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Abstract

In this paper we consider production planning of remanufactured products when in-
puts have different and uncertain quality levels, and there are capacity constraints. This
situation is typical of most remanufacturing environments, where inputs are product
returns (also called cores). Production (remanufacturing) cost increases as the quality
level decreases, and any unused cores may be salvaged at a value that increases with
their quality level. Decision variables include, for each period and under a certain
probabilistic scenario, the amount of cores to grade, the amount to remanufacture for
each quality level and the amount of inventory to carry over for future periods for
un-graded cores, graded cores, and finished remanufactured products. Our model is
grounded with data collected at a major OEM that also remanufactures. We formulate
the problem as a stochastic program, and illustrate how the deterministic version of
the problem yields solutions that cannot be implemented in practice. The stochastic
program, although a large linear program, can be solved easily using Cplex. We pro-
vide a numeric study to generate insights into the nature of the solution.
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1 Introduction

Remanufacturing is the process of restoring used products to a “like-new’ condition. Ac-

cording to Hauser and Lund (2003), the size of the remanufacturing sector in the U.S. is

$53 billion, with over 70,000 firms and 480,000 employees. In addition, remanufacturing

contributes to energy and material conservation, and provides employment solutions to low

skill workers. Thus, remanufacturing has both economic, environmental, and social bene-

fits. Similar to the planning of production of new products, developing a production plan

to remanufacture returned products (cores) typically involves determining the quantity of

units to process each period under time varying demand and a capacity constraint on the

number of units that can be processed each period. Despite these benefits and similarities,

developing a remanufacturing operation often poses significant challenges to firms who are

more accustomed to planning production of new products in the forward chain.

The most common method used to develop these plans (for both new and remanufac-

tured products) is to treat the demand as deterministic and solve for the plan using a linear

programming formulation. Uncertainty in the demand stream is typically accounted for by

solving the production plan on a rolling horizon, where the demand forecasts are frequently

updated, the linear program is resolved, and each solution only impacts the current period’s

production quantity as a new plan will be generated with updated information before the

quantities in the future periods are produced. While this method has worked reasonably

well for many years and for many firms who only produce new products, there are particular

characteristics of the remanufacturing industry that create problems when the traditional

production planning methods are used to plan a remanufacturing process. Two of the main

characteristics that differentiate remanufacturing from new product production are uncer-

tainty in the number of returned products and uncertainty in the quality of the returns.

When producing new products, as long as proper planning has been done to procure the

components that go into the new products, any quantity (up to the capacity of the facility)

can be produced in any period. In addition, there is typically little variation in the amount

of capacity required to produce one new unit from another of the same make and model.

Now consider a remanufacturing operation. The number of units remanufactured each pe-

riod can not exceed the number of returned cores available, even if there is capacity at the

facility to produce more. In addition, a returned shipment of used cores will typically vary

in the quality of the cores, with some cores requiring significantly more capacity to bring
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the unit up to a required quality standard than others. As an example, IBM’s remanufac-

turing facility in Raleigh, N.C. may receive a shipment of end-of-lease laptops from one of

their customers. Each laptop must be remanufactured to a pre-determined configuration and

quality level before being offered for sale on IBM’s website. A random draw of two laptops

from the incoming shipment may result in one of the laptops simply requiring testing, clean-

ing, formatting of the harddrive, and the loading of the standard software configuration;

jobs requiring approximately 15 minutes of production capacity at this facility. The second

laptop, however, may have a broken latch, a worn keyboard, and a non-standard memory

configuration. This laptop will require 45 minutes of production capacity before it matches

the quality and configuration standards, a difference of 300% in the capacity required of the

first laptop. There are very few production environments for new products that have this

much variation in the processing times of individual units of the same product.

Based on our conversations with the managers of remanufacturing facilities, the uncer-

tainty in the quality of the returns presents a much larger problem than the uncertainty in

the quantity of returns. Many firms who are actively involved in remanufacturing recover

their used cores by either leasing their new products (ensuring the used units will be re-

turned at the end of the lease) or by offering trade-in credits on the return of an old unit

when a new product is purchased. Product leasing results in the most predictable return

stream and is a popular option for firms that also remanufacture. In fact, product leasing

corresponded to 28%, or $199 billion, of all capital expenditures by American businesses in

the U.S. in 2004 (ELA 2005). An example of a firm that remanufactures products off-lease

is Pitney-Bowes (Ferguson et al. 2007). Firms that choose to recover their cores through a

trade-in program are also able to accurately forecast their return stream, as the quantity of

returned cores is highly correlated with the sales forecast for the firm’s new products. The

main issue that both sets of firms (firms who lease and firms who offer trade-in credits) still

struggle with is the variation in the quality of the cores once they arrive. As the preceding

example demonstrates, this issue makes the production planning process much more complex

compared to production planning for new products.

To address this problem, we formulate a stochastic program for a multi-period setting

where the quality levels of a lot of returned cores may take on any configuration of bad to

good quality levels based on pre-established probabilities. Stochastic programming (SP) is

an attractive methodology for this problem because (unlike a regular linear programming

formulation) it guarantees a feasible solution under all possible quality level realizations.
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SP also allows for a capacity constraint and simply requires the solution of a (large) linear

program. We demonstrate how SP can be applied to the remanufacturing planning problem,

provide an example of how the solution evolves over multiple periods, and test the method

in an extensive numerical analysis. By analyzing the results of our numerical analysis, we

perform a sensitivity analysis to determine the parameter values that have the largest im-

pact on the solution. The results of this sensitivity analysis provides guidance for firms

seeking to make investments to improve their remanufacturing operations. The SP formu-

lation has some history in the new product production planning problem but is new to the

remanufactured product planning problem, as discussed in the next section.

2 Literature Review

Our paper is positioned among two main streams of literature. The first concerns the consid-

eration of uncertainty in planning production for “regular” (or forward) manufacturing, and

the second is related to planning production in a remanufacturing environment. Regarding

the first stream, the literature recognizes the pitfalls of not considering uncertainty when

planning production; the main sources of uncertainty considered are demand and environ-

mental (which may impact multiple parameters). For a comprehensive review, see Mula et al.

