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We have performed density functional theory (DFT) based calculations for aluminum in extreme
conditions of both pressure and temperature, up to 5 times compressed ambient density and over
1 000 000 K in temperature. In order to cover such a domain, DFT methods including phonon
calculations, quantum molecular dynamics, and orbital-free DFT are employed. The results are
then used to construct a SESAME equation of state for the aluminum 1100 alloy, encompassing the
fcc, hcp and bcc solid phases as well as the liquid regime. We provide extensive comparison with
experiment and based on this we also provide a slightly modified equation of state for the aluminum
6061 alloy.

I. INTRODUCTION

The importance of aluminum as a material subject of
scientific investigation as well as an essential and ubiqui-
tous material of application of all sorts cannot be over-
stated. As such thorough understanding of aluminum’s
thermodynamic properties is of primary interest, and has
been explored through numerous experimental and the-
oretical studies. In particular experimental approaches
continue to press into the regime of extreme conditions
of pressure and temperature, where aluminum is both
examined to generate fundamental results and used as
a standard1–3. Yet experimental results in the so called
warm dense matter (WDM) regime, which can be roughly
characterized as having densities ranging from ambient
solid density to several times compression and with tem-
perature from a few thousand to a few million Kelvin,
do continue to be difficult to obtain and sparse. Equally,
theoretic approaches for WDM suffer from the difficulties
of describing fluids composed of moderately to strongly
coupled, partially ionized ions and quantum degenerate
electrons4.

In this work we examine the thermodynamic properties
of aluminum through density functional theory (DFT)
based methods. This includes calculation of the cold
curve and the pressure induced phase transitions along
it. Further through analysis of the phonon spectrum
the response of the solid phases to temperature is ex-
amined. For the liquid and WDM regime we perform
quantum molecular dynamics (QMD) simulations incor-
porating both orbital-based (Kohn-Sham) and orbital-
free DFT. This combination of methods allows us to ac-
curately characterize aluminum from melt to the ideal
gas limit. Finally, these results are used, in conjunction
with the best available experimental data, to generate
new tabular multiphase equations of state (EOS) for the
nearly pure aluminum 1100 alloy and the aluminum 6061
alloy which is commonly used in shock experiments. The
6061 alloy is less dense than aluminum 1100 and demon-
strates a slightly stronger shock response5. While previ-
ous EOS for aluminum have been constructed6–8, none
provide the high pressure solid phases, or have had ac-
cess to the broad range of high accuracy simulations we

have performed to constrain particularly the liquid state.
However, several recent EOS have been constructed for
different materials which are both multiphase and inclu-
sive of the warm dense matter regime, and have also
highly relied on simulation data9–11.

II. DFT CALCULATIONS

A. Crystal Phases: Cold Curve and Phonons

Calculations in orbital-based (Kohn-Sham) DFT were
performed using the VASP plane wave code12, uti-
lizing the Perdew-Burke-Ernzerhof (PBE)13 exchange-
correlation functional and a PAW pseudopotential14 with
three electrons in the valence space. We also compared
local density approximation (LDA) exchange-correlation
calculations for the cold curve and found better agree-
ment with the known zero temperature density using
PBE15. Total energy calculations employ a plane wave
cutoff energy of 300 eV, a k-point mesh of density
60 Å−1, and the linear tetrahedron method with Blöchl
corrections;16 the self-consistent cycles are converged to 1
µeV. Force calculations rely on the same parameters with
the exception of converging the self-consistent cycles to
0.01 µeV. The molecular dynamics (MD) simulations em-
ploy a 4×4×4 k-point mesh, Fermi-Dirac smearing with
a 0.1 eV energy scale, convergence of the self-consistent
cycles to 10 µeV, and a time step of 5 fs.
We have calculated using Kohn-Sham DFT the cold

curves of close-packed fcc, hcp, bcc, and dhcp phases of
aluminum. At zero temperature fcc is the ground state
up to a pressure of 176 GPa, where Al transitions to
the hcp phase, and then at a pressure of 373 GPa Al

