
�COULEMENT DE FLUIDES MULTICONSTITUANTS
POLYPHASIQUES DANS DES MILIEUX POREUX
HOMOGéNES ET H�T�ROGéNES

L'�coulement polyphasique de plusieurs constituants � travers un
milieu poreux est g�n�ralement d�crit en introduisant des
�quations macroscopiques de conservation de la masse sous la
forme d'�quations de dispersion g�n�ralis�es. Cette mod�lisation
soul�ve plusieurs questions qui sont d�battues dans cet article en
se basant sur des r�sultats obtenus � partir d'une prise de
moyenne volumique, coupl�e avec une simulation � l'�chelle du
pore de l'�coulement polyphasique. L'�tude est limit�e � un
syst�me binaire comportant deux phases et nous supposons que
les �quations de quantit� de mouvement peuvent �tre r�solues
ind�pendamment des �quations de diffusion/advection. L'hypo-
th�se d'�quilibre local est discut�e et plusieurs contraintes
d'�chelles de longueur et de temps sont prises en compte.

Une des questions concerne l'influence sur les tenseurs de
dispersion de la condition d'�quilibre � l'�chelle du pore �
l'interface entre les diff�rentes phases. Nos r�sultats montrent que
ces ph�nom�nes peuvent conduire � des variations significatives
des coefficients de dispersion en rapport avec la dispersion
passive, c'est-�-dire la dispersion sans flux de masse aux
interfaces. Des �quations macroscopiques sont alors obtenues
dans le cas g�n�ral ainsi que plusieurs �quations locales de
fermeture permettant de calculer les tenseurs de dispersion et
d'autres propri�t�s � partir des g�om�tries � l'�chelle du pore, des
vitesses et des caract�ristiques des fluides. Des exemples de
solutions de ces �quations de fermeture sont donn�s dans le cas
de cellules unitaires repr�sentatives � deux dimensions.

Les �quations des �coulements biphasiques sont r�solues de deux
mani�res diff�rentes : par une technique par �l�ments fronti�res ou
une approche par r�seau de Boltzmann modifi�. Des solutions aux
�quations de fermeture associ�es aux �quations de dispersion
sont ensuite apport�es au moyen d'une formulation par volumes
finis des �quations aux d�riv�es partielles. Les r�sultats montrent
l'influence de la vitesse et de la saturation sur les param�tres
effectifs. Ils mettent en �vidence l'importance de la g�om�trie sur
le comportement du tenseur de dispersion.

L'extension de ces r�sultats � une plus grande �chelle incluant
l'effet des h�t�rog�n�it�s est propos�e dans un cas limit�
correspondant � l'�coulement d'une phase, l'autre phase �tant � la
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saturation r�siduelle. Une nouvelle �quation de dispersion �
grande �chelle est obtenue, comportant un tenseur de dispersion �
grande �chelle que l'on peut d�terminer � partir des caract�ris-
tiques d'h�t�rog�n�it� en passant par un syst�me d'�quations de
fermeture. Les r�sultats sont �tendus � un probl�me plus g�n�ral
d'�coulement biphasique, lorsque l'�coulement biphasique �
grande �chelle peut �tre suppos� quasi statique. Des indications
sont donn�es concernant les difficult�s associ�es aux
�coulements soumis � des conditions fortement dynamiques et
avec une dispersion anormale.

MULTIPHASE, MULTICOMPONENT FLUID FLOW
IN HOMOGENEOUS AND HETEROGENEOUS
POROUS MEDIA

The flow of several components and several phases through a
porous medium is generally described by introducing macroscopic
mass-balance equations under the form of generalized dispersion
equations. This model raises several questions that are discussed
in this paper on the basis of results obtained from the volume
averaging method, coupled with pore-scale simulations of the
multiphase flow. The study is limited to a binary, two-phase
system, and we assume that the momentum equations can be
solved independently from the diffusion/advection equations. The
assumption of local-equilibrium is discussed and several length-
scale and time-scale constraints are provided.