(2006); we focus here on work most relevant to this paper, namely, research that uses SP in

multi-period settings. SP (see Birge 1997 for a review) is an attractive methodology in pro-

duction planning problems under uncertainty because of its ability to incorporate multiple

constraints (e.g., capacity) that are common in most production environments. Production

planning problems are typically formulated as two-stage SP problems where a random out-

come (e.g., random demand, state of the economy, etc.) occurs only once, at the beginning of

second stage. Examples include Gupta and Maranas (2003) who model demand uncertainty;

Eppen et al. (1989), and Leung et al. (2006), who model environmental uncertainty (which

impacts demand and cost parameters). In all three examples, decisions are made in the first

stage—production decisions in the first, plant selection in the latter two—before the random

outcome is realized. A multi-stage SP approach has been proposed for the more strategic

problem of capacity planning for semiconductor manufacturing over a several-year planning

horizon (Christie and Wu 2002) under different demand and technology scenarios. Multi-

stage SP approaches to (tactical) production planning problems are not commonly found in

the literature, perhaps due to their size and computational complexity. They are sometimes
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used, however, to provide a benchmark of optimality to heuristic approaches, such as hier-

archical production planning (Dempster et al. 1981). We propose a SP model to solve for a

multi-period production plan in a remanufacturing environment, which has the unique (to

remanufacturing) characteristic of non-uniformity of inputs (cores). The model is intuitive,

allows for uncertainty in the quality levels of the cores, and is computationally manageable

(we solved realistic scenarios in an average of 79 seconds on a shared Unix server). We next

address the second stream of reseach on production planning for remanufacturing.

There is a growing body of literature addressing production planning for remanufacturing.

For comprehensive overviews, see Inderfurth et al. (2004), Inderfurth and Teunter (2003),

Guide (2000), and Fleischmann et al. (1997). Many papers consider a single-period problem

where there are only two categories of cores, good and bad; good units are all remanufactured

at the same cost whereas bad units are salvaged (e.g., Zikopoulos and Tagaras 2007, Bakal

and Akcali 2006, Ferrer 2003). Other papers acknowledge different remanufacturing costs for

cores of different quality, but still under a single-period setting (e.g., Galbreth and Blackburn

2006, Aras et al. 2004). In contrast, we consider a multi-period problem where cores have

different qualities, and there are disposal and inventory carrying options across periods.

Multi-period production planning problems have been addressed by Ferguson et al. (2007),

Guide et al. (2001), and Golany et al. (2001). All of the papers mentioned above, however,

assume a deterministic quality of cores, or rather, consider the expected values of cores of a

given quality level at each period to formulate the optimization problem.

To our knowledge, ours is the first paper to consider stochastic quality of cores, with its

associated capacity and cost implications, for production planning in a multi-period setting.

We do this by using a stochastic programming formulation. Although there is a significant

stream of research in stochastic inventory models that include remanufacturing options (e.g.,

DeCroix 2006, Ferrer and Ketzenberg 2004, Inderfurth et al. 2001, Toktay et al. 2000, van

der Laan et al. 1999), the Markov decision process approach used in these papers prevent

modeling complexities such as capacity constraints and multiple quality grades. Although our

approach does not yield closed-form solutions, we illustrate through an example in §3 how it

always results in implementable solutions, as the model formulation guarantees feasibility for

each random outcome in the planning horizon. This desirable property does not hold when

either (i) expected values are used in other mathematical programming formulations, or (ii)

capacity constraints and/or the existence of multiple quality grades are ignored. Regarding

(ii), consider the fact that cores of worse quality require more production resources than those
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of better quality; given that the mix changes in each period (depending on the outcome of

the grading process), then capacity is also impacted.

3 Model

Consider a remanufacturing environment where end-of-lease returned products (cores) are

graded and grouped into I different quality levels. We consider a single product type, so

our problem is an aggregate production planning problem; the model can be easily extended

to multiple product types (although computational complexity would increase significantly).

Graded cores are then remanufactured to meet demand for remanufactured products. The

total amount of cores is known in advance, however, their quality levels are uncertain. The

demand for remanufactured products is forecasted over a planning horizon of T periods.

Remanufactured products are identical and independent of the quality of the original cores

used, however, remanufacturing costs differ across quality grades. Cores can be kept in

stock to be graded in the future and graded cores can be kept in stock to be remanufactured

in the future. The holding cost for a remanufactured product is higher than for a core.

Graded cores can also be salvaged at any time; higher quality cores have higher salvage

values corresponding to the opportunity to harvest higher quality cores for spare parts. The

problem is to determine how many of the available cores to grade, how many of the graded

cores to be remanufactured, and how many of them to be salvaged each period. Due to

capacity constraints, the firm may not be able to meet the non-stationary demand, as lower

quality cores consume more capacity than higher quality cores; backlogs are allowed. The

objective is to find a plan that maximizes total expected profit.

We formulate our problem as a stochastic program as follows. The random variable in

each period is the outcome (rj
it, as defined below) of the grading process. For example,

suppose there are two quality grades (good and bad), and two possible grading outcomes.

In outcome 1, which happens with probability p1, the inspection process yields 70% of

good quality cores, whereas in outcome 2, the inspection process yields 40% of good quality

cores. We define scenarios for each time period t as follows. Each time period t has J(t)

scenarios, each corresponding to a realization of all grading outcomes in periods 1, . . . , t. So,

for example, period 2 has four possible scenarios (J(2) = 4) pertaining to the percentage

of good quality cores each period ((0.7,0.7), (0.7,0.4), (0.4,0.7), (0.4,0.4)), whereas period

4 has 16 scenarios ((0.7,0.7,0.7,0.7),. . . .(0.4,0.4,0.4,0.4)). Period 0 (the period prior to the

5



start of the planning horizon) has only one scenario, since all random variables have not

been observed prior to the planning horizon. This is shown in Figure 1. Note the “nested”

structure of the scenarios: scenario 1 of period 1 is nested in scenarios 1 and 2 of period

2, which are nested in scenarios 1, 2, 3 and 4 of period 3. When necessary and to avoid

confusion, we name scenario j in period t as scenario (j, t). For a given time period t, define

pred(j, t) as the scenario, in period t− 1 that is the predecessor of the scenario in period t.

In the example above, for period 2, pred(1,2) = pred(2,2) = (1,1), pred (3,2) = pred(4,2) =

(2,1), and so forth. Our notation is defined in Table 1.

1,0

1,1

2,1

1,2

2,2

3,2

4,2

p1

1 - p1

1 - p1

1 - p1

p1

p1

t = 0 t = 1 t = 2

70% good

40% good

70% good

40% good

70% 

good

40% 

good

Figure 1: Construction of Scenarios

In the description of our model below, we assume demand to be deterministic. Stochastic

demand can be easily incorporated into the model, at least from a theoretical standpoint,

by re-defining a random outcome in a period as a combination of the random realization of

the grading process and the random demand realization; we expand upon this point later.

From a model formulation perspective, this is an easy model extension. From a practical

implementation standpoint, however, it presents significant challenges because the number

of variables increases exponentially with the number of random outcomes in a period. A

model with both random quality of cores and random demand can feasibly be solved only

for a limited number of scenarios and time periods. Stochastic demand has been explored in

previous production planning literature (see §2), and since the novelty of our paper resides in
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the peculiarity of the remanufacturing environment with its non-uniform input, we maintain

in our numerical analysis the assumption of deterministic demand (i.e. no forecast error).

