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Abstract We have studied the impact of heterogeneity on relative permeability and residual trapping for

rock samples from the Bunter sandstone of the UK Southern North Sea, the Ormskirk sandstone of the East

Irish Sea, and the Captain sandstone of the UK Northern North Sea. Reservoir condition CO2-brine relative

permeability measurements were made while systematically varying the ratio of viscous to capillary flow

potential, across a range of flow rates, fractional flow, and during drainage and imbibition displacement.

This variation resulted in observations obtained across a range of core-scale capillary number

0:2 < Nc5
DP
L

H
DPc

< 200. Capillary pressure heterogeneity was quantitatively inferred from 3-D observations

of the fluid saturation distribution in the rocks. For each of the rock samples, a threshold capillary number,

5 < Nc < 30, was found, below which centimeter-scale layering resulted in a heterogeneous distribution of

the fluid phases and a commensurate impact on flow and trapping. The threshold was found to be depen-

dent on the capillary number alone, irrespective of the displacement path (drainage or imbibition) and

average fluid saturation in the rock. The impact of the heterogeneity on the relative permeability varied

depending on the characteristics of the heterogeneity in the rock sample, whereas heterogeneity increased

residual trapping in all samples above what would be expected from the pore-scale capillary trapping

mechanism alone. Models of subsurface CO2 injection should use properties that incorporate the impacts of

heterogeneity at the flow regime of interest or risk significant errors in estimates of fluid flow and trapping.

1. Introduction

Predictions of the flow behavior and storage capacity of CO2 in subsurface reservoirs are sensitive to the

underlying multiphase flow properties of the system (Mathias et al., 2013; Szulczewski et al., 2012; Yoshida

et al., 2016). These are primarily the capillary pressure, relative permeability, and residual trapping character-

istics. Site-specific core-flood measurements are a requirement for accurate estimates of the plume migra-

tion and storage capacity obtained through reservoir simulation.

A large number of measurements of reservoir condition CO2-brine relative permeability and trapping have

been reported in the literature (Benson et al., 2013; Burnside & Naylor, 2014). Many of the studies primarily

used quarry rocks to establish general properties of the CO2-brine multiphase flow system. These have

shown that CO2 acts as a nonwetting fluid similar to other nonaqueous fluids, and that there is significant

capillary trapping (Akbarabadi & Piri, 2013; Krevor et al., 2012; Manceau et al., 2015; Reynolds & Krevor,

2015). Site-specific data, in contrast, are primarily limited to locations in the United States and Canada

(Bennion & Bachu, 2008; Krevor et al., 2012). As a result, many modeling studies make use of generic relative

permeability curves, or curves selected from the literature data set for a similar rock type.

In the UK, there have been many suggestions for potential storage sites (Akhurst et al., 2011; Brownsort

et al., 2015; Haszeldine et al., 2013; Holloway et al., 2006; Holloway & Savage, 1993; Kirk, 2006; Scottish Car-

bon Capture and Storage, 2009, 2012). However, prior to this work, only one CO2-brine relative permeability

curve was publicly available, from a measurement on a Bunter sandstone sample from the Southern North

Sea, evaluated as a part of the 2008 CASSEM (CO2 Aquifer Storage Site Evaluation and Monitoring) project

(Smith et al., 2012). A primary goal of this work was to provide data for modeling studies of CO2 storage in

UK reservoir systems. We have measured drainage and imbibition relative permeability, and residual trap-

ping in rock samples obtained for three important potential CO2 storage locations.

A number of studies have also shown that small-scale rock heterogeneities have a significant impact on

CO2 flow, which propagates to larger scales. In laboratory core floods of CO2 and brine, the fluids are
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commonly observed to distribute heterogeneously in the rock cores during two-phase flow (Hingerl et al.,

2016; Reynolds & Krevor, 2015). The dominant control on steady state fluid distribution at this scale is varia-

tion in capillary pressure (Kuo & Benson, 2015; Zhou et al., 1997). It has been theorized that the impact of

this heterogeneity on macroscopic flow will depend on the ratio of the viscous or buoyant force to gra-

dients in the capillary pressure, expressed quantitatively using a continuum scale capillary number (Debbabi

et al., 2017; Pickup & Stephen, 2000; Virnovsky et al., 2004; Zhou et al., 1997). This framework has been used

extensively in numerical upscaling studies to describe flow regimes in which heterogeneity may be signifi-

cant. Observations in this study were designed to evaluate the varying impact of rock heterogeneity experi-

mentally, through a systematic variation of the capillary number, throughout both drainage and imbibition

displacement processes.

A number of studies have shown that capillary heterogeneity can be characterized in cylindrical rock sam-

ples with a combination of observations and numerical simulations (Egermann & Lenormand, 2005; Huang

et al., 1995; Krause et al., 2013; Kuo & Benson, 2015; Pini & Benson, 2013a). The effects of small-scale capil-

lary heterogeneity is manifested at larger scales through both fluid flow and trapping (Debbabi et al., 2017;

Gershenzon et al., 2017; Meckel et al., 2015; Saadatpoor et al., 2009). If the underlying heterogeneity is char-

acterized, these effects may be accounted for through the use of upscaled relative permeability and residual

trapping models (Li & Benson, 2015; Rabinovich et al., 2015). The laboratory characterization, however, must

be performed as a variation from the conventional special core analysis workflow (see McPhee et al., 2015

for a comprehensive overview of current practice in core analysis).

