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INTRODUCTION

The multiperipheral ideas concerning the hnadron production
processes at high energy have been extensively developed in the past
decade, starting from a variety of attitudes, which range from field
theory to pure phenomenology 1)_23). Analyzing this larze amount of work,
we find that it is based on two concepts: the decrease of the productiion
amplitudes with increasing momentum transfers (defined with an appropriate
ordering of the final particles) and a special form of decomposition of the

*
amplitudes into factors, which we call Q factorization .

From the use of these two concepts, often disguised by different
motivations, a complex mathematical formalism has beer developed: the
absorptive elastic amplitude and the inclusive distributions are expressed
1),2),12)-14)

7

by means of the sclution of an integral equation which can

be partially diagonalized 24)-28)

using its symmetry with respect to the
group 0(2,1) or 0{(3,1). One gets in this way the singularities in the
complex angular momentum plane, which control the asymptotic behaviour

of the observed guantities mentioned above.

Many simple models, which have been studied in detail, produce,
as leading singularity in the complex angular momentum plane, an isglated
pole with factorized residue. Trom this apecizl feature one gets some
simple high energy properties, as the logarithmic increase of multi-

2),10) 2),20)-23) and the asymphtotic

s the Feynman scaling law
20)-23%)

plicity

factorization properties of the inclusive distributions

These properties are in agreement with the gualitative aspects
of the experimental é&ata. However, both theoretical considerations and
precise experiments suggest that some of them are an over-simplification.
In opréer to obtain the realistic more conmplicated structure of thé leading
ginpularities in the complex £ plane, one has to resort to more refined

multiperipheral models.

At this point, we feel the need of a careful discussion of the

most general assumptions, which are the basis of any form of multiperipherism

We are using the terminology of Ref. 23). In Ref. 12) the term "short
range correlation" is used. The relevant definitions will be given in

the next Section.



ard permit to set up a mathematical formalism of the kind summariced above.

In particular, this discussion should clarify whether important hign anergy
A A
- . - o . , 18),29),30)
phenomena, as diffraction dissociation and lorng ravge corrclatious )23y -
can reasonably find their place in a multiperipkeral scrhaeme. The clears

statement of the general assumptions, which wc shall propose, will alsec lzad
to gerneral model independent conscquences, which can be directly compared

with experiments, providirg a globsl tesl of mulliperipheral dynamics.

We stress that we are speaking of conditions on the frus ampliiude

and not or any model aprroximated amplitude.

In order to pursue this program, we consider again tle two basic
concepss mentioned at the beginrning. The first conceptl, namely the decreass
of the ampiitudes in tne momcntwn transfers, can be stated In a maikberatically
clecar way as an upper bound on the modulus of the amplitude.

*3

The second concept, narely the G factorizatiorn " is essential
for deriving the integral eaquation, as 1t permits fto express the amplitudes,
for any multiplicity, in terms of a few lunctiiora ol lew variables. We
remark, however, that one cannot reasconably assume that the ampliitudes are
exactly given by a proauct of numerical functions of this kind. Therelore,
if we want to deal with the exact amplituce, we have fto enlarge the concept
of & factorizatiorn. The natural extengion consigts of represcrniing the
amplitudes as matrix elements of products of overator valued funchions in
a Banach space. 4As in the ususl 4@ Tfactorization, each functior depends on

a faw kinematical variables.

Tre concept of generalized @ faciorization is connectad with

the concept of upper bound by a lneorem, which says tnat a necessary and

ufficient corndition for the exisience of a ( factorized representsation

-

8
(in the operator sense) for the anplitude 1s The existernce of a § factorized

in the numerical senss) upper bound.

We precise that, as carelully explained in 3ection 3, the & factori:ed
represzentation holds orly in a certain region of the phase space. IThe
arplitude in the whole phlase space can be rzconatruclied using (65

ayminetry under permutatlons of the final particles.



We realize that both the general concepts we started from are
contained in the reguirement tnat the amplitudes have upper bounds which
are both decreasing with the momentum transfers and numerieslly Q factorized.
We assume this requirement as the general definifiom of multiperipherality.
We shall show that this assumplion is sufficient in order to develiop the
whole mathematical formalism of multiperipherism, without any approximation.
This formalism can provide a useful framework for more restrictive and

detalled assumptions.

Leaving aside the mathematical formalism, our assumption, which
contains the most general features of multiperipherism, is interesting
from two points of view. First, one can rigorously derive from the bound
simple consequsances to be comparsd with experiments. In the second place,
the uppsr bound, being a clear mathematical statement, can provide the
right instrument for connecting the multiperipheral ideas with more

fundamental physical privciples.

We think that it is important to stress that the uﬁper bound we
gnall assume contains an arbitrary numerical factor and, therefore, the
amplitude beinz continuocus, it doss not impose any restriction when we
congider the amplitude in a compact region of the space of the kinematical
variables (including the multiplicity). In other words, our coadition

has an asymptotic character.

It follows that all the general corseguences of this condition
on the measurable guantities have an asymptotic nature as well and their
comparison with sexperiments implies necessarily some extrapolation procedure.
This feature, as 1s well known, 1is common to most of high energy 8 matrix

theory.

In Section 2, we define the numerical Q@ Tfactorization and we
introduce the relevant Kinematical variables. The basic concept of decrease
in the momentun tranefers is discussed in Section 3, alsp in connection
with the symmetry of the amplitude with respect to the permutations of the
final particles, In Section 4, we discuss the basie conecept of Q@ facto-
rization and we gereralize it ir two different ways which are proved to
be eguivalent in Section 5. The Sections 6 and 7 are devoted to develop,
gtarting from the concepts introduced before, the mathemstical formalism
in an exact form. In particular, we express the n particle inclusive dis-

tributions in terms of the solution of a multiperipheral integral equation.



2. EKINEMATICS

We consider a process with two incoming and n+2 outgoing

particles with n>0.

~ We assume, for simplicity, that all the particles are identical
and spinless, giving only some hint about the modifications required in

the general case,

We choose a certain ordering for the outgoing particles and we
indicate the various four-momenta as in Fig. 1, where the [four-momentunm
transfers Qi are also defined. At this stage, this figure has no
ar YU g
can be chosen as a complete set of kinematical wvariables. It is often

dynamical meaning. We remark that the four-momenta P

useful to introduce the convention

£3
=9

]
»
S’Q
1

n

{
s

{(z.1)

fiow we introduce the concept of Q factorization: 12)’23).