TABLE I: Parameters from the DFT calculations for alu-
minum

ρ (g/cm3) B (GPa) B′ θD (K)

fcc 2.711 81 4.13 385

hcp 2.686 76 4.14 367

bcc 2.645 71 4.12 355
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FIG. 1: Phonon spectrum of fcc aluminum at the experi-
mental density. Experimental data stems from Stedman and
Nilsson20. Phonons calculated in the quasiharmonic approx-
imation show overall good agreement with experiment; dis-
crepancies are not due to short comings in the DFT itself but
arise from temperature effects. These effects are included in
the frequencies extracted from molecular dynamics (MD) sim-
ulations, which show excellent agreement with experiment.

transitions to the bcc phase. These results are consistent
with earlier DFT calculations17,18. Table I lists the calcu-
lated parameters of the cold curves, i.e., the equilibrium
density ρ, the bulk modulus, B, and its pressure deriva-
tive B′, along with the Debye temperature θD (evaluated
from the phonon spectra described below).

In order to include thermal effects, we have performed
calculations of the phonon spectra. Figure 1 compares for
fcc Al the experimental data with the results obtained
from two methods, the direct force method19 and by
extracting the frequencies from MD simulations. Both
methods rely on supercells consisting of 4 × 4 × 4 fcc
unit cells of one and four ions, respectively. The former
involves displacing one ion and calculating the Hellman-
Feynman forces on all ions, from which the force con-
stants are evaluated and used to find the phonon fre-
quencies in the quasiharmonic approximation. The latter
relies on constant-energy MD simulations; the atomic po-
sitions are used to evaluate the dynamic structure factor
for wave vectors commensurate with the supercell, the
results are then fit to Gaussians to find the frequencies
reported in Fig. 1.

The phonon spectra were then used to evaluate the
free energies of the system for each crystal structure at
a sequence of volumes for a series of temperatures. This
allowed us to map out the phase boundaries by calculat-
ing the Gibbs free energy. Here we found good agreement
with the all-electron calculations of Kudasov et al.

21 One
key feature of interest is that the hcp phase does not ex-
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FIG. 2: Pressure isochores for liquid Al showing the transition
for Kohn-Sham to orbital-free calculations. The densities are
8.5, 7.5, 6.5, and 5.5 g/cm3. The principle Hugoniot from the
EOS is shown as well for reference.

tend to melt and there is an fcc-hcp-bcc triple point at
about 255 GPa and 2900 K.

B. Liquid Phase: QMD

Kohn-Sham based QMD simulations have become the
gold standard for calculations of warm dense matter. The
success lies in the accurate treatment of the quantum na-
ture of the electrons, through the Mermin-Kohn-Sham
DFT22, and the ionic, possibly strongly coupled, fluid
motion, through the molecular dynamics of the classically
treated ions. Yet this approach suffers a prohibitive scal-
ing issue with increasing temperature due the increasing
number of Kohn-Sham orbitals that must be calculated
to obtain the electron density. An alternative approach
without such issue, is provided by orbital-free DFT where
the electron density is found through direct minimiza-
tion of the total free energy. The issue here, however, is
the accuracy of the necessary approximation for the ki-
netic (plus entropic) free energy functional, Fs[n]. While
the simple Thomas-Fermi approximation has been used
successfully at very high temperatures, there is signifi-
cant loss of accuracy at lower temperatures23. Recently
we have developed and applied an approach correcting
the Thomas-Fermi approximation, FTF ,through an ad-
ditional density gradient term in which the leading co-
efficient, λ is determined by matching Kohn-Sham cal-
culations of the pressure at lower temperatures of 5-10
eV24,

Fs[n] = FTF [n, T ] + λ

∫

|∇n(r)|2

8n(r)
dr . (1)

