
Multiphase image segmentation and modulation

recovery based on shape and topological sensitivity

M. Hintermüller∗ and A. Laurain†

Abstract

Topological sensitivity analysis is performed for the piecewise con-
stant Mumford-Shah functional. Topological and shape derivatives
are combined in order to derive an algorithm for image segmenta-
tion with fully automatized initialization. Segmentation of 2D and 3D
data is presented. Further, a generalized Mumford-Shah functional is
proposed and numerically investigated for the segmentation of images
modulated due to, e.g., coil sensitivities.

Keywords. Image processing, k-means clustering, modulation recovery,
Mumford-Shah functional, piecewise constant recontruction, segmentation,
shape and topological sensitivity.

1 Introduction

Mathematical image segmentation is concerned with the task of partitioning
a given image into disjoint (homogeneous) regions [13]. Among the many
available paradigms, the approach due to Mumford and Shah [14] turned
out to be particularly useful, as it simultaneously denoises and segments the
image. It consists in minimizing the functional

Jν(u,Γ) =

∫

Ω
(f − u)2 + µ

∫

Ω\Γ
|∇u|2 + νH1(Γ), (1)

where f : Ω 7−→ [0, 1] denotes given image data (intensity map) on the im-
age domain Ω ⊂ R

d and H1(·) is the one-dimensional Hausdorff-measure.
The function u represents the reconstructed image and Γ denotes the recon-
structed contours (edge set) of the image. The parameters µ and ν penalize
deviations from homogeneity on the pieces and the length of the perimeter
of the pieces, respectively.

∗Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany, and

University of Graz, Department of Mathematics and Scientific Computing, Graz, Austria.
†University of Graz, Department of Mathematics and Scientific Computing, Graz, Aus-

tria.

1

While the original approach due to Mumford and Shah admits some
variation of the reconstructed image on the disjoint pieces, in [1, 21] Chan
and Vese considered a limitation to piecewise constant functions (Chan-Vese
model). In this case, the original Mumford-Shah problem reduces to

min
u,Γ

Jν(u,Γ) =

∫

Ω
(f − u)2 + νH1(Γ). (2)

Moreover, for given m ∈ N, u is defined as

u =

m
∑

i=1

ciχΩi
, (3)

with ci ≥ 0 the ”gray-value” (or phase) on the segment Ωi. Here χΩi
denotes

the characteristic function of Ωi. Hence, for the minimization of Jν , besides
the determination of ci, the optimal location of Ωi becomes an issue. The
latter corresponds to finding a topological distribution of the Ωi in Ω. For
this purpose, in [7] a discrete topological sensitivity technique is considered
for solving the piecewise constant Mumford-Shah problem.

In the present paper, we first introduce topological sensitivity analy-
sis in the continuous setting (where the original Mumford-Shah problem is
posed as well). Compared to earlier methods, this approach has several
benefits such as an automatized initialization which ultimately result in a
highly efficient (with respect to iteration counts and CPU-time consump-
tion) algorithm for image segmentation; see also section 4.2 for a numerical
comparison.

In a second part of the paper (see section 5) we are interested in mini-
mizing the following, more general version of (1):

Jν(u,Γ, σ) =

∫

Ω
(f − σu)2 + δ

∫

Ω
|∇pσ|2 + µ

∫

Ω\Γ
|∇u|2 + νH1(Γ), (4)

where σ, which is assumed to be unknown, models a potential modulation
of the image due to, e.g., coil sensitivities during image acquisition; see
figure 10 on page 35 for an example, where the image on the right in the
first row is a modulated version of the one on the left. Typically, σ is a
smooth function which we do assume to be independent of u. The term in
(4) involving ∇pσ acts as a regularization of σ. The choice of p ≥ 1 regulates
smoothness. Further we have 0 ≤ σ ≤ σ < ∞ a.e. in Ω. In the piecewise
constant Mumford-Shah context we solve

min
u,Γ,σ

Jν(u,Γ, σ) =

∫

Ω
(f − σu)2 + δ

∫

Ω
|∇pσ|2 + νH1(Γ). (5)

This formulation opens up new possibilities, but also new challenges in
Mumford-Shah based image segmentation. To the best of our knowledge,
very little research has been devoted to this version of the functional.

2

The rest of the paper is organized as follows. In sections 2-4 we start our
investigations by considering problem (2). In fact, in section 2 we introduce
the topological derivative to the Mumford-Shah functional in the piecewise
constant setting and without the perimeter term. We further design a solu-
tion algorithm and study its convergence properties. In section 3 we consider
shape sensitivity in order to also include the perimeter term. In section 4
we report on numerical results for our approach. Then, in section 5 the
generalized Mumford-Shah functional (5) is considered. For its numerical
treatment, we introduce a modified version which, among others, takes care
of the pointwise constraints on σ. The paper ends by a report on numerical
results for simultaneous modulation recovery and image segmentation.

2 Piecewise constant Mumford-Shah functional and

its topological sensitivity

Let Ω ⊂ R
2 be a bounded image domain, and let f : Ω 7−→ [0, 1] be the

intensity map associated with a gray-level image. Further, m > 1 is an
integer corresponding to the desired number of phases. The different phases
are denoted by ci and the corresponding domains by Ωi, i ∈ {1, ..,m}. Thus,
we have the partitioning of Ω:

Ω = ∪m
i=1Ωi, Ωi ∩ Ωj = ∅ ∀i 6= j;

see figure 1. When minimizing Jν(u,Γ) with respect to u, we get for i =
1, ..,m

ci = ci(Ωi) = |Ωi|
−1

∫

Ωi

f(x) dx if Ωi 6= ∅ or ci = 0 otherwise.

Since f : Ω → [0, 1] we have ci ≥ 0 for all i. Let u be a bounded piecewise
constant function defined by

u(x) = ci ∀x ∈ Ωi,

and denote by Γ the union of the boundaries Γi of the sets Ωi

Γ = ∪m
i=1Γi = ∪m

i=1∂Ωi. (6)

Note that the sets Γi might have non-empty intersections. We can rewrite
(2) in terms of Ωi only. For this purpose we introduce a new functional Jν:

Jν({Ωi}i∈{1,..,m}) =

m
∑

i=1

∫

Ωi

(f(x)− ci)
2 dx +

ν

2

m
∑

i=1

H1(Γi) +
ν

2
H1(∂Ω). (7)

3

Figure 1: Partition of the domain Ω.

The coefficient 1
2 and the term ν

2H
1(∂Ω) in (7) come from the fact that each

boundary Γi is counted twice in the sum (6). If we choose ν = 0 in (7), then
we obtain

J0({Ωi}i∈{1,..,m}) = J0(u,Γ) =
m
∑

i=1

∫

Ωi

(f(x) − ci)
2 dx. (8)

2.1 Existence of an optimal solution

We show now that there exists a solution of the minimization problem for
ν > 0

Minimize Jν({Ωi}i∈{1,..,m})

s.t. Ω = ∪m
i=1Ωi,

Ωi ∩ Ωj = ∅ ∀i 6= j, (9)

Ωi measurable ∀i ∈ {1, ..,m}.

Theorem 1. Problem (9) admits a solution {Ω∗
i }i∈{1,..,m}.

Proof. Let {Ω
(n)
i }i∈{1,..,m} be a minimizing sequence for problem (9). Then

we have for ν > 0 that H1(Γ
(n)
i) < M1 where M1 is a constant which does

not depend on i or n. Since Ω is bounded, we have

|Ω
(n)
i | + H1(Γ

(n)
i) < M2,

for some constant M2 > 0. Thus, [8, Thm 2.3.10 (p. 61)] (see also [2, Thm
5.3 (p. 128)] and [24]) yields the existence of {Ω∗

i }i∈{1,..,m} such that for all
i ∈ {1, ..,m},

χ
Ω

(n)
i

−→ χΩ∗
i

in L1(Ω) (10)

4

up to a subsequence. We immediately infer that

|Ω∗
i | = lim

n→∞
|Ω

(n)
i |.

From (10) we get
∫

Ω
fχ

Ω
(n)
i

→

∫

Ω
fχΩ∗

i
,

and as a consequence

c
(n)
i −→ c∗i .

Thus, we infer

m
∑

i=1

∫

Ω
(n)
i

(f(x) − c
(n)
i)2 dx −→

m
∑

i=1

∫

Ω∗
i

(f(x) − c∗i)
2 dx.

From [8, Prop 2.3.6 (p. 60)] (see also [2, 24]) we also have

H1(Γ∗
i) ≤ lim inf H1(Γ

(n)
i).

Gathering the previous results we obtain

Jν({Ω
∗
i }i∈{1,..,m}) ≤ lim inf Jν({Ω

(n)
i }i∈{1,..,m}) = minJν({Ωi}i∈{1,..,m}),

and hence
Jν({Ω

∗
i }i∈{1,..,m}) = minJν({Ωi}i∈{1,..,m}).

This proves the assertion. �

2.2 Topological derivative

In this section we set ν = 0 and write J instead of J0. This is motivated
by the fact that the perimeter term corresponds to lower dimensional sets.
Keeping this term would induce a singularity in the topological asymptotic
analysis. Rather it is dealt with by shape sensitivity in a subsequent sec-
tion. We note that our treatment of the perimeter term follows a standard
procedure in shape optimization.

