

maximum and minimum values.

X

n

y¼1

x2
y kyðxÞ � uy
� �2

¼
X

n

y¼1

x2
yk

2
yðxÞ ð19Þ

X

n

y¼1

x2
y vy�kyðxÞ
� �2

¼
X

n

y¼1

x2
y 1� kyðxÞ
� �2

ð20Þ

Step 4 Convert the original multiobjective model into a

single-objective model

max
X

n

y¼1

x2
yk

2
yðxÞ þ 1�

X

n

y¼1

x2
y 1� kyðxÞ
� �2

" #

ð21Þ

and meet the following constraint:

X

n

y¼1

xy ¼ 1; x 2 X ð22Þ

Step 5 Solve the converted single-objective model in

MATLAB software. Construct a Lagrangian function and

make the partial derivatives of xy, xy, and r all equal to

zero.

123

Int J Disaster Risk Sci 399



Zðxy; xy; rÞ ¼
X

n

y¼1

x2
yk

2
yðxÞ þ 1�

X

n

y¼1

x2
y 1� kyðxÞ
� �2

" #

� rð
X

n

y¼1

xy � 1Þ

ð23Þ

The solution idea and process of the proposed model are

shown in Fig. 2, and defined below.

6 Computational Case

In this section, a case study of the Wenchuan Earthquake is

used to test the feasibility and effectiveness of the proposed

model.

6.1 A Case Study of the Wenchuan Earthquake

A magnitude 8.0 earthquake occurred at 14:28:04 a.m.,

China Standard Time, on 12 May 2008 in Wenchuan

County, Sichuan Province. More than 100,000 km2 were

seriously damaged. There were 10 counties (cities) in the

most severe disaster area, 41 counties (cities) in the mod-

erately severe disaster area, and 186 counties (cities) in the

general disaster area. Many provincial-level administrative

regions, including Sichuan, Gansu, Shaanxi, Guizhou,

Yunnan, Chongqing, Hubei, Hunan, and Henan, were

affected by the earthquake (China News Network 2008).

This study considered some of the severely affected

administrative regions, such as Sichuan Province (SC),

Gansu Province (GS), and Shaanxi Province (SX), as

shown in Table 2. Chengdu (CD), Lanzhou (LZ), and Xi’an

(XA) were selected as the rescue sites for ERA; tents (TT)

and instant noodles (IN) were selected as the required

emergency resources. We used 24 hours as a period to

analyze the ERA in the first five days after the disaster.

Relevant data for the computation were chosen by using

a combination of real and hypothetical data, since some

disaster data could not be obtained through official reports.

The demand for resources at different affected locations

(Table 3) can be estimated based on the number of victims

and the severity of the disaster. For example, the demand

for TT and IN in Wenchuan County in the first period was

estimated in the following way. Wenchuan County (WC)

had 18,000 victims in the first period, a tent is assumed to

be 5 m by 6 m and able to hold 10-12 people, and a case

of instant noodles contains 16 containers of 108 g each,

which can feed 4-5 people for a day; therefore, the

demand for TT is equal to 18,000/[10, 12]&1,800, and the

demand for IN is 18,000/[4, 5] & 4,000. The resource

storage of three supply sites before the disaster and the

mobilization ability during the disaster were obtained via

field investigation and interviews with relevant personnel.

The resource supply at each supply site was estimated

accordingly, as shown in Table 4. There were 2,500 tents

stored in Chengdu before the disaster and 500 gathered

during rescue operations, so the total tent supply was 3,000.

The road damage coefficients from rescue sites to affected

locations per period (Table 5) were estimated based on the

intensity and number of aftershocks. The value of the road

damage coefficient is greater than or equal to 1. In this

case, the value range was assumed to be [1, 1.5]. Among

the eight selected affected locations, WC is the most

severely damaged by the earthquake and is the location of

the highest earthquake intensity and most aftershocks, so it

has the largest road damage coefficient (1.5) in the first

period of post-earthquake rescue. Conversely, Chencang

District (CC) is relatively far away from the epicenter and

its roads were less damaged by the earthquake, so its road

destruction coefficient is the smallest in the first period (1).