This then allows for extension through very high tem-
peratures. It is this approach we use in this work, for
which the development and implementation details may
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FIG. 3: Pressure isotherms for liquid Al with temperatures
of 8, 6, 4, 2, 0.86, 0.39 eV (upper panel) and 100, 50, 30, 20,
15, 10, 8, 6 eV (lower panel).

be found in Ref. 24. However, unlike in that work, here
we found the coefficient of the gradient term to be neg-
ligibly small, and so we have effectively performed for
aluminum Kohn-Sham calculations up to temperature of
6 eV and Thomas-Fermi calculations above that. The
overlap of the Kohn-Sham and orbital-free calculations
can be seen along several isochores in Fig. 2, here the
differences are less than 2% in the pressure, while one
can see errors of 30% or more when using Thomas-Fermi
at lower temperatures25.

In the Kohn-Sham QMD we have used the plane
wave code Quantum-Espresso26 to perform calculations
with periodic unit cells of 60 atoms. We employed
the PBE exchange-correlation functional and 3-electron
PAW pseudopotentials27 as in the crystal case (albeit us-
ing a different code). For the temperatures and densities
ranges we calculated, it was sufficient to perform gamma
point calculations. For densities above 8.5 g/cm3 and
temperatures at 6 eV and above we used an 11-electron
norm conserving pseudopotential17, which enabled exten-
sion to densities of 13.5 g/cm3. The plane wave energy
cutoffs were 30 Ry (1 Ry = 13.605 eV) for the 3-electron
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FIG. 4: Phase diagram for aluminum. The solid curves are
the principle hugoniot, melt curve, and principle isentrope,
from top to bottom.

PAW and 100 Ry for the 11-electron norm conserving
pseudopotential.
In the orbital-free calculations we used 72 atoms and

the density was optimized on a 643 grid. We used LDA
exchange-correlation for convenience in the orbital-free
calculations, as the difference between PBE and LDA re-
sults are negligible with respect to the uncertainty aris-
ing from the orbital-free kinetic approximation, particu-
larly at the elevated temperatures above 6 eV. Addition-
ally we used a local pseudopotential based on average-
atom Thomas-Fermi calculations23, with a cutoff radius
rc = 0.6rWS , where rWS is the Wigner-Seitz radius.
The results are shown in Fig. 3. In the upper panel

the lower temperature Kohn-Sham results (KSMD) are
shown as well as the overlapping calculations of the
orbital-free molecular dynamics (OFMD). In the lower
panel the extension to high temperature is shown, along
with the agreement of the Kohn-Sham results at low tem-
perature. Additionally the solid curves show the results
of our new EOS, which will be described below.

III. MULTIPHASE EOS

A. Construction

The overall EOS consists of the liquid phase as well
as the ambient solid fcc phase and the higher pressure
crystal phases hcp and bcc. We constructed each of the
four phases separately and then determined the phase
boundaries by consideration of the Gibbs free energy28.
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FIG. 5: Ambient pressure thermal expansion a) in solid and liquid phase. The EOS agrees with the aluminum 110031,32 and
the liquid data33–38. For comparison the pure aluminum39 fcc phase thermal expansion is shown. Experimentally determined
derivative properties of the bulk modulus39 b), specific heat40,41 c) and the linear expansion coefficient42 d) show good agreement
with the EOS.