Further, the impact of the deterministic demand assumption can always be mitigated by

solving the model using a rolling horizon.

The sequence of events in a period is as follows:

1. Cores Bt arrive. The firm decides upon the amount of cores to grade x
pred(j)
t .

2. The outcome of the grading process rj
it is observed

3. Based on demand Dt, and the outcome of grading process, the firm decides upon the

amount of cores to refurbish zj
it and the amount to salvage vj

it for each quality grade i.

4. Demand is filled, inventories are updated, holding costs are incurred.

Our problem (assuming zero initial inventories) can thus be formulated as:

max
xj

t ,zj
it,v

j
it

Π =
T∑

t=1

J(t)∑
j=1

pj
t

{ I∑
i=1

((pr − cit)z
j
it + sitv

j
it − hitu

j
it)− hry

j+
t − πyj−

t

}
(1)

−
T∑

t=1

J(t−1)∑
j=1

pj
t

(
gxj

t − hbj
t

)
subject to

(y
pred(j,t)+
t−1 − y

pred(j,t)−
t−1 )− (yj+

t − yj−
t ) +

I∑
i=1

zj
it = Dt, ∀t; j = 1, . . . , J(t) (2)

bj
t + xj

t − b
pred(j,t)
t−1 = Bt, ∀t; j = 1, . . . , J(t− 1) (3)

zj
it + uj

it − u
pred(j,t)
i,t−1 + vj

it = rj
itx

pred(j,t)
t , ∀i;∀t; j = 1, . . . , J(t) (4)

I∑
i=1

aiz
j
it ≤ Ct, ∀t; j = 1, . . . , J(t) (5)

yj
T = 0, j = 1, . . . , J(T ) (6)

yj+
t , yj−

t , zj
it, v

j
it, u

j
it, x

j
t ≥ 0, ∀i, t, j. (7)

The objective function (2) maximizes total profit: revenue from remanufactured prod-

ucts plus salvage revenue minus costs—holding cost for graded cores, holding cost for re-

manufactured products, backlogging cost, grading cost, and holding cost for ungraded cores.

Constraint (2) is the inventory balancing constraint for remanufactured products under each
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Table 1: Notation

Indexes

i Quality category, i = 1 (best),..., I (worst)

t Time period, t = 1, . . . , T

j Scenario j of time period t, j = 1, ..., J(t); J(0) = 1

Parameters

Dt Demand for remanufactured products at period t

Bt Quantity of cores arriving at beginning of period t

Ct Available remanufacturing capacity in period t

ai Unit remanufacturing resource usage for quality i cores

pr Remanufactured product price

cit Unit remanufacturing cost for quality-i cores at time t

sit Unit salvage value for quality-i cores at time t

hit Unit holding cost for quality-i cores at time t

hr Unit holding cost for a remanufactured product

h Unit inventory holding cost for un-graded cores

π Unit backlogging cost per period

g Unit grading cost

pj
t Probability of scenario j of time period t

rj
it Fraction of items of quality i under scenario j of period t

Decision Variables

xj
t Amount of cores graded under scenario j of period t

zj
it Quantity of quality-i cores remanufactured at period t under scenario j

vj
it Quantity of quality-i cores salvaged at end of period t under scenario j

Auxiliary Variables

uj
it Inventory of quality-i cores at end of period t under scenario j

yj+
t Inventory of remanufactured products at end of period t under scenario j

yj+
t Backlog of remanufactured products at end of period t under scenario j

bj
t Amount of un-graded cores at the end of period t under scenario j of period t.
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scenario j of time period t: for a given scenario j, one can meet demand from the cur-

rent period’s production and starting inventory of remanufactured products (all scenarios

j with a common predecessor share the same starting inventory y
pred(j)
t ), or demand can

be backlogged. Constraints (3) and (4) are the inventory balance constraints for un-graded

and graded cores, respectively; note that in (4), all scenarios j of period t that share the

same predecessor have the same amount of graded cores x
pred(j)
t . Constraint (5) regards the

capacity constraint for period t, which should be met for any scenario. Finally, constraint

(6) ensures that the firm does not produce in excess of demand over the planning horizon.

If demand is stochastic, we simply redefine an outcome in any period to be the joint

realization of the random grading process and random demand in that period. For example,

if there are 3 possible grading realizations (good, medium, bad) and two possible demand

realizations (high, low), then each period has 3 × 2 = 6 outcomes. The only change in the

above formulation is that Dt is replaced with Dj
t in (2).

Thus, the stochastic programming approach generates a solution for each scenario in the

grading process, and guarantees its feasibility (if there is enough capacity such that the prob-

lem is feasible). We illustrate some important properties of this problem in Example 1 below.

Example 1: The planning horizon has three periods, so T = 3. There are two quality

grades, good (i = 1) and bad (i = 2). A good unit consumes one unit of capacity whereas a

bad unit consumes 30% more, and thus a1 = 1, a2 = 1.3. There are two possible outcomes

for the grading process: in outcome A, which happens with 35% probability, there are 10%

good units; in outcome B, which happens with 65% probability, there are 90% good units.

Demands are 200, 280 and 220 for periods 1 through 3; cores are 250, 330, and 270 for

periods 1 through 3; capacity is 320 units per period. All cost and revenue parameters are

time invariant, and are as follows: pr = 100, g = 1, h = 0.5, h1 = h2 = 1, hr = 1.5, π = 50

(in essence, backlogs are to be avoided if possible), c1 = 30, c2 = 50, s1 = 30, s2 = 20, where

the time subscripts have been removed. Period 1 has two scenarios, corresponding to the

two possible grading outcomes; period 2 has four scenarios, corresponding to two outcomes

for each of the two scenarios in period 1; period 3 has eight scenarios. The scenarios, re-

spective probabilities, and the optimal solution to the problem are listed in Table 2 below;

the optimal solution also calls for grading all returned products in each period, and thus no

un-graded inventory is carried from period to period. The total expected profit (objective

function) is $47,290.
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Table 2: Solution for Example 1

