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Multiphase flowrate measurement with
multi-modal sensors and temporal convolutional

network
Haokun Wang, Student Member, IEEE , Delin Hu, Student Member, IEEE , Maomao Zhang, Member,

IEEE , Nan Li, Member, IEEE , and Yunjie Yang, Member, IEEE

Abstract— Accurate multiphase flow measurement is vital in monitoring and optimizing various production processes.
Deep learning has as of late arose as a promising approach for assessing multiphase flowrate dependent on various
customary flow meters. In this paper, we propose a multi-modal sensor and Temporal Convolution Network (TCN) based
method to predict the volumetric flowrate of oil/gas two-phase flows. The volumetric flowrates of the liquid and gas phase
vary from 0.96 - 6.13 m3/h and 5.5 - 121.2 m3/h, respectively. The multi-modal sequential sensing data are simultaneously
collected from a Venturi tube and a dual-plane Electrical Capacitance Tomography (ECT) sensor in a pilot-scale multiphase
phase flow facility. The reference data are derived from the single-phase flowmeters. Z-score and First-Difference (FD)
data pre-processing methods are employed to manipulate the collected instantaneous time series multi-modal sensing
data. The pre-processed data are utilized for training the TCN model. Experimental results reveal that the TCN model can
effectively predict the multiphase flowrate based on the multi-modal sensing data.The results provide guidance on data
pre-processing methods for multiphase flowrate estimation and demonstrate the effectiveness of combining multi-modal
sensors and TCN for multiphase flowrate prediction under complex flow conditions.

Index Terms— Temporal Convolutional Network (TCN), Z-score, first difference method, multiphase flowrate measurement,
time series data.

I. INTRODUCTION

MULTIPHASE flow refers to the simultaneous flow of
two or more materials, frequently observed in the en-

ergy industry, chemical engineering, bio-medicine and natural
environment. A growing body of literature recognizes the
importance of accurate and in-situ multiphase flow measure-
ment in real applications, which facilitates the improvement
of production efficiency and safety, and reduces environmen-
tal pollution. In past decades, an assortment of multiphase
flow measurement methods has been developed, which could
be generally categorized into three distinct classes: multi-
phase flow visualization [1], flow pattern recognition [2],
and flowrate measurement [3]. Each class involves notable
attempts with the application of multiphase flow theory and
the implementation of various measurement principles. Among
these achievements, tomographic methods that are based on
ultrasound [4], radiation [5], magnetic induction [6] and
electrical field [7] are well established for multiphase flow
measurement. The differential-pressure-based flow meters also
play a non-negligible role in flow measurement, especially
flowrate measurement [8].
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Multiphase flowrate measurement in the past profoundly
relies on the separation tank, which is an unavoidable con-
sititution in the traditional transportation system in energy
industry. Its working principle depends on the gravity that
automatically stratifies the mixture within a period. After strat-
ification, Single Phase Flow Meters (SPFMs) are employed to
measure the single phase flowrate. There is a broad scope of
gadgets that can be viewed as the likely contender for single
flowrate estimation, such as sensors based on terahertz [9]
and acoustic technologies [10]. Differential pressure sensors
such as Venturi tube are broadly utilized in single phase
flowrate measurement [11]. This kind of SPFM estimates
flowrate based on differential pressure signals created by
the liquid flowing through the sensor. However, the spatial
and temporal cost of using separators are considerably high,
which dramatically reduces the production efficiency in real
applications. Meanwhile, under the offshore scenarios, there
are limited spaces available for pipelines and separation tanks.