The minimum coverage rate of ERA at affected locations

in each period was set here as d ¼ 0:6, as 60% typically

represents a passing level. Each affected location could

obtain 60% or more of the required rescue resources in this

case, which allows the proposed model to effectively serve

disaster victims by providing resources. The transportation

time of allocating resources from rescue sites to affected

locations in nondisaster situations was obtained through

Fig. 2 Solution idea and process of the proposed model
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Table 2 Administrative regions, disaster areas, demand points in the Wenchuan Earthquake impact area

Administrative region Disaster area Demand point (affected location)

Sichuan (SC) Tibetan Qiang Autonomous Prefecture of Ngawa (AB) Wenchuan County (WC)

Mao Xian (MX)

Mianyang City (MY) Beichuan Qiang Autonomous County (BC)

Deyang City (DY) Mianzhu City (MZ)

Ganshu (GS) Longnan City (LN) Wudu District (WD)

Wenxian County (WX)

Gannan Tibetan Autonomous Prefecture (GN) Zhouqu County (ZQ)

Shaanxi (SX) Baoji City (BJ) Chencang District (CC)

Table 3 Resource demand for locations affected by the Wenchuan Earthquake

Affected locations Period Total

1 2 3 4 5

WC (1800;4000) (600;5000) (300;6000) (300;7000) (100;8000) (3100;30000)

MX (1600;4000) (500;5000) (300;5000) (200;6000) (100;7000) (2700;27000)

BC (1500;3500) (400;4500) (200;5000) (100;5000) (100;6000) (2300;24000)

MZ (1300;3000) (400;4000) (200;5000) (100;5000) (100;5000) (2100;22000)

WD (1000;2500) (400;3000) (300;4000) (200;5000) (100;6000) (2000;20500)

WX (800;2000) (300;2500) (300;3000) (100;4000) (100;5000) (1600;16500)

ZQ (600;1500) (300;2000) (200;2500) (100;3000) (100;4000) (1300;13000)

CC (500;1500) (200;2000) (100;2500) (100;3000) (100;3500) (1000;12500)

Total (9100;22000) (3100;28000) (1900;33000) (1200;38000) (800;44500) (16100;165500)

A and B columns for each time period represent the demands for TT (tents) and IN (instant noodles), respectively. Tent demand reflects the

number of ten-person-capacity tents required to minimally support homeless victims, and food demand is measured by the number of instant

noodle cases needed to support the impacted population for a day. Each time period is one 24 hour day. Affected locations are: WC = Wenchuan

County; MX = Mao Xian; BC = Beichuan Qiang Autonomous County; MZ = Mianzhu City; WD = Wudu District; WX = Wenxian County; ZQ =

Zhouqu County; CC = Chencang District

Table 4 Resource supply at the rescue sites before the earthquake

Rescue sites Period Total

1 2 3 4 5

CD (3000;8000) (2000;16000) (1300;21000) (800;25000) (600;30000) (7700;100000)

LZ (1500;4000) (1000;4000) (1000;5000) (500;7000) (400;13000) (4400;33000)

XA (1500;2000) (1300;5000) (600;7000) (500;9000) (500;12000) (4400;35000)

Total (6000;14000) (4300;25000) (2900;33000) (1800;41000) (1500;55000) (16500;168000)

A and B columns for each one-day time period represent the stockpiles for TT (tents) and IN (instant noodles), respectively. Rescue sites are: CD

= Chengdu; LZ = Lanzhou; XA = Xi’an
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Google Maps, as shown in Table 6. The costs of allocating

one unit of resources from rescue sites to affected locations

(Table 7) can be calculated according to the distance and

the transport cost per kilometer. The distance from rescue

sites to affected locations was obtained via Google Maps

and the average transportation cost per kilometer per unit

resource under road transportation mode was determined to

be RMB 0.7 yuan.1 The computational case was solved by

using MATLAB R2016a on a computer with an

Intel(R) Core(TM) 1.90 GHz processor with 16.0 GB of

RAM.

6.2 Result Analysis

This section analyzes the two computational results. The

first example illustrates the influence of different ideal

weights (preference coefficients) on emergency resource

allocation (ERA), and the second example illustrates the

advantages of the proposed multiperiod cross-regional

ERA model.

6.2.1 Influence of Different Ideal Weights (Preference

Coefficients) on Emergency Resource Allocation

(ERA)

The objective function values (total delivery time, total

cost, and total coverage rate of resource allocation) under

different decision-making preference coefficients are

shown in Fig. 3. The values of 0, 0, 1 denote x1 ¼ 0;x2 ¼

0;x3 ¼ 1 in this figure, and similarly below. From Fig. 3,

we can see that different decision-making preference

coefficients (ideal weights) have an important influence on

the ERA scheme selection. As the weight of the time and

cost decision coefficients gradually increases, the objective

values of the total time and total costs gradually decrease.