Scenarios and Probabilities Optimal Solution

t Scen. j pred(j) pj
t rj

1t rj
2t zj

1t zj
2t vj

1t vj
2t

1 (1,1) (1,0) 0.3500 0.1 0.9 25.0 201.2 0.0 23.8

1 (2,1) (1,0) 0.6500 0.9 0.1 225.0 1.2 0.0 23.8

2 (1,2) (1,1) 0.1225 0.1 0.9 33.0 220.8 0.0 76.2

2 (2,2) (1,1) 0.2275 0.9 0.1 253.8 0.0 0.0 33.0

2 (3,2) (2,1) 0.2275 0.1 0.9 33.0 220.8 0.0 76.2

2 (4,2) (2,1) 0.4225 0.9 0.1 253.8 0.0 0.0 33.0

3 (1,3) (1,2) 0.0429 0.1 0.9 27.0 193.0 0.0 50.0

3 (2,3) (1,2) 0.0796 0.9 0.1 220.0 0.0 23.0 27.0

3 (3,3) (2,2) 0.0796 0.1 0.9 70.2 149.8 0.0 93.2

3 (4,3) (2,2) 0.1479 0.9 0.1 220.0 0.0 66.2 27.0

3 (5,3) (3,2) 0.0796 0.1 0.9 27.0 193.0 0.0 50.0

3 (6,3) (3,2) 0.1479 0.9 0.1 220.0 0.0 23.0 27.0

3 (7,3) (4,2) 0.1479 0.1 0.9 70.2 149.8 0.0 93.2

3 (8,3) (4,2) 0.2746 0.9 0.1 220.0 0.0 66.2 27.0

Notice that the optimal solution for period 2 only depends on the grading outcome in

that period. Specifically, the firm remanufactures 33 and 220.8 units of good and bad cores

respectively under outcome A, and 253.8 and 0 respectively under outcome B. In period 3,

however, the optimal solution not only depends on the outcome of the grading process in

that period, but also on the history. For example, under outcome A in period 3, the firm’s

optimal solution depends on previous outcomes: under scenarios (1,3), and (5,3), the firm

remanufactures 27 and 193 units of good and bad cores respectively; these are the scenarios

where the firm also had the A outcome in period 2. In scenarios (3,3) and (7,3), however,

the optimal solution is to remanufacture 70.2 and 149.8 of good and bad cores respectively;

these are the scenarios where the firm had a B outcome in period 2.

Now, consider the deterministic version of this problem, which is the approach taken by

most multi-period planning models in the literature. The problem is formulated as in (2)-(7),

except that there are no scenarios. Consequently, all variables do not have a superscript j,

but rather use expected values: r1t = 0.65(0.1) + 0.35(0.9) = 0.62, and r2t = 0.38 for all
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t. Solving this deterministic LP results in a solution where the firm grades all cores in all

periods, as in the stochastic formulation. The amount of cores suggested to remanufacture,

however, are z11 = 155, z12 = 204.6, and z13 = 167.4 for quality grade 1; z21 = 45, z22 = 75.4,

and z23 = 52.6 for quality grade 2; and to salvage 50 units of graded bad quality cores in

all periods. The total expected profit is $47,690. Notice, however, that this solution is not

implementable. Consider what happens in period 1, for example, if outcome A happens.

The firm can only remanufacture 25 good units (as opposed to the deterministic problem’s

solution of z11 = 155); if outcome B happens, the firm can only remanufacture 25 bad units.

Thus, the solution is not implementable under all quality realizations. The probability of a

non-implementable solution only increases in future periods, as successive random outcomes

in previous periods alter the firm’s inventory position.

Now, suppose that, the production capacity is instead Ct = 300 for all t, and backlogs

are not allowed. The deterministic version of the problem appears to be feasible and yields

a similar solution to the case where Ct = 320 except that z21 = 47.0, z22 = 73.4, and

the firm salvages two less bad-quality units in the first period but two more in the second

period due to the tighter capacity constraint (as in the previous example, this solution is not

implementable under certain quality realizations). The stochastic version of the problem,

however, accurately shows the problem is infeasible: if the outcome of the grading process

is “B” in both periods 1 and 2, for example, there is no feasible production plan that is able

to meet demand in period 2, since the bad quality units consume 30% more capacity than

the good-quality units. In summary, this simple example illustrates the issues associated

with traditional production planning problems in remanufacturing operations: it yields non-

implementable solutions and it may suggest a plan that appears to be feasible even though

no feasible plan exist for all possible random variable realizations.

3.1 Computational Considerations

The formulation we present for grading and remanufacturing planning is a multistage stochas-

tic linear program (MS-SLP) which may become difficult to solve for the size of problems

found in practice. The size of the problem grows exponentially with respect to the number

of quality grades and number of periods. The structure of the problem, however, can be

exploited to develop algorithms in case a general-purpose linear programming code fails to

provide solutions in a reasonable computational time. One such approach can be the use of
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decomposition methods which use the block-angular structure of the MS-SLP formulations.

The L-shaped Method, first suggested by Van Slyke and Wett (1969) for two stage problem

and then generalized to multiple stages as a nested decomposition method (Birge 1985),

should provide better computational results.

In this paper, however, we were able to solve problem of a realistic size in very reasonable

computation times based on data grounded in a real remanufacturing environment, without

the need to resort to such a special algorithm. We consider five outcomes for the quality

grades and six planning periods (next section). This choice of the parameter values also

leads to an easier interpretation of the results. The solution provides a course of action

for each outcome in each period. When the number of possible outcomes grows very large,

tracing the solution paths, which differ from each other with very small probabilities, for

implementation may be impractical. The same applies to the number of periods in the

planning horizon. Furthermore, we recommend that the problem is solved on a rolling horizon

basis and a six-period planning horizon serves the purpose of preventing myopic decisions. In

our computational experiments, the solution times we observed (about 79 seconds on average)

with a general-purpose linear programming software were very reasonable and should enable

the problem to be solved on a rolling horizon basis. It seems that the sparse factorization

schemes embedded in most general purpose software take into account the structure of the

problem to a certain extent. In the next section, we provide details about our numerical

study, and interpret the results.

4 Numerical Analysis

The objective of this section is to investigate how the various problem parameters (costs,

demand pattern, capacity) impact the firm’s optimal solution (total cost, amount of cores

graded, remanufactured, inventoried, and salvaged). This is done through a large-scale

numerical study.

4.1 Experimental Design

The choice of parameter values for our numerical study is largely taken from existing research

(see Ferguson et al. 2007), which is based on actual data provided by Pitney-Bowes and other

remanufacturers; we provide justification for additional parameters when necessary. Costs
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are normalized by choosing the remanufactured product’s selling price to be pr = 100. We

choose a common production planning horizon of six months, so T = 6. We consider three

demand patterns, as shown in Table 3; these demand patterns are slightly modified from the

12-month data of Ferguson et al. (2007) to fit a six-period planning horizon. The variability

of demand type 1 is evenly distributed throughout the planning horizon, while demand type

2 has two months with significantly higher than average demand. Finally, demand type 3 is

constant during the first three months, but ramps up to about double this level in the last

two months of the planning horizon.