Definition: A sequence of Loréntz invariant functions Fn of the above
mentioned four-vectors is called numerically Q factorized of order

kE 1if for n>k-Z we can write

Ea (%J m}"'*QoJPA) =

",
=B(R O Quia) T K(@ 0 @) -

(2.2)

where the functions A, B and K are Lorentz invariant and independent
01 s
The motivation for this definition and the comparison with other

kinds of factorization are discussed in Rel. 23).



It is convenient to express the functions Fn’ A, B and ¥ in
terms of invariants which depend only on a few neighbouring four-momentsa Qi.
We have to define 3n+ 2 independent invariants of this kind., A simple

choice is

b C%z iz o4, ,m ,
g (2.3)
. 2
8 = (E’H"' P) = ((?--1 - QH) . et (2.4)
| 2 2
o= (ﬁ,"’ 5_1) = (Q‘-z"@-fJ‘ @, - ‘57&4) » *F 12 e (2.5)

We have used the convention (2.1).

The definition of thes physical region in terms of these variables
is rather complicated. For this and other related reasons, we introduce

=
also the Bali-Chew-Pignotti (BCP) varisbles “)’14).

As we are assuming that all the particles have the same mass m,
all the variables ti are necessarily negative * - Por each wvertex in
Fig, 1 we define a framz of reference. These framss are connected with a
given arbitrary frame by means of the Lorentz itransformations
2n» aT,...,an_+1. It is more clear to define *these group elements implicitly
by means of the formulae

( P = L () (m.0.00)

J Q= L(Qﬂ;iqz(lnﬂ)) (0, o, o0, -tﬂ) ’

L F:m = L (a'm-q qi(inﬂ))(mf 9, 0’ 0 )

In the general mass case, and for small values of i or of (n-1i},
some of the variables ti can be positive. In any case they are smaller

than the sguare of a certain differerce of masses.



(2.7)
J Q= L(2)(0.9,0, V&),

B = L (aoay (Xo)) (m, 0,0, o),
l Po :L(&o&?(](;)) (/m, 0,0, 0),

(2.8)

where a (X) is a boost along the =z axis with rapidity x and

M4y

>
W

{Sifr\l\x 2 (-t,,,)% (zfm)_’ ,

A 2\~
(o‘kxnm = (2'\'*\2* m) (2’“’") , X'm o,

M~

{2.10)

Cochy, = (-t -t )(ebt) S, Xime,
{Sunhi = (mz-t- ’t;—-t‘t-ﬂ)(-4t‘.m\,z)-'if 4-:'1, 2, ,m

. 2 -1
{ smhzoz (-to)z (2m) | (2.11)



Prom Egs. (2.6}-{2.8) it is @asy to show that the clements
-1

3{ = az("xiﬂ)aéﬂ 2, ' vz 01, M,

do not act on the 2z components and, ihsrefore, they belong to 3U(1,1).

=

One has to remark Lhat the four vectors (2.6)-(2.8) do not change

if we perform thie substitution

a, — a %, (¥).
K k 2 ¥

(2.13)
where 1.12(’6'3 represents a rotation ot an angzle T arpund the =z axis,

In terxcs of the varisbles B the transformation (2.13) takes the form
— u, (¥)
ak 3k Z 4

31(_.,_) uf('“ 35(-1 . (2.14)

This meane that if we parameterize the elemenis gy in the usual way

gi = “—2“‘;)&*(2‘-) "tg (94.) .

only the following BCP variabies ars rolsvantl.

(z.15}

t. «z 0,1, ,m _oa<'t.;<.0 )
¢ i
‘g i= Ot ., M, os%icw ’
L ’
- . . - o, mo Lw. 27
Wy = ‘i.-‘-r‘*-q ' 1z, © t

(2.16)
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Nevertheless, we shall often consider the scattering amplitudes as functions
cf the variables ti and 8 always keeping in mind that the amplitude

has to be invariant under transformations of the kind (2.14).

The conmnection with the variables 85 ig

3. = t-r-f -

* 41

- 5T ‘{(T(m ) QJT(-m t; t‘,_f) mk? +

'f‘('m +’ -t)( --L t )_} ! 4.':0“:'"*'“' -

(2.17)
For i=0 =and 1=n, we have to use the convention
kA
t = f = M
-4 m+g *
(2.18)
The funection T is given by
2 ¢ 2
T(a,b,c) - ottbeci - zab- 2ac -2be )
' ' (2.19)
From Eq. (2.17) we get the inequality
L
1 2
[l (mf 4. i)t‘l:)T(m;‘t«:;td'-ki)] (%Sh}‘:ﬂ 1)5‘3{ -\<
< -2 2 :
€T e )T i b )
“ * (2.20)



DECREASE IN THE MOMENT UM TREANSFERS

We indicate by Mn(x) the invariant amplitude for a process with
n+2 particles in the fiwal state. The symbol x sgtands for a set of
3n +2 invariants and can be considered as a point of a manifold 'fzn'
A permutation ¥ of the final particles induces a mapping G:of
JZII onto itself * « Clearly, as all our particles are identical bosoas,

the function Mn(x) has the symmetry property

M (Gx)= M (=) , =ell, .

By decrease in the romentum transfers, we mean the following statement:
the function Mn(x) is very small unless x belongs to one of the {(n+2)!
regzions [ﬁ?; defined, Tor each fixed permutation T, by the condition

that the (n+1) invariants

" 4 2 .
Loe(P-% P.) o <zo e, m
14 (A i’-‘."O “(3] (3.2)

are all small in absolute value. This statement can he translated inio the

ineguality, valid in the physical region,

M @ £ su / (?nx
I, ’ S“F{ﬂ( / (5.3)

-
where ths function fn(x) ig strongly decreasing in its arguments

. More stringent conditions on this function #ill be discussed

[t [senes |ty

in the next Section.