When the weights of time and costs (efficiency) are greater

Table 5 Road damage coefficients from rescue sites to affected locations per period

Affected

locations

Rescue sites

CD LZ XA

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

WC 1.5 1.4 1.3 1.2 1 1.4 1.3 1.2 1.1 1 1.4 1.3 1.2 1.1 1

MX 1.4 1.3 1.3 1.1 1 1.3 1.2 1.2 1.1 1 1.3 1.2 1.1 1.1 1

BC 1.4 1.3 1.2 1.1 1 1.3 1.2 1.1 1.1 1 1.3 1.2 1.1 1.1 1

MZ 1.3 1.2 1.2 1.1 1 1.2 1.2 1.1 1.1 1 1.2 1.2 1.1 1.1 1

WD 1.4 1.3 1.3 1.1 1 1.4 1.3 1.2 1.1 1 1.3 1.2 1.2 1.1 1

WX 1.3 1.2 1.2 1.1 1 1.2 1.2 1.1 1.1 1 1.2 1.2 1.1 1.1 1

ZQ 1.4 1.3 1.2 1.1 1 1.3 1.2 1.2 1.1 1 1.4 1.3 1.2 1.1 1

CC 1.2 1.2 1.1 1.1 1 1.2 1.1 1.1 1.1 1 1.2 1.1 1.1 1.1 1

Rescue sites are: CD = Chengdu; LZ = Lanzhou; XA = Xi’an. Affected locations are: WC = Wenchuan County; MX = Mao Xian; BC =

Beichuan Qiang Autonomous County; MZ = Mianzhu City; WD = Wudu District; WX = Wenxian County; ZQ = Zhouqu County; CC =

Chencang District

Table 6 Normal transportation time per unit of resource from rescue

sites to affected locations (Unit: hours)

Rescue sites WC MX BC MZ WD WX ZQ CC

CD 2 3 3.5 1.5 6.5 7 8 9

LZ 13 12 13 11.5 6.5 10 7.5 6.5

XA 10.5 10.5 10 8.5 7 9 8.5 2

Rescue sites are: CD = Chengdu; LZ = Lanzhou; XA = Xi’an.

Affected locations are: WC = Wenchuan County; MX = Mao Xian;

BC = Beichuan Qiang Autonomous County; MZ = Mianzhu City;

WD = Wudu District; WX = Wenxian County; ZQ = Zhouqu County;

CC = Chencang District

Table 7 Costs of allocating per unit of resource from rescue sites to

affected locations (Unit: yuan)

Rescue sites WC MX BC MZ WD WX ZQ CC

CD 100 120 150 75 270 280 300 340

LZ 500 380 480 460 270 340 190 250

XA 380 325 350 330 225 310 305 80

Rescue sites are: CD = Chengdu; LZ = Lanzhou; XA = Xi’an.

Affected locations are: WC = Wenchuan County; MX = Mao Xian;

BC = Beichuan Qiang Autonomous County; MZ = Mianzhu City;

WD = Wudu District; WX = Wenxian County; ZQ = Zhouqu County;

CC = Chencang District

1 USD 1 = RMB 6.95 yuan.
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than the weight of the coverage rate (equity), decision

makers are more inclined to send resources to each disas-

ter-affected point with the least time and the lowest cost.

Conversely, when the weight of the coverage rate (equity)

is greater than the weight of time and costs (efficiency), the

decision maker prefers to make the ERA more

equitable (maximize the coverage).

Figure 4 shows the trends in delivery time, costs, and

coverage rate of ERA per period in the two cases of ideal

weights x1 ¼ 0:1; x2 ¼ 0:1; x3 ¼ 0:8 and

x1 ¼ 0:4; x2 ¼ 0:4; x3 ¼ 0:2. In both cases, the delivery

time, costs, and coverage rate all gradually increase as the

supply of resources per period gradually increases as rescue

activities develop. To compensate for the large amount of

material shortfalls in the initial period of rescue, a large

amount of resources need to be allocated to the disaster

sites in the middle and late periods of the emergency.

Higher total allocation time and total costs are generated in

the middle and later periods versus the early period of the

emergency, and, simultaneously, the coverage rate

improved.

Higher time and cost (efficiency) weights result in lower

delivery time and costs (Fig. 4a and b) but also lead to a

relatively low coverage rate (equity) (Fig. 4c). In the case

of limited supplies, considering the time and costs, priority

is often given to the nearest disaster-stricken locations.