Let ρ > 0 be a positive scalar and let x0 be a point in Ωi. Then
Bρ := B(x0, ρ) denotes the ball of radius ρ and center x0. The topolog-
ical derivative Ti,j of J at x0 is defined in the following way:

J (Ω1, ...,Ωi \ Bρ, ...,Ωj ∪ Bρ, ...,Ωm)

= J ({Ωi}i∈{1,..,m}) + πρ2Ti,j(x0) + o(ρ2); (11)

see [19] for a definition in a more general shape and topology optimization
context. It provides a criterion for removing a small part from Ωi and adding
it to Ωj. In fact, if Ti,j(x0) is negative, then the functional J is decreasing

5

for ρ sufficiently small. Therefore we define a matrix-valued function T
containing the different topological derivatives corresponding to all possible
cases:

T := {Ti,j}(i,j)∈{1,..,m}2 . (12)

From definition (11) we see that Ti,i ≡ 0 for all i ∈ {1, ..,m}. Next we
calculate the topological derivative Ti,j for i 6= j. Assuming |Ωi| > 0, we
first compute the expansion of ci in the case where we ”remove material”
from Ωi:

ci(Ωi \ Bρ) − ci(Ωi) =
1

|Ωi \ Bρ|

∫

Ωi\Bρ

f(x) dx −
1

|Ωi|

∫

Ωi

f(x) dx

=
|Bρ|

|Ωi|

(

ci(Ωi) −
1

|Bρ|

∫

Bρ

f(x) dx

)

+
|Bρ|

2

|Ωi| |Ωi \ Bρ|

(

ci(Ωi) −
1

|Bρ|

∫

Bρ

f(x) dx

)

.

The expansion of cj when we ”add material” to Ωj depends on whether
|Ωj| = 0 or not. If |Ωj| 6= 0, then we write

cj(Ωj ∪ Bρ) − cj(Ωj) = −
|Bρ|

|Ωj|

(

cj(Ωj) −
1

|Bρ|

∫

Bρ

f(x) dx

)

+
|Bρ|

2

|Ωj| |Ωj ∪ Bρ|

(

cj(Ωj) −
1

|Bρ|

∫

Bρ

f(x) dx

)

,

otherwise, if |Ωj | = 0, we have

cj(Ωj ∪ Bρ) = |Bρ|
−1

∫

Bρ

f(x) dx.

Now, if |Ωj| 6= 0, then we obtain

J (Ω1,...,Ωi \ Bρ, ...,Ωj ∪ Bρ, ...,Ωm) − J ({Ωi}i∈{1,..,m})

=

∫

Ωj∪Bρ

(f(x) − cj(Ωj ∪ Bρ))
2 dx +

∫

Ωi\Bρ

(f(x) − ci(Ωi \ Bρ))
2 dx

−

∫

Ωj

(f(x) − cj(Ωj))
2 dx −

∫

Ωi

(f(x) − ci(Ωi))
2 dx.

6

Taking into account the expansions of ci(Ωi \Bρ) and cj(Ωj ∪Bρ) results in

J (Ω1,...,Ωi \ Bρ, ...,Ωj ∪ Bρ, ...,Ωm) − J ({Ωi}i∈{1,..,m})

=

∫

Bρ

(f(x) − cj(Ωj))
2 − (f(x) − ci(Ωi))

2 dx

+ 2
|Bρ|

|Ωj|

(

cj(Ωj) −
1

|Bρ|

∫

Bρ

f(x) dx

)

∫

Ωj

(f(x) − cj(Ωj)) dx

− 2
|Bρ|

|Ωi|

(

ci(Ωi) −
1

|Bρ|

∫

Bρ

f(x) dx

)

∫

Ωi

(f(x) − ci(Ωi)) dx + O(|Bρ|)

as |Bρ| → 0 for ρ → 0. From Lebesgue’s differentiation theorem [3] and
∫

Ωi
(f(x) − ci(Ωi)) dx =

∫

Ωj
(f(x) − cj(Ωj)) dx = 0 we infer

Ti,j(x0) = (f(x0)− cj(Ωj))
2 − (f(x0)− ci(Ωi))

2 for almost all x0 ∈ Ω. (13)

In the case where |Ωj | = 0 we have

J (Ω1,...,Ωi \ Bρ, ...,Ωj ∪ Bρ, ...,Ωm) − J ({Ωi}i∈{1,..,m})

=

∫

Bρ

(f(x) − cj(Ωj ∪ Bρ))
2 dx +

∫

Ωi\Bρ

(f(x) − ci(Ωi \ Bρ))
2 dx

−

∫

Ωi

(f(x) − ci(Ωi))
2 dx

=

∫

Bρ

(f(x) − cj(Ωj ∪ Bρ))
2 − (f(x) − ci(Ωi))

2 dx

− 2
|Bρ|

|Ωi|

(

ci(Ωi) −
1

|Bρ|

∫

Bρ

f(x) dx

)

∫

Ωi

(f(x) − ci(Ωi)) dx

+ O(|Bρ|)

as |Bρ| → 0 for ρ → 0. Since cj(Ωj ∪ Bρ) = |Bρ|
−1
∫

Bρ
f(x) dx → f(x0) for

almost all x0 ∈ Ω, we get

Ti,j(x0) = −(f(x0) − ci(Ωi))
2 for almost all x0 ∈ Ω. (14)

2.3 Algorithm for topological derivative

The initialization of our algorithmic procedure for solving (9) with ν = 0
uses Ω1 = Ω and Ωi = ∅ for all i > 1. Then we determine Ω2 by computing
T1,2. Following equation (11), we may choose

Ω2 = {x0 ∈ Ω1 | T1,2(x0) < 0} .

Actually, since the topological derivative is only a local criterion, we prefer
to change the domain Ω1 only when the topological derivative is sufficiently

7

negative. In order to do that, we fix a prescribed tolerance 0 ≤ γ < 1 and
set

Ω2 =

{

x0 ∈ Ω1 | T1,2(x0) < γ min
y∈Ω1

T1,2(y)

}

.

Once we have initialized the sets Ωk, k = 1, .., i < m, we set

Ωi+1 =

i
⋃

k=1

{

x0 ∈ Ωk | Tk,i+1(x0) < γ min
y∈Ωk

Tk,i+1(y)

}

. (15)

Therefore the topological algorithm operates in two steps. In the first step we
initialize all the domains Ωi, and in the second step we modify the domains
according to the topological derivatives between all the m existing domains.
Ideally, convergence is reached when all the topological derivatives are zero.
However, for numerical purposes, we stop the algorithm as soon as

m
∑

i,j=1

‖T
(l)

i,j ‖2 ≤ µt



1 +

m
∑

i,j=1

‖T
(0)

i,j ‖2



 ,

where ‖T
(l)

i,j ‖2 is the L2-norm of T
(l)
i,j and 0 < µt ≪ 1 denotes a user-specified

stopping tolerance.
In what follows we propose two different algorithms. The first algo-

rithm is based on the previous idea, which is a standard technique for using
the topological derivative. The second one turns out to be much faster in
practice. Below, theorem 2 provides a relation between the two methods.

8

Algorithm 1: Initialization

Input: Ω, f , m, γ, µt

Output: Ωi, ci, i = 1, ..,m.

Initialization: Set Ω
(0)
1 := Ω and, thus, c

(0)
1 = |Ω|−1

∫

Ω f(x) dx. Set
l := 0.
for i = 1, ..,m − 1 do

for k = 1, .., i do

Compute c
(0)
k = |Ω

(0)
k |−1

∫

Ω
(0)
k

f(x) dx.

Compute T
(0)
k,i+1(x0) = −(f(x0) − c

(0)
k)2.

Initialize Ω
(0)
i+1 by using (15), and update Ω

(0)
k by setting

Ω
(0)
k = Ω

(0)
k \

{

x0 ∈ Ω
(0)
k | T

(0)
k,i+1(x0) < γ min

y∈Ω
(0)
k

T
(0)
k,i+1(y)

}

.

end

end

while
∑m

i,j=1 ‖T
(l)

i,j ‖2 > µt

(

1 +
∑m

i,j=1 ‖T
(0)

i,j ‖2

)

do

Set Ω
(l+1)
k = Ω

(l)
k ∀k ∈ {1, ..,m}.

for i = 1, ..,m do

Compute T
(l+1)
i,j for all x0 ∈ Ω

(l)
i and all j ∈ {1, ..,m}. Define

T
(l+1)
i (x0) = min

j∈{1,..,m}
T

(l+1)
i,j (x0).

Determine the sets

A
(l+1)
i =

{

x0 ∈ Ω
(l)
i | T

(l+1)
i (x0) < γ min

y∈Ω
(l)
i

T
(l+1)
i (y)

}

,

Ω
(l+1)
i = Ω

(l+1)
i \ A

(l+1)
i .

for j = 1, ..,m, j 6= i do

Ω
(l+1)
j =Ω

(l+1)
j ∪

{

x0 ∈ A
(l+1)
i | T

(l+1)
i,j (x0) = T

(l+1)
i (x0)

}

,

A
(l+1)
i =A

(l+1)
i \

{

x0 ∈ A
(l+1)
i | T

(l+1)
i,j (x0) = T

(l+1)
i (x0)

}

end

end

for i = 1, ..,m do

If |Ω
(l+1)
i | 6= 0 set c

(l+1)
i = |Ω

(l+1)
i |−1

∫

Ω
(l+1)
i

f(x) dx.

Else set c
(l+1)
i = 0.

end

l = l + 1
end

9

In our implementation, in the above stopping rule ‖ · ‖2 and µt are replaced
by a discrete L2-norm and µth, respectively, with h = max(1/nxi

: i =
1, . . . , d}, where nxi

denotes the number of pixels in the xi-direction.
Algorithm 1 can be straightforwardly extended to more general situa-

tions, such as the modulation recovery in section 5. In the specific context
of piecewise constant approximations, however, the following variant of the
previous algorithm is much faster and streamlines computations. Concern-
ing the latter note that the computation of the Ti,j-values is replaced by a

direct computation of Ω
(l+1)
i according to the structure of the topological

sensitivities. For the definition of this algorithm we need the symmetric
difference of two sets A and B, i.e.,

A∆B = (A ∩ Bc) ∪ (Ac ∩ B),

where superscript ’c’ refers to the complement of the respective set in Ω.
We further define the arithmetic mean of two subsequent phases by

di =
ci−1 + ci

2
∀i ∈ {2, ..,m}. (16)

Algorithm 2:

Input: Ω, f , m.
Output: Ωi, ci, i = 1, ..,m.