In characterizing the multiphase flow properties of the samples from UK sites, we have endeavored to repli-

cate reservoir conditions of pressure, temperature, and brine salinity. Additionally, we used an extension of

the conventional core analysis protocol, characterizing CO2-brine flow behavior across a range of fluid flow

velocities, fractional fluid flow, and during drainage and imbibition displacement. This allowed for a charac-

terization of capillary heterogeneity within the framework of the capillary-viscous flow regimes and a direct

link to the impacts on the macroscopic fluid mobility (relative permeability) and trapping.

2. Rock Samples

2.1. Sample Locations

Three samples were selected from reservoir formations identified as potential CO2 storage sites in the UK

(Figure 1 and Table 1). In the wake of the 2005 IPCC Special Report on Carbon Dioxide Capture and Storage

(Metz et al., 2005) which identified CCS as a major technology for mitigating climate change, criteria were

Figure 1. The well locations where samples were obtained.
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established to aid the selection of suitable CO2 storage sites around the UK (Chadwick et al., 2008). In the

Southern North Sea and East Irish Sea, extensive Permo-Triassic sandstones were identified for saline aquifer

storage (Brownsort et al., 2015; Haszeldine et al., 2013; Holloway et al., 2006; Holloway & Savage, 1993; Kirk,

2006; Scottish Carbon Capture and Storage, 2009, 2012). This included the Bunter sandstone formation (Tri-

assic Sherwood Sandstone Group, Southern North Sea), Leman sandstone formation (Permian Rotliegend

Sandstone Group, Southern North Sea), and Ormskirk sandstone formation (Triassic Sherwood Sandstone

Group, East Irish Sea). In the Northern North Sea, the Captain sandstone formation (Akhurst et al., 2011;

Brownsort et al., 2015; Scottish Carbon Capture and Storage, 2009) was identified.

All four of these sandstone formations are important regional saline aquifers and have proven sealing and

storage capacity in the form of major gas fields; for example, the South and North Morecambe fields in the

Ormskirk formation, East Irish Sea (Bastin et al., 2003; Cowan & Boycott-Brown, 2003; Meadows & Beach,

1993; Stuart, 1993; Stuart & Cowan, 1991); Esmond, Forbes, Gordon, and Hewett fields in the Bunter forma-

tion, Southern North Sea (Cooke-Yarborough, 1991; Cooke-Yarborough & Smith, 2003; Ketter, 1991a); Rav-

enspurn, Leman, and Viking fields in the Leman formation, Southern North Sea (Hillier & Williams, 1991;

Ketter, 1991b; Riches, 2003); and Goldeneye, Blake, Cromarty, and Captain fields in the Captain sandstone

formation, Northern North Sea (Argent et al., 2005). The Leman formation also contains two natural CO2

accumulations, the Fizzy and Oak gas fields both of which contain 50–90% CO2 (Pearce et al., 1996; Under-

hill et al., 2009), providing an analogue to CO2 storage. Closed structures without gas charge, which provide

structural traps for saline aquifer storage, have been identified in the Ormskirk formation (Kirk, 2006) and

Bunter formation (Holloway et al., 2006; Noy et al., 2012; Williams et al., 2014).

Estimates of the CO2 storage capacity of these formations in both saline aquifers and depleted gas and oil

fields in the Southern North Sea are 3.3 Gt CO2 in the Leman formation and up to 14.6 Gt CO2 in the Bunter

formation (Holloway et al., 2006). Estimates of capacity in the Northern North Sea are up to 1.67 Gt CO2 in

the Captain sandstone (Akhurst et al., 2011, 2015; Jin et al., 2012; Scottish Carbon Capture and Storage,

2009).

In March 2013, two projects were awarded funding under the UK Department of Energy and Climate

Change (DECC) CCS Commercialisation Competition (Department of Energy and Climate Change, 2013).

Both projects involved capturing CO2 at a major point source and storing the CO2 in a sandstone reser-

voir—Shell’s Peterhead Project (Shell UK Limited, 2013) in the depleted Goldeneye gas field and Captain

sandstone saline aquifer and Capture Power’s White Rose Project (Capture Power, 2013) in the Bunter sand-

stone, Southern North Sea. These projects have now been cancelled after the removal of funding from the

competition in November 2015 (Department of Energy and Climate Change, 2015; Shell UK Limited, 2015;

White Rose Project, 2015). However, storage in the Captain sandstone saline aquifer and the depleted Gold-

eneye gas field are the subject of a number of modeling studies and provide an example site for many site

selection methodologies (Akhurst et al., 2015; Delprat-Jannaud et al., 2015; Scottish Carbon Capture and

Storage, 2011; ScottishPower CCS Consortium, 2011). Potential CO2 storage sites in the Central and North-

ern North Sea are the best understood in the UK (Brownsort et al.,

2016) but there are no published and peer-reviewed relative perme-

ability or trapping curves. Consequently, three formations were

selected for this study, the Bunter and Ormskirk sandstones of the

Sherwood Sandstone Group, and the Captain sandstone.