With the advancement of sensors and computational meth-
ods, enormous efforts have been made to overcome the
detriments of traditional flowrate estimation approaches. For
instance, gamma-ray technique is combined with Venturi
tube for flowrate measurement when flow regimes are stable
[12]; the development of ultrasonic technique for multiphase
flowrate measurement is systematically reviewed in [13]; the
relationship between the flow condition, Doppler shift of the
frequency shift of the acoustic wave and flow velocity is
investigated in [14]. Studies of employing the Venturi tube in
multiphase flowrate measurement have also been reported re-
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cently. Differential pressure usually changes more dramatically
in gas-liquid flows than single-phase flows. A recent study
presents a comprehensive appraisal of relationships between
the measured differential pressure and flowrate for gas-liquid
slug flow through Venturi tubes [15]; another study examines
the performance of Venturi tube in measuring the flowrate
of a wide range of gas-liquid flows [16]. Nevertheless, it is
noteworthy that the ’over reading’ phenomenon occurs when
utilizing the Venturi tube to measure multiphase flowrates.
Compared to single phase flows, multiphase flows with the
same mass or volumetric flowrate usually incites prominent
differential pressure due to the existence of the other phase
[17]. There have been attempts to utilize multi-modal ap-
proaches to tackle the flowrate measurement challenge, whilst
there are still remaining issues. A drawback of combining Ven-
turi tube with the radioactive approaches lies in the expensive
maintenance and potential radiation hazards [18]. Integrating
with sensors with direct contact of the flow (e.g., Electrical
Resistance Tomography (ERT)) is sensitive to the impurity in
the flow [19]. The combination of ECT and Venturi tube has
been initially investigated in [20]. However, the mass flowrate
were predicted based on simplified physical models.

The flourishing of data-driven methods has likewise pre-
sented new options for multiphase flowrate estimation by
empowering more correlated sensing data analysis [21], [22].
A qualitative study in [23] compared different modern ma-
chine learning methods on predicting the multiphase flowrate
using the Venturi tube. By employing Venturi meter as the
primary sensor to extract the flow characteristics, our previous
work successfully predicted the flowrate of gas-liquid flow
using Deep Neural Network, (CNN)-Long-Short Term Mem-
ory (LSTM) and Temporal Convolutional Network (TCN)
[3], [24]. However, the flowrate measurement accuracy still
have the potential to be improved by combining multi-modal
sensors with advanced learning algorithms.

This paper proposes an approach for estimating the fluid
and gas volumetric flowrate of oil-gas two-phase flow by
combining multi-modal sensors, i.e., dual-plane ECT sensor
and the Venturi tube, with TCN. The multiphase flow is
characterized by multi-modal sequential sensing data collected
from the dual-plane ECT and Venturi tube. Then, TCN is
firstly introduced to fuse the time series sensing data and
estimate the flowrate. The TCN model is trained, validated,
and tested using in-situ flow measurement data collected from
a pilot-scale multiphase flow facility. The performance of TCN
is comprehensively evaluated, and the effect of different data
pre-processing approaches is also discussed.

The novelty of this work lies in: 1) Development of a multi-
modal method for multiphase flowrate measurement based
on ECT and Venturi tube; 2) Investigation of the effect of
different multi-modal data pre-processing methods on the
flowrate estimation accuracy; 3) Development of revised TCN
models to fuse multi-modal time series data and estimate
multiphase flowrate. Compared with the traditional mixture
separation method, the proposed method is not sensitive to
flow patterns and is able to perform in-situ flowrate mea-
surement. By ultilizing multi-modal sensor data, the flowrate
prediction accuracy could be improved.
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Fig. 1: Diagrammatic illustration of the multiphase flow facil-
ity for data collection.

II. METHODS

A. Multiphase flow facility and data collection

The oil-gas two-phase flowrate measurement experiments
were conducted on a pilot-scale multiphase flow facility (see
Fig. 1 for schematic illustration). The multiphase flow facility
comprises of an air storage tank, a separator to separate the
mixture and supply the single phase flow of liquid, transport
pipes, single phase flowmeters to provide reference flowrate
of each phase, a Venturi tube to provide differential pressure
data and a dual-plane 8-electrode ECT sensor to produce
capacitance measurements. In the experiment, the flowrate of
the oil and gas single phase flows is adjusted by solenoid
valves to create an oil-gas mixture with various flow con-
ditions. Meanwhile, the volumetric flowrate of each phase
is measured through the Single-Phase Flow Meters (SPFMs)
before mixing, which is adopted as the reference flowrate for
the training of the machine learning model.