For each phase we used the standard, but non-unique,
decomposition of the total Helmholtz free energy into
the 3 terms,

F = F0(ρ) + Fi(ρ, T ) + Fe(ρ, T ), (2)

where F0 is the zero temperature energy curve, and Fi

and Fe are the thermal contributions of the ions and
electrons respectively. Each component utilizes various
models. The calculated DFT cold curves, and phonon
derived Debye temperatures (this is all we are using the
phonons for) are inputs for the EOS. We can also derive
other model parameters, such as the Grüneisen param-
eter from our grid of KSMD calculations for the liquid.
With a candidate EOS, we can compare the pressures
from the EOS with those from QMD results, as well as
compare constraining experimental, and other theoretical
data, which then allows us to refine the parameterization
of our models.
First, we consider the liquid phase. Here, we used the

model of Johnson29 to ascertain Fi from near melt, where
ion coupling is very strong, completely through the ideal
gas limit at very high temperature. The QMD data is

essential to determine then both, F0 and fix the parame-
ters of the ion model such that the transition to the ideal
limit is physically correct. Additionally, for Fe we use the
Thomas-Fermi-Dirac average atom model. This electron
model is used for all phases though it is only a significant
contribution in the liquid phase. As shown in Fig. 3 very
good agreement is found between the EOS and the QMD
results.

In all of the solid phases we used a Debye model for Fi.
Here the DFT calculated cold curves, from Sec. II A are
used to determine F0, while the phonon calculations de-
termine the Debye temperatures. This provides the solid-
solid phases transitions both along the cold curve and at
finite temperature. One caveat, is that the DFT results
are subject to error in the exchange-correlation approx-
imation that is not negligible at low temperature. For
example, our DFT (PBE) equilibrium density is 2.711
g/cm3 whereas the experimentally determined value is
2.734 g/cm3 15. Thus our EOS cold curve is shifted some
from the DFT results for the fcc phase to agree with the
experimental data, as will be shown in the next section.
In the other solid phases where no such experimental
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FIG. 6: EOS comparisons with shock data: a) Shock Hugoniot velocity data for aluminum 11005,43; b) Sound velocity along
the aluminum 1100 Hugoniot44–46; c) Melt curve data47,48 for pure aluminum, including QMD based results49; d) High pressure
shock data53–75 along with our KSMD and OFMD results.

data is available we have assumed this shift to be global.
Further details of the EOS models are given in the Ap-
pendix.

B. Results

To begin we consider, in Fig. 4, the overall phase dia-
gram to 500 GPa and to temperatures well above melt.
This encompasses the DFT predicted zero temperature
phases transitions of fcc→hcp at 176 GPa and hcp→bcc
at 373 GPa. Additionally the Debye temperature calcu-
lated from the DFT based phonon analysis, along with
the Grüneisen parameter determined from the thermal
expansion data of the fcc phase, fix the phase boundaries
including the fcc-bcc-liquid triple point at 195 GPa and
5650 K, and the fcc-hcp-bcc triple point at 255 GPa and
2900 K. It has been shown elsewhere that the bcc phase
is stable up to 3.2 TPa30. Also shown on the plot for
reference are the principle hugoniot, the melt curve, and
the principle isentrope.

Next, with some finer analysis we examine the am-

bient isobaric properties of aluminum. In Fig. 5a we
show the thermal expansion from the EOS compared the
the available experimental results for the aluminum 1100
solid and liquid aluminum. Additionally the expansion
of pure aluminum is shown, which illustrates that the
essential difference in the expansion is a shift in the den-
sity of 0.1 g/cm3 from 2.712 for aluminum 1100 to 2.70
for pure aluminum at 298 K. This then suggests that for
some derivative properties, such as the expansion coef-
ficient, that benchmarking of the aluminum 1100 EOS
to the available experimental data of pure aluminum is
valid. Figure 5b-d shows the bulk modulus BS , the spe-
cific heat capacity Cp, and the linear thermal expansion
coefficient α for the fcc phase at 1 atm pressure. The
EOS is in very good agreement with the experimental
data which is for both single crystal aluminum and oth-
erwise pure aluminum. Of note these EOS results are
highly dependent on the Debye temperature, for which
we haven taken the value of 385 K directly from the DFT
calculation. Given the good agreement then we are con-
fident in using the DFT derived Debye temperatures for
the the higher pressure hcp and bcc phases as well.
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FIG. 7: Shock release data for 6061 aluminum80,81. Adiabats calculated from the EOS for the experimental release points show
agreement within the experimental errors of the measured final states.