Initialization: Initialize c
(0)
i , i ∈ {1, ..,m} such that

min(f) ≤ c
(0)
1 < .. < c

(0)
i < .. < c

(0)
m ≤ max(f). Set l = 0 and Ω

(0)
i = ∅

∀i ∈ {1, ..,m}.

while [(l > 0 and |Ω
(l)
i ∆Ω

(l−1)
i | > 0 ∀i) or l = 0] do

Compute d
(l)
i , i ∈ {2, ..,m}, set d

(l)
1 < 0, d

(l)
m+1 = max(f).

Set Ω
(l+1)
i =

{

x ∈ Ω | d
(l)
i < f(x) ≤ d

(l)
i+1

}

∀i ∈ {1, ..,m}.

for i = 1, ..,m do

if |Ω
(l+1)
i | > 0 then

Update c
(l+1)
i = |Ω

(l+1)
i |−1

∫

Ω
(l+1)
i

f(x) dx.

else

Choose arbitrary c
(l+1)
i outside the interval [d

(l)
i−1, d

(l)
i].

end

end

set l = l + 1
end

A few words on the algorithm are in order. First note that algorithm 2
for minimizing the piecewise constant Mumford-Shah functional (Chan-Vese
model) without perimeter term is closely related to the k-means clustering

10

algorithm; see, e.g., [5, 6, 11] for details on the latter. Secondly, in the else-

branch of the if-statement alternative choices of c
(l+1)
i even within [d

(l)
i−1, d

(l)
i]

are possible. Keeping the same value than in the previous step , however, is
only meaningful if at least one of the other ci-values changes. Our suggestion

in the else-branch above is motivated by the fact that c
(l)
i ∈ [d

(l)
i−1, d

(l)
i]

produced Ωl+1
i = ∅. Further, below we show that algorithm 2 is similar to

algorithm 1 for γ = 0. We also prove a monotonicity property of algorithm
2; see Proposition 1 below. For the initialization of the phases one may use

c
(0)
i = min(f) + i

(max(f) − min(f))

m + 1
for i = 1, ...,m,

for instance, but other choices are possible.

We start our investigation by proving several auxiliary results. In what
follows, we assume

min(f) ≤ c
(0)
1 < .. < c

(0)
i < .. < c(0)

m ≤ max(f). (17)

Lemma 1. Define

Ti,j(x) := (f(x) − cj)
2 − (f(x) − ci)

2 ∀i, j ∈ {1, ..,m}, ∀x ∈ Ω. (18)

Then

Ti,j(x) = Ti,k(x) + Tk,j(x).

Proof: The proof follows immediately from the definition of Ti,j. �

Note that Ti,j in (18) is an extended version of the topological derivative
in (11) as x is arbitrary in Ω (and not just Ωi).

Lemma 2. Let Ti,j be defined as in (18). Then

Ti,j(x) < 0 ⇐⇒

{

either ci < cj and f(x) >
ci+cj

2 ,

or ci > cj and f(x) <
ci+cj

2 .

Proof: Note that Ti,j can be written in the form

Ti,j(x) = (ci − cj)(2f(x) − ci − cj).

Then the assertion follows immediately. �

Lemma 3. Let x ∈ Ωk, and let p be the smallest integer such that

Tk,p(x) = min
l∈{1,..,m}

Tk,l(x). (19)

11

Moreover, assume that the ci’s satisfy (17). Then

dp < f(x) ≤ dp+1. (20)

Conversely, if f(x) satisfies (20) for some p̂ then

Tk,p̂(x) = min
l∈{1,..,m}

Tk,l(x).

Proof: If p = m, then f(x) ≤ dp+1 = max(f) is true. Next suppose p < m.
We assume that f(x) > dp+1. Then, according to lemma 2, we get

Tp,p+1(x) < 0,

and, according to lemma 1,

Tk,p(x) + Tp,p+1(x) = Tk,p+1(x) < Tk,p(x).

This, however, contradicts our assumption (19). Thus f(x) ≤ dp+1.

Now we study the second inequality. If p = 1, the inequality is fulfilled
since d1 < 0 and f(x) ≥ 0. Now assume that f(x) ≤ dp and p > 1. First, if
f(x) < dp, we get Tp,p−1(x) < 0 and

Tk,p(x) + Tp,p−1(x) = Tk,p−1(x) < Tk,p(x),

which is impossible due to our assumption (19). Thus, we have f(x) ≥ dp.
Further, if f(x) = dp, it is easy to see that Tp,p−1(x) = 0. Hence we have

Tk,p(x) + Tp,p−1(x) = Tk,p−1(x) = Tk,p(x) = min
l∈{1,..,m}

Tk,l(x).

Again, this contradicts (19). Therefore, f(x) > dp holds true.

Conversely, assume that f(x) satisfies (20) for some 1 < p̂ < m, and let
q ≥ p̂ + 1. Then

f(x) ≤ dp̂+1 ≤
cp̂ + cq

2
,

and, according to lemma 2, we get Tq,p̂(x) ≤ 0 and, thus, Tp̂,q(x) ≥ 0.
Further

Tk,p̂(x) + Tp̂,q(x) = Tk,q(x) ≥ Tk,p̂(x).

In a similar way, if q ≤ p̂ − 1, we have

f(x) > dp̂ ≥
cp̂ + cq

2
,

and, according to lemma 2, we get Tq,p̂(x) ≤ 0 and, thus, Tp̂,q(x) ≥ 0.
Further

Tk,p̂(x) + Tp̂,q(x) = Tk,q(x) > Tk,p̂(x).

12

Finally we get
Tk,p̂(x) = min

l∈{1,..,m}
Tk,l(x),

which proves the converse statement. �

Now we are going to prove a theorem which shows that algorithm 2 and
algorithm 1 have a similar behavior.

Theorem 2. Let l ≥ 1. Assume that Ω
(l)
i , i ∈ {1, ..,m}, and the corre-

sponding min(f) ≤ c
(l)
1 < .. < c

(l)
i < .. < c

(l)
m ≤ max(f) are given. Assume

that

l̂k(x) = argminl∈{1,..,m} Tk,l(x) (21)

is unique for all x in Ω and k ∈ {1, ..,m}. Then, after one iteration of the

main loop of algorithm 1 with γ = 0, we get:

Ω
(l+1)
k =

({

x ∈ Ω | d
(l)
k < f(x) ≤ d

(l)
k+1

}

∪
{

x ∈ Ω
(l)
k | f(x) = d

(l)
k

})

\
{

x ∈ Ω
(l)
k+1 | f(x) = d

(l)
k+1

}

.

Proof: In algorithm 1, A
(l+1)
k is defined in the following way:

A
(l+1)
k =

{

x ∈ Ω
(l)
k | T

(l+1)
k (x) < γ min

y∈Ω
(l)
i

T
(l+1)
k (y)

}

.

If γ = 0 we have

A
(l+1)
k =

{

x ∈ Ω
(l)
k | T

(l+1)
k (x) < 0

}

.

which can be written as

A
(l+1)
k =

m
⋃

j=1

B
(l+1)
j,k , (22)

with

B
(l+1)
j,k =

{

x ∈ Ω
(l)
k | d

(l)
j < f(x) ≤ d

(l)
j+1 and T

(l+1)
k (x) < 0

}

.

Now we analyse different cases for Bj,k:

First case: If k = j, then B
(l+1)
j,k = ∅. Indeed, if d

(l)
k < f(x) ≤ d

(l)
k+1, then we

get from lemma 3

0 = T
(l+1)

k,k (x) = min
l∈{1,..,m}

T
(l+1)
k,l (x)

13

and, thus, T
(l+1)
k (x) = 0.

Second case: If k > j + 1, then

B
(l+1)
j,k =

{

x ∈ Ω
(l)
k | d

(l)
j < f(x) ≤ d

(l)
j+1

}

.

Indeed, we have

f(x) ≤ d
(l)
j+1 =

c
(l)
j + c

(l)
j+1

2
<

c
(l)
j + c

(l)
k

2
.

Thus, T
(l+1)

k,j (x) < 0 according to lemma 2 and, hence, T
(l+1)
k (x) < 0.

Third case: If k = j + 1, we either have

f(x) < d
(l)
j+1 =⇒ T

(l+1)
j+1,j (x) < 0

or
f(x) = d

(l)
j+1 =⇒ T

(l+1)
j+1,j (x) = 0.

In the second case, according to lemma 3 we get

0 = T
(l+1)

j+1,j (x) = min
l∈{1,..,m}

T
(l+1)
j+1,l (x)

which implies T
(l+1)
j+1 (x) = 0. This allows us to write B

(l+1)
j,k as

B
(l+1)
j,k =

{

x ∈ Ω
(l)
k |d

(l)
j < f(x) < d

(l)
j+1

}

.

Fourth case: If k < j, then we have

f(x) > d
(l)
j =

c
(l)
j−1 + c

(l)
j

2
≥

c
(l)
k + c

(l)
j

2

which implies T
(l+1)
k,j (x) < 0 according to lemma 2. Thus T

(l+1)
k (x) < 0.

Finally, in this case we get

B
(l+1)
j,k =

{

x ∈ Ω
(l)
k | d

(l)
j < f(x) ≤ d

(l)
j+1

}

.