The oil and gas mixture is transported through the dual-
plane ECT sensor and Venturi tube (see Fig. 2). The dual-
plane ECT sensor is consisted of two layers of 8-electrode
sensors. Each layer can provide 28 independent capacitance
measurements, and in each measurement frame it can produce
28 * 2 capacitance readouts. The frame rate of the dual-
plane ECT system is 714 fps [25]. Previous studies have
demonstrated that the dual-plane sensor could capture velocity
of the dispersed phase, which we expect will benefit flowrate
estimation [26].

The mixture will then flow through the Venturi tube (see
Fig. 2), which produces the differential pressure signal that
correlates the flowrate of the multiphase flow. The structural
design of the Venturi tube is based on several factors, such as
the expected measurement range of multiphase flowrate and
the working pressure of the facility. The throat diameter d is 25
mm and the diameter ratio is 0.5. The sampling frequency is 60
Hz and the resolution is 0.01 kPa. As illustrated in Fig. 2, three
pressure signals namely the former (∆Pf ), posterior (∆Pp) and
dynamic pressure (P) are collected when the mixture flows
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Fig. 2: Structural schematic of (a). the Venturi tube and (b).
the dual-plane ECT sensor.

TABLE I: MULTIPHASE FLOW EXPERIMENT MATRIX

Objects Liquid volumetric
flowrate (m3/h)

Gas volumetric
flowrate (m3/h) GVF

Oil 0.96 – 6.13 - -
Gas - 5.5–121.2 0 – 96.64%

through it. Additionally, we measure the temperature (T) as
an extra indication parameter for flowrate estimation.

B. Flow parameters measurement

We measure real-time capacitance from the dual-plane ECT
sensor, differential pressure and temperature data from the
Venturi tube according to the experimental matrix in Table.
I. Considering the dynamic nature of the flow after mixing,
we average the measured reference data from the SPFMs to
more precisely approach the averaged multiphase flowrate in a
short period. To simulate the flow conditions in real industrial
applications, we perform a wide range control of each single
phase flowrate during the experiment to cover the real situation
in the production process as much as possible. The flowrate
of the oil and gas phase ranges from 0.96-6.13 m3/h and 5.5
- 121.2 m3/h, respectively. The Gas Volume Fraction (GVF)
varies from 0 to 96.94%.

The differential pressure, temperature and ECT data were
considered in this study since the Venturi tube has been
widely investigated for single-phase flowrate measurement,
and the dual-plane ECT sensor has been proved effective in
measuring the velocity of dispersed phases. The combina-
tion of Venturi tube and dual-plane ECT sensor is expected
to improve the flowrate estimation accuracy for multiphase
flows. With the sampling rate of 10 Hz, two differential
pressure ∆Pf and ∆Pp, standard pressure and temperature
data were simultaneously measured through Venturi tube and
temperature sensors. Meanwhile, the dual ECT system with 8
electrodes on each plane concurrently acquires 56 capacitance
measurements with 714 × 56 readings per second. Therefore,
for a roughly half hour measurement duration, we initially
obtain two 28*1285200 matrices for electrical parameters and
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Fig. 3: Overview of the instantaneous pressure and tempera-
ture data.

four 1 * 15204 matrices for differential pressure and tempera-
ture parameters, which contain the instantaneous multiphase
flow feature measurement results. In consideration of the
consistency of the input training data feature to the proposed
TCN model, the measured electrical parameters were averaged
in each second to reflect the flow status during the one
second period. Therefore, two 28 * 15204 electrical parameter
matrices are obtained and considered as part of the final
training data for TCN model. An overview of the instantaneous
sequential pressure and temperature data is shown in Fig.
3. The temperature parameter stays at around 35◦C and is
represented by the purple colour. Meanwhile, the orange,
yellow and blue dash lines indicate the measured pressure data
to reflect the change in flow status.

C. Multi-modal data pre-processing

Data pre-processing on the instantaneous flow measure-
ment data is essential to facilitate network training. It could
eliminate to some extent the influence of measurement noise
and achieve better alignment between the measurement and
reference data. The difference of spatial locations of the
sensors can cause a mismatch between the real instantaneous
flowrate in the testing section and the flowrate calculated based
on SPFM measurements, due to the dynamic nature of the
multiphase flow. Our previous studies have proven that moving
average is effective to mitigate this issue [3], [24]. On this
basis, we further introduce two approaches for multi-modal
data pre-processing.