Table 3: Demand Data for Numerical Study

Period Type 1 Type 2 Type 3

1 395 240 245

2 385 280 245

3 495 565 245

4 360 610 335

5 215 235 545

6 310 230 545

Total 2160 2160 2160

Mean (D̄) 360 360 360

Std. Dev. 93 178 148

Returns typically exceed demand for remanufactured products (Ferguson et al. 2007,

Galbreth and Blackburn 2006). Thus, we set the number of incoming cores, across all

quality grades, at 150% of the average demand per period; this corresponds to 540 incoming

cores per period. The quality of an incoming core q is the realization of a random variable

Q between 0 to 1, where q = 0 represents the worst possible core and q = 1 represents the

best possible core . For simplicity, we assume that Q ∼ U [0, 1]. The cost to remanufacture a

core of quality q is given by c(q) = α0 +(α1−α0)q
β, where α0, α1 and β are parameters; this

functional form represents considerable diversity of curve shapes depending on the chosen

parameter values. The parameter α0 is the remanufacturing cost for the worst possible

quality core; likewise, α1 is the remanufacturing cost for the best possible quality core.

Similarly to Ferguson et al., we use α0 = 60, α1 = 25 (recall that pr = 100), and consider

β ∈ {0.3, 1.0, 3.0}; this results in the curves shown in Figure 2. Under this setup, if there
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are I quality grades distributed uniformly over [0,1], then ci = I
∫ 1− i−1

I

1− i
I

c(q)dq, which results

in ci = α0 + α1−α0

(1+β)Iβ

(
(I − i + 1)1+β − (I − i)1+β

)
.
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Figure 2: Curves for c(q) with α0 = 60, α1 = 25

The salvage value for a core comprises its value in re-usable parts and material; the higher

the quality of a core the higher its salvage value. Because remanufacturing is a value-added

operation, the salvage value can be viewed as a fraction 0 ≤ θ < 1 of the net remanufacturing

profit margin, that is, si = θ(pr − ci), where in our design we allow θ ∈ {0.10, 0.40, 0.70}.
(If θ > 1, then remanufacturing is not profitable, and the optimal solution is trivial: salvage

all units.) The value θ = 0.10 represents the case where cores are primarily salvaged for

materials recovery, whereas the value θ = 0.70 represent a case where a significant value can

be recovered from the harvesting of spare parts. The three levels for unit holding cost for

cores, which is the same for all quality categories (hi = hj,∀i, j), are hi ∈ {1, 2, 3}. These

values correspond to 12%, 24%, and 36% of the remanufactured product’s price per year;

they represent typical holding cost values, from low time sensitivity to high time sensitivity

products (we account for market price depreciation in the product’s holding cost value).

Further, we set h = 0.5hi and hr = 1.5hi, so the holding cost for an ungraded core and for

a remanufactured product are 50% less and more, respectively, than the holding cost for a

graded return. We set unit grading cost to be 10%, 40% or 70% of the remanufacturing cost

for the best possible quality core, that is, g ∈ {0.1α1, 0.4α1, 0.7α1}.
We consider unit backlogging cost of π ∈ {10, 20, 40}. Given that hr varies between 1.5

and 4.5, the ratio π
hr

varies between 2.2 and 26.7; numbers of this magnitude have been used
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in previous research (e.g., Cachon 1999). Further, π can be interpreted as a percent discount

off the remanufactured product’s price if the firm postpones the due date for meeting demand

by one month. For example, π = 10 means that the firm gives the customer a 10% discount

off the list price if delivery is postponed by one month. We normalize resource usage for the

best quality grade to a1 = 1. Resource usage for the worst quality grade core is aI = 1 + A,

where A ∈ {0.25, 0.50, 0.75}; resource usage for intermediate quality grades are a linear

interpolation of these two points such that ai = 1 + A i−1
I−1

. Capacity availability is set at

20%, 60% and 100% of excess capacity over average demand if the firm only remanufactures

high quality cores, thus we consider Ct

D̄
∈ {1.2, 1.6, 2.0}.

We complete our experimental design by describing the grading outcome. We assume

three quality grades (good, medium, bad), and five outcomes for the grading process (worst,

worse, average, better, best). The probabilities are described in Table 4. As an example, the

“best” case scenario resulting from the grading process would result in 66.7% good quality

cores, 33.3% medium quality cores, and 0% bad quality cores.

Table 4: Grading Outcome and Associated Probabilities

Outcome Prob. % good % medium % bad

worst 0.1 0.000 0.333 0.667

worse 0.2 0.167 0.333 0.500

average 0.4 0.333 0.333 0.333

better 0.2 0.500 0.333 0.167

best 0.1 0.667 0.333 0.000

Our experimental design is summarized in Table 5 below. In total, there are 38 = 6,561

experiments. For each cell, we solve the resulting linear program in Cplex 9.0, using the

Cplex callable library. Each cell results in a linear program with 222,647 variables and

101,556 constraints. Run time for one cell ranges between 31 and 488 seconds, averaging

79 seconds on a shared Sun V480 computing environment. For each optimal solution, we

also compute the associated values of the decision variables. Thus, our metrics include

the optimal objective function value (Π), and the expected values per period for each of the

problem’s decision variables (optimal solution values weighted by the respective probabilities

in each scenario). That is, we compute the expected number of graded cores (denoted in

short by x̄t

T
), expected number of remanufactured z̄it

T
and salvaged units v̄it

T
for each quality
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category, expected inventory for ungraded cores b̄t

T
, graded cores ūit

T
, remanufactured units

ȳ+
t

T
, and expected backlogs

ȳ−t
T

.

Table 5: Experimental Design for Numerical Study (pr = 100,α0 = 60,α1 = 25)

Factor description Symbol Factor Levels

Demand pattern types Dt 1, 2, 3 (from Table 3)

Unit backlogging cost per month π 10, 20, 40

Shape parameter for cost curve β 1
3
, 1, 3

Salvage value as a fraction of margin θ = si

pr−ci
0.10, 0.40, 0.70

Holding cost for cores per month hi 1, 2, 3

Normalized unit grading cost g
α1

0.1, 0.4, 0.7

Extra capacity usage for worst quality A 25%, 50%, 75%

Capacity relative to avg. demand Ct

D̄
1.2, 1.6, 2.0

4.2 Numerical Results

In Table 6 we report the descriptive statistics for each of the 14 metrics of interest. To

better understand the numbers, recall that average demand per period is 360 units; average

arriving cores are 540 units per period or 180 of each of the three quality grades on average.