In view of algorithm 1 and assumption (21), after one iteration, we obtain

Ω
(l+1)
k = (Ω

(l)
k \ A

(l+1)
k) ∪





m
⋃

i=1,i6=k

{

x ∈ A
(l+1)
i | T

(l+1)
i,k (x) = T

(l+1)
i (x)

}





= (Ω
(l)
k \ A

(l+1)
k) ∪





m
⋃

i=1,i6=k

A
(l+1)
i



 ∩





m
⋃

i=1,i6=k

{

x ∈ Ω
(l)
i | T

(l+1)
i,k (x) = T

(l+1)
i (x)

}





14

Now according to (22) and in view of lemma 3 we have

Ω
(l+1)
k = (Ω

(l)
k \ A

(l+1)
k) ∪





m
⋃

i=1,i6=k

m
⋃

j=1

B
(l+1)
j,i



 ∩





m
⋃

i=1,i6=k

{

x ∈ Ω
(l)
i | T

(l+1)
i,k (x) = T

(l+1)
i (x)

}





= (Ω
(l)
k \ A

(l+1)
k) ∪





m
⋃

j=1

m
⋃

i=1,i6=k

(

B
(l+1)
j,i ∩

{

x ∈ Ω
(l)
i | d

(l)
k < f(x) ≤ d

(l)
k+1

})



 .

According to our above characterization of B
(l+1)
j,k we get

B
(l+1)
j,i ∩

{

x ∈ Ω
(l)
i | d

(l)
k < f(x) ≤ d

(l)
k+1

}

= ∅ if j 6= k.

As a consequence

Ω
(l+1)
k = (Ω

(l)
k \ A

(l+1)
k) ∪





m
⋃

i=1,i6=k,k+1

{

x ∈ Ω
(l)
i | d

(l)
k < f(x) ≤ d

(l)
k+1

}





∪
{

x ∈ Ω
(l)
k+1 | d

(l)
k < f(x) < d

(l)
k+1

}

.

In addition we have

Ω
(l)
k \ A

(l+1)
k =

{

x ∈ Ω
(l)
k | T

(l+1)
k (x) ≥ 0

}

=
{

x ∈ Ω
(l)
k | d

(l)
k ≤ f(x) ≤ d

(l)
k+1

}

which leads to

Ω
(l+1)
k =

{

x ∈ Ω
(l)
k | d

(l)
k ≤ f(x) ≤ d

(l)
k+1

}

∪
{

x ∈ Ω
(l)
k+1 | d

(l)
k < f(x) < d

(l)
k+1

}

∪





m
⋃

i=1,i6=k,k+1

{

x ∈ Ω
(l)
i | d

(l)
k < f(x) ≤ d

(l)
k+1

}



 ,

and finally

Ω
(l+1)
k =

({

x ∈ Ω | d
(l)
k < f(x) ≤ d

(l)
k+1

}

∪
{

x ∈ Ω
(l)
k | f(x) = d

(l)
k

})

\
{

x ∈ Ω
(l)
k+1 | f(x) = d

(l)
k+1

}

.

This concludes the proof. �

Remark 1. Theorem 2 states that the updated domain Ω
(l+1)
k of algorithm

1 differs from the updated domain Ω
(l+1)
k of algorithm 2 by the set

{

x ∈ Ω
(l)
k | f(x) = d

(l)
k

}

\
{

x ∈ Ω
(l)
k+1 | f(x) = d

(l)
k+1

}

,

15

which will be negligible for most ”real-life” images. Moreover, whenever

the index l̂k(x) in (21) is not unique, x may be moved into any of the sets

yielding the minimum. In our implementation the set with the smallest index

is chosen. In practice such a non-uniqueness typically occurs only for a few

pixels during the segmentation except maybe in certain cases of piecewise

constant data.

Next, we establish a monotonicity result for Algorithm 2. For its proof we
need the following auxiliary result, which requires the mean value f̄D of a
given function f : A → R, where A is nonempty and bounded and D ⊂ A
with positive Lebesgue measure |D|, defined by

f̄D = |D|−1

∫

D

f(x) dx.

Lemma 4. Let f ∈ L∞(A, R), A ⊂ R
N bounded, N ≥ 1, and define

A1 = {x ∈ A | a < f(x) ≤ b},

A2 = {x ∈ A | c < f(x) ≤ d}

with a ≤ c and b ≤ d. We assume that |A1| 6= 0 and |A2| 6= 0. Then we

have

f̄A1 ≤ f̄A2.

Proof: First of all, if c ≥ b we immediately find

f̄A2 > c ≥ b ≥ f̄A1.

On the other hand, if c < b we define the sets

B1 = {x ∈ A | c < f(x) ≤ b},

C1 = {x ∈ A | a < f(x) ≤ c}.

Note that |B1| = 0 and |C1| = 0 cannot happen simultaneously since A1 =
B1 ∪ C1 and |A1| 6= 0. If |B1| = 0, then we have

f̄A2 > c ≥ f̄A1.

Therefore, in what follows, we assume that |B1| 6= 0. If |C1| = 0, then
A1 = B1 and, consequently,

f̄A1 = f̄B1 ;

otherwise, if |C1| 6= 0, then there holds

f̄A1 < f̄B1 . (23)

16

Indeed, first note that f̄C1 < f̄B1 and further

f̄A1 − f̄B1 = |A1|
−1

(∫

B1

f(x) dx +

∫

C1

f(x) dx

)

− f̄B1

=
|B1|

|A1|
f̄B1 +

|C1|

|A1|
f̄C1 − f̄B1

<
|B1|

|A1|
f̄B1 +

|C1|

|A1|
f̄B1 − f̄B1

< f̄B1 − f̄B1

< 0.

Similarly, if |C2| 6= 0, with C2 = {x ∈ A | b < f(x) ≤ d}, then we have

f̄B1 < f̄A2 .

On the other hand, if |C2| = 0, then

f̄B1 = f̄A2 .

Finally we get
f̄A1 ≤ f̄A2.

The equality in the previous inequality occurs only if |C1| = 0 and |C2| = 0.�

The monotonicity of the phases is addressed next.

Proposition 1. Using Algorithm 2, if there exists an integer n0 such that

c
(n0+1)
k ≥ c

(n0)
k ∀k ∈ {1, ..,m},

then we have

c
(n+1)
k ≥ c

(n)
k ∀k ∈ {1, ..,m} ∀n ≥ n0. (24)

In addition, if there exists an integer n1 such that

c
(n1)
k ≤ c∗k ∀k ∈ {1, ..,m},

then we have

c
(n+1)
k ≤ c∗k ∀k ∈ {1, ..,m} ∀n ≥ n1, (25)

where

c∗k = |Ω∗
k|

−1

∫

Ω∗
k

f(x) dx

and Ω∗
k is a solution of problem (9). �.

17

Proof: We prove (24) by induction. Assume (24) is true for some n > n0,
then we can write for all k ∈ {1, ..,m − 1}:

c
(n+1)
k + c

(n+1)
k+1

2
≥

c
(n)
k + c

(n)
k+1

2

and hence
d
(n+1)
k+1 ≥ d

(n)
k+1.

Since

Ω
(n+1)
k =

{

x ∈ Ω | d
(n)
k < f(x) ≤ d

(n)
k+1

}

∀k ∈ {1, ..,m}

and

Ω
(n+2)
k =

{

x ∈ Ω | d
(n+1)
k < f(x) ≤ d

(n+1)
k+1

}

∀k ∈ {1, ..,m}

we apply lemma 4 with A1 = Ω
(n+1)
k and A2 = Ω

(n+2)
k for k ∈ {2, ..,m − 1}

and get

c
(n+2)
k ≥ c

(n+1)
k .

For k = 1 and k = m we obtain a similar result. Concerning the second
part of the proposition, we note that if we assume that (25) is true for some
n ≥ n1, then we can write for all k ∈ {1, ..,m − 1}:

c∗k + c∗k+1

2
≥

c
(n+1)
k + c

(n+1)
k+1

2

and further
d∗k+1 ≥ d

(n+1)
k+1 .

Since
Ω∗

k =
{

x ∈ Ω | d∗k < f(x) ≤ d∗k+1

}

∀k ∈ {1, ..,m}

and

Ω
(n+2)
k =

{

x ∈ Ω | d
(n+1)
k < f(x) ≤ d

(n+1)
k+1

}

∀k ∈ {1, ..,m}

we apply lemma 4 with A1 = Ω
(n+2)
k and A2 = Ω∗

k for k ∈ {2, ..,m − 1} and
get

c
(n+2)
k ≤ c∗k.

For k = 1 and k = m we obtain a similar result. �

In our numerical experience the prerequisits of Proposition 1 are typically
met after a few iterations. In fact, we find an iteration n̄ such that all ck-
values increase (compared to their respective value in the previous iteration).

In such a situation Proposition 1 guarantees that the sequences {c
(n)
k }, k =

1, . . . ,m, are monotonically increasing for n ≥ n̄. In addition, if c
(n̄)
k ≤ c∗k

for all k = 1, . . . ,m then c
(n)
k , k = 1, . . . ,m , approaches the optimal value

from below as stated in the second part of the proposition.