Next we consider the shock compression and high pres-
sure melting. Figure 6 shows the shock Hugoniot exper-
imental data for aluminum 1100 with our EOS. In Fig.
6a it is of note we plot Us − up on the y-axis for further
clarity than the standard Us vs. up plot76, where Us is
the shock velocity and up the particle velocity. We have
marked the shock melt which is at up = 4.3 km/s and
one can see the complete transition to the liquid phase by
the change in slope at up = 5.3 km/s. In Fig. 6b we have
plotted the sound velocity Cb, along the Hugoniot, where
the dotted line represents the melting region with the fcc
phase given by the solid curve to the left and the liquid
phase, the solid curve to the right. Then in Fig. 6c the
temperature along the Hugoniot is shown together with
the melt curve. The melt curve is seen to be in very good
agreement with both ab initio QMD results49,50 and ex-
perimental results, including the shock melt at 125 GPa
and 4700 K51. The entropy increase at melt and ambi-
ent pressure is slighty higher at 1.68 kB/atom compared
with the calculated value of about 1.3852.

Extending now to shock compressions significantly
above the shock melt, we consider various experiments
of nearly pure aluminum. Those experiments are com-

pared with the Hugoniot calculated from the EOS in
Fig. 6d. Additionally we show the points calculated
along the Hugoniot directly from our QMD simulations,
which are in agreement with previous all-electron77 and
pseudopotential78 calculations. These points are deter-
mined by the Rankine-Hugoniot jump conditions

Ef − Ei = (Pf + Pi)(Vi − Vf )/2 , (3)

(Pf − Pi) = ρiUsup , (4)

ρf = ρiUs/(Us − up) . (5)

for the internal energy E, pressure P and volume V be-
tween the initial and final states. The conditions also
connect the experimental shock Us and particle up veloc-
ities with the thermodynamic states, which relates Fig.
6a with Fig. 6d. For the initial state Kohn-Sham DFT
is used to calculate the energy and pressure at the ex-
perimental initial density of 2.712 g/cm3 and in the fcc
phase. Then QMD is performed to find the temperature
and density conditions with results that satisfy the jump
conditions.
In transitioning from the orbital-based Kohn-Sham

calculations to the orbital-free DFT calculations the
change in pseudopotential used requires accounting for
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ment with EOS.

a shift in the zero of energy. There are two correc-
tions involved so that we may compare energies directly
between the orbital-free and Kohn-Sham results. First
is the major correction between the Kohn-Sham PAW
pseudopotential and the orbital-free pseudopotential. We
have matched pressures at 6 eV, for a given density and
temperature, and have then immediately the energy shift
at that point given by the difference in energies. This
is taken as the principle shift in energy for a given iso-
chore. However, as we increase temperature the orbital-
free pseudopotential does change, and so we perform ad-
ditional snapshot calculations at given ion positions with
both the 6 eV pseudopotential and the pseudopotential
for the temperature we are actually at, and compute the
difference in energies which provides a much smaller sec-
ondary correction.
In the compressed region away from the Hugoniot we

can compare with both double shock data as well as shock
release data. In Fig. 7 we have plotted the shock and
release data from the Z-machine experiments. The mate-
rial used in the experiments is 6061 aluminum, and it is
that specific EOS which is plotted here, however for cal-
culations in this regime the difference between the 1100
and 6061 EOS are negligible. The experiments first de-
termine the shocked state along the aluminum Hugoniot
then through impedance matching the isentropic release
point is determined by observing the shock continuing
through a secondary standard material. In these experi-
ments the impedance match materials are a plastic ma-
terial, polymethylpentene (TPX) in Fig. 7a, and silica
aerogel of different densities, which provide a range from
relatively shallow release (Fig. 7a) to a deep release (Fig.
7c,d). Across all these results the EOS adiabats calcu-
lated from the shock release point are in very good agree-
ment, that is within the approximate 1% experimental
uncertainty, with the measured values. This shows our
constraint of the EOS to the QMD simulations in the liq-
uid regime yields high accuracy away from the Hugoniot.
The double shock data of Nellis for aluminum 1100 is
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FIG. 9: Expanded fluid region experimental data82 compared
with the EOS results.