1) Z-score method: Z-score, also known as zero-
normalization, is one of the most popular data pre-processing
(normalisation) methods in deep learning [27]. It is commonly
applied to deal with features which have different scales
to ensure the features are comparable with each other. The
differential pressure, temperature and capacitance data are
z-scored separately, and the z-score for each measurement is
calculated by:

Z =
x− µ

σ
(1)
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Fig. 4: Visualization of the first-difference pre-processed pres-
sure and temperature training data.

where µ is the mean value; σ is the standard deviation and
x is the measurement.

2) First-difference method: First-difference (FD) method is
widely applied on dealing with sequential data in deep learning
[28]. When the measurement data is sequentially collected and
may be randomly varying, FD method is recommanded for
data pre-processing. Meanwhile, implementing FD method to
initially manipulate the raw data can avoid the stochastic trend
problem [29]. The first difference method at time t can be
defined as:

∆xt = xt − x(t−1) (2)

In this study, the FD was individually applied on each
multiphase flow measurement and the pre-processed data is
shown in Fig. 4. More smooth trend of both pressure and
temperature data can be obtained after FD process.

D. TCN-based multiphase flowrate estimation

Notable progress has been made on the analysis and pre-
diction of sequential data since the TCN model was pro-
posed [30]. Our previous study implements an enhanced
TCN to predict the multiphase flowrate using only Venturi
tube [24]. Additionally, other learning-based methods such as
1D Convolutional Neural Network (CNN) [31], Deep Neural
Network (DNN) and Support Vector Machine (SVM) [3] were
attempted in our previous work. The vanishing/exploration
gradient issue is evident, which could be addressed by TCN.
This work further introduces a multi-modal setup and an
improved TCN model to predict the multiphase flowrate based
on multi-model data.

The TCN model in this work is established based on
Keras library [32] and the main structure is illustrated in
Fig. 5. Starting with the first layer, the batch size and input
data length is respectively set to 32 and 128 for all six
measured multiphase flow features. The measured P, ∆Pf ,
∆Pp and T are 1D time-series signals. Therefore, an input
format of 32*128*4 is adopted for the Venturi tube only case.
Additionally, a 32*128*60 input configuration is created for

the multi-modal setup integrating Venturi tube with the dual-
plane ECT sensor, which introduces another 56 capacitance
measurements.

A temporal block is directly connected to the input layer
with its input dimension of (batch size * sequence length *
channel), where the channel size is consistent with the input
layer. It comprises eight independent TCNs with the same
structure yet different parameter settings. A diagrammatic
sketch of the temporal block is shown in Fig. 6.

The eight temporal blocks has the same parameter settings
with the exception of the dilation ratio (d) and void rate (v),
which are sequentially stated in the second block in Fig. 5. In
detail, the parameter settings of the first temporal block on d
and v are 1 and 0, respectively. With no special circumstances,
it will not be repeated in the following text of this paper. The
input data dimension of the temporal convolution block in
Fig. 6 is consistent with previous network settings, where the
channel size is selected as four for differential pressure and
temperature features and 60 for electrical features obtained
from dual ECT system. A convolution kernel is created in
the 1D convolutional layer, which has the kernel size (k) of 2,
zero padding size (p) of 2 and stride setting (s) of 1. The main
function of the 1D convolutional layer is to perform the con-
volution operation with the input over a temporal dimension to
generate outputs that contain a tensor. A normalization layer is
followed with the conv 1D layer to perform the normalisation
operation to avoid Internal Covariate Shift problem [33]. Layer
Normalisation (LN) is then connected since it can analyze
the input data of the same layer with different dimensions.
As an improvement of Batch Normalisation (BN) method,
the influence caused by the distribution of the mini-batch
can be mitigated by implementing LN method. Meanwhile,
compare to BN method, there is no need for LN to memorise
the average and variance value of the mini-batch, which
saves storage space during calculation. Due to the intrinsic
characteristic of TCN, it can only “look forward” but not
backward, zero padding operation will extend the size of the
back. Therefore, a Chomp1D layer is connected to perform
the “cutting” operation. In other words, the extended size of
the back as the length of zero padding will be erased by
the Chomp1d layer. Rectified Linear Unit function is selected
as the activation function to eliminate the vanishing gradient
problem in this study. For the temporal block, the structure
of Conv 1D to Relu layer was repeated twice and the final
dropout layer of a single TCN block provides an output (Xi)
with the size of batch * 256.