18

3 Shape derivatives of the Mumford-Shah func-
tional and the level set framework

Next we recall some theoretical aspects of shape optimization; see [20]. The
analysis here is greatly simplified by the fact that we do not deal with partial
differential equations. Let Γ be defined as in (6) and let ni be the outward
unit normal vector to Ωi. In what follows V (t, x) is a smooth vector field
defined on [0, T] × Ω with V (t, x) · ni(x) = 0 for almost every x ∈ ∂Ω all
t ∈ [0, T] and all i ∈ {1, ..,m}. If the unit exterior normal vector ni is not
defined at a singular x ∈ Γ we assume that V (t, x) = 0. The vector field V
is said to be admissible if it satisfies these conditions. Let x = x(t,x) denote
the solution of the initial value problem

d

dt
x(t,x) = V (t, x(t,x)), (26)

x(0,x) = x. (27)

with x ∈ Ω and t ∈ [0, T], and we denote by T t : Ω → Ω the time-t map with
respect to (26)-(27), i.e. T t(x) = x(t,x). We set Γt = T t(Γ). The Eulerian
semi-derivative of J at Γ in direction of the vector field V is defined as the
limit

dJ(Γ;V) = lim
t→0

1

t
(J(Γt) − J(Γ)),

if it exists. A classical result on the structure of the shape derivative for
smooth domains states (see [20]) that there exists a distribution ∇J on Γ
such that

dJ(Γ;V) = 〈∇J, vn〉Γ,

where vn(x) = V (0, x) · n(x) and 〈·, ·〉Γ denotes an appropriate duality pair-
ing. If this duality pairing can be realized as an integral over Γ we have

dJ(Γ;V) =

∫

Γ
∇Jvn dΓ, (28)

and we are able to use a gradient method by choosing vn = −∇J ; otherwise
some presmoothing is necessary.

In the level set framework [15, 16, 18], the two-dimensional domain Ωi

is represented as the set of points where a three dimensional function φ
defined over Ω is negative. It is also assumed that φ(Ω \ Ωi) > 0 with φ
Lipschitz continuous. Since we have not only one but a collection of domains
Ωi, i ∈ {1, ..,m}, it is straightforward to see that k level set functions allow
for 2k domains. Therefore k can be chosen as the closest integer value greater
than or equal to lnm

ln 2 . For instance, with m = 4 we get k = 2. For the sake
of simplicity, we restrict ourselves to the two-dimensional case and m = 4
in what follows. Therefore, we define two level sets functions φ1 and φ2 and

19

the sets D1 and D2 such that

D1 := Ω1 ∪ Ω2 = {x ∈ Ω | φ1(x) < 0} , (29)

D2 := Ω1 ∪ Ω3 = {x ∈ Ω | φ2(x) < 0} . (30)

Then, for instance, the set Ω1 can be deduced by

Ω1 = {x ∈ Ω | φ1(x) < 0 and φ2(x) < 0} .

There exists a simple relation between the evolution of a level set function
φ and the vector field V (t, x), which corresponds to the moving boundary
Γt. Actually, the level set function φ is the solution of the Hamilton-Jacobi
equation

φt(t, x) + vext
n (t, x)|∇φ(t, x)| = 0 for (t, x) ∈ [0, T] × Ω, (31)

φ(0, x) = φ0(x) for x ∈ Ω (32)

where φt stands for the time derivative of φ and φ0 is given initial data. For
example, φ0 may correspond to the signed distance function of the initial
contour Γ0. Note that vn is defined only on Γ, therefore it is necessary to
define an extension vext

n to the entire domain. This extension is used in (31).
There are several ways to achieve such an extension; see, for instance, [9].

3.1 Shape sensitivity analysis

Now we return to our initial multiphase formulation (2). For convenience,
we use the notation

Jν(Γ) = Jν({Ωi}i∈[1,m]).

Using the calculus developed in [20] and assuming that Γi ∩ Γj , i 6= j, is
sufficiently smooth, the shape derivative of Jν(Γ) in the direction of the
vector field V is given by

dJν(Γ;V) =

m
∑

i=1

2

∫

Ωi

(f(x) − ci)c
′
i(Γ;V) dx

+

m
∑

i=1

m
∑

j 6=i

(

∫

Γi∩Γj

(

(f(x) − ci)
2 +

ν

2
κi(x)

)

vni
(x) dx,

)

,

where Γi := ∂Ωi and κi is the curvature of Γi, ni is the outer unit normal
vector to Ωi, and c′i(Γ;V) denotes the shape derivative of ci at Γ in the
direction V . Actually, since c′i(Γ;V) is a scalar, we have

m
∑

i=1

∫

Ωi

(f(x) − ci)c
′
i(Γ;V) dx =

m
∑

i=1

c′i(Γ;V)

∫

Ωi

(f(x) − ci) dx = 0,

20

Figure 2: Partition of Ω and level set functions φ1 and φ2.

as ci is the mean value of f over the domain Ωi. Thus, we obtain

dJν(Γ;V) =
1

2

m
∑

i=1

m
∑

j 6=i

∫

Γi∩Γj

(

(f(x) − ci)
2 − (f(x) − cj)

2 + νκi(x)
)

vni
(x) dx.

(33)
Therefore, we identify the shape gradient as in (28) by

∇Jν(x) = (f(x) − ci)
2 − (f(x) − cj)

2 +
ν

2
κi(x) a.e. on Γi ∩ Γj

for i, j = 1, . . . m with j 6= i. Extending this expression to Γi, i = 1, . . . ,m,
we define the steepest descent flow by

vni
(x) = −(f(x) − ci)

2 + (f(x) − cj)
2 −

ν

2
κi(x) a.e. on Γi; (34)

see [1] for a related expression.
The normal velocity field in (34) is defined on Γi, but for the purpose of

solving the Hamilton-Jacobi equation, we need to define it on the boundaries
of D1 and D2. We must take into account the fact that the intersections of
the Γi, i ∈ {1, ..,m}, are non-empty. From the definition of D1 we get

∂D1 \ ∂Ω = (Γ1 ∪ Γ2) ∩ (Γ3 ∪ Γ4)

= (Γ1 ∩ Γ3) ∪ (Γ1 ∩ Γ4) ∪ (Γ2 ∩ Γ3) ∪ (Γ2 ∩ Γ4).

From (34), and in view of κi = −κj on Γi∩Γj for i, j ∈ {1, ..,m}, we deduce
the values of the velocity fields on the boundaries of D1 and D2, respectively,
as

vnD1
= −(f − c12)

2 + (f − c34)
2 − νκD1

a.e. on ∂D1, (35)

vnD2
= −(f − c13)

2 + (f − c24)
2 − νκD2

a.e. on ∂D2, (36)

where cij designates the piecewise constant function

cij(x) = ci if x ∈ Γi,

cij(x) = cj if x ∈ Γj ,

and κD1 , κD2 are the curvatures of D1 and D2, respectively.

21

3.2 Algorithm for shape derivative

The starting point of our shape optimization algorithm is the numerical
solution obtained after running algorithm 2. In what follows, the superscript
(l) refers to the l-th iterate of the discrete counterpart of the respective
continuous variable. In a similar way as for the algorithm for topological
derivative we stop the algorithm as soon as

max(‖V
(l)
1 ‖2, ‖V

(l)
2 ‖2) ≤ µ1

s(1 + max(‖V
(0)
1 ‖2, ‖V

(0)
2 ‖2)),

or
|Jν(Γ

(l+1)) − Jν(Γ
(l))| ≤ µ2

s(1 + Jν(Γ
(0)))

where 0 < µ1
s, µ

2
s ≪ 1 are user-specified stopping tolerances.

step 1 Initialize by choosing φ
(0)
1 and φ

(0)
2 as the signed distance func-

tions to Ω
(0)
1 ∪Ω

(0)
2 and Ω

(0)
1 ∪Ω

(0)
3 , respectively, so that (29)-(30)

is satisfied. Here, the sets Ω
(0)
i , i ∈ {1, ..,m}, come from Algo-

rithm 1; set l = 0.

step 2 Compute the normal velocities v
(l)
n,1 and v

(l)
n,2 for φ

(l)
1 and φ

(l)
2

according to (35)-(36). If ‖v
(l)
n,1‖ = 0 and ‖v

(l)
n,2‖ = 0, then stop;

otherwise continue with step 3.

step 3 Extend the normal velocity v
(l)
n,1 and v

(l)
n,2 to the whole domain

Ω as described in (57), and update the level set functions φ
(l)
1

and φ
(l)
2 by solving the Hamilton-Jacobi equation (31).

step 4 Update the domains Ω
(l)
i , i ∈ {1, ..,m} according to (29)-(30)

and put l = l + 1. Go to step 2.

As before, in our numerical realization of the above scheme we replace ‖ · ‖2

and µj
s, j = 1, 2, by a discrete L2-norm and µj

sh, respectively.
A line search procedure is performed to modify the time step in the dis-

crete Hamilton-Jacobi equation; see (51). This is done by multiplying the
time step by α > 0, which is determined such that a Armijo-type descent
criterion is satisfied. In the iterative procedure below, one chooses some ini-
tial α0 > 0 and reduces this value by multiplying by β ∈ (0, 1), if necessary.
For the description of the lines search, let λ > 0 be a given parameter and
0 < αs ≪ 1 denote a lower bound on α. Then the line search procedure of
iteration l is as follows:

step 1 If Jν(Γ
(l+1))−Jν(Γ

(l)) ≤ −λαmax(‖V
(l)
1 ‖2, ‖V

(l)
2 ‖2) then stop

the line search and set α = min(2α,α0); else go to step 2.

step 2 Set α := βα. If α < αs then stop the algorithm.

22

step 3 Compute the new boundary Γ(l+1).

step 4 Compute the new value Jν(Γ
(l+1)). Go to step 1.

Finally we mention that in our numerics we use a narrow-band version
of our level-set based shape optimization algorithm.

4 Numerics

Now, we present different segmentation results. For topological sensitivity
all results were obtained by algorithm 2. The number m of levels is fixed
to m = 4 in all of our examples. The domain Ω is a square containing n2

pixels. For each example, the number of pixels and iterations, respectively,
and the CPU-time in seconds are presented. In the line search procedure
discussed above we use the parameter values β = 0.5 and λ = 10−2. In
our tests, the initial step size α0 is chosen as α0 = 10−4. The constants for
the stopping criteria described in the algorithms are chosen as µ1

s = 5.102,
µ2

s = 10, αs = 10−8. The regularization parameter for the length of the
contour is ν = 200 in all examples. All computations were performed on a
standard desktop PC (Intel 3.20 GHz CPU with 2GB of RAM).