2.2. Routine Petrophysical Properties

A routine rock characterization was performed on the samples

with data provided in Table 2. Absolute permeability was

Table 1

Sample Locations for the Rock Cores

Formation Storage location Well location Well Sample depth (m)

Bunter S. North Sea Onshore geothermal borehole Cleethorpes-1 1,312.7–1,316.1

Ormskirk E. Irish Sea Depleted gas field Block 110/2a 1,247.9–1,248.1

Captain N. North Sea Offshore hydrocarbon borehole 14/29a-3 2,997.6–3,005.1

Table 2

Routine Petrophysical Properties of the Samples

Sample Porosity, / Kabs (D) L (m) Pc;entry (Pa)

Bunter 0.260 2.26 0.113 0.151 1,964

Ormskirk 0.271 12.16 0.787 0.127 1,097

Captain 0.267 1.1456 0.098 0.235 1,862
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measured with experimental brine at experimental conditions using a standard method described in

previous work by the authors (Reynolds & Krevor, 2015). Mercury intrusion capillary pressure characteristic

curves were measured using a Micromeritics Autopore IV 9500 Porosimeter and converted for CO2 using the

standard correction for interfacial tension (Figure 2). Thin section photos are shown in Figure 3 and brief

rock descriptions are provided in the following. All four samples were classified as quartz arenites using the

Folk classification scheme (Folk, 1957). Grain size was assessed following Wentworth (1922) and roundness

following Pettijohn et al. (2012).

The Bunter sandstone core had a porosity of 0.26 and a measured absolute permeability to brine of 2.2 D.

This is a higher permeability than the core plug average from the Gordon, Esmond and Forbes (K � 400

mD, / � 0:2) fields but matches well with the porosity-permeability trend of measured core plugs (Noy

et al., 2012). The Bunter formation is a medium-grained sandstone composed mainly of subangular to sub-

rounded quartz grains with a minor component of detrital K-feldspar, clay, and carbonate clasts (Figure 3).

Some altered quartz and K-feldspar overgrowths are present, as well as an intergranular cement mainly

composed of dolomite (Hall et al., 2015).

The Ormskirk sandstone core had a porosity of 0.27, which was at the upper range of plug values typical of

the South and North Morecambe field (Meadows & Beach, 1993). The core sample had an extremely high

permeability of 12 D, well in excess of the measured range of 0.0001 to >1 D (Meadows & Beach, 1993). The

Ormskirk formation is a medium-grained, mature sandstone predominantly composed of subrounded to

rounded quartz grains. The presence or absence of illite as a pore lining cement is a major influence on the

permeability of this formation (Kirk, 2006; Stuart, 1993). However, no illite was observed in thin section (Fig-

ure 3) and the particular sample used for core floods contained only dolomite and quartz cements. Absolute

permeability was measured with a confining pressure of 5 MPa, which did not reflect the stress state pre-

sent in the reservoir. It is possible that the measured absolute permeability would have been closer to the

field average if performed with a higher confining pressure.

The Captain sandstone core had a permeability of 1.1 D and porosity of 0.27, similar to samples from

the Goldeneye field (Hangx et al., 2013; McDermott et al., 2016). Much of the Captain sandstone forma-

tion is poorly consolidated and in the Captain field permeabilities over 7 D are not uncommon (Lach,

1997; Rose, 1999). However, a more consolidated and hence lower permeability core sample was

obtained due to the difficulties of drilling core from poorly consolidated sandstone. The core was domi-

nated by fine to medium-grained, angular to subangular quartz (>90%) with a minor feldspar compo-

nent and some authigenic clay and intergranular cements of quartz, kaolinite, and calcitep (Hangx

et al., 2013).

Figure 2. Porosity and capillary pressure characteristics of the samples.
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3. Experimental Methods

3.1. Relative Permeability and Capillary Trapping

Two sets of drainage and imbibition relative permeability core floods were performed on each core (Table

3). Tests were performed at high and low flow rates, following the approach of Reynolds and Krevor (2015),

as observations at multiple rates allowed for an evaluation of the impacts of rock heterogeneity on flow,

described in detail in section 3.2. Where significant, capillary end effects were corrected for using an auto-

mated 1-D numerical history match of the experiments, matching saturation and pressure observations.

The flow rates were selected based on the heterogeneity and permeability of the rock cores. All the cores

had observable heterogeneity in porosity and high absolute permeability (>1 D) and a flow rate of 20

mL min21 was used for the high flow rate observations. The lower flow rate experiments were performed

with flow rates in the range of 0.2–4 mL min21. This range of flow rates was the practical range that could

be achieved safely with our experimental setup. The low end of the range resulted in flow velocities over-

lapping with the upper range of rates expected to prevail in the reservoir system, while the upper end of

the range far exceeded velocities anticipated anywhere greater than a meter from an injection point (Blunt,

2017).

Residual trapping was characterized in separate core-flood tests, following the procedure described in Niu

et al. (2015). In these tests, drainage flow rates were chosen to establish the initial saturation. Higher flow

rates generally lead to higher initial saturations. Imbibition was performed at low flow rates for consistency

with the trapping process in the reservoir.