shown in Fig. 8. Here the curves represent the principle
shock Hugoniot (dotted) and reshock (dashed) from the
pressures along the Hugoniot of 163, 102, and 65 GPa.
The slope change occurring in the second shock marks
the transition from fcc to bcc. In the highest pressure
case, however, the initial shocked state is along the melt
curve and the second shock curve follows the melt curve
with the slope change, at about up = 4.9, marking the
triple point.
In the expanded fluid region we make use of recent

experiments performed on aluminum foils. The results
are shown in Fig. 9 where pressure is plotted against
the internal energy. At the highest densities the EOS
shows higher pressure than the experiment for the given
energies, but by no more than 0.5 GPa. This region near
1 g/cm3 and above represents the transition region of
the EOS cold curve from a Lennard-Jones model to a
Rose-Vinet model. The agreement does become better
with lower density and this allows us to predict the value
of the aluminum critical point83 at a density of 0.375
g/cm3 and a temperature of 8400 K, which is close to
value given in Ref. 84. We find the value of the critical
point by identifying the inflection point,

(

∂P

∂V

)

T

=

(

∂2P

∂V 2

)

T

= 0 , (6)

through inspection of the EOS isotherms. Below the
critical point the constructed EOS does develop van der
Walls loops due to the Lennard-Jones model used in that
region, and so we perform a Maxwell construction to re-
move them.

C. 6061 Aluminum

With the exception of Fig. 7 all the EOS results up to
this point have been for 1100 aluminum. In fact though
in that compressed liquid region there is no distinguish-
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FIG. 10: Shock5,85 and isentrope86,87 results for 6061 alu-
minum.

able difference between 1100 and 6061, and further for
most the results there is very little difference. In this
section we highlight where there are some noticeable dif-
ferences. Firstly, there is the change in ambient den-
sity of 2.712 to 2.70 g/cm3. We note that this density
change brings the thermal expansion for aluminum 6061
into agreement with the pure aluminum data shown in
Fig. 5a. Shown in the upper panel of Fig. 10 is the
shock Hugoniot in terms of Us and up which is a bit dif-
ferent than for 1100 aluminum. Of note is a difference
in the up = 0 intercept which translates to a difference
in the cold curve bulk modulus of 78.5 GPa for 6061 and
81 GPa for 1100. In compensating fashion the the bulk
modulus pressure derivative is increased from 4.7 to 4.8
for fcc aluminum 6061. Other than those two changes to
the fcc phase, the only change is a 0.012 g/cm3 shift in
the cold curve applied to all of the phases. In the lower
panel is comparison of the principle isentrope between
the EOS, QMD calculations86, and experimental data87

for 6061. Excellent agreement is seen up to 5.1 g/cm3

where the phase change from fcc to hcp occurs. Though
no evidence of the phase change is seen in this experimen-
tally derived isentrope, earlier experimental compression

results suggest it88, as do recent shock adiabat results89.
By contrast, the aluminum 1100 isentrope and Hugoniot
(which are not shown) lie at a slightly lower pressures by
1-2%, when evaluated from the same initial conditions.