4.1 Numerical results

Example 1. The first example is an image of a plane; see figure 3. The
topology optimization is extremely fast. It produces an excellent segmenta-
tion, but the boundaries of the Ωi’s still require the application of the shape
sensitivity step in order to account for the perimeter term in the Mumford-
Shah functional. We point out that the shape optimization step usually is
slower than the topology optimization phase. This is due to the additional
work in the time-stepping of the Hamilton-Jacobi equation for advancing φ
and the redistancing; see Table 1.

Table 1
n2 Iterations topo Time topo Iterations shape Time shape

3902 11 0.11s 6 11.28s

Example 2. The second example is an image of a lamp; see figure 4. In
this case, conclusions as for the first example can be drawn; see table 2 for
the results.

Table 2
n2 Iterations topo Time topo Iterations shape Time shape

3152 14 0.09s 3 4.05s

23

Figure 3: Example 1. Original image (upper left), image after topology step
(upper right), segmentation without contour (lower left), segmentation with
contour in green (lower right).

Figure 4: Example 2. Original image (upper left), image after topology step
(upper right), segmentation without contour (lower left), segmentation with
contour in green (lower right).

24

Figure 5: Example 3. Original image (upper left), image after topology step
(upper right), segmentation without contour (lower left), segmentation with
contour in green (lower right).

Example 3. As a third example we segment an image of blood cells; see
figure 5. Again, the conclusions are similar as for example 1.

Table 3
n2 Iterations topo Time topo Iterations shape Time shape

3312 35 0.26s 6 17.83s

Note that compared to the previous two examples the number of itera-
tions increases which we may attribute to the higher image complexity.

4.2 Comparison with the discrete topological algorithm [7].

Next we compare our results with the algorithm presented in [7], which
relies on a discrete notion of topological sensitivity. The method proceeds
as follows: First, a sequence of pixels is chosen, e.g., from the upper left
corner to the lower right corner of the image. Then, according to the discrete
topological sensitivity at a pixel of the sequence, this pixel might get moved
to a different segment. If the pixel was moved, then the level set function and
the value of the phases are updated. In order to deal with the perimeter term
in the Mumford-Shah functional, it is necessary to include a preprocessing
or postprocessing step in the algorithm. However, we are interested here in
the part of the algorithm which deals with the topological sensitivity. Hence,
we only compare this part with ours.

25

In figure 6, we show the original image (127 × 127 pixels), which has to
be segmented, on the left and the result obtained by our algorithm on the
right. In figure 7, one can see two results for the algorithm of [7] obtained
from two different initializations. These initializations are plotted in the
left column, and in the right column the corresponding final segmentation
is shown. For the first initialization we get the correct segmentation. But
for the second initialization we find that the disk inside the square on the
upper left of the image was not detected.

Apparently the algorithm in [7] is very sensitive to its initialization. If
the initialization gives a good guess of the position of the different objects
in the image, then the algorithm is able to find the correct segmentation;
otherwise it may miss important features of the images. In contrast to this,
our method utilizes an automated initialization which produces the correct
segmentation of the image. But even if we force our algorithm to use different
initializations (such as the two tested above), it always produces the correct
segmentation.

Moreover, the CPU-time consumption of our method is significantly less
compared to the one of the method in [7]. Counting floating point operations
(FLOPs) per iteration (and ignoring arithmetic logic units–ALUs), we find
that our algorithm requires 2N + 3m − 2 FLOPs, where N = n2 denotes
the number of image pixels. Since, typically, m ≪ N (e.g., m = 4 for two-
dimensional image data), the overall complexity is approximately 2N . On
the other hand, the method in [7] requires approximately 28N FLOPs per
iteration. This yields a ratio of 14 in favor of our method. We remark that, in
addition, [7] requires slightly more ALUs and floating point multiplications
per iteration when compared with our method. This difference in complexity
could be observed in our numerics, as well. For instance, for example 2
(see figure 4) our method requires 14 iterations and the algorithm of [7]
12 to reach the same segmentation result. In this case our method was
approximately 15 times faster.

4.3 Coarse to fine grid technique

The speed of our topological derivative method can be increased by using a
very simple coarse to fine grid strategy. The image is coarsened by taking
one pixel of two in the two directions, with rounding off when we have an odd
number of pixels. In the numerical example 3 for instance, we have n = 331
and, thus, we consider a sequence of coarse images with n = 165, 82, 41, 20
and 10. Then we apply the topological derivative on the coarsest image,
interpolate the result on the next finer grid and use it as the initial guess
on the next level, until we reach the finest mesh. Below, we report on the
iterations per level and the CPU-time improvement under mesh refinement.
The segmentation result is identical to the one obtained before. Note that
we improve the computational time by more than 50%.

26

Figure 6: Original image (left), final segmentation with our algorithm
(right).

Figure 7: First initialization (upper left), final segmentation for the algo-
rithm in [7] (upper right), Second initialization (lower left), final segmenta-
tion for the algorithm in [7] (lower right).

27

20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

Figure 8: 2D-slices of 3D data of the brain.

n2 102 202 412 822 1652 3312

Iterations topo 13 10 25 22 14 12

Improvement > 50%

4.4 3D segmentation

Algorithm 2 (topological derivative) is applied to a 3D-image showing blood
vessels in the brain. The image size is 256 × 208 × 70. We choose 4 levels
(phases) for the segmentation. The algorithm converged after 30 iterations
in 4.93 seconds. In figure 8 we show two slices of the image data stack.
The segmentation result is depicted in figure 9. Notice that we only plot
two phases for visualization purposes. One can clearly identify the vessel
structure from our result.

5 Modulation recovery and segmentation

Now we turn to the more general version of the Mumford-Shah functional in-
troduced in (4). We recall that we assume scaled image intensities satisfying
f ∈ [0, 1]. Hence, we also require u ∈ [0, 1]. This together with the modu-
lation constraints 0 ≤ σ ≤ σ̄ in Ω motivates the following approximation of
(4):

J (1)
ν (u,Γ, σ) =

∫

Ω
(f − σu)2 + δ

∫

Ω
|∇pσ|2 + µ

∫

Ω\Γ
|∇u|2 + νH1(Γ)

+κ

∫

Ω
max(u − 1, 0)2 − λ

∫

Ω
(ln(σ) + ln(σ̄ − σ)) , (37)

with κ > 0 and λ > 0. Note that the max-term in J
(1)
ν penalizes violations

of u ≤ 1 through the associated penalty parameter κ. We shall see later
that the non-negativity of u arises automatically in our context. In a slight

28

Figure 9: 3D segmentation using the topological derivative algorithm

deviation from usual tensor notation, ∇2σ (i.e., p = 2 in (37)) denotes the
Hessian of σ (rather than the Laplacian) with |∇2σ| the Frobenius norm of
∇2σ. The ln-terms involving σ follow an interior point philosophy [22] and
guarantee that 0 < σ < σ for λ > 0. Eventually we are interested in κ → ∞
and λ → 0 as this guarantees 0 ≤ u ≤ 1 and 0 ≤ σ ≤ σ. We also introduce

an alternative version of J
(1)
ν which is given by

J (2)
ν (u,Γ, σ) =

∫

Ω
(σ−1f − u)2 + δ

∫

Ω
|∇pσ|2 + µ

∫

Ω\Γ
|∇u|2 + νH1(Γ)

+κ

∫

Ω
max(u − 1, 0)2 − λ

∫

Ω
(ln(σ) + ln(σ̄ − σ)) . (38)

Although (38) is quite non-linear with respect to σ, in our numerical tests
we found that (38) outperforms a version of this functional involving ∇pσ−1

rather than ∇pσ in the associated regularization term (and corresponding
modifications of the ln-terms). Indeed, the modulation may get close to
zero rapidly in certain image regions, and thus the minimization of the
norm of ∇pσ−1 produces an adverse effect which must be avoided. The
segmentation and modulation recovery problems we are interested in, thus,
consist in minimizing either

min
u,Γ,σ

J (1)
ν (u,Γ, σ) or min

u,Γ,σ
J (2)

ν (u,Γ, σ). (39)

29

Observe that in the piecewise constant context we have

J (1)
ν (u,Γ, σ) =

∫

Ω
(f − σu)2 + δ

∫

Ω
|∇pσ|2 + νH1(Γ)

+κ

∫

Ω
max(u − 1, 0)2 − λ

∫

Ω
(ln(σ) + ln(σ̄ − σ)) ,

and analogously for J
(2)
ν . Moreover, u is given by (3).

Before we commence with technical details, we briefly motivate the above
functionals. For this purpose, note that in practice radio frequency coils are
used in magnetic resonance imaging (MRI) for both nuclear excitation and
for signal detection. Large homogeneous coils may be used for the uniform
elucidation of a volume but a smaller surface coil can be used to resolve
local details with greater sensitivity. However surface coils suffer from a
nonuniform sensitivity in relation to that of a body coil. This results in
a modulated image where the modulation is unknown. We refer to [10]
for more details. In order to restore images with such a degradation, the
purpose of the functionals (37) and (38) is to find simultaneously the un-
known modulation σ and the contour Γ as well as the piecewise constant
reconstruction u.