Figure 3. Photomicrographs of thin sections in (left) cross and (right) plain polarized light.
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Pressure, temperature, and salinity conditions were chosen so as to be representative of likely injection sites

in each formation, by using either site-specific conditions or regional averages for the formation (Table 3).

Pressure and temperature for the Bunter sandstone were taken from the Hewett field and a regional aver-

age salinity for Bunter formation reservoir brines in the Southern North Sea was used (Downing & Gray,

1986; Noy et al., 2012; Williams et al., 2014). The conditions of the South and North Morecambe fields were

used for the Ormskirk sandstone rock core (Cowan & Boycott-Brown, 2003; Stuart & Cowan, 1991). Pressure

and temperature for the Goldeneye field and regional Captain sandstone brine salinities were used for the

Captain sandstone sample (Hangx et al., 2013; Jin et al., 2012; Scottish Carbon Capture and Storage, 2011).

3.2. Characterizing Capillary Pressure Characteristic Heterogeneity

X-ray computed tomography scans were used to create three-dimensional images of saturation, which

formed the observational basis for the characterization of capillary pressure characteristic heterogeneity

(Egermann & Lenormand, 2005; Krause et al., 2013; Pini & Benson, 2013b; Pini et al., 2012). Capillary pressure

characteristic curves obtained from mercury porosimetry observations (Figure 2) were assumed to represent

an upscaled curve, representative of the whole core. The capillary pressure at the inlet face of the rock core

was controlled by the boundary conditions of the core flood (Ramakrishnan & Cappiello, 1991). It was

assumed that the capillary pressure was also constant for a given slice, or location along the principal axis,

of the rock core (Krause et al., 2013). Variations in saturation within a slice were then assumed to be due to

variations in the capillary pressure characteristic function (Egermann & Lenormand, 2005). Assuming that

the form of the curve was the same throughout the rock core, e.g., that J-scaling applied, heterogeneity was

described quantitatively by the degree of scaling required between the average capillary pressure function

and the particular function of a given location (Pini & Benson, 2013b).

In this work, we followed the approach of Pini and Benson (2013b) in using a simple ‘‘vertical’’ scaling, relat-

ing local functions to the average through a linear shifting of the capillary entry pressure,

Pcðx; y; z; SwÞ5jðx; y; zÞPc;aðSwÞ: (1)

Here Pcðx; y; z; SwÞ was the capillary pressure characteristic function for a given location. It was related to

the average function, Pc;aðSwÞ, through the location specific dimensionless scaling parameter j.

To obtain the value of j for each location, first the slice averaged saturation was used to obtain the capillary

pressure at each fractional flow of the experiment and thus generate local capillary pressure curves. The

core representative capillary pressure curve (in this case obtained from mercury porosimetry) was then

Table 3

Experimental Conditions of the Relative Permeability and Residual Trapping Tests

Sample

Temperature

(8C)

Pressure

(MPa)

Salinity

(mol kg21) Number Type

Total flow rate

(mL min21)

B1 Drainage 20

B2 Imbibition 20

Bunter 53 13.1 1 B3 Drainage 20

B4 Imbibition 20

B5 Drainage 0.2

B6 Imbibition 0.2

B7 Trapping 20/0.5

B8 Trapping 0.5/0.5

O1 Drainage 20

Ormskirk 33 12.7 4.32 O2 Imbibition 20

O3 Drainage 4

O4 Imbibition 4

O5 Trapping 20/2

O6 Trapping 1.5/1.5

C1 Drainage 20

Captain 80 18 1 C2 Imbibition 20

C3 Drainage 2

C4 Imbibition 2

C5 Trapping 20/2
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scaled using equation (1) in a regression algorithm varying j until a best fit was obtained with the data for

a given location.

The capillary pressure heterogeneity in the rock core was characterized using a best fit spatial map of the

scaling parameter j. Although the assumption of constant capillary pressure within a slice is only valid at

the inlet boundary of the rock core, these data can be used as a first guess in an iterative approach to gen-

erating an accurate heterogeneous numerical model of the core, using the local variation in the capillary

pressure function (Krause et al., 2013). This type of data has also been used in the generation of statistical

realizations of rock core models (Kong et al., 2015).

The relative importance of capillary driven flow, i.e., the role of capillary heterogeneity relative to permeabil-

ity heterogeneity, is characterized through a dimensionless capillary number describing the ratio of viscous

or buoyantly driven flow to flow driven by gradients in capillary pressure (Jonoud & Jackson, 2008; Kuo &

Benson, 2015; Virnovsky et al., 2004; Yokoyama & Lake, 1981; Zhou et al., 1997). We used the number

defined by Virnovsky et al. (2004) due to its simplicity and correspondence with observables in our

experiments.

The capillary number is defined as

Nc5
DP

L

H

DPc
; (2)

where DP (kPa) is the pressure differential measured between the inlet and outlet face of the rock core dur-

ing flooding, L (m) is the length of the rock core, H (m) is a characteristic distance between layers, and DPc

(kPa) is a characteristic difference in capillary pressure between layers. The characteristic difference in capil-

lary pressure, DPc , was taken to be a single standard deviation in the distribution of entry pressure obtained

through scaling the average capillary pressure function, equation (1). The characteristic length scale for het-

erogeneity, H, was obtained by inspection of the three-dimensional map of the scaling parameter j.