In order to justify this assumption experimentally, it is useful
to decompoSe the wvarious four-vectors into longitudinal and transverse
parts. We comsider first the region an corresponding to the identical
permutation. We choose the = axis along the direction of the inconing

particles and we write

= () (@) ]+ [@)+ @)']

In the general case the symbol x c¢ontains also indices describing ths

internal guantum numbers of the particles and Gi_ acts also on them.
]
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One can show that both the gquantities in the brackets are non-negative and,
*
therefore, they are both small if ti is small ). We easily get also

the inequslity

Ju

"ol
It

pe= [0 (BFTF < ctt (tff

(3.5)

from which we see that the transverse momenta p; are small. Of course,
v

this conclusion holds in all the regions Zlﬂ and we cbtain the

experimentally very well established result that the amplitude decreases

strongly with increasing iransverse momenta.

However, the assumption we are couslidering ig stronger than the
decrease with transverse momenta at least for two reasons. First, we zes

that in order to have the guantities

k .
G =-2 F
1=0C
(3.6)

small, it is not sufficient to require that the quantities P? are all
small, but, if k 1is large, a rnegzative correlation among these guantities

has to be present.

Second, the requirement of small momentumn transfers implies also
conditions on the longitudinsl momenta, as we see from Eg. (3.4). If we
congider the longitudinal momentum space introduced by Van Hove 1) we can
define the regions Ziﬂ; in thig space which are the projections of the
regions Zf; . Events outside these regions are expected to be rare.

A detailed experimental analysis of these Teatures seems still necessary

in order to get a conclusiom.

*) In the general mass case, (QE)Q ~(Qi]2 can be positive, but smaller
than the square of some difference of masses, so that our conclusion

is =ti11 waglid.
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The condition {3.3) is rather complicated, due to the symmetry of
the functions M_(x) with respect to the permutations of the final particles.

It is, thersfore, convenient to introduce different functions E‘n(x), which

are not symmetric, but have simpler decrease properties in the variables lti

With regard to the connection between the functions Mn and Fn’

one can adopt two different attitudes.

a) Yhe function M, is given by the sum of (n+2)! terms obtained by

permuting the final particles in the function Fn

M,n(xj = Z E-L ((’Drrx) .
L ' (3.7)

b) Yor a given choice of the ordering of the final particles, the funetion
Fn coincides with the function Mn in a given region r-n of the

space _rln of the kinematical invariants.

1 .
Then, if we indicate by f-n the region in _fln defined by

a0
x el = b=l
(3.8)
using the symmetry prdﬁerty of Mn we may write
M (:r.) = F (63 x) {or xé.r"
m n "o (3.9)

In order to get a complete information on M}:1 we have Lo assume

that

Ur =0, .
.

If we particularize the present scheme interpreting the function Fn
as the result of multiple exchanges along the chain of Fig. 1, Eq. (3.11)
is just a statement of duality. Different kinds of duality correspond

to different choices of the region r;f
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F(x): F(G)x) for xél;ﬂr: .

{3.11)

The advantage of the point of view b} is clear when we compute

]Mﬂ|2. In fact, from Eq. (3.9) we get immediately

x el .

at

RGN IACE "

If we start instead from Eq. (3.7), non-diagonal terms will in general

{%5.12)

appear.

We remark that if the region r21 is open and Eg. (3.10) holds,
o +s . . -
we can always find a continuous function Tlnﬁx) with support in r11

and with the property

2 m (Gx)=1 .

™ (3.13)
We omit the proof of tnis statement as we gshall give later an explicit

expression for (x}. Then, from Eg. {3.9) we have
Mo

M ()= ; P (Qf"‘)"lﬂ(@r*) ,

{3.14)

M s ZR(&] 7, 6 |
{3.15)

Comparing Eg. (3.7} with Bq. (3.14), we see that the good features of the
point of view a) are also present in the approach_b), which we shall

develop in the following.

Wow we show that, if we choose a continuous function fn(x)

such that



- 1% -

e 4,0, e (5.16)

it is always possible to choose the region r;_ in such a way that it is
open and satisfies the condition (3.10) and to define the function Fn(x)

in such a way that

CIERACH
(3.17)

For instance one can define rnn as the region where the ineguality

L) > s f (Gx)

holds. 1I% is c¢lear that in this region

{(3.18)

2 — ﬂ](f x 1
(3.19)
Outside this region, Fﬂ(x) is arbitrary and it can be chosen in such a
way that Bg. {3.17} is satisfied. In order to show that Eg. (3.10)

holds, cne has just to remark that

sep f- (6,%) > sup ‘fﬁ@nx)
LA i (3.20)

and, therefore, for every xe_o_ one can find a permutation (7 such that
Gz:c satisfies Ea. (3.18), namely x & r!r.

In this situation we can also choose a simple expression for the

funections Wln(x) introduced above. We have just 0 put

(5.21)

1,600 9,0 [ 20,6
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with

a,60= (.69 sar £, (6)
. 9({“ ()= 5:{'- ?'n (@,7‘)) . (3.22)

In conclusion, we have replaced the set of amplitudes Mn(x),
which satisfy the bound (3.3), with the set of functions Fn(x), which

satisfy the simpler condition {3.17).

Q@ FACTORIZATION

Now we discuss the second basic concept of multiperipheral dynamics,
i.e., @ factorization. The simplest kind of @ factorization, which
appears in most models, has been defined in Section 2. The decreaae of the
amplitude in the momentum transfers is taken into account by the Q fac-
torized models assuming that the single factors are decreasing functions of
the momentum transfers on which they depend. This remark, together with the
discussion of the preceding Section should make clear that the funetions
to which Q factorization is applied are not the amplitudes Mn(x), but

rather the functions Fn(x) characterized by Egs. (3.9) and (3.17).

The numerical @ factorization of Section 2 cannot be imposed as
an exact reguirement on the amplitude. For instance a k particle threshold
singularity cannot be contained in the expression (2.2). One could try to
approximate more and more the amplitude increasing the number k of
variables contained in each factor. Our attitude, however, is guite
different, as ocur aim is to formulate statements on the exact amplitude.

Therefore, we are forced to generalize the concept of O Factorization.