The possible values for the regularization parameter p in (37) and (38)
lead to different reconstructions of the modulation. Indeed, in the case
p = 1, the necessary optimality conditions for σ result in the resolution of a
second-order partial differential equation. Fixing σ on parts of the boundary
and using a maximum principle one may disregard the logarithmic terms in
(37) and (38), as the nonnegativity and boundedness of σ are automatically
guaranteed. However, such boundary conditions typically assume some pre-
knowledge of the position of the coil, which is not always the case and is,
in particular, not assumed throughout this paper. By choosing p = 2 we
allow more ”freedom” in the possible reconstruction of σ as the kernel of
the associated differential operator contains harmonic functions as opposed
to constant functions for Neumann boundary conditions in the case p = 1.
Of course, p = 2 induces higher regularity of σ than p = 1. In practical
applications, however, rather high regularity of σ appears to be the case,
and therefore it may not be considered a restriction. But, for p = 2, we
need to take care of σ ∈ [0, σ̄] for some sufficiently large σ̄ > 0. In our
approach this is achieved by the logarithmic terms in (37) and (38), respec-
tively, which reflect an interior point treatment of the constraints; see [22]
for a general discussion of interior point methods in optimization. Higher
order regularization could also be considered, at the expense of the amount
of computations.

In what follows, we focus on the case p = 2. We also consider only
the application of a slightly modified version of the topology optimization
algorithm 1. Therefore, we disregard the H1(Γ)-term by choosing ν = 0. In

30

the piecewise constant setting, (37) becomes

J (1)
ν (u,Γ, σ) =

∫

Ω
(f − σu)2 + κ

∫

Ω
max(u − 1, 0)2

+δ

∫

Ω
|∇2σ|2 − λ

∫

Ω
(ln(σ) + ln(σ̄ − σ))

=
m
∑

i=1

∫

Ωi

(f − σci)
2 + κ

m
∑

i=1

|Ωi|max(ci − 1, 0)2

+δ

∫

Ω
|∇2σ|2 − λ

∫

Ω
(ln(σ) + ln(σ̄ − σ)) ,

In our approach, the minimization of J
(1)
ν (u,Γ, σ) is performed in two steps:

(i) Minimize J
(1)
ν with respect to σ and keep u and Γ fixed.

(ii) Minimize J
(1)
ν with respect to u and Γ and keep σ fixed.

Step (ii) relies on a modified version of algorithm 1. The involved mod-
ifications concern the formulas for the topological derivatives and for ci,
i ∈ {1, ..,m}. The relevant details are given below in this section.

We emphasize that the primary goal of this section is to recover the im-
age by detecting the modulation, and not the segmentation of the image.
Still, the application of algorithm 1 is primordial for the de-modulation pro-
cedure. Once an (approximately) demodulated image has been achieved, the
segmentation procedure described in the previous sections can be applied.

5.1 Minimization with respect to σ

The first order necessary optimality conditions for the minimization of (37)
with respect to σ are

(δ∆2 + u2)σ −
λ

2σ
+

λ

2(σ̄ − σ)
= uf in Ω, (40)

∂nnσ = ∂nτσ = ∂n∆σ = 0 on Γ,

where ∂n stands for the normal derivative and ∂τ the tangential derivative
on the boundary Γ. We are interested in applying Newton’s method for
solving (40). Hence, we need the corresponding linearization of (40). For
this purpose we set

λ =
λ

2σ
, (41)

λ =
λ

2(σ̄ − σ)
, (42)

A(u) = δ∆2 + u2 id,

31

where id represents the identity operator. The linearization of (41)-(42) and
(40) gives

λdσ + σdλ =
λ

2
− λσ, (43)

−λdσ + (σ̄ − σ)dλ =
λ

2
− λ(σ̄ − σ), (44)

A(u)dσ − dλ + dλ = uf − A(u)σ + λ − λ. (45)

From this system we obtain

dλ = −
λ

σ
dσ +

λ

2σ
− λ, (46)

dλ =
λ

σ̄ − σ
dσ +

λ

2(σ̄ − σ)
− λ, (47)

[

A(u) +

(

λ

σ
+

λ

σ̄ − σ

)

id

]

dσ = uf − A(u)σ +
λ

2σ
−

λ

2(σ̄ − σ)
. (48)

Therefore, for obtaining the update direction dσ we solve

[

A(u) +

(

λ

σ
+

λ

σ̄ − σ

)

id

]

dσ = uf − A(u)σ +
λ

2σ
−

λ

2(σ̄ − σ)
, (49)

∂nndσ = ∂nτdσ = ∂n∆dσ = 0.

Then dλ and dλ are deduced from (46)-(47). Next we compute the step
length α such that

σ̄ ≥ σ + αdσ ≥ 0, λ + αdλ ≥ 0, λ + αdλ ≥ 0.

In order to stay safely in the interior of [0, σ̄] we choose

ασ = min

{

0.99min
{

−
σ

dσ
| dσ < 0

}

; 0.99min

{

σ̄ − σ

dσ
| dσ > 0

}}

and, for z ∈
{

λ, λ
}

, αz = 1 if dz ≥ 0, and αz = 0.99min{− z
dz

| dz < 0},
otherwise. Then we set α = min{1, ασ , αλ, αλ}. Finally we update σ, λ and
λ in iteration k of Newton’s method for solving (40) by

zk+1 = zk + αkdz, z ∈ {σ, λ, λ},

λk+1 = γλk

where γ ∈]0, 1[is a constant that is chosen beforehand. The modulation σ
is initialized as a positive constant. For instance, we use σ ≡ σ̄/2.

32

5.2 Minimization with respect to u

In this case we minimize the function (38) instead of (37). Note that due
to the logarithms in the functional (38) we have σ > 0. The necessary
optimality conditions for ci, i ∈ {1, ..,m}, is

2κ|Ωi|max(ci − 1, 0) +

∫

Ωi

2

(

ci −
f

σ

)

= 0

This leads to the two cases

ci = |Ωi|
−1

∫

Ωi

f

σ
if ci ≤ 1,

and

ci =
κ + |Ωi|

−1
∫

Ωi

f
σ

1 + κ
if ci > 1.

Note that in both situations ci ≥ 0 for all i.

5.3 Minimization with respect to the shape

In the previous sections, the formulas for the topological derivative are given
by (13) and (14), depending on whether Ωj is empty or not. In the case of
the functional (38), we obtain a similar formula. If |Ωj | 6= 0, we get

Ti,j(x0) =

(

f(x0)

σ(x0)
− cj

)(

f(x0)

σ(x0)
− cj − max(cj − 1, 0)

2κ|Ωj |

(κ + |Ωj |)2

)

−

(

f(x0)

σ(x0)
− ci

)(

f(x0)

σ(x0)
− ci − max(ci − 1, 0)

2κ|Ωi|

(κ + |Ωi|)2

)

.

When |Ωj| = 0 we obtain

Ti,j(x0) = −

(

f(x0)

σ(x0)
− ci

)(

f(x0)

σ(x0)
− ci − max(ci − 1, 0)

2κ|Ωi|

(κ + |Ωi|)2

)

.

5.4 Numerical results

Numerical results for simultaneous modulation recovery and segmentation
are presented in figure 10–12. In the left column of each figure we depict the
original image in the first row, the piecewise constant Mumford-Shah-based
reconstruction in the middle and the modulation which is applied to the
original in the last row. The modulated image is shown in the first row of
the right column. The reconstruction obtained by our simultaneous segmen-
tation and modulation recovery scheme and the reconstructed modulation
are shown in the second and third row of the right column, respectively.

In the first example (see figure 10) the size of the image is 100 × 100
pixels. The applied modulation is σ = x2

1 + x2
2, where (x1, x2) are the

33

cartesian coordinates in the square Ω. The segmentation obtained after the
reconstruction of the modulation σ is very close to the original segmentation,
as one can see from the middle row of figure 10. The parameter δ for the
regularization of σ is δ = 6.10−6.

In the second example (see figure 11) the image size and the applied
modulation are as in the previous example. In the segmentation of the
reconstructed image a global brightening effect occurs, which is due to an
overestimation of the modulation σ. However, all the features of the original
image are present in the reconstruction. The parameter δ is equal to δ =
1.10−6.

In the third example (see figure 12) the size of the image is 100 × 100
pixels and the modulation is σ = exp(x1x2)−1. The result is still satisfying
although the exponential modulation is more difficult to reconstruct. The
parameter δ is equal to δ = 1.10−6.

6 Conclusion

Numerical results show the efficiency of our topology optimization based
modulation recovery and image segmentation algorithm. The scheme re-
quires no particular initialization to obtain an excellent segmentation re-
sult. Therefore this technique is completely automatized. The part based
on topological sensitivity is highly efficient with respect to CPU-time. We
also emphasize that the algorithm for the topological derivative can be eas-
ily parallelized, which could result in a dramatic reduction in CPU-time
consumption.

7 Appendix

7.1 The level set method

Now we describe the numerical solution of the level set equation (31) and
the computation of the extension of vn to the whole domain Ω. Let φ be a
level set function, i.e.,

Ω = {x | φ(x) < 0}, ∂Ω = {x | φ(x) = 0}. (50)

We introduce the nodes Pij , whose coordinates are given by (i∆x, j∆y)
where ∆x and ∆y are the discretization steps in the x-direction and y-
direction, respectively. Let us also denote by tk = k∆t the discrete time
for k ∈ N, where ∆t is the time step. We are seeking for an approximation
φk

ij ≃ φ(Pij , t
k). Following Osher and Sethian [15, 16], we use the explicit

upwind scheme

φk+1
ij = φk

ij − ∆t g(Dx
−φk

ij,D
x
+φk

ij ,D
y
−φk

ij,D
y
+φk

ij) (51)

34

0
20

40
60

80
100

120

0

50

100

150
0

0.2

0.4

0.6

0.8

1

0
20

40
60

80
100

120

0

50

100

150
0

0.2

0.4

0.6

0.8

1

Figure 10: Original image (upper left), modulated image (upper right), seg-
mentation of original image (middle left), segmentation of modulated image
(middle right), original modulation (lower left), reconstructed modulation
(lower right).