At larger capillary numbers, the impact of the capillary pressure characteristic heterogeneity becomes less

dominant. A number of studies have shown that a universal scaling number cannot be derived, in part due

to the dependence of the impact on the spatial structure of the heterogeneity (Jonoud & Jackson, 2008;

Pickup & Stephen, 2000). Virnovsky et al. (2004) suggested that a transition between capillary and viscous

dominated flows might take place in the range of capillary number 1 < Nc < 100, which has been con-

firmed experimentally by Reynolds and Krevor (2015).

4. Results

4.1. Heterogeneity in the Rock Samples

Three-dimensional maps and individual slices of the capillary pressure characteristic scaling parameter, j

(equation (1)), are shown in Figure 4. Faults with the X-ray scanner affected three slices of the Captain sand-

stone sample, and those slices are absent in the figure. Millimeter-scale bedding was visible in all three of

the rocks, but most prominently in the Bunter and Ormskirk sandstones, while the Captain sandstone had

large homogeneous regions without bedding. Using individual slices to assess the bedding structure, we

find the characteristic length scale of all of the rocks to be H � 1 cm (equation (2)).

The strength and degree of heterogeneity in the capillary pressure characteristic functions was apparent

from the frequency distribution of the best fit entry pressures (Figure 5, with Pc;entry5jPc;a;entry from equa-

tion (1)). The Bunter sandstone had the greatest mean entry pressure of 1.8 kPa and the most widely distrib-

uted entry pressures, with a standard deviation of 0.4 kPa. The Captain sandstone had a mean entry

pressure of 0.32 kPa and a standard deviation of 0.17 kPa. The Ormskirk sandstone had a narrow distribu-

tion with a mean entry pressure of 0.11 kPa and standard deviation of 0.027 kPa.

4.2. The Bunter Sandstone

Two sets of high flow rate and one set of low flow rate drainage and imbibition relative permeability tests

were performed. At high flow rates (Experiments B1–4) the highest relative permeability to CO2,

0:1 � kr;CO2
� 0:12, was obtained in the saturation range 0:27 � Sw � 0:32 (Figure 6; tabular values are pro-

vided in Table A1). Measurements of relative permeability here and elsewhere show that reported

Water Resources Research 10.1002/2017WR021651
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observations of a low maxima in the observed relative permeability to CO2 are not a result of a weakened

wetting, but due to the limitations of the experimental apparatus used (Akbarabadi & Piri, 2013; Krevor

et al., 2012; Manceau et al., 2015; Pini & Benson, 2013a). The water relative permeability decreased sharply

with decreasing water saturation and the cross point was shifted to lower water saturations (Sw50:5) com-

pared with the low flow rate core floods. There was a slight hysteresis in the kr;CO2
curves, with the imbibi-

tion permeability higher than the drainage permeability. This was a manifestation of the role that rock

heterogeneity had in the measurement, even at the high flow rate and is discussed further below. As is typi-

cal for water wetting rocks, there was no discernible hysteresis in the water relative permeability curves.

For the low flow rate observations, B5 and B6, the highest kr;CO2
was low, Oð1023). The kr;CO2

was lower for

imbibition than for drainage, the opposite of what was observed in the high flow rate observations. There

was also significant hysteresis in the kr;w curves. The permeability dur-

ing imbibition was significantly higher than during drainage. These

differences highlight how the impact of rock heterogeneity emerged

at lower capillary numbers.

The varying impact of rock heterogeneity was evaluated by inspecting

the distribution of fluid saturation at a location within the rock core at a

range of average saturations and capillary numbers, Figure 7 (tabular

values of the measured pressure differential used in the calculation of

Nc are provided in Appendix A). In the high flow rate observations (B3

and B4 in Figure 7) the observations were made across a wide range of

capillary number. Capillary numbers were initially high at the beginning

of the drainage process with a high water fractional flow and the fluid

was homogeneously distributed when Nc > 5. As the CO2 fractional

flow was increased, the capillary number decreased, primarily due to

the lower viscosity of CO2, but also because the relative permeability to

CO2 was increasing with increasing CO2 saturation. The impact of het-

erogeneity emerged at the low capillary numbers, and could be

observed in the saturation maps at the end of drainage and the begin-

ning of imbibition. At the end of imbibition, when the capillary number

increased again beyond Nc > 5, the homogenous fluid distribution was

re-established. The capillary number was low throughout the low flow

rate observations (B5 and B6) and the layering of the rock was evident

in all cases with capillary numbers well below Nc < 5.

For the two sets of drainage and imbibition tests, the main impact of

the heterogeneity was to significantly decrease the observed relative

Figure 4. The distribution of j (equation (1)) for the three rock samples. There were faults with the X-ray scanner affecting

three slices of the Captain sandstone sample, and those slices are absent in the figure.

Figure 5. Frequency histograms showing the distribution of the best fit entry

pressures for the three rocks analyzed in the study. One standard deviation in

the distributions was used to calculate the capillary numbers.