Conversely, if the decision maker prefers a higher coverage

rate (equity) coefficient weight, this produces higher

delivery time and costs. Improving the coverage rate

(equity) of ERA may require allocating resources to dis-

aster-stricken locations that are relatively far away and

severely affected.

It is not appropriate to consider the efficiency (time and

costs) or equity (coverage rate) preference coefficient alone

in the process of multiperiod resource allocation. The

Fig. 3 Total delivery time, total costs, and total coverage of

emergency resource allocation (ERA) under different decision-

making preferences

Fig. 4 Change trends of delivery time, costs, and coverage of ERA in each period when x1 ¼ 0:1; x2 ¼ 0:1; x3 ¼ 0:8 or

x1 ¼ 0:4; x2 ¼ 0:4; x3 ¼ 0:2. Note: Each time period represents a 24 hour day
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optimal weight combination depends on the goal (effi-

ciency or equity) that the decision maker seeks to achieve,

which provides some flexibility for decision making. In

general, the best combination strikes a balance between

efficiency and equity. When choosing the preference

coefficient, decision makers should scientifically grasp the

choice of ‘‘degree’’ and fully consider the effects of com-

bining efficiency and equity.

6.2.2 Advantages of the Proposed Multiperiod Cross-

Regional ERA Model

To illustrate the advantages and effectiveness of the pro-

posed multiperiod cross-regional ERA model, this study

compared the resource coverage rate between the multi-

period schemes of cross-regional allocation and intrare-

gional allocation (x1 ¼ 0:3;x2 ¼ 0:3;x3 ¼ 0:4), as shown

in Fig. 5. The resource coverage rates of the two cases

differ significantly. In the cross-regional allocation scheme,

the coverage rate of the two resources shows an upward

trend with the increase in the emergency period. At the end

of the fifth period, the overall coverage rate of all types of

resources reaches 100%; that is, the demand of all disaster-

affected locations is met after the resource allocation of the

entire emergency period. In the case of intraregional allo-

cation, however, the coverage rate of tents shows a

downward trend with the increase of the emergency period.

Although the coverage rate of instant noodles increases

after the third period, it only reaches 70% in the fifth

period; this does not meet all the resource requirements of

the disaster-stricken areas. Cross-regional allocation allows

for the free distribution and mutual exchange of resources

among different regions. Intraregional allocation requires

that supply points only allocate resources to the affected

locations in their own regions, and does not allow for

allocation to other regions even if there is surplus. As

shown in Fig. 6, intraregional allocation may result in

extreme redundancy of resources in some regions and

scarcity in others (for example, the rescue site XA has a

surplus of resources in each period that increases over time,

but there is a serious shortfall of resources at the CD and

LZ rescue sites). When supply and demand are imbalanced

and shortfalls are gradually increasing, if cross-regional

allocation is not carried out, disaster-affected locations

with extreme shortfalls will face serious losses due to

unsatisfied resource demand.

The resource coverage rates between the multiperiod

cross-regional allocation and one-period intraregional

allocation (x1 ¼ 0:3;x2 ¼ 0:3;x3 ¼ 0:4) are shown in

Fig. 7. Under the multiperiod cross-regional allocation

scheme (Fig. 7a), the coverage rates of TT and IN at each

affected location in each time period are all greater than or

equal to 60% and gradually increase until the fifth period

reaches 100%. Conversely, under the one-period intrare-

gional allocation scheme (Fig. 7b), the resource coverage

rate of most disaster-affected locations is less than 60%

(for example, MX, BC, and WX). The coverage rate of

tents at the affected location BC and the coverage rate of

instant noodles at the affected location WX are all zero in

each period, indicating that these two disaster-affected

locations will face serious negative effects due to resource

shortfalls.

As also shown in Fig. 7, under the two allocation

schemes, the affected location CC has the highest coverage

rate and reaches 100% in each period. The supply of

resources in administrative region XA, where the disaster-

stricken site CC is located, is sufficient throughout the post-

disaster period; thus, the demand of CC could be fully met

in each period.