IV. CONCLUSION

We have performed new density functional based cal-
culations for aluminum. These calculations encompass
the cold curve including the zero temperature pressure
induced phase transitions from fcc to hcp at 176 GPa
and from hcp to bcc at 373 GPa. Additionally we com-
pleted highly accurate phonon calculations based on equi-
librium force calculations as well as low temperature
QMD, from which values of the Debye temperature and
the Grüneissen parameter for the individual solid phases
have been extracted. Additionally QMD has been per-
formed in the liquid region from 0.4-100 eV, by employ-
ing both Kohn-Sham and orbital-free density functional
theory. Here we extended the Kohn-Sham calculation
to 8 eV and found overlap between the Kohn-Sham and
Thomas-Fermi orbital-free calculations at 6 eV.
We then used our results to construct a multiphase alu-

minum EOS, specifically for aluminum alloys 1100 and
6061. Along with the DFT results, we made use of the
most accurate and modern experimental data available
for aluminum including for fcc phase and liquid regime,
and for single crystal aluminum as well as for 1100 and
6061. While DFT is in general a highly accurate the-
oretical approach some deficiencies do exist, such as in
the lattice constant calculation of aluminum due to the
exchange-correlation functional. Therefore we have used
to the greatest extent possible the DFT results as con-
straint to the EOS construction, and then appealed to
the experimental data, where it provides a clear correc-
tion, for adjustment of the EOS. We would suggest such
an approach is completely natural when the goal is the
most accurate EOS, and is most helpful here in the cases
of the high pressure hpc and bcc phases for which nearly
no experimental data is available, yet we may modify the
EOS from the pure DFT results relative to the fcc mod-
ification to provide overall improvement. Future experi-
ments, such as reshock and isentropic compression, may
validate this by accurately identifying the conditions of
the crystal phase transitions.
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TABLE II: Parameters from the EOS for aluminum 1100

ρ (g/cm3) B (GPa) B′ θD (K)

fcc 2.773 81 4.70 385

hcp 2.749 76 4.73 367

bcc 2.707 71 4.69 355

Appendix

Here we provide further details of the EOS models and
their parameters used to generate the multiphase tabu-
lar SESAME EOS. First we recall that for each of the
aluminum phases the total free energy is given by a com-
bination of the cold curve F0, and thermal contributions
of the ions Fi and the electrons Fe.
As noted in the main text, the final contribution is from

a Thomas-Fermi-Dirac average atom (AA) calculation90

where the actual contribution Fe is given by the differ-
ence between an AA calculation at a given density and
temperature, and an AA calculation at the same den-
sity and zero temperature. This must be tabulated at all
density and temperature grid points of the EOS.
Next the cold curve F0, is in all cases given at low den-

sity, up to the ambient solid density, by a Lennard-Jones
model and at high density, above 3.5 times the ambi-
ent density, by the Thomas-Fermi-Dirac approximation.
The matching at those densities is as prescribed in Ref.
91. The modified Lennard-Jones model depends directly
on two other parameters; the cohesive energy which was
taken for solid phases at the experimental value of 78.1
kcal/mol92, and slightly lower for the liquid phase at 70
kcal/mol, and an exponent in the functional form which
is 0.7 for the solid phases and 0.65 for the liquid phase.
In the interim the solid phases are given by a Rose-
Vinet model with the bulk modulus and its derivative
as given in Table II, with a slight increase of the equi-
librium density from the DFT values to correct for the
exchange-correlation approximation error (as mentioned
in Sec. III A). Also B′ is increased to provide better
agreement between the EOS and DFT curves at higher
pressure, than given by the equilibrium B′ of Table I.
The liquid regime uses a Birch-Murnaghan expansion in
η = [(ρ/ρ0)

2/3 − 1]/2,

P (ρ) = Bη

(

ρ

ρ0

)5/3 [

3 +
9

2
(B′ − 4)η +

C

9
η2
]

(7)

with B = 80 GPa, B′ = 4.05, C = −28. These liquid
cold curve parameters were derived from extrapolation of

the QMD pressure isotherms to zero temperature. It is of
note that the liquid cold curve is not physically intuitive
as is the solid cold curve, but it represents the underlying
changes in energy and pressure due to compression alone,
absent of the thermal electron and ion contributions as
described by our energy decomposition of Eq. (2).