On average, the firm remanufactures 174, 143, and 42 units, and it salvages 2, 33, and 133

units of good, average and bad quality cores per period respectively. Thus, about 97% of all

good quality cores are remanufactured (this corresponds to about half the overall demand),

with the remainder half of demand being met mostly by average, and to a less extent, bad

quality cores. In contrast, for incoming bad quality cores, 23% are remanufactured, 74%

are salvaged, and the remaining 3% are kept in inventory as ungraded cores, on average.

The minimum value of z̄1t

T
is 120 units; this happens when the firm only grades the strictly

necessary amount of cores to meet demand due to the combination of a high grading cost

and low salvage value (minimum value of x̄t

T
= 360 units). Because incoming cores exceed

demand by 50%, there is not a single instance where the firm remanufactures all average and

bad quality cores; the maximum values for z̄2t

T
and z̄3t

T
are 168 and 120 units, respectively.

The firm does not carry much inventory of graded cores, as demonstrated by median

values for ūit

T
of 13, 5 and 0 units for good, average and bad quality cores respectively. As we

16



Table 6: Descriptive Statistics for Experimental Design

Π z̄1t

T
z̄2t

T
z̄3t

T
v̄1t

T
v̄2t

T
v̄3t

T
ū1t

T
ū2t

T
ū3t

T

ȳ+
t

T

ȳ−t
T

x̄t

T
b̄t

T

mean 129,494 174 143 42 2 33 133 20 8 0 44 13 527 35

stdev 26,200 11 11 19 2 16 28 19 11 5 55 26 36 99

min 54,861 120 114 15 0 0 0 0 0 0 0 0 360 0

25th perc 110,165 175 136 29 0 23 130 7 0 0 1 0 540 0

median 130,760 178 141 43 1 36 137 13 5 0 21 1 540 0

75th perc 148,593 180 153 49 3 43 150 26 12 0 65 9 540 20

max 189,462 180 168 120 10 66 165 134 106 156 227 104 540 779

discuss later, the firm only carries inventory of remanufactured products because of capacity

constraints coupled with a non-stationary demand pattern; the median value is 21 units,

with a mean of 44 units. Similarly, the median value of backlogged units is 1 unit but the

average is 13 units; backlogs only occur if there is insufficient capacity, as is the case when

A = 0.75 and Ct

D̄
= 1.2. On average, the firm grades 527 of the 540 incoming cores, although

in most cases (83% of cases), the firm grades all 540 cores in all periods under all scenarios.

In most cases, the firm prefers not to carry inventory of ungraded cores (median value is 0

units); instead, the firm prefers to grade them right away because they can then be salvaged

in the same period. When salvage values are low and grading cost is high, however, the firm

only grades the number of cores strictly necessary to meet demand, and consequently carries

inventory of ungraded cores (maximum expected inventory of 779 units).

We now discuss which factors in the experimental design have the largest impact on

the metrics just discussed. Note that there is variance in the metrics, as evidenced by the

standard deviation and minimum and maximum values reported in Table 6. Thus, it is of

interest to understand which factors have the largest impact on a given performance metric

of the optimal solution. To accomplish this, we perform simple regressions, one for each

metric and experimental factor. In each regression, the dependent variable is the metric of

interest (e.g., Π), the independent variable is the experimental factor (e.g., β), and there

are 6,561 observations, corresponding to the experimental cells. The value of R2 for each

regression provides a measure of the impact of the respective factor value on the respective

metric (Wagner 1995). The results are reported in Table 7. The dummy variable di takes
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the value of 1 if demand pattern i is used and 0 otherwise. For example, the regression Π

vs. β has R2 = 0.45, so the parameter β explains 45% of all the variance in profit.

Table 7: R2(×100) Values for Simple Linear Regressions Where the Dependent Variable is

Metric and the Independent Variable is Experimental Factor

Π z̄1t

T
z̄2t

T
z̄3t

T
v̄1t

T
v̄2t

T
v̄3t

T
ū1t

T
ū2t

T
ū3t

T

ȳ+
t

T

ȳ−t
T

x̄t

T
b̄t

T

d1 0 0 0 0 1 0 0 23 1 0 27 4 0 0

d2 0 1 0 1 29 0 1 0 1 0 0 1 0 0

d3 0 1 1 2 19 0 1 21 0 0 20 11 0 1

π 0 0 0 0 0 0 0 0 0 0 1 0 0 0

β 45 0 7 3 1 3 1 4 4 0 0 0 0 0

θ 24 15 8 0 14 29 5 8 11 1 0 0 19 14

hi 0 1 4 0 2 4 0 6 11 1 0 0 1 2
g
a1

24 15 0 6 1 8 11 0 0 1 0 0 15 11

A 0 0 7 6 1 3 3 2 0 0 3 8 0 0
Ct

D
1 2 36 25 8 15 13 1 1 0 28 33 1 3

The cost parameters β and g
a1

, and revenue parameter θ, have the most impact on profit,

explaining 45%, 24% and 24% of the variance, respectively; the remaining parameters play

a minor role. In terms of the optimal solution (not necessarily the optimal profit), all

parameters have some impact, with the highest impacts (as judged by the sum of the R2

values across the columns) being, in decreasing order, relative capacity Ct

D̄
, relative salvage

value θ, and relative grading cost g
a1

. Extra capacity usage by the bad cores, A, has a

significant impact on the amount of backlogs because it directly affects the amount of demand

the firm can meet. Essentially, the firm only backlogs when there is insufficient capacity to

meet demand, so the combination of high A and low Ct

D̄
produces backlogs. The demand

pattern significantly impacts inventory and salvaging of good quality cores, inventory of

remanufactured product and backlogs; this is due to demand spikes coupled with limited

capacity. Holding cost hi has less of an impact in the optimal solution except for the

inventory of good and average quality cores. In general, the only incentive for the firm

to carry inventory is due to capacity constraints and non-stationary demand. Clearly, this

hierarchy holds for the ranges of levels for the factors employed in our experimental study,

which we were careful to choose among low, average and high values that are found in
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practice.

As we previously mentioned, the firm typically remanufactures all good quality cores;

the exception is when grading cost is high relative to salvage value. This is the case when

the firm only grades the minimum amount of cores to meet demand, and as a result, the

variance explained for the amount of good cores remanufactured z̄1t

T
is significant only for

the parameters θ and g
α1

at 15% each. Capacity constraints explain the bulk of the variance

in z̄2t

T
and z̄3t

T
at 36% and 25%, respectively. Regarding the amount of good cores salvaged

v̄1t

T
, 29%, 19%, 14% and 8% of the variance is explained by d2, d3, θ and Ct

D̄
, respectively. As

we will see later (Figure 3), when the firm has excess capacity and salvage values are high,

it can afford to salvage good quality cores to boost revenue and use the excess capacity for

capacity-hungry average and bad cores; this strategy works only when there are periods of

significantly lower demand than average, which is the case with demand patterns 2 and 3.