The multiperiod cross-regional resource allocation path,

shortfall, and coverage rate of each affected location are

shown in Fig. 8. As cross-regional rescue activities

develop, the resource coverage rate of each affected loca-

tion gradually increases and the number of affected

Fig. 5 Multiperiod allocation coverage rate of tents (TT) and instant

noodles (IN) with cross-regional versus intraregional model

(x1 ¼ 0:3;x2 ¼ 0:3;x3 ¼ 0:4)

Fig. 6 Shortfall and surplus of resources at rescue site in each period

with intraregional allocation Note: Resource availability is indicated

for IN (instant noodles) and TT (tents); Shortfalls and surpluses of

these commodities occur in XA (Xi’an); LZ (Lanzhou); and CD

(Chengdu)
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locations with resource shortfalls gradually decreases. By

the fifth period, all affected locations have met their

demand for resources. Among them, the administrative

region CD has many disaster-stricken locations (including

WC, MX, BC, and MZ), but its resource supply is seriously

insufficient (especially in the first three periods) for most of

the five day period. To ensure ERA equity, administrative

regions LZ and XA carry out cross-regional resource

allocation for CD so that the coverage rate at each affected

location in administrative region CD for TT and IN reaches

60% in each period. The proposed multiperiod ERA model

based on regional self-rescue and cross-regional collabo-

rative rescue thus appears to mitigate resource shortage

problems at various affected locations. Although the supply

is limited in the early period of the emergency response, a

certain proportion of required resources can still be

obtained for the affected locations via cross-regional col-

laborative rescue, thus ensuring the equitable, multiperiod

allocation of resources, while optimizing overall effect and

efficiency, and ultimately achieving sustainable disaster

relief.

7 Conclusion

It is necessary to scientifically and reasonably utilize lim-

ited emergency resources for sustainable post-disaster

rescue response. This study was conducted to enrich the

existing research on multiperiod cross-regional ERA. First,

we formulated ERA as a multiperiod and multiobjective

programming problem. We then constructed a cross-re-

gional multiperiod ERA optimization model that considers

both equity and efficiency. The goal is to optimize the ERA

scheme by making a trade-off between these two decision

criteria. An objective weighting fuzzy algorithm based on

two-dimensional Euclidean distance (OWFA-TDED)

algorithm was designed to solve the proposed model.

The computational results presented here provide sev-

eral insights into cross-regional ERA with respect to the

sustainability of multiperiod rescue operations. First, dif-

ferent decision preference coefficients were shown to have

an important influence on the ERA scheme selection. A

single consideration of efficiency or equity preference

coefficient is one-sided; the optimal combination strikes a

balance between them. Decision makers should fully

Fig. 7 Coverage rate of tents (TT) and instant noodles (IN) with a

multiperiod cross-regional model versus a one-period intraregional

model (x1 ¼ 0:3;x2 ¼ 0:3;x3 ¼ 0:4). Note: Coverage rate of TT

(tents) and IN (instant noodles) is provided for WC (Wenchuan

County); MX (Mao Xian); BC (Beichuan Qiang Autonomous

County); MZ (Mianzhu City); WD (Wudu Distric); WX (Wenxian

County); ZQ (Zhouqu County), and CC (Chencang District)
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consider the advantages of combining efficiency and

equity. Second, the proposed multiperiod cross-regional

ERA model was compared against a multiperiod

intraregional ERA model and a one-period intraregional

ERA model to find that our model effectively improves

coverage rates, ensures the multiperiod equity of ERA, and

Fig. 8 Multiperiod cross-regional allocation path, shortfall, and

coverage rate with x1 ¼ 0:3;x2 ¼ 0:3;x3 ¼ 0:4. Note: Rescue sites

are: CD = Chengdu; LZ = Lanzhou; XA = Xi’an. Affected locations

are: WC = Wenchuan County; MX = Mao Xian; BC = Beichuan

Qiang Autonomous County; MZ = Mianzhu City; WD = Wudu

District; WX = Wenxian County; ZQ = Zhouqu County; CC =

Chencang District
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satisfies the demands for multiperiod sustained emergency

rescue. The proposed model was evaluated to emphasize

the importance of considering multiperiod ERA from a

cross-regional perspective for the realization of sustainable

disaster relief.

In the future, the realism and complexity of this model

can be further improved. The allocation of emergency

resources is affected by many factors, such as vulnerability

of the affected location, urgency of demand, and particu-

larity of the victims. These factors affect the quantity, type,

and structure of emergency resource allocation. More

specificity about these factors would make a much stronger

case for support of a more comprehensive and inclusive

model. It will be beneficial to consider the influence of

such factors on the dynamic multiperiod allocation of

large-scale cross-regional emergency resources in real-

world scenarios.
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