We discuss in this Section two rather different ways of achieving
this generalization, which in the next Section will be shown to be equivalent.
The first way is %o assume that the functions IFn(x)| have upper bounds
fn(x) [%ee BEq. (3.17)] which are numerically Q factorized. There is &
large arbitrariness in the choice of the number and the nature of the
variables which appear in each factor. If we want to take intec account
only very general features, as the decrease in the momentum transfers ti
and the polynomial boundedness in the subenergies ;1 it is sufficient to

conaidef the simple Q factorized upper bound



ke ™

. 4
{n (%) = ¢ ;Do [ CL('L”-') (:;a.) ] ’
(4.1)

where the funetion d{t) is suitably decreasing for large negative t and

. is an exponent of the order of one,

¢ factorized bounds of a more complicated kind can be divided in
two classes: those which, in turn, are majorized by a function of the form
(4.1) and those for which such a majorization is not possible. In the first
cage, 1f one is not interested in the details of the amplitude, one can Just
start from the bound (4.1). Examples of bounds of the second kind can be
devised, which still permit to develop the multiperipheral formalism. At
present, we do not discuss these cases in detail, as we consider them

rather artificial.

We stress that, besides the decrease in |ti[ and the polynomial

houndedneses in s, g very restrictive condition is implied by our Q

b
factorized bound,lnamely a limitstion on the behaviour of the amplitudes for
inereasing multiplicity n., By integration on the final momenta we can
obtaln an upper bound on the cross-sections an(s). Introducing also a
rather natural lower bound for the total cross-section 6’(5), cne can
prove 52) that the average multiplicity increases at most as logs. This
procedure can give rise to a first experimental test of the Q factorized

bound we are assuming.

If we introduce the BCF variables and we use Eq. (2.20), we realize
that the bound {4.1) implies a bound of the kind

Rele e[k )T

. J%.l- to \H-'m‘-tu dﬁ{ LT("'},{J ,{4'4-1) X
gm® Bem ” Vi, t.‘“ )

.
Az @

(4.2)
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The ssecond way of generalizing the Q factorization consists in
assuming that the functions Fn(x) can be expressed in the form (2.2), where,
however, the quantities B, K and A are not numerical functions, but
matrices of suitable dimension. The same argument given above for numerical
G factorization shows that an exact representation cannoct be obtained by
means of finite dimensional matrices. Therefore, we have t¢ consider
infinite matrices or, more exactly, operators and vectors in suitable
infinite dimensional normed spaces. The opportunity of dealing with normed
spaces 1is due to the possibility of taking into account the upper bhounds

discussed above, while the restricticn to Hilbert spaces would be unnatural.

Also in this case, there is a large arbiftrariness in the choice of
the varlables appearing in each factor. In the next Sectlon we shall adopt
a special choice, which is particularly suitable for further developments
and we shall prove that the two ways of generalizing the & Tfactorization
discussed above are equivalent. The same result can be obtalned with other

choices of the variables.

CONSTRUCTION OF AN EXACT QG TACTORIZED REPRESENTATION

The special kind of operator @ factorized representation, which
*

we want to study in detail, is given by the following formulsae

F(gnitn,3,.%)=

"

(3., t), TT Kt ,5 &) At)) |

.=0

t.¢o0 , 2 & SU("’;{) ) m=od,z !

4

(5.1)

where A(t) 1is an element of a Banach space &t {(which depends on "u),
B{g,t) 1is an element of the dual space &Jﬁ and K(t',g,t) is a bounded
operator from Gst to Gst,. The necessity of introducing several Banach
spaces, namely one for each value of 1, 1is a consequence of the redundant
choice of the wvariables appearing in the wvarious factors. We stress that the

guantities A. B, K are independent of n.

We define the product symbol TT. in such a way ithat the factors are

ordered with decreasing indices.
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The invariance of Fn with respect to the transformations of the
kind (2.14) iz ensured by the existence of the operatora U(x ,t] in
GST with the properties

\)O':t-ﬁ) K(tiﬂ ' 34‘ ' t*) U(a’; {:A'): K(tf*'t? “1—.‘(”5« uz{alf)/ ‘é-} ’
Ul t) Alk)= AlL)

U'(rt) B(s, t) < B (5%

(5.2)

From Eq. (5.1) it follows taat the functions Fn satisfy bounds
of the kind

'F’hI RS L(i..\;t“) ljo L(t*"L’ "E; f‘t':) q-(fDJ ’

(5.3)
where
[
L(§4) 2 IBG, &),
l
1 l(({j-iu)f{, t‘) P “ K(t}: fj"fdta'.)” ’
a(ts) > ” A
) (5.4)
Coaversely, we shall skow that
Proposition: Given an arblitrary sequence of continuous functions
E‘ (g,‘,{m;'"/?o/tﬁ) , nz0,4,2,- 3
(5.5)

waich are invariant with respcct to the trznslormations (2.‘14) and

sailizsty bounds of the xind (5.3), we can always find the vector valued
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operator valted functions

A{to) and the
and the

functions B(gr,t ),
satisfying the conditions (5.2)

P can be represerted as in Te. (5.1).

n
K(t1+19619tl)! U{r 5_:)
{5.4) and such that the functions

Froof:t We can assume, without loss of generality, that

bs, b)) = k(k,, & )= alt) = 1. -

I'r. the gencral case, we nave just zo divide all the gquantities by the

regpectlve upper wourds.
We introduce the auxiliary Banach space 61 y whose elements are

sequences

fnGob) pieh g t) S

ig a complex number and \f1, (F;”... are generalized [unclions
P Tne norm is defined by

eX measures.

where (f
o]

whnlck represent arbiirary bounded com

Al

o= 1l Z 1 G5 At G4

{5.8)

~r
in & similar way, we consider the DBanach space Cl,, whose elerents are .

sequences of measures of tae Xind

!-&0; - .
Y‘(ﬁ")’ TZ@" 34), . J (5.9)

5.8,

-~

with a defiritior of rthe norm similer to Eg. (

Then, we coneider tne bilinesr functionals, depernding oo toe

parameler 1 defired oy
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po
bleyry) < L jgd(a;t;,...,t;mﬁ;ﬂ 0t