Water Resources Research 10.1002/2017WR021651

REYNOLDS ET AL. CO2-BRINE MULTIPHASE FLOW IN UK ROCKS 8



permeability at low flow rate (B5 and B6 relative to B1–B4 in Figure 6). The other clear impact was in the

varying nature of the hysteresis. The heterogeneity in the high flow rate observations resulted in a higher

imbibition than drainage relative permeability, whereas the opposite was observed in the low flow rate

tests. At low flow rate, however, the increased role of heterogeneity resulted in significant hysteresis in both

wetting and nonwetting phase relative permeability curves.

Residual trapping experiments (Experiments B7 and B8) showed a range of residually trapped CO2 satura-

tions from 0:3 < SCO2
< 0:6 for initial CO2 saturations of SCO2

> 0:8. A lower bound on the trapping was

characterized by a Land coefficient of C5 1.6, although a subset of the trapped fluid fell well above the sat-

uration predicted by the Land model. This was due to the trapping of fluid behind local capillary

Figure 6. Relative permeability and residual trapping characteristic curves for the Bunter sandstone sample measured

during drainage and imbibition at two capillary numbers. Drainage is shown with filled symbols and imbibition is shown

with unfilled symbols. The high capillary number observations are represented with circles and the low capillary number

observations are represented with squares. The curve on the residual trapping graph is the Land model with the labeled

coefficient.

Figure 7. Capillary number versus water saturation and corresponding slice saturation maps for the Bunter sandstone.

The slice shown was at the same location for all four sets of observations. The vertical grey bar shows the approximate

location where the viscous limit was achieved.
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heterogeneities and is distinct from the primarily pore-scale phenomenon of capillary trapping (Krevor

et al., 2011, 2015; Saadatpoor et al., 2009).

4.3. The Ormskirk Sandstone

Both high and low flow rate drainage tests resulted in similarly shaped relative permeability curves (Figure

8) which showed a sharp increase in kr;CO2
and a sharp decrease in kr;w with decreasing Sw. The cross points

for both curves were at Sw > 0:5 indicating that the Ormskirk sandstone was water wetting. Higher CO2 sat-

uration (Sw50:27) and a corresponding CO2 relative permeability close to unity were achieved during the

high flow rate observations. The low flow rate observations resulted in curves shifted to the right, with

higher kr;CO2
for a given saturation but lower kr;w . The maximum relative permeability to CO2 was kr;CO2

50:1

at Sw50:72, with the low flow rate having limited the achievable capillary pressure.

The shift in the curves with flow rate contrasted with the results for the Bunter core, where the relative per-

meability to both fluids were higher in the high flow rate case. The difference was likely due to the orienta-

tion of the heterogeneity in the core with respect to the principal flow direction and radial boundaries.

There was little hysteresis between drainage and imbibition for the viscous dominated experiments, and

Experiment O1 had a very similar shape to Experiment O2. In the low flow rate experiments (O3 and O4),

the imbibition kr;CO2
showed classic hysteresis behavior, where the relative permeability dropped rapidly

with increasing water saturation and was orders of magnitude lower at a given saturation during imbibition

compared to drainage. However, similar to the Bunter sandstone, the kr;w was higher for imbibition than for

drainage.

The impact of heterogeneity on flow is shown in Figure 9. As with the Bunter sandstone, the impact of rock

heterogeneity emerged at lower capillary number and was not apparently sensitive the average saturation

(vertical axis in Figure 9). The threshold capillary number for this sample was Nc � 30, with layering appar-

ent in all of the imagery from observations at lower capillary numbers.

There was a wide range in residual trapping behavior for the Ormskirk core (Figure 8)—the Land trapping

model was not a good descriptor of trapping, and coefficients encompassing the data varied from C5 0.05

(Sr � Si) to C5 3 (Sr < Si=2). This was due to rock heterogeneity and suggests that the residual CO2 satura-

tion achievable in this formation was highly dependent on the contrast in capillarity between homoge-

neous layers.

Figure 8. Relative permeability and residual trapping characteristic curves for the Ormskirk sandstone sample measured

during drainage and imbibition at two separate flow rates. Drainage is shown with filled symbols and imbibition is shown

with unfilled symbols. The high capillary number observations are represented with circles and the low capillary number

observations are represented with squares. Curves on the residual trapping graph are the Land model with the labeled

coefficients.
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4.4. The Captain Sandstone

The shape of the drainage relative permeability curves was similar for the high (C1) and low (C3) flow rate

experiments, indicative of a water wetting system. The kr;w and kr;CO2
were shifted toward the right, with

generally lower kr;w and higher kr;CO2
at a given saturation, although the kr;CO2

was lower at lower Sw in the

high flow rate case (Figure 10). The highest relative permeability to CO2, kr;CO2
50:46 was achieved at Sw5

0:34 during the high flow rate experiment. At the low flow rate, kr;CO2
50:02 was obtained for Sw50:60.

Imbibition kr;CO2
showed classic hysteresis behavior at low flow rate but was higher than the drainage kr;CO2

during the high flow rate observations. Additionally, kr;w was higher for imbibition than drainage for both

low and high flow rate experiments. This again suggested that rock heterogeneity had a significant impact

on the observed permeability, even at the highest flow rates used in these observations.

Figure 9. Capillary number versus water saturation and corresponding slice saturation maps for the Ormskirk sandstone.