The final dropout of the second block in Fig. 5 is achieved
by performing the skip-layer connection operation of the eight
TCNs’ last layer of the temporal convolution block in Fig. 6.
For eight temporal convolution blocks with the same structure,
the output Xi is sequentially summarised, which can be noted
as (sum{Xi}, where i = 1, 2 ... 8). Once the output of the
temporal convolution block is obtained, two dense layers with
128 and 1 neurons are connected, which are the third and
fifth layer in Fig. 6. The dense layer is essentially a fully
connected layer, extracting the features obtained in temporal
convolution layer and finding the relationships between these
features. Adam [34] with the minimum training error was
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Fig. 6: Schematic of the temporal block in TCN.

chosen as the proper optimizer for current TCN model on
solving the multiphase flowrate estimation problem.

The element of the TCN output (in Fig. 5) has the size
of batch * 1, which is consistent with the format of the
input data. It is one of the most obvious characteristics of
the TCN model that it generates the same length of the
output data with the input data. Data length consistency is
achieved by implementing a 1D Fully Convolutional Network
(FCN) architecture with zero padding operation. Another main
characteristics of TCN is that there is no leakage of the
information from the future to the past when implementing
TCN to perform prediction objectives. It is benefited from
the causal convolution architecture in the TCN model, which
only conducts the convolution action with the elements at the
current moment t and previous layers. Such capabilities enable
us to flexibly control the output data length by adjusting the
input data length.

E. Network parameters
For the TCN model in Fig 5 and 6, the parameters “k”, “p”,

“s”, “d” and “v” denote the kernel size, zero padding, stride
setting, dilation ratio and void rate, respectively. The kernel
size was chosen as 2 according to [30]; the zero padding
size is selected as 2 to ensure that the feature size remain
unchanged after convolution operation; trade-off of the stride
size need to be carefully considered, where small stride size
enables avoiding repeat calculation and low training efficiency
but large size may lead the lost of information and missing of
key features of the training data. Therefore, the stride was set
to 1 for best prediction results. The dilation ratio and void rate
settings of each layer have been sequentially demonstrated.
The Rectified Linear Unit (ReLU) function [35] was chosen

as the activation function to eliminate and overcome the
vanishing gradient problem.

We adopt the Mean Square Error (MSE) as the loss function,
which calculates the squared difference between the estimated
(ŷi) and reference (yi) results:

JMSE =
1

N

N∑
i=1

[ŷi − yi]
2 (3)

where N is the number of the tested samples.

III. RESULTS AND DISCUSSION

A. Network training
Section II-B states the collected training features. The multi-

modal setup, i.e., the Venturi tube and dual-plane ECT system,
generates differential pressure, temperature and capacitance
data as training features. The flowrate measured by SPFMs
before mixing is adopted to derive the true flowrate for
network training. Two different data pre-processing methods
are considered which are presented in Section II-C. Both pre-
processing methods generate 15204 * 60 sequential samples,
which contains 56 ECT features, 3 pressure features and 1
temperature feature. The training, validation and testing data
set were randomly chosen from the sequential samples ob-
tained with the ratio of 8:1:1. The epoch number was selected
as 30 for TCN models, which has the lowest validation error.
For Keras library, the value of the parameter Adam was set as
1e-3.

B. Results using Z-score pre-processing
Fig. 7 first shows the results based on z-score pre-processed

features without including measurements from dual-plane ECT
for comparison. Fig. 8 presents the results under the multi-
modal setup, i.e., the instantaneous dual-plane ECT signals
with the pressure and temperature features are utilised for the
training of the proposed TCN model.