A key issue concerns the impact on the dispersion tensors of the
pore-scale equilibrium condition at the interface between the
different phases. Our results show that this phenomenon may lead
to significant variations of the dispersion coefficients with respect to
passive dispersion, i.e., dispersion without interfacial mass fluxes.
Macroscopic equations are then obtained in the general case, and
several local closure problems are provided that allow one to
calculate the dispersion tensors and others properties, from the
pore-scale geometry, velocities, and fluid characteristics. Examples
of solutions of these closure problems are given in the case of two-
dimensional representative unit cells.

The two-phase flow equations are solved in two different ways: a
boundary element technique, or a modified lattice Boltzmann
approach. Solutions of the closure problems associated with the
dispersion equations are then given using a finite volume element
formulation of the partial differential equations. The results show
the influence of velocity and saturation on the effective parameters.
They emphasize the importance of geometry on the behavior of the
dispersion tensor.

Extension of these results to a larger-scale including the effect
of heterogeneities is proposed in a limited case corresponding to
the flow of one phase, the other phase being at residual
saturation. A new large-scale dispersion equation is provided,
which features a large-scale dispersion tensor that can be
determined from the heterogeneity characteristics through a set of
closure problems. Results are extended to a more general two-
phase flow problem, when the large-scale two-phase flow can be
assumed to be quasi-static. Indications are given on the difficulties
associated with flow under large-scale dynamic conditions, with
abnormal dispersion.

CIRCULACIîN DE FLUIDOS MULTICOMPONENTES
POLIFçSICOS EN MEDIOS POROSOS HOMOG�NEOS
Y HETEROG�NEOS

La circulaci�n polif�sica de diversos componentes a trav�s de un
medio poroso se describe, por lo general, introduciendo
ecuaciones macrosc�picas de conservaci�n de las masas en
forma de ecuaciones de dispersi�n generalizadas. Esta
modelizaci�n viene a plantear varios problemas que ser�n tratados
en el presente art�culo fund�ndose para ello en los resultados
conseguidos mediante una muestra de promedio volum�trico,
acoplada con una simulaci�n a escala del poro de la circulaci�n
polif�sica. El estudio se limita a un sistema binario que consta de
dos fases y se supone que las ecuaciones de cantidad de
movimiento se pueden resolver independientemente de las
ecuaciones de difusi�n/advenci�n. Se pone en discusi�n la
hip�tesis de equilibrio local y se tienen debidamente en cuenta
diversos imperativos de escalas de longitud y de tiempo.

El segundo aspecto del problema se refiere a la influencia sobre
los tensores de dispersi�n de la condici�n de equilibrio a escala
del poro, en el interfaz entre las distintas fases. Nuestros
resultados vienen a demostrar que tales fen�menos pueden dar
lugar a variaciones significativas de los coeficientes de dispersi�n
en relaci�n con la dispersi�n pasiva, o sea, la dispersi�n sin flujos
de masa interfaciales. Se obtienen de este modo ecuaciones
macrosc�picas en el caso general y varias ecuaciones locales de
clausura se obtienen a su vez, que permiten calcular los tensores
de dispersi�n y otras propiedades a partir de geometr�as a escala
del poro, de las velocidades y de las caracter�sticas de los fluidos.
Se indican diversos ejemplos de soluciones de estas ecuaciones
de clausura en el caso de c�lulas unitarias representativas de dos
dimensiones.

Las ecuaciones de las circulaciones bif�sicas se pueden resolver
de dos formas distintas : una t�cnica, por elementos de fronteras o
bien, por un enfoque por red de Boltzmann modificada. Acto
seguido, se proporcionan las soluciones para las ecuaciones de
clausura asociadas a las ecuaciones de dispersi�n, por medio de
una formulaci�n por vol�menes finitos de las ecuaciones
diferenciales con derivadas parciales. Los resultados demuestran
la influencia de la velocidad y de la saturaci�n sobre los
par�metros efectivos. Tales resultados evidencian la importancia
de la geometr�a sobre el comportamiento del tensor de dispersi�n.