The slice shown was at the same location for all four sets of observations, but the orientation of the core varied between

the high and low flow rate experiments. The vertical grey bar shows the approximate location where the viscous limit

was achieved.

Figure 10. Relative permeability and residual trapping characteristic curves for the Captain sandstone sample measured dur-

ing drainage and imbibition at two separate capillary numbers. Drainage is shown with filled symbols and imbibition is shown

with unfilled symbols. The high capillary number observations are represented with circles and the low capillary number obser-

vations are represented with squares. Curves on the residual trapping graph are the Land model with the labeled coefficients.
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As with the Bunter and Ormskirk sandstones, the impact of heterogeneity on flow became apparent in

observations of the fluid distribution at low capillary numbers (Figure 11). The layering in the rock was

apparent in all of the imagery obtained when Nc < 20. This was observed in both low and high flow rate

observations, during both drainage and imbibition, and across a saturation range 0:2 < Sw < 1.

A single residual trapping experiment was performed (Experiment C5), for which trapping was scattered

between Land models with coefficient 0:8 < C < 3. The significant scatter was indicative of the role that

capillary heterogeneity was playing in controlling the residually trapped CO2.

5. Discussion and Conclusions

The fundamental attribute of the observations was that centimeter-scale heterogeneity had a strong impact on

drainage and imbibition relative permeability, as well as residual trapping. At this scale, the continuum or Darcy

theory of multiphase flow suggests that capillary pressure characteristic heterogeneity impacts flow far more

than permeability or porosity heterogeneity (Zhou et al., 1997). This was supported by the utility of the contin-

uum scale capillary number in identifying threshold conditions at which the heterogeneity became apparent.

There was a range of threshold capillary number for the three rock samples, 5 < Nc < 30. This has been antici-

pated in studies indicating that there cannot be a universal scaling group due to the dependence on the spatial

organization of the heterogeneity and the sample-specific nature of the relative permeability and capillary pres-

sure characteristic curves (Jonoud & Jackson, 2008; Pickup & Stephen, 2000). Numerical studies have suggested

that a transition between capillary and viscous dominated flows might take place in the range of capillary num-

ber 1 < Nc < 100, consistent with the observations reported here (Virnovsky et al., 2004).

The hysteresis between drainage and imbibition, and the residual trapping characteristics were controlled

by the heterogeneity in the rock cores, in addition to the conventionally considered pore-scale trapping

phenomena. At high flow rates, hysteresis was not always present in kr;CO2
. In some experiments kr;w and

kr;CO2
were higher for drainage than for imbibition. Hysteresis behavior is usually attributed to the particular

pore space morphology, in particular the ratio between pore body diameter and pore throat diameter

which promotes or restricts snap-off (Akbarabadi & Piri, 2013; Krevor et al., 2015; Ruprecht et al., 2014). In

this case, changes in the behavior between flow rates reflect the varying impact of heterogeneity with the

change in capillary-viscous force balance. Additionally, the residual trapping data for all three rocks

diverged significantly from conventional trapping models, e.g., the Land trapping model. A significant frac-

tion of the residually trapped CO2 was immobilized behind local capillary heterogeneities. This has been

observed experimentally (Krevor et al., 2011) and modeled (Debbabi et al., 2016; Meckel et al., 2015), and in

some reservoirs may be a more significant source of fluid trapping than the pore-scale trapping.

Figure 11. Capillary number versus water saturation and corresponding slice saturation maps for the Captain sandstone.

The slice shown was at the same location for all four sets of observations. The vertical grey bar shows the approximate

location where the viscous limit was achieved.
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More generally, the observations here show that small-scale rock heterogeneity has a large impact on the

key flow attributes used in reservoir simulation, the relative permeability, hysteresis, and residual trapping.

The effects are dependent on the strength and orientation of the heterogeneity in addition to the prevailing

flow regime. It is unlikely that they would be predicted in advance of laboratory measurements, and using

data obtained with conventional workflows runs the risk of significantly over or underprediction of flow

and trapping in the reservoir system.

It is possible that these types of observations could be coupled with numerical simulation to overcome these

challenges. The need to simulate flow in heterogeneous reservoir systems at larger scales has led to the devel-

opment of numerical upscaling techniques which are widely used in industry (Corbett et al., 1992; Rabinovich

et al., 2015; Ringrose & Bentley, 2015; Ringrose et al., 1993). Less well understood, however, is the best approach

for characterizing small-scale heterogeneities in rock samples in the laboratory. The types of observations

reported herein can be used in the construction of a core-scale digital rock model (Kong et al., 2015; Krause

et al., 2013), which can form the basis for the initial stages in an upscaling workflow. Another benefit is that syn-

thetic relative permeability curves could be generated quickly through simulation at many capillary numbers

rather than attempting to measure multiple representative relative permeability curves covering the range of

flow conditions relevant to the reservoir system. In principle, the orientation of the rock heterogeneity could

also be restructured to evaluate flow independent of the impacts of the radial boundaries of the core flood.

Appendix A: Tabular Relative Permeability Data

Tables A1–A4 are the tabular data required to reproduce the graphs in Figures 6–11.