A similar logic holds for the amount of average v̄2t

T
and bad quality cores salvaged v̄3t

T
. In

this case, higher grading cost also plays a significant role, explaining 8-11% of the variance

because higher g
α1

implies less cores salvaged (average and bad quality cores are typically the

ones salvaged); the demand pattern plays no role here because, again, the average and bad

cores are usually salvaged.
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Figure 3: Normalized Metric Value vs. Relative Capacity Ct

D̄t

The variance in the amount of good quality cores ū1t

T
carried in inventory is explained
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primarily by demand patterns 1 and 3 at 23% and 21% respectively. The firm carries

inventory of graded cores except for the case when there is a single spike in the middle

of the demand pattern (as in demand pattern 2); in that case the extra core inventory

would be of no use due to the lack of capacity to remanufacture in that high-demand period

(see also Figure 6). The same effect also shows in the amount of remanufactured units
ȳ+

t

T

carried in inventory for the exact same reason; but here the capacity constraint shows as

the most important reason (28% of variance explained) why the firm carries inventory of

remanufactured products. The amount of backlogs is primarily explained by capacity Ct

D̄
,

demand pattern 3, and capacity usage A, at 33%, 11% and 8% respectively.

Metric vs. Relative Salvage Value
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Figure 4: Normalized Metric Value vs. Relative Salvage Value

Knowing which factors most impact the optimal solution, we now focus on the direction

of impact. To that end, we compute, for each factor level (e.g., θ = 0.1) the average value of

the metric of interest across all respective experimental cells, and normalize it by subtracting

the mean (across all cells) and dividing by the standard deviation (as reported in Table 6).

This normalization is done so that all metrics are measured on the same scale, i.e., relative

to its mean value. We plot only the most significant relationships as discussed before in

the R2 analysis, and these are shown in Figures 3-7 (the entire set of results is available in

Tables 8-9 in the appendix). In all charts, the scale in the vertical axis is the same so that

the reader can relate the results with those of Table 7—a higher R2 in Table 7 results in a
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curve with a higher slope in Figures 3-7. We also use the same marker and line pattern for

each metric across charts.

Metric vs. Relative Grading Cost
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Figure 5: Normalized Metric Value vs. Relative Grading Cost

First, consider in Figure 3 the factor with the highest impact in most metrics, capacity

relative to demand. With excess capacity, the firm can afford to salvage good and average

quality cores (thus the increase in v1 and v2 and decrease in z2) to boost revenue and use the

excess capacity for capacity-intensive bad cores (increasing z3 and consequently decreasing

v3). More capacity also reduces the need to carry inventory of remanufactured products

y+, and reduces the amount of backlogs (y−). The largest impact on the metrics occurs as
Ct

D̄
increases from 1.2 to 1.6; it can be shown that Ct

D̄
= 1.6 provides sufficient capacity to

meet demand with expected (average) mix of good, average and bad cores. Nonetheless,

there is still some improvement in the metrics as Ct

D̄
increases from 1.6 to 2.0 because of the

stochastic nature of the grading process. As an example, with many bad outcomes in a row,

which happens with a positive probability, the firm does not have enough capacity to meet

demand if Ct

D̄
= 1.6 and A = 0.75.

Now, consider in Figures 4-5 the factors with the second and third largest impact in

the metrics of interest, relative salvage value and relative grading cost. Again, only the

most important relationships are plotted to avoid cluttering. Typically, as discussed before,

the firm grades all cores (and remanufactures all graded high quality cores); the exception
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Metric vs. Demand Type
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Figure 6: Normalized Metric Value vs. Demand Type

is when salvage values are low (Figure 4) and grading cost is high (Figure 5). Low salvage

values, relative to grading costs, cause the amount of grading, x, to decrease (which increases

the inventory of ungraded cores, b); the decreased availability of good quality cores decreases

the absolute number of good quality cores remanufactured, z1, at the same rate (since the

firm remanufactures almost all good quality cores it grades). However, a lower salvage value

for average quality cores decreases their amount salvaged, v2, and consequently increases

their amount remanufactured, z2. Everything else being equal, a higher salvage value or a

lower grading cost per unit increases expected profit, and the relationship is approximately

linear.

Now, consider in Figure 6 the impact of the demand pattern. Demand type 2 has the

“spike in the middle”, and demand type 3 has a spike at the end, which necessitates more

carrying of inventory, y+, from earlier periods with excess capacity. The amount of good

quality cores carried in inventory, u1, is also higher for demand patterns 2 and 3 because

they have periods of low demand when the excess capacity can be used to remanufacture

good quality cores graded earlier in the planning horizon. Figure 7 shows the impact of extra

capacity usage, A, on the optimal solution. Essentially, a higher value of A means less bad

quality cores, z3, remanufactured, with more of them salvaged, v3; the firm remanufactures

more of the average quality cores, z2 (with less of them salvaged), and some of the demand
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Metric vs. Extra Capacity Usage
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Figure 7: Normalized Metric Value vs. Cost Shape Parameter

is backlogged because of insufficient capacity. Good quality cores are not impacted by A

because the firm remanufactures most of them. The remanufacturing cost shape parameter

β has the most impact on the objective function (R2 = 0.45, Table 7), with less of an impact

on the optimal solution per se; in the interest of space we omit this chart as the relationship

is obvious—higher cost, lower profit.

5 Conclusion

In this paper, we consider a production planning problem where the inputs (returned units)

have different and uncertain quality levels, and there are capacity constraints; a situation

typical of remanufacturing operations. From a production planning perspective, this sce-

nario has several implications: the firm needs to grade returned units (cores) at a possible

cost; the grading operation yields an uncertain outcome with respect to the makeup of core

quality; different quality grades have different cost and processing requirements, and graded

cores can be salvaged at potentially different salvage values depending on their quality. In

addition, uncertainty in the quality levels of the cores creates problems for the planning

of remanufactured product production because the varying quality grades typically require

different levels of capacity to bring the processed units up to a pre-determined configuration
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and acceptable quality level for the market. Thus, remanufacturing higher quality cores can

be accomplished at a lower cost and lower capacity usage than remanufacturing lower quality

cores. We propose a stochastic programming formulation to solve the remanufacturing pro-

duction planning problem Our model determines the quantity of cores of each quality grade

that should be remanufactured, held in inventory for a future period, or salvaged each period

in a finite horizon planning horizon. Unlike a deterministic production planning model that

uses linear programming with inputs based on the expected values of the returned units’

quality levels, our SP approach guarantees an implementable solution for all realizations of

the quality levels.