Se propone as� la ampliaci�n de estos resultados a una mayor
escala que incluye el efecto de las heterogeneidades en un caso
l�mite que corresponde a la circulaci�n de una fase, mientras que
la otra fase se encuentra en saturaci�n residual. Se propone una
nueva ecuaci�n de dispersi�n a gran escala que incluye un tensor
de dispersi�n a gran escala que se puede determinar a partir de
las caracter�sticas de heterogeneidad, pasando por un sistema de
ecuaciones de clausura. Los resultados se ampl�an a un problema
m�s general de circulaci�n bif�sica, cuando la circulaci�n bif�sica
a gran escala se puede suponer en estado cuasiest�tico. Se dan
indicaciones relativas a las dificultades asociadas a las
circulaciones sometidas a condiciones ampliamente din�micas y
con una dispersi�n anormal.
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INTRODUCTION

The mathematical modeling of multiphase, multi-
component flows in porous media represents a very
complex task. General formulations have been
proposed heuristically, based on the assumption of local
equilibrium [1, 2, 3, 4]. A complete theory that, from
the pore-scale equations, deduces the macroscopic
equations at some Darcy's scale and includes the effect
of the heterogeneities in a subsequent large-scale up-
scaling, has not yet been fully developed. The present
work is restricted to the case of a binary two-phase flow
and we derive the problems to be solved following two
successive up-scaling procedures. An extension of a
previous work [5] in which one of the phases was
supposed to be completely immobile is first proposed
through the pore-scale to Darcy-scale up-scaling
problem. The possibility of a large-scale up-scaling is
then investigated.

1 DARCY-SCALE PROBLEM

The problem under consideration is illustrated in
Figure 1, where we have suggested that the porous
medium could be affected by heterogeneities at
a larger scale than that leading to the introduction
of a Darcy-scale description. Two phases are flowing
in the medium and the system involves only
two chemical species. We assume further that
the properties of neither phase depend upon the
concentration. As a consequence, the two-phase flow
problem can be de-coupled from the diffusion/
advection problem. The two-phase  flow problem has
already been attacked from many different points of
view and we refer the reader to the literature on the
subject (see for instance [6, 7, 8, 9]). We simply recall
that the theory leading to the classical generalized
Darcy's law requires that the pore-scale flow be quasi-
static and we will use this assumption below
for pore-scale, two-phase flow solutions. First, a
theoretical development that starts with the pore-scale
diffusion/advection equations to obtain generalized
dispersion equations through the use of a volume
averaging technique is presented in this section. The
dispersion tensors can be obtained from a set of
pore-scale “closure” problems and their numerical
solutions are provided on a model porous medium, as
an example.

Figure 1

Two-phase flow in a porous medium.

1.1 Theory

The theory presented in this section follows previous
developments found in the literature [10, 11, 5, 12] and
we simply list the major steps below.

We start with the pore-scale equations for a given
component and for the b-phase, leading to the
following boundary value problem:

(1)

(2)

(3)

The boundary condition Equation (2) corresponds to
the thermodynamic equilibrium condition. Similar
equations exist for the g-phase, but they are de-coupled
as a consequence of Equation (2). Because of the
assumptions made, the velocity field in Equation (1) is
a known field. The Darcy-scale equation will be
obtained by using a volume averaging method. The
different averaged values used are given below:

(4)V
b
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(5)

With these definitions, the total mass balance
equation for the b-phase is written as:

(6)

where wbg is the velocity of the interface between the b
and g phases. In this equation, the volume fraction eb is
often replaced by e Sb, where e is the porosity and Sb is
the b-phase saturation. The volume averaging of
Equation (1) leads to:

(7)

where the integral term on the right hand side of the
equation is a direct consequence of the spatial
averaging theorems [13].