-2 > me1y

oo o0
> zm_JiM@;,t;._.,f’ s g bt

“f’“ (ﬂ:: i:"'/ti:-:. ;3;«-1) ‘ﬁ‘_ (311-- !{“")W’ght) ‘

. ‘LJ‘DL At . o(,%a:_zfg‘; 43“_151{“ dy A,

{(5.10)

From the definition of the norms and from Egs. (5.3) and {(5.6), we get

(bt )] < IYIIgH

(5.11)

Now we de’ine 1ne operator H{g,t) in a and the operater
o~

(t'yg) in {4 in the following way

ot

[H(g»’tjf]ozo !
[H(&;t)ﬂ (Dwt“’...,a,f,): 5(s.97).

g((’ &)fm( ,r"\i’ ,9}/{) mze

(5.12)
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[Heat] -2,
[':l' (y’9)-‘1,1'”1(3.;{0:'";%“_, ) ﬁ...\):

: Ym (gaf{:")'“f-t'n-z. fg‘nri) 5({“*‘7-{')53(34“3*’) / ™21 '

{5.13)
where SB(g] is a normalized Dirac mesaure on SU(1,1) concentrated on
tae anit. It 1w éasy to sec thal thege operators have the properties

o
[HgH0= IH{E 9= 1,
{3.14)
f 5
Py, Hrty)- PEHCI)Y, )
{5.15)

r~
We del.ne also the operators V(Y ) 1in a, and V(Y ) in a,
g tollows

[V(ﬂ‘r]o = Y, N

[\/ (I) TJ-n (j‘n—. ’.&‘N-f £ e )t°) = T'n (u'?. ("7)3,,\_, ’ {'....,, P 30 '{oJ y

(5.16)

-~

{V (Y) Y],h (ﬁo;tﬁf"'} Qn_l): 7:,, (?.;{-W“‘r 31_'“2(*3'))
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They have the properties

Vi H (3 = Hish)g, ¥
VOYHE )= A(E 3000)

(5.18)

CP&,’\(, V(I)‘f): ﬁb({, \7(3»” , tf) . (5.19)

{(5.20)

The last equation is & consequence of the invarisnce of Fn with respect

to the transformations (2.14).

~
Pinally we define the vectors cdh & ({ and ﬁ(g)e @ in the
following way

(5.21)

(5.22)

5, 4
[po)] @)= $G5") , [pe)] o, marz.

They have thre properties

"“‘”‘ ”/3(3)”2 o | | (5.23)

V)4 = « .

V(x)ﬁ ®) = A(34()

(5.25)
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From gll these definitions, we get

F (3t 0 %): S G,

U H Cﬂq ' tt-) o()
e (5.26)

Notice that all the information about the functions FIl is

contained in the functional ¢ . The representation (5.26) is in general
not economical, as the space @ can ve much larger than necessary. In
order to eliminate this redundancy, we introduce the closed subspaces

0.c A containing the vectors ‘f guch that

P&, ¢)-

Fad
for any choice of qfe d . Then we introduce the quotient spaces

@)": a/Ot . (5.28)

From Eg. {5.15) we see that for any t°

{5.27)

Ha bty <G f ¢ .
{5.29)

It follows that for any cholice of +t', the operator H(g,t) defines an
operator K(t‘,g,t) from Gst to Gat" We define aleo the vector
A(t)@ @t’ which corresponds to the element g, € a From the definiticn

of the norm of a quotient space, it is clear that

[ & 9.6 <1

JA®] <1

(5.30)
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~
For each choice of 1t and of"é a y Wwe consider the linear

bounded functional € on Bt {that is an element of the dual space @ 1),

which acts on the element D& B‘t as follows ’
(¢,p)= Plt.v,¢) . ¢ .
(5.31)
From Eg. (5.11) we see that
bel < Il
(5.32)
We callMB(g,t) the element of BTI; which corresponds to the element
@(g)e . ciearly we have
18, ) < |AGI= 1 .
(5.33)

The result (5.1} follows from Egs. (5.31) and (5.26}, by successive passages
to the quotient spaces. The equations (5.30) and (5.33) show that the norms

satiefy the bounds (5.4) under our special assumption {5.6).

In order to build the operators U(Y ,t) we remark that from
Bq. (5.20) it follows that all the spaces (), are invariant under V(Y ).
Therefore, for any 1, V(Y) defines an coperator UfY,t) in a‘t
which, as it is easy to show using Bgs. (5.15), (5.18)-(5.20), (5.24),
(5.25), has the required properties (5.2).

We remark that the proof given above 1s based on an explicit
construction of the operator K and of the vectors A4 and B. We do not
exclude that other choices of the objects A, B and K could give an equivalent
representation of the same amplitudes. At this point, one should show that
the representation we have constructed is, in a given sense, the most
economical one. Here we do not give a complete treatment, but we limit

ourselves to the fellowing result:
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Proposition: If the functions Fn have the representation

n-1
A A

£ - Bl b T K (ko t)AG)

m

i (5.34)

where ﬁ; ¥ and 4 are matrices of dimension respectively {1 xrﬂ,
(I‘xr) and (I'x1), the spaces G;t constructed Ln the preceding

proof have dimension not larger than r.

Proof: From Eg. {5.10) we see that the functional (P can be written in
the form

Pl v, §) = Z_: R;(tf‘f)st; (%, ‘f’)

(5.35)

From the definition of the space @t we see that it containe the vectors

(P such that the quantities

(¢ 21,2,
Ei ,(f) ] Y ’

(5.36)
vanish. It follows that an element of the space G;t defined by Eq. (5.28)

is uniquely determined by the quantities (5.36), sg that th has dimension

not larger than 1.

6. THE INCLUSIVE DISTEIBUTIONS

In Section 3 we have discussed the decrease property of the ampli-
tudes in the momenturn transfers and we have seen that this property can
more easily be stated in terms of the functions Fn(x), which, however, are
not symmetric under permutations of the final particles. Irn this Section
we want to study some integrals contalning the amplitude, expressing them

in terms of the functions Fn(x).
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The most interesting integrals are the unitarity integrals, which
express the absorptive part of the non-forward slastic amplitude, and the
integrals which give the inclusive distribuiions and in particular the

total cross.section. We shall treat in detail only the second case.