By contrasting various multiphase flow feature combina-
tions for flowrate estimation, the results demonstrate a strong
correlation between the estimated volumetric flowrate of the
liquid/gas phase and the reference flowrate (see Fig.7 and 8).
Most liquid and gas phase estimation results are located within
the acceptable accuracy range. Statistically, when ECT data
were not included in training, there are 86.49% and 75.55%
estimation results are in the tolerable scope for the liquid and
gas phase, respectively, suggesting the effectiveness of TCN
on multiphase flowrate prediction. By further including ECT
data, the TCN model demonstrates more precise results in
Fig. 8. There are 89.68% and 93.83% results sitting within
the tolerance range, indicating a considerable improvement.
Especially for gas phase, including ECT data leads to 24.2%
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Fig. 7: Multiphase flowrate estimation results of (a) liquid
phase and (b) gas phase by using TCN and Z-score pre-
processing without dual-plane ECT data.

improvement. Compared with Fig.7, it shows that adding
more proper multiphase flow features can increase the flowrate
measurement accuracy.

In addition to the difference caused by training features, the
estimated multiphase flowrate may also influenced by different
phase (i.e. liquid and gas phase). Several outliers appear on the
liquid phase in both Fig. 7a and 8a. There are three possible
underlying reasons for less outliers in the gas phase shown
in Fig. 7b and 8b. A possible explanation might be that the
Venturi tube is more sensitive to wet gas measurement, leading
to stronger linearity for the predicted gas flowrate. Another
potential reason is that TCN model has intrinsic limitations
on liquid phase flowrate prediction. In other words, TCN
model may not be able to extract high dimension features on
estimating the flowrate of the liquid phase.

The deviation of the estimation results (see Fig. 9) also
echos the previous analysis. Most liquid and gas flowrates
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Fig. 8: Multiphase flowrate estimation results of (a) liquid
phase and (b) gas phase by using TCN with Z-score pre-
processing and dual-plane ECT data.

are within an acceptable range, while results based on four
multiphase flow features demonstrate a relatively larger devi-
ation. Meanwhile, more outliers also appear in results using
fewer features. The deviation plots further confirm the ability
of TCN on multiphase flowrate estimation with proper training
data. Additionally, the benefit of introducing dual-plane ECT
data is also validated.

C. Results using first-difference pre-processing
The FD pre-processing method was also applied on the

collected multiphase flow features and the TCN model was
trained separately by different feature combinations. The
flowrate estimation results are shown in Fig. 10 and 11.

Observing both figures, the number of outliers are reduced
considerably. The stronger linearity between the estimated and
reference flowrate could be attributed to the characteristic of
FD pre-processing method, which has been widely applied
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Fig. 9: Deviation of (a) liquid phase and (b) gas phase estima-
tions with and without dual-plane ECT data by implementing
Z-score pre-processing method.

on dealing with unstable sequential data. The effect of the
dual-plane ECT data on estimation accuracy is also reflected
in both figures. When electrical signals are not included
in training, there are 90.64% and 85.14% of the predicted
flowrates within the 10% range for liquid and gas phases,
respectively. A comprehensive training data set which contains
56 groups of ECT data increases the valid predicted flowrate to
95.84% and 98.3% for liquid and gas phases, respectively. This
corroborates the earlier findings that the prediction accuracy
can be significantly improved by including extra multiphase
flow characteristics in the training process.

Fig. 12 shows the corresponding deviation distribution of
the estimated flowrates. The improvement of the estimation
accuracy is apparent when comprehensive training data is uti-
lized. A clearer linearity between the estimated and reference
flowrates exists when the dual-plane ECT data is used as extra
training data.
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Fig. 10: Multiphase flowrate estimation results of (a) liquid
phase and (b) gas phase using TCN with FD pre-processing
without dual-plane ECT data.

D. Comparison between Z-score and FD methods

Based on the predicted flowrate shown in Section III-B and
III-C, the performance of the TCN model and the influence
of different data pre-processing methods will be qualitatively
and quantitatively evaluated in horizontal (comparison of the
calculated MSE and ρ

X,Y
) and longitudinal (different data

pre-processing) perspective. The quantitative evaluation of
the predicted flowrate is mainly based on MSE and linear
correlation index (ρ

X,Y
). The latter describes the correlation

between the dependent and independent variables, which is
expressed as:

ρ
X,Y

=
E[(X − E(X))(Y − E(Y ))]√
E[X − E(X)]2

√
E[Y − E(Y )]2

(4)

where E stands for expectation operation, X and Y represents
the estimated and reference multiphase flowrate, respectively.
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Fig. 11: Multiphase flowrate estimation results of (a) liquid
phase and (b) gas phase using TCN with FD pre-processing
with dual-plane ECT data.