In order to obtain a closed form of Equation (7), it is
convenient to introduce Gray's decomposition of the
pore-scale variables [14] given by:

(8)

Equation (7) after subtraction of Equation (6)
becomes:

(9)

In previous developments by Zanotti and Carbonell
[11] and Quintard and Whitaker [5], conditions like:

n · vb = n × wbg = 0

were used at the interface between the two phases. In
addition, in [11] saturation gradients were assumed to
be zero. The originality of this paper resides in the fact

that saturation gradients that were already included in
[5] are now expanded to include terms involving the
interface velocity, leading to a development that seems
more consistent with the multiphase behavior of our
system.

In order to get a governing equation for the concen-
tration deviation, we divide Equation (9) by eb and
subtract the result in equation from Equation (1). We
obtain:

(10)

In this paper we follow the development proposed
in [5] in order to obtain a representation of the
concentration deviation in terms of the source terms
that appear in Equation (10). We have:

(11)

and we choose the mapping quantities, bb and sb, in
order to obtain a good approximation of the coupled
Equations (9) and (10). Following ideas also developed
in [5], we obtain:
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Problem II

(18)

(19)

(20)

(21)

(22)

(23)

Equations (15) and (21) correspond to periodicity
conditions and here we have classically assumed that
the porous medium can be locally described by a
pseudo-periodic system.

In the solution of closure problems I and II, we will
use results for the two-phase flow closure problems. In
fact, in the derivation of generalized Darcy's laws [7, 8,
9], the flow at the closure level, for the determination of
the macroscopic flow properties, is assumed to be
quasi-static. This basically means that velocity and
interfaces are stationary and we will make the same
assumption here. In the next section, we explain how
these problems can be solved. Once the closure
problems I and II have been obtained, the macroscopic
equation can be derived by introducing the
decomposition, Equation (11), into the averaged
equation, Equation (9). This finally leads to the
following macroscopic equation:

(24)

where some additional convective terms that seem to
play a minor role have been discarded [5]. The effective
dispersion tensor in Equation (24) is given by:

(25)

while the “velocity-like” coefficient db is given by:

(26)

For reasons invoked above, we believe that this form
is more consistent than the one proposed in [5].
However, additional terms like db and ub have not been
considered so far in the literature. Discarding these
terms leads to a more classical form, namely:

(27)

Close attention to Equation (25) indicates that the
dispersion tensor, which directly depends on the
bb-field, may be affected by the boundary condition,
Equation (13), at the interface between the two phases
in the closure problem. If there were no mass flux at the
b-g interface, this boundary condition would be
replaced by a boundary condition similar to the one
corresponding to passive dispersion, i.e.:

(28)

Therefore, it is expected that the values of the
passive and active dispersion tensors may be slightly
different, which has already been illustrated on a simple
configuration in [5].

From a macroscopic point of view, the mass
exchange coefficient a quantifies the flux of the species
diffusing in the b-phase through the b-g interface. For
instance, in the limit of very large values of a, the
macroscopic concentration in the b-phase, Cb,
approaches the equilibrium concentration, i.e.:

(29)

This situation is referred to as local equilibrium. It is
hence of prime interest to be able to determine both Db
and a. This, in fact, is an attractive feature of the theory
developed here, since these quantities can be computed
directly from the solution of closure problems I and II.
The procedure for deriving such a solution is presented
below, as are illustrative results on a model porous
structure.

Numerical solutions
The procedure to solve these two closure problems

starts with a stationary solution of the independent
two-phase flow problem. This solution will provide the
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required velocity fields and the position of the interface.
This will give parameters needed to solve the two
closure problems presented in this paper.

1.2 Two-Phase Flow Problem

We have used two different techniques to solve the
two phase flow problems.