It will also be convenient, generalizing a procedure due to Chew

14)

and de Tar y T0 express these ilntegrals in terms of BCP variables,

The inclusive distribution for r observed final particles can

be written as

M-

3x
&SE%-O;«SP-, ) [[2‘.‘ = 7;:[’5(1-41%‘)]

.C.,_(af'?;apo,“ ;E__’) )
(6.1)
where
oo Came2
Gm(a’pﬁ’e*“'/a—i)= (em) . 1
nz A (n+2 - 2)!
2 4 P Mt d'SE-
JMGR b)) SEen-T 8] o -
. =0 A= T 3
(6.2)

If we want to include the elastic scattering, n is equal to rT-2 or

to 0, 1if r<2Z.

Now we want to iatroduce the functions Fusing Fq. {3.15).

For simplicity we put

Yo = [Rool e

(6.3)
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The result can be written as

Gl R B R)s G G By R
(6.4)

where the sum i1s over the r! permutations of the observed particles and

GORE ) e T

{m+
R S s

L

-1
SR ) TT[stg)dg ]

& m+4 ! " x o
SR B TL[s(E- )0 (R)d% ],
(6.5)

where ”; means the product for 0<j<n+1 and J# Yareer s Vo_q
Hote that all the Tactorials have disappeared from Eq. (6.5). Remark also
that the functions Gr are symmetric in the observed four-momenta, while
the functions gI‘ are not.

Chew and de Tar 14) have developed a technique for introducing the
BGP variables as integration variables in integrals of the kind {6.5).
Here we describe a treatment essentially egquivalent, but more suitable for
our purposes. It iz also convenlent to introduce group theoretical

variables in the inclusive distributions by putting
a: L (LA) (."m, o,o,o)
P-L (LB) (00,2

P':: L (Lo) (mfo!ofa)

-

-
L
"

e
3%
o0

S
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We rewrite Egs. (2.6)-(2.8) in the form

C?.:: L,(Q 0,0, 0, Jﬁﬂq)
Q L(m (1;,,))(%0,0,\{-*2), o, ,m

(6.7)

P = L@a (L) ("4, %),
FL = L-Cah+|) (”“;u v, é/) .

(6.8)

s ¥ o =01 = P! =F1. W i
It ig clear that we must have Ql Ql, PA PA and PB PB e impose
these constraints by means of appropriate 8 functions and we write

Ey. (6.5) in the form

(& ' & 4 }ff " ?z;)
G

O

I
i
[

[
o)

mz=m 05%4‘.-<%H_§m41

[ [£a- d)dadaJsTn )0 sy

From BEg. {6.7) and the Lemma of the Appendix A we get

3(6,-6)- 2 S (6-8) % (3)

(6.9)

(6.10)

where 25 is defined by Egq. (2.12). In a similar way we get



k

s‘(ﬁ-’i): %1 S(5, ) % (":‘%“&‘ (ia)) )

(6.11)

Sﬁ(&‘_%)___ fn_"_:S(mf_mz) %5((,;%:12_(10)) |

B )e 22 Sl )8 (5)e,,)

{(6.12)

(6.13)

The Lemma of the Appendix B permits the substitutions

S(E-)9 () d Q4 —

[}

1
-_;—_IT(W ¢ ) - 1] dit. Gz{; d{':_‘ , 42} qm o, (6.14)

bt

5 (8 -m)0(F )4 Q4 F,

— 4 [T ™, A ,f)] da a(m-n'zau' ; (6.15) |
S )P Q AT

m 14

"‘:;"[T(m l’: )]J’:',L a d,mn”'off,

(6.16)
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We perform all these substitutions in Eg,. (6.9) and we perforr,
using the S Minctiors, the integraltions over té,.-.,t%, mﬁ2 and

méz. In this way we get

(Gt 5™ T

= 04 ¢ LM

] Bf; (1w 1000 %) ({:h'i:)msf(e:q,ai (x) 5, (s %)

-t . . m I

L5 et [T256) 4]
[ e af af

3= 0 A SR B

(6.17)

where the convention (2.18] haz been used.

Equation (6.17) has the remarkable property that all the kine-
matical terms which appear in the integrand are Q factorizead. More
exactly, each factor contains at most two consecutive variables ti’ ti 1
ard only one group element ;- Notice that in the preceding Section we
have chosen, for the funciions Fn’ a § Tactorized representation which
has just the same structure and is, therefore, especially suitable for

beirg used in connection with Eg. (6.1?), as we shall see in the next Seclion.

TEE NULTTIPERIPHERAT, TNTEGRAL EQUATION

In this Section, we apply the Q Tactorization procedures
developed in Sections 4 and 5 to the integrals (6.17) of the presceding
dection. In this way we shall naturally introduce the multiperipheral

integral equation.
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First of all, we remark that the procedures developed in
Section 5 can be directly applied to the function “} n(x) defined in

Eq. (6.3), leading to the coperator Q factorized representation

T (tmant)s (Bt ,wﬁ Hoa b)) AG),

(7.1)
Alternatively, one can develop a Q factorized representation for ths
functions 1ln(x) and to substitute it into Eq. {6.3) together with
Eq. (5.1). One gets easily in this way an eguation of the kind (7.1).
This procedure gives the possibility of connecting the quantities @L,
65 andnyllwith the analogous quantities A, B and K. Moreover, it can

be generalized to the study of non-forward unitarity.