35

0
20

40
60

80
100

120

0

50

100

150
0

0.2

0.4

0.6

0.8

1

0
20

40
60

80
100

120

0

50

100

150
0

0.2

0.4

0.6

0.8

1

Figure 11: Original image (upper left), modulated image (upper right), seg-
mentation of original image (middle left), segmentation of modulated image
(middle right), original modulation (lower left), reconstructed modulation
(lower right).

36

0
20

40
60

80
100

120

0

50

100

150
0

0.2

0.4

0.6

0.8

1

0
20

40
60

80
100

120

0

50

100

150
0

0.2

0.4

0.6

0.8

1

Figure 12: Original image (upper left), modulated image (upper right), seg-
mentation of original image (middle left), segmentation of modulated image
(middle right), original modulation (lower left), reconstructed modulation
(lower right).

37

where

Dx
−φij =

φij − φi−1,j

∆x
and Dx

+φij =
φi+1,j − φij

∆x
(52)

are the backward and forward approximations of the x-derivative of φ at
Pij . Similarly we obtain Dy

− and Dy
+ of the y-derivative. The numerical flux

is given by

g(Dx
−φij ,D

x
+φij,D

y
−φij ,D

y
+φij) = max(vij , 0)G+ + min(vij , 0)G−

with

G+ =
[

max(Dx
−

φij , 0)2 + min(Dx
+φij , 0)2 + max(Dy

−

φij , 0)2 + min(Dy
+φij , 0)2

]1/2

,

G− =
[

min(Dx
−

φij , 0)2 + max(Dx
+φij , 0)2 + min(Dy

−

φij , 0)2 + max(Dy
+φij , 0)2

]1/2

and vij = 〈Vext, n〉(Pij) the extended normal velocity at the point Pij as
defined in (57) below. This upwind scheme is stable under the CFL condition

(

max
Ω

|〈Vext, n〉|

)

∆t

(

1

∆x
+

1

∆y

)

≤
1

2
. (53)

For numerical purposes, the solution φ of the level set equation should not
be too flat or too steep. Hence, an instance of φ, which is numerically stable,
is the signed distance function which satisfies |∇φ| = 1. Unfortunately, even
if the initial data φ0 is given by a signed distance function, the solution φ
of the level set equation need not remain close to a distance function, in
general. To overcome this difficulty, we perform a reinitialization of φ at
time t by computing the stationary state ϕ∞(x) = limτ→∞ ϕ(τ, x) of the
following equation (see [17]):

ϕτ + S(φ)(|∇ϕ| − 1) = 0 in R
+ × Ω, (54)

ϕ(0, x) = φ(t, x) for x ∈ Ω. (55)

Here, S is an approximation of the sign function, i.e.,

S(d) =
d

√

d2 + |∇d|2δ2
(56)

with δ = min(∆x,∆y). Of course, other choices are possible; see [17] for
details.

Next we describe the construction of the extension of the normal velocity
to the whole domain. Besides the need of a velocity in Ω in the level set
equation, another purpose of the extension is to enforce φ to remain a signed
distance function. Indeed, if we are able to compute an extended normal
velocity Vext such that

∇Vext · ∇φ = 0 in R
+ × Ω, (57)

38

then it can be shown (see [23]) that the solution φ of the level set equation
satisfies |∇φ| = 1. One way to construct the extension Vext satisfying (57)
is to solve the following equation up to stationary state (see [15, 17]):

qτ + S(φ)
∇φ

|∇φ|
· ∇q = 0 in R

+ × Ω, (58)

q(0, x) = q0(x), x ∈ Ω. (59)

Then we take Vext(x) = limτ→∞ q(τ, x). At each iteration k of the previous
scheme, we compute the extended normal velocity as the stationary solu-
tion of (58)-(59). Then qn

ij ≃ q(Pij , t
n) comes from the following upwind

approximation of (58) :

qn+1
ij = qn

ij − ∆τ [max(sijn
x
ij, 0)Dx

−qij + min(sijn
x
ij, 0)Dx

+qij

+ max(sijn
y
ij, 0)Dy

−qij + min(sijn
y
ij, 0)Dy

+qij] ,
(60)

where sij = S(φn
ij). We use central differences to compute the approximation

nij of the unit normal vector

n = (nx, ny) =
(

φx/
√

φ2
x + φ2

y, φy/
√

φ2
x + φ2

y

)

at the node Pij . The initial value q0 is equal to vn on the grid points with
a distance less than min(∆x,∆y) to the interface and it is zero elsewhere.

Acknowledgement. Both authors are indebted to the anonymous ref-
erees for their valuable input which helped to improve the paper. The au-
thors would also like to thank S.L. Keeling (University of Graz) for dis-
cussions and for providing a Matlab solver of the fourth-order equation, R.
Stollberger and F. Knoll (TU Graz) for providing the 3D medical image data.
The authors further acknowledge financial support by the Austrian Ministry
of Science and Education and the Austrian Science Fundation FWF under
START-grant Y305 ”Interfaces and free boundaries” and the subproject
”Freelevel” of the SFB F32 ”Mathematical Optimization and Applications
in Biomedical Sciences”.

References

[1] T. F. Chan and L. A. Vese, A level set algorithm for minimizing the

Mumford-Shah functional in image processing, in: Proceedings of the
IEEE Workshop on Variational and Level Set Methods (VLSM ’01), pp.
161-168, Vancouver, BC, Canada, July 2001.

[2] M. Delfour and J.-P. Zolesio, Shapes and Geometries. Analysis,

Differential Claculus and Optimization, SIAM Advances in Design and
Control, SIAM, Philadelphia, 2001.

39

[3] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic

Systems, Birkhäuser, Basel–Boston–Berlin, 1993.

[4] W. Hackbusch, Elliptic Differential Equations, vol. 18 of Springer Se-
ries in Computational Mathematics, Springer Verlag, Berlin, 1992.

[5] J.A. Hartigan, Clustering Algorithms, Wiley Series in Probability and
Mathematical Statistics, John Wiley & Sons, New York-London-Sydney,
1975.

[6] J.A. Hartigan and M.A. Wong, A k-means clustering algorithm,
Journal of the Royal Statistical Society (Series C), Applied Statistics, 28
(1979), pp.100-108.

[7] L. He and S. Osher, Solving the Chan-Vese model by a multiphase level

set algorithm based on the topological derivative, In: Scale Space Varia-
tional Methods in Computer Vision, Lecture Notes in Computer Science,
pp. 777-788, Springer Verlag, Berlin-New York-Heidelberg, 2007.

[8] A. Henrot and M. Pierre, Variation et Optimisation de Formes:

Une Analyse Géométrique, No. 48 de Mathématiques et Applications,
Springer, Berlin-New York-Heidelberg, 2005.

[9] M. Hintermüller and W. Ring, A second-order shape optimization

approach for image segmentation. SIAM J. Appl. Math., 64 (2003), pp.
442-467.

[10] S.L. Keeling and R. Bammer, A variational approach to magnetic

resonance coil sensitivity estimation, Applied Mathematics and Compu-
tation, 158 (2004), pp. 53-82.

[11] J. MacQueen, Some methods for classification and analysis of multi-

variate observations, 1967 Proc. Fifth Berkeley Sympos. Math. Statist.
and Probability (Berkeley, Calif., 1965/66) Vol. I: Statistics, pp. 281–297
Univ. California Press, Berkeley, California.

[12] V. Maz’ya, S.A. Nazarov and B. Plamenevskij, Asymptotic

Theory of Elliptic Boundary Value Problems in Singularly Perturbed Do-

mains Vol. 1 and 2, Birkhäuser, Basel, 2000.

[13] J.-M. Morel and S. Solimini, Variational Methods in Image Seg-

mentation, Progress in Nonlinear Differential Equations and their Ap-
plications, 14, Birkhäuser Boston Inc., Boston, MA, 1995.

[14] D. Mumford and J. Shah Optimal approximations by piece-wise

smooth functions and associated variational problems, Commun. Pure
Appl. Math., 42 (1989), pp. 577-685.

40

[15] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit

Surfaces, Springer, Berlin-New York-Heidelberg, 2004.

[16] S. Osher and J. Sethian, Fronts propagating with curvature-

dependent speed : algorithms based on Hamilton-Jacobi formulation, J.
Comp. Phys., 79 (1988), pp. 12-49.

[17] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A

PDE-based fast local level set method, J. Comp. Phys., 155 (1999), pp.
410-438.

[18] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cam-
bridge University Press, second edition, Cambridge, 1999.

[19] J. Soko lowski and A. Żochowski On the topological derivative in

shape optimization, SIAM J. Control Optim., 37 (1999), pp. 1251-1272.

[20] J. Soko lowski and J.-P. Zolesio, Introduction to Shape Optimiza-

tion, vol. 16 of Springer Series in Computational Mathematics, Springer,
Berlin-New York-Heidelberg, 1992.

[21] L. A. Vese and T. F. Chan, A multiphase level set framework for

image segmentation using the Mumford and Shah model, International
Journal of Computer Vision, 50 (2002), pp. 271-293.

[22] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM Publica-
tions, Philadelphia, PA, 1997.

[23] H.K. Zhao, T. Chan, B. Merriman, and S. Osher, A variational

level set approach to multi-phase motion, J. Comp. Phys., 122 (1996),
pp. 179-195.

[24] W.P. Ziemer, Weakly Differentiable Functions, Graduate Texts in
Mathematics, Springer, New York, 1989.

41