Table A1

Tabular Relative Permeability Data for the High Flow Rate Experiments With the Bunter Sandstone Sample

Experiment fCO2
Sw kr;CO2

kr;w DP (kPa)

B1 0.1329 0.6168 0.0015 0.1213 89.04

0.2762 0.6079 0.0032 0.1069 84.32

0.4637 0.5963 0.0063 0.0919 72.68

0.7245 0.5758 0.0134 0.0648 52.93

0.8797 0.5281 0.0227 0.0394 38.01

0.9333 0.5004 0.0307 0.0278 29.85

0.9851 0.436 0.0539 0.0103 17.94

0.9993 0.3202 0.1015 0.001 9.669

B2 0.9883 0.453 0.0628 0.0095 15.44

0.9768 0.4822 0.0531 0.016 18.05

0.9262 0.5302 0.0365 0.0369 24.88

0.814 0.5761 0.0247 0.0716 32.34

0.6277 0.609 0.0133 0.1003 46.23

0.3575 0.6283 0.005 0.1148 69.71

0.0762 0.6503 0.0008 0.1285 89.51

B3 0.0926 0.5782 0.0007 0.0861 115.7

0.2662 0.5858 0.0023 0.0789 102.1

0.5176 0.5711 0.0056 0.0667 79.37

0.7738 0.5397 0.0126 0.0466 53.27

0.9262 0.4875 0.0244 0.0246 32.91

0.9768 0.4401 0.04 0.012 21.15

0.9919 0.3942 0.0584 0.0061 14.69

0.9996 0.2731 0.118 0.0006 7.328

B4 0.9987 0.295 0.1052 0.0018 8.211

0.9956 0.4038 0.0773 0.0053 11.14

0.9834 0.4565 0.0541 0.0116 15.74

0.9435 0.5147 0.0349 0.0266 23.37

0.814 0.5703 0.02 0.0579 35.25

0.6277 0.6062 0.0101 0.0763 53.57

0.3575 0.6062 0.0041 0.0931 75.73

0.0625 0.6445 0.0006 0.105 97.96

Note. See Table 3 for the corresponding experimental conditions.
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Table A2

Tabular Relative Permeability Data for the Low Flow Rate Experiments With the Bunter Sandstone Sample

Experiment fCO2
Sw kr;CO2

kr;w DP (kPa)

B5 0.1 0.8306 0.0003 0.0325 3.203

0.31 0.7522 0.0008 0.0235 3.394

0.63 0.6688 0.0018 0.0134 3.203

0.85 0.597 0.0027 0.006 2.876

0.975 0.5688 0.0029 0.001 3.027

0.995 0.4833 0.0027 0.0002 3.318

B6 0.815 0.5453 0.0021 0.006 3.564

0.52 0.5914 0.0016 0.0189 2.946

0.135 0.6783 0.0004 0.0334 2.994

Note. See Table 3 for the corresponding experimental conditions.

Table A3

Tabular Relative Permeability Data for the Ormskirk Sandstone Sample

Experiment fCO2
Sw kr;CO2

kr;w DP (kPa)

O1 0.2572 0.6622 0.0011 0.0543 48.24

0.4611 0.6411 0.002 0.0394 48.2

0.694 0.6231 0.0035 0.0265 40.75

0.9003 0.592 0.0085 0.016 22.02

0.9596 0.5637 0.0166 0.0119 11.97

0.9802 0.5342 0.0281 0.0097 7.228

0.9913 0.4966 0.0468 0.007 4.394

0.9999 0.2669 0.9963 0.0017 0.208

O2 0.999 0.2788 0.3417 0.0058 0.606

0.9443 0.5716 0.0254 0.0254 7.713

0.8705 0.6095 0.0113 0.0285 16.04

0.7461 0.6073 0.0049 0.0283 31.57

0.4044 0.6204 0.0018 0.0453 46.37

0.059 0.6298 0.0003 0.0792 41.85

O3 0.461 0.9365 0.0277 0.5497 1.604

0.694 0.9235 0.0526 0.3942 1.27

0.8705 0.8995 0.067 0.1695 1.25

0.9595 0.8536 0.0737 0.0528 1.254

0.9868 0.8068 0.062 0.0141 1.532

0.999 0.7162 0.0906 0.0015 1.061

O4 0.9945 0.7156 0.0681 0.0064 1.406

0.9803 0.7187 0.0641 0.022 1.471

0.638 0.7768 0.0405 0.3907 1.516

0.1275 0.7872 0.0066 0.772 1.849

0.026 0.7815 0.0013 0.8425 1.891

Note. See Table 3 for the corresponding experimental conditions.

Table A4

Tabular Relative Permeability Data for the Captain Sandstone Sample

Experiment fCO2
Sw kr;CO2

kr;w DP (kPa)

C1 0.0954 0.6828 0.0009 0.0879 419.3

0.3171 0.6772 0.0033 0.0701 396.8

0.6294 0.6604 0.0092 0.053 284.6

0.8991 0.619 0.026 0.0286 143.6

0.9521 0.6014 0.0388 0.0192 101.8

0.9797 0.5776 0.057 0.0116 71.26

0.9926 0.5672 0.081 0.006 50.81

0.9978 0.5395 0.1284 0.0028 32.21

0.9998 0.3388 0.4599 0.0011 9.016
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