Finally for the thermal ion contribution Fi, a Debye
model was employed in the solid phases. For which the
Debye temperature was taken from the DFT phonon cal-
culation as given in Table I, and a Grüneisen parame-
ter, γref of 2.13 was used for the fcc phase, this was pri-
marily determined by matching the experimental thermal
expansion7. This value was also used for the bcc phase,
while the hcp phase was slightly larger at 2.25. In the
liquid phase a smaller γ = V (dP/dE)V of 1.8 was derived
from the QMD calculations by fitting the pressure energy
curves and extrapolating the results to zero temperature
at the ambient density of 2.71 g/cm3. The model of John-
son, in particular version 2 from Ref. 29, was then found
to reproduce the QMD isotherm data well, with a small
energy shift relative to that of the fcc phase that then
correctly determined the melt temperature at 930 K and
ambient pressure. Here we use Johnson’s suggest value
for a = 1.25/M5/3 = θ2/Tmρ2/3, which relates the Debye
θ and melt TM , temperatures in eV along with the den-
sity ρ, in g/cm3, where M = 26.9815 is the atomic mass.
Additionally we make use of a model for γ to second order
in ρ,

γ(ρ ≥ ρ0) =γ∞ +
ρ0
ρ
(2γref − 2γ∞ + γ′

R)

+ (
ρ0
ρ
)2(γ∞ − γref − γ′

R) , (8)

γ(ρ < ρ0) =γ0 +
ρ

ρ0
(2γref − 2γ0 − γ′

L)

+ (
ρ

ρ0
)2(γ0 − γref + γ′

L) . (9)

Here γref are the numbers quoted above, while γ0 = 1 and
γ∞ = 2/3 are the values at ρ = 0 and ρ = ∞. γ′

L and
γ′

R are the left and right logarithmic density derivatives
of γ at ρ0. Both are equal to -3 for all the solid phases
and to -2.5 for the liquid. Finally, there is an input of
the initial melt temperature and density, which we take
at 650 K and 2.48 g/cm3, both below the actual melt
condition. This choice provides the best agreement with
the QMD and shock Hugoniot data. It does produce a
melt curve within the full Johnson model that lies lower
in temperature than our melt curve, which is determined
by comparison of Gibbs free energies of the separately
constructed phases.
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J. Vorberger, K. Wünsch, and S. H. Glenzer, Phys. Rev.
Lett. 110, 065001 (2013).

4 Frontiers and Challenges in Warm Dense Matter, Series:

Lecture Notes in Computational Science and Engineering,
96, edited by F. Graziani, M.P. Desjarlais, R. Redmer, and
S.B. Trickey (Springer 2014).

5 LASL Shock Hugoniot Data, edited by S.P. Marsh (Uni-
versity of California Press, Berkley 1980).

6 G.I. Kerley, Int. J. Impact Eng. 5, 441 (1987).
7 E.D. Chisolm, S.D. Crockett, and D.C. Wallace, Phys.
Rev. B 68, 104103 (2003).

8 I.V. Lomonosov, Laser and Particle Beams 25, 567 (2007).
9 L. Caillabet, S. Mazevet, and P. Loubeyre, Phys. Rev. B
83, 094101 (2011).

10 L. X. Benedict, K. P. Driver, S. Hamel, B. Militzer, T. Qi,
A. A. Correa, A. Saul, and E. Schwegler, Phys. Rev. B 89
224109 (2014).

11 S. X. Hu, L. A. Collins, V. N. Goncharov, J. D. Kress,
R. L. McCrory, and S. Skupsky, Phys. Rev. E 92, 043104
(2015).

12 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).

13 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
Lett. 77, 3865 (1996).

14 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
15 V.N. Staroverov, G.E. Scuseria, J. Tao, and J.P. Perdew,

Phys. Rev. B 69, 075102 (2004).
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