Through an extensive numerical study based on parameter values either previously re-

ported in the literature or observed in practice, we measured the relative impact of each

parameter on the firm’s profit (our objective function) as well as each of the corresponding

decision variables. From the results of this test, we conclude several interesting insights on

the remanufacturing production planning problem. First, the firm’s profit is most heavily

influenced by the shape of the production cost curve as it relates to the quality of the core

(convex increasing, linear, or concave increasing in the lower quality of the core), the salvage

value of an unprocessed core, and the cost of grading. Thus, firms should take extra care in

estimating these values. The per unit holding cost of the cores, as well as unit backlogging

cost, on the other hand, have a smaller impact on the optimal solution. This finding is

encouraging as firms often have a difficult time estimating these parameter values. As one

would expect, it is often optimal for a firm to remanufacture all of the highest quality cores.

The exception occurs when the cost of grading is high and the revenue from salvaging is low.

In these cases, the firm is better off just grading and remanufacturing enough units to meet

demand (as opposed to grading all the returns and only remanufacturing the highest quality

cores).

While our model formulation and numerical study was based on the assumptions of

deterministic demand (no forecast error) and a known return stream of cores, the model can

be easily modified to accommodate uncertainties in both of these inputs. For instance, the

set of scenarios evaluated in the stochastic program could be nested to include a given quality

set for a given return amount and a given demand realization. The trade-off, of course, is

an exponential increase in the number of outcomes, and consequently, on the computational

requirement of solving the linear program. Future research could provide guidance on the

best way to handle demand and supply uncertainties in the planning of a remanufacturing
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process. The alternatives are to include the uncertainties in the model formulation with the

subsequent increase in computational times or to solve the model frequently, on a rolling

horizon, with forecast updates for both the demand and the return stream of cores.

Appendix: Impact of Factors on Metrics

Tables 8-9 below presents the results for the impact of factor levels on the normalized metrics

(average for factor level minus total average divided by standard deviation), from which

Figures 3-7 were built.
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Table 8: Impact of Factor Levels on Normalized Metrics - Part 1

Factor Level Π z̄1t

T
z̄2t

T
z̄3t

T
v̄1t

T
v̄2t

T
v̄3t

T

1 -0.01 0.01 -0.05 0.04 -0.15 0.03 -0.03

Dem Type 2 -0.03 -0.17 -0.06 0.15 0.76 0.01 -0.12

3 0.03 0.16 0.11 -0.19 -0.62 -0.04 0.15

10 0.04 0.01 0.01 -0.02 -0.04 -0.01 0.01

π 20 0.01 0.00 -0.01 0.01 0.01 0.00 0.00

40 -0.05 -0.01 -0.01 0.02 0.03 0.01 -0.01

1
3

0.83 -0.09 0.12 -0.02 0.19 -0.13 -0.01

β 1 0.04 0.13 0.31 -0.27 -0.07 -0.14 0.22

3 -0.87 -0.04 -0.42 0.28 -0.12 0.27 -0.21

0.1 -0.60 -0.65 0.32 0.20 -0.50 -0.78 -0.44

θ 0.4 -0.01 0.35 0.05 -0.24 0.11 0.23 0.31

0.7 0.61 0.30 -0.37 0.04 0.40 0.54 0.12

1 0.03 -0.10 0.25 -0.09 -0.14 -0.28 0.01

hi 2 0.00 0.03 -0.03 0.00 -0.03 0.04 0.01

3 -0.02 0.07 -0.22 0.08 0.17 0.24 -0.01

0.1 0.61 0.34 -0.01 -0.20 0.17 0.28 0.28
g
a1

0.4 -0.01 0.25 0.07 -0.20 -0.05 0.13 0.23

0.7 -0.60 -0.59 -0.06 0.40 -0.12 -0.40 -0.52

0.25 0.05 -0.07 -0.33 0.29 0.13 0.21 -0.21

A 0.5 0.01 0.00 0.03 0.01 -0.01 -0.02 -0.01

0.75 -0.06 0.07 0.30 -0.30 -0.12 -0.19 0.22

1.2 -0.15 0.20 0.87 -0.75 -0.44 -0.55 0.55
Ct

D
1.6 0.06 -0.09 -0.28 0.27 0.17 0.17 -0.20

2.0 0.09 -0.11 -0.59 0.48 0.27 0.39 -0.35
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Table 9: Impact of Factor Levels on Normalized Metrics - Part 2

Factor Level ū1t

T
ū2t

T
ū3t

T

ȳ+
t

T

ȳ−t
T

x̄t

T
b̄t

T

1 -0.68 0.10 0.02 -0.73 0.29 -0.02 -0.10

Dem Type 2 0.03 -0.15 0.04 0.10 0.17 -0.04 -0.05

3 0.65 0.05 -0.06 0.64 -0.46 0.06 0.14

10 0.01 -0.03 0.00 -0.09 0.04 0.00 0.01

π 20 0.01 0.00 0.00 0.01 -0.01 0.00 0.00

40 -0.01 0.04 0.01 0.09 -0.03 0.00 -0.01

1
3

0.07 0.05 0.00 0.00 0.00 -0.05 0.06

β 1 0.25 0.26 -0.09 -0.03 0.00 0.11 -0.11

3 -0.32 -0.31 0.10 0.03 0.00 -0.06 0.05

0.1 0.30 0.42 0.19 0.01 0.00 -0.71 0.60

θ 0.4 0.08 -0.02 -0.09 -0.01 0.00 0.36 -0.27

0.7 -0.38 -0.40 -0.09 0.00 0.00 0.36 -0.32

1 0.34 0.46 0.15 0.06 -0.02 -0.12 0.17

hi 2 -0.06 -0.12 -0.06 0.00 0.00 0.02 -0.02

3 -0.28 -0.34 -0.09 -0.06 0.03 0.10 -0.14

0.1 0.02 -0.03 -0.09 -0.01 0.00 0.36 -0.28
g
a1

0.4 0.04 0.03 -0.09 -0.01 0.00 0.24 -0.23

0.7 -0.05 -0.01 0.19 0.03 -0.01 -0.59 0.51

0.25 -0.19 0.08 0.05 -0.20 -0.32 -0.05 0.09

A 0.5 0.03 -0.09 -0.01 0.02 -0.03 0.00 -0.01

0.75 0.16 0.01 -0.04 0.19 0.35 0.05 -0.08

1.2 -0.22 0.08 0.08 0.66 0.92 0.12 -0.22
Ct

D
1.6 0.22 -0.34 -0.04 -0.04 -0.43 -0.05 0.04

2.0 0.00 0.26 -0.04 -0.62 -0.49 -0.06 0.18
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