The first technique corresponds to a boundary
integral element method. This method is very appealing
if one is interested in computing immiscible two-phase,
slow Stokes flows. Due to the reduction of the
dimension of the problem, from 2 to 1 here, the method
allows one precisely to locate and to describe the
interface separating the two phases and does not require
any computation of a linear system solution for in-field
calculations [15]. This method has been successfully
applied in a similar configuration [16] and was used
here on the cell depicted in Figure 2. The stationary
solution on this cell, obtained from an initial guess and
an iterative procedure, depends on four parameters: the
porosity, e, the b-phase saturation, Sb, the aqueous to
non-aqueous viscosity ratio, m, and the capillary
number, Ca. In the following, we illustrate our results
with data obtained with:

e = 0.7   ;   m = 1   ;   Ca = 1

and Sb ranging from 0.2 to 0.8.

Figure 2

Pore-scale unit cell.

The second technique is a new lattice Boltzmann
formulation. The system is characterized by a coarse-
grained, conserved order parameter that takes
characteristic values in the bulk phases and varies
continuously in a narrow interfacial region. The

relaxation of the order parameter field is driven by local
minimization of the free energy. This results in a “Cahn-
Hilliard” type equation for the evolution of the order
parameter field, with the driving force being the
gradient of the chemical potential. The fluid velocity
satisfies a modified Navier-Stokes equation that
includes an explicit coupling term to the order
parameter. This coupling term gives rise to capillary
forces. From a numerical point of view, the governing
equations are applicable throughout the entire domain,
avoiding the need for iterative solution for the location
of the moving interface, which is necessary in classical
formulations. In three-dimensions and for complex
geometries, direct numerical integration of the
multiphase equations is generally infeasible. These
equations are solved numerically using a lattice
Boltzmann technique. Sets of distribution functions
representing the mean populations of the particles on a
lattice and the order parameter, are allowed to relax to
equilibrium according to a Boltzmann equation which is
discrete in both space and time. The collision operator is
approximated by a single time relaxation form. The
equilibrium distribution functions are chosen so that the
appropriate dynamic equations are recovered in the
limit. The local nature of the formulation makes it
highly amenable to massively parallel processing. These
advantages make possible the study of multiphase flows
in irregular three-dimensional geometries.

An example of the velocity field obtained for the unit
cell in Figure 2 is shown in Figure 3.

Figure 3

Velocity field, vb, for eb = 0.45.

1.3 Dispersion Problem

The closure problems presented in this section are
solved by following numerical procedures that are
described in [5, 17, 18, 12]. Solutions have been

g phase

s phase b phase

y

x
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obtained for the two-phase flow calculations presented
above. Results for different saturations are given in
Figures 4, 5 and 6. 

Figure 4

Longitudinal dispersion coefficient versus the unit cell Peclet
number and for various saturations.

Figure 5

Transversal dispersion coefficient versus the unit cell Peclet
number and for various saturations.

Figure 6

Mass exchange coefficient versus the unit cell Peclet number
and for various saturations.

These results are useful to understand the complex
relationship between the effective properties and the
averaged velocity and saturation.

2 LARGE-SCALE PROBLEM

In this section, we are interested in the flow over a
heterogeneous porous medium similar to the one
represented in Figure 7. In a first attempt to deal with
this problem within the framework of the volume
averaging method, we assume that the exchange term
associated with the flux between the two-phases has
negligible effect on the concentration field. We also
assume, at first, that the g-phase is at residual saturation
and we will extend results obtained in this limit to a
more general situation afterwards.

Figure 7

Two-region model of a heterogeneous porous medium.