Starting from Eg. (7.1}, we define the operator valued kernel
- !
2;& t. @ a. t)). 1 [ 't z
7= (o{-l) oy v/ v i = ———}——;an {V‘ T(‘h\, 2 vie? t“)} .
t 2
“}ﬂ(tiﬂ, 3¢ y C) S_ (jb) , vzo . m-t )

(7.2)
and the vector wvalued functions
. 1 . e J
- z
B o te) 577 [T, m L))" -
. $ t
*(3.) Bl %)
{(7.4)

A ) = Z"ITT [T ("t ,m‘)f A )
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Then Eg. (6.17) takes the form

(bbb 5 5

= <
=m oLy, ¢ 'u-i ~ M+

/" a0 '“*( (), ”“Wf %),
Q) sllaenn) - T [ Gt )]

at - at,ﬁh a{a‘ a(‘;i

w44

{7.5)

This expression can be gimplified introducing the operator valued

kernel

_@, (\':: a.'-'a.' t) = §(t-¢) S{(a."fa.) -
+ (\;ﬂ (f. 4-1 E) 4']&;,{ (t,’a.-aa',.; tj .
S e ) e

(7.6)
which is a solution of the integral equation

Q[ d%t) = SEHSEy .
. j F (. a'da",%") R (t e %) At A

(7.7)
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Then one can write the function ‘s as & sum of at most four

integrals containing the kernel R_ For instance, we have
g (L L ) zl'r 6
. ‘G
A’ ) (B (a ct 'E)}

B (4,4, ) a(f)) 50 i) 4 A Ll

(7.8)

Goht) = [meE(Busy,
f(tdat) At )) 8 (2x)2h) j-;’;.‘ NG @)

. 83 (S, ))J d% {5 4 dt, dt +

[E8 ) (ss(*' e R )
‘}_A ({_;af'iafﬁ) @ ({;)C‘{’q’ t) Q ({.9 %1 5;3(%(_753)51:?:)

mt

et g (Vo' (i'J) db da d’ d%" o a"
M dedtdt”

(7.9)
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where

oos.‘w;;f: = [zmt-é)(z-n{‘f“ ) 2’:‘ s 0
simh = (e b ) (6851 )7

(7.10)

The first term in the right-hand side of Bg. (7.9} refers to the
cage 1n which the observed particle is the first or the last produced
particle (in our conventional ordering); the second term takes into
account all the other cases. The gensralization to two or more obhserved
particles is conceptually simple and gives rise to four different integrals.
In this case the digtinction between the functions Gr and Qa r! which is

irrelevant for r=0, 1, 1is important.

We remark that Eq. (7.7) has essentially the same structure as the
multiperipheral equation derived by Chew and de Tar 74), apart from the
fact that our kernmels are infinite dimensional operators for fixed wvalues
of their arguments. It is just this last feature that permits to consider

(7.7) as an exact eguation.

The Lorentz invariance manifests itself in the fact that Eg. (T.?)
contains a convolution over SL{2C). As a consequence, it can be diagonalized
by projection on the irreducible representations of this group, sccording
to the techniques developed in Refs. 26)—28). As it is well-known, the
projected egquation determines the singularities in the complex )\ plane,
which control the asymptotic behavicur of the total cross-sections and of

the ineclusive distributions 20)_23).

Equation (7.?), conplemented by the sppropriate bounds, can be
considered ase an exXact dynamical esquation in the same sense as the
Schroedinger eguation: as the Schroedinger equation gives the scattering
amplitude in terms of a potential which is unknown, but energy independent,
in a8 similar way Eq. (7.7) gives the inclusive distributions in terms of
a kernel :!!& which is also unknown, but independent of the total energy
and the multiplicity.
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APPENDIX A: MBEASURES 0¥ SL(2C) AND RELATED FORMULAE

If H is a subgroup of the group 4, we define g measure on A,

which we indicate by gq(a) and has the property

((a) 5, () da = | £14)dk

A H {a.1)

where dh is the invariant measure over H with an appropriate rormalizatlion,

We are interested in the case in which A =35L(2C)

use the simpler notations

and we sghall

(a)

{1
<7
+ 120
e ——
o
T

L)

SU(l]
- 3
cww)(a)z 5 (a)
{A.2)
We define the four-vectors
4Qw= H_w_,ojoj 0) ; W>o)
uQW: [oJoJo) U"W)) W<O;
(a.3)
and we consider the measufe
4 i
3 [L(“JQN_ Q] , WEe (ae0)

Clearly, this measure is concentrated in the set defined by

(A.5)
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where

H = Sulz) fon W >o

w J
.Hw: jU{‘!,'I) fo’z W <o 5
(h.6)
and is invariant with respect to the transformation
o — ah , heHw, .
(8.7}
Therefore, it must have the form
'Ll Q- Q 1=yW §lu-w) 5
o W w'| T ¥ + q) 5
oo odigm W',
t} {4.8)
Ir. order to determine the function ]’(W}, we have 1o choose

the normalizations ol the various invariant measures. For 51(20} we use

the parametrization,

a = ulpbu o) u(v)a (8)u (9)u (p)

0 pc T, 0BT 0gveam, gy, 0<BCT, 05/4'<2ir‘,
(4.9

and wWe write the invariant measure as

da = (16) dp dert dy [sinhg) dy desd dy'
(4.10)

For infinitesimal elements it is simpler to use The parametrization

L, (<) = 5;K+(7;.c 3 q{xzuﬁaiﬁkkmiJ%fD'

(a.11)
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arnd the invariant measure irn ar infinitesimal nelghbourhcod of the uait can

he written in the form

b -4
Ola = (”’) AV[,Q va[“d'v{h dmz d723d731 .
{£.12)

The invariant measure on SU{(2) is defined by

L = uZ(#)uY(@) u, v) 05/14hr)o$®57 D¢ v <IT,

GlsL.= (MTZ) 4 0’}1 afv JM@'

and near the unit it takes the form

{£.14)

3 _2yv!
0! L. = (’léu ) ot’?u d"ln AGT.M . ( |
£.15

The analogous formulac for SU{1.1) are

b= () e (5) w V), 0<pCHT, Deg 08V LT,

(A.16)
Aho= o) dp iy deds
Jg‘a _ - (&.17)
= (16 J a{'rzu Afvlo olwloz
(a.18)

Comparing with Eq. (A.1) we see thnat near the unit we can write

3

S () = Tl Sty Dol e
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5_?{*) = T-z 5{713) 5(72;) 5(?03) *

In the same approximation the left-hand side of Bg. (A4.8) takes the form

S (- at) S, ) 5lof ) sl f0), Wso,

(a.20)

(n,21)
5 (- ) g, ) S e ) 3y ) e,
(a.22)

Comparing Eqs. (A.8), (A.19)—(A.20) we have for both the signs
of W

glw) = 2T :