The closer the absolute value of ρ
X,Y

is to 1, the stronger the
linear relationship.

Table. II provides the MSE and ρ
X,Y

obtained from the
preliminary analysis of the estimated multiphase flowrate.
What stands out in the “Z-score” columns is that the smallest
MSE and highest correlation index appears in Fig. 8a and 8b
for the liquid and gas phase, respectively. Similar phenomenon
can be observed in Fig. 11a and 11b when implementing
FD method. This indicates that the estimation accuracy of
the liquid and gas flowrates can be improved by including
ECT data when training the TCN model. Meanwhile, for
both data pre-processing methods, the estimated gas flowrate
commonly has greater ρ

X,Y
and MSE value compared to the

same group of the results on liquid phase. It is aware that
stronger linearity does not necessarily correspond to a smaller
MSE. Compared with the liquid phase, a higher MSE of the
estimated gas flowrate is due to a wider acceptable range since
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Fig. 12: Deviation of (a) liquid phase and (b) gas phase using
TCN with and without dual-plane ECT data by implementing
FD pre-processing.

it is still a challenge to accurately measure gas flowrate in
energy industry.

Comparing each row, the TCN trained with FD pre-
processed data is better than that with Z-score data with higher
linear correlation index value and lower MSE. It could be
due to that the intrinsic characteristic of the Z-score method,
which excludes the consideration of the physical meaning of
the multiphase flow characteristics rather than executing the
data manipulation only from the perspective view of the data
structure. Additionally, Fig. 11a and 11b reveal the best
performance of the predicted liquid and gas flow of TCN
model by including ECT data in training and implementing FD
data pre-processing method. For the same training set and TCN
model, we can also conclude that FD method outperforms Z-
score method as the worst predicted results of FD method (Fig.
10a and 10b) is still better than the best of Z-score (Fig. 8a
and 8b) with lower MSE and higher correlation index value.
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TABLE II: CORRELATION INDEX AND MSE OF ESTIMATED FLOWRATE USING TCN WITH DIFFERENT DATA PRE-
PROCESSING METHODS

Index1
Z-score First difference

Liquid Gas Liquid Gas

ρ−E 0.9977 (Fig. 7a) 0.9992 (Fig. 7b) 0.9992 (Fig. 10a) 0.9994 (Fig. 10b)
ρ+E 0.9990 (Fig. 8a) 0.9997 (Fig. 8b) 0.9997 (Fig. 11a) 0.9999 (Fig. 11b)

MSE−E 0.0209 (Fig. 7a) 1.5369 (Fig. 7b) 0.0049 (Fig. 10a) 1.1625 (Fig. 10b)
MSE+E 0.0064 (Fig. 8a) 0.5503 (Fig. 8b) 0.0024 (Fig. 11a) 0.2079 (Fig. 11b)

1 The subscript “−E” and “+E” stands for the training data sets excluding and including dual-plane ECT data, respectively.

IV. CONCLUSION

This paper first introduced TCN for multiphase flowrate
estimation based on the multi-modal setup and investigated the
influence of different data pre-processing methods on estima-
tion accuracy. The dual-plane ECT sensor was combined with
the Venturi tube to obtain the multiphase flowrate features.
Two different data pre-processing methods (Z-score and FD)
were implemented to manipulate the obtained instantaneous
time-series signals. The experiment results confirms the su-
perior performance of TCN on estimating the multiphase
flowrate. We also show that the dual-plane ECT data play
a vital role in obtaining more accurate flowrates under the
multi-modal setup. Another finding is that FD approach can
provide more accurate flowrate estimation for both liquid and
gas phases.

Future work can further investigate the generalization ability
of the proposed approach under various experimental condi-
tions and facilities.
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