Wl (n.23)
In conclusion, we have

Lemma 1 If Q, is given by Bq. (A.3) and W' is different from zero,

we have

. ) 3 : !
b [L1a)Q,-9,) = 2 Flw-w') 5, (=) * < fian W
W w ' h![ x 3}

(a.24)
The numerical coefficient is correct only if the invariant measures

are normalized as in Eqs. {A.9)-(4.18).
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APPENDIX B: A TRANSFORMATION OF VARTABLES

We consider a palr of four-vectors Q1, Q2 and we want to write

them in the form
L (a) Q,
L (a) @

—
D 0O
L W

i b

(B.1)
where a €A =SL{20) and the pair o 62 is a representative element of
an orbit in the space of the pairs of four-vectors. These orbits can be

labelled by means of the parsameters

bV = (694 ]zs qu i (ng ]z 3 qu = (sz-cgé )2 J

4
(B.2)
and of some other index, as we shall see at once.
It is useful to consider the gquantity
' )
A= q[(Q"Qz)“ W'Nz] =T {waj“fzjws) )
(B.3)
where
Y 2 z 2
| (a,[r,c) = a +b+e - gab-zac-2be
(B.4)

e consider only orbits of the Ffollowing "general" kinds. The

orbite we do not consider form a =et of zZero measure.

a) W1:>O, Z12>O. We choose the representative elements

(?2, - (eﬁr:

D>

1

=,

g

=

)

=
[27)

(B.5)



o) W, <0, O >0. ¥e choose

1
Q, = (o, 0 0, |, €= t1,

! 2 - {3.6)

!

&)

= W, W,
[0,0) b"'zf%'f s Wi v .

20-W, - (5.7

Tha case W1t>0, [}':G cannot appear il ihe four-vectors are renml.

We cail K tkhe suvzroup of A containing the transZormations
which lesve é:,I and G, invariant. Tt contains the rotations arcund ins
% gXig Lo the cases "J‘ and b} ard the boosts mlong the = axis in zhe
case c\ It is clcar that the four-vectors QT and Q2 given in Eq. B“l}

do not change if we perforr a transiormation of the kind
&£ P

L — ak k e K

.
Luz
T

-

and, therefore, we may consider them as furciions of W1’ W, W,, € , and

= -

f:aj, wnera [a] 18 ar element of the coset space A/K.

. . . . ) — v )
We consider now an Invariant messure 4 I:a_i on A/¥, il.e., a

measure with the property

) Al = | flrad) de] | ale.

Al A /¢ (B.9)

¢ unlrmodular, thiz measure exists and 1s vnique up to a
s
-

As A andg E ar
340

constart factor o If we fix thas rormalizations o the invariaat meazires
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en A and K, we may choose the normalization of d5[:a] in such a

way that

H

F () d LTl | flak) de

A ﬁﬁe K (B.10)

We have indicated by a  a representative element of the coset [:a].

Kow we consider the function

F(Q”Q;) = F(W,)W“W”é,_&) =

= t[LQ, L)a,]

(B.11)
which, as we have seen, can be considered as a function of the coset [:éj.

We are interested in the following change of integration variables

1

T-|fle.Q,) 4, 4'Q,

= éz dwqdwz ‘{Ms I(\\(”VJ“W‘) Ol;[&:l F(W”WZIWUE, G'J -
LYY, (B.12)

The sum over é' is not present for @A <0O. In the domain of

integration of the last integral, we have to exclude the region _W1I>0,

A <o.

Qur aim is to compute the Jacobian J. The fact that it does not
depend on a 1is a consequence ol the unigueness of the invariant measure
on A/K. From the invariance of the measure d4Q with respect to time
inversion, 1t follows that J does not depend on ¢ . It is clear that
the general form of Eq. (B.12} does not depend on the special choice
(B.5)-(B.7) of the representative four-vectors ﬁ1 and Qz. Also the

special form of the Jacobien J 1z independent of this choice.
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Now, in order to compute the jacobian J we can use the choice
(B.5)-(B.7) and the invariant measures given in Eqs. (A.9)-(A.18).
cases a) and b) we ugse for the group K

In the
the parametrization and the
invariant measure
K= w, (x) , 0¢pchr
- =1
Ak - (4r)™" g 2 (4T) dw
Mo * (B.13)
and therefore for infinitesimal transformatvions
A T fy dy dy dy d
0 = -
[ ] 4 ‘110 "20 73;; 72.3 1731 ‘
(B.14)
In the case ¢} we put
k:qx[gj , "< g cteo
J -4 -1
k = (47) A% ~ (4w}
[ 2 710 g (B.15)
and for infinitesimal transformations we have
' T d
d[a] = -~ dn dv dy do, (I
4 20 13, I12 23 31 (B.16)
As the Jaccbian J does not depend on a, we can compute it,
using Eas. (B.1), (B.12), (B.14) and (B.16). The calculation is simple and
in all the cases a), b}, ¢} we obtain

Tlw, ,w, W)= (ar)” [al”

(B.17)
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It ig useful to summarize the results as follows:

Lemme 2 We consider the transformation of variables

11

F[whwz,ws;é; a) ]C[L{a“)&ﬂl"(aJaz}

V

(B.18)
where the palir of four-vectors 51, ﬁ2 is a representative element of

an orbit in the space of the pairs of four-vectors, and depends smoothly
on the parameters W,, W,, W.. If A =T(W1 ’WE’WB) is positive, they
depend slso on an index € =2%1. We indicate by X +the subgroup of

4 =8L{2¢) which leaves 5'1 and GQ invariant. Then, the function (B.18)
can be considered as a function of the coset [sﬂ of A/K. I we

indicate by dBI:a_-_] an invariant measure on A/K, we have

fla,, Q) d'a, d'q, -

= @r)" 2 [, dw, | T (w,, W, W) "
’ "Is[“] f(vdq,m,whga) ,
(B.19)

where the sum over § disappears in the region A <0 and the region
where A is negative and zome of the parameters Wi are positive

has to be excluded from the integration domain. In the region where A
ig positive, we can use the invariant measure dGa on A instead of
ds[eﬂ. The numerical factor is correct only if the measure dSEzzﬂ

is normalized as in Egs. (B.14), (B.TG), or in the casge ﬁ>o, if

d6a is normalized as in Egq. (A.10).
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FIGURE CAPTION

Notations Tor the four-momenia in a production process.
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