We start with the following Darcy-scale dispersion
equation for the b-phase:

(30)

where Cb is the intrinsic averaged concentration and Vb
is the filtration velocity. The velocity field will be
affected by the heterogeneities in the system, but it can
be determined independently from the dispersion
problem. The dispersion tensor is thus position-
dependent, i.e., the function expressing the dependence
with the velocity depends on the position. Large-scale
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averages are defined over a large-scale averaging
volume Vµ as:

(31)

Taking the large-scale average of Equation (30) leads
to:

(32)

where we have introduced the following large-scale
decompositions:

(33)

The Darcy-scale equation for the concentration
deviation is obtained by subtracting Equation (32) from
Equation (30), which yields:

(34)

where we have adopted the notation:

(35)

Equations (32) and (34) have to be solved simul-
taneously in order to provide a complete solution of the
problem, which is a tremendous task, in general.
However, assuming that the different length-scale and
time-scale associated with the Darcy-scale and the
large-scale problems are conveniently separated, the
time derivative in Equation (34) can be discarded, 
as can terms corresponding to derivatives of large-

scale averages such as

Taking this into account, Equation (34) becomes:

(36)

and a representation of the concentration deviation can
be written as:

(37)

where the dots are a reminder that second order terms
have been neglected. In this equation the mapping
vector b*

b has to be chosen so as to cancel all first order
terms with respect to Ñ{Cb} in Equation (36). There-
fore, it must obey the following “closure” problem.

Large-Scale Closure Problem

(38)

(39)

(40)

where we have used the fact that the velocity field is
divergence free. In these equations, two source terms
will generate large-scale dispersion effects. The first
one is associated with the velocity fluctuations, while
the other is associated with the variations of the
dispersion tensor. The last equation, Equation (40),
corresponds to the fact that the average of the deviation
is zero, while Equation (39) assumes that the medium
can be described locally by a periodic system. This last
assumption has been discussed thoroughly in the
literature and has been proved to be useful even for
disordered systems (see [19] for an illustration).
Introducing the decomposition in Equation (32) leads to
the following large-scale dispersion equation:

(41)

in which the large-scale dispersion tensor is given by:

(42)

2.1 Extension to Quasi-Static 
Two-Phase Flow

The problem of two-phase flow in heterogeneous
media has received a great deal of attention in the
literature, especially from the point of view of
“homogenization” techniques [20, 21, 22, 23]. We start
with the generalized Darcy's law, i.e.:

D
b
* = {D

b
} + {D

b
 · Ñb

b
*} – {V

b
b

b
*}

¶ {eb} {Cb}

¶t
 + Ñ · {Vb} {Cb}  = Ñ · Db

* · Ñ {Cb}

{bb
*} = 0

bb
*(r + li) = bb

*(r)

Vb · Ñbb
* + Vb = Ñ · Db · Ñbb

*  + Ñ · Db

Cb = bb
* · Ñ {Cb} + ...

= Ñ · Db · ÑCb  + Ñ · Db · Ñ {Cb}

Ñ · VbCb  + Ñ · Vb {Cb}

Ñ · {Db
 · ÑCb}  and Ñ · {VbCb}.

Db = Db – {Db}

– Ñ · {Db · ÑCb}

= Ñ · Db · ÑCb  + Ñ · Db · Ñ {Cb}

+ Ñ · Vb {Cb}  – Ñ · {VbCb}

¶ ebCb – {eb} {Cb}

¶t
 + Ñ · VbCb

Cb = {Cb} + Cb   ;   Vb = {Vb} + Vb

= Ñ · {Db} · Ñ {Cb} + {Db · ÑCb}

¶ {e
b
} {C

b
}

¶t
 + Ñ · {V

b
} {C

b
}  + Ñ · {V

b
 C

b
}

{C
b
} = 1

V
¥

 C
b
 dV

V¥
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(43)

(44)

(45)

Large-scale averages are defined in Equation (31)
The process of averaging the Darcy-scale equations
leads, in general, to a very complicated problem, with
time-dependent, non-local and dynamic properties. An
illustrative example of such a treatment can be found in
[23]. However, it has been pointed out in several works
[21] and [22] that, for sufficiently large capillary
effects, a simple closure problem can be proposed that
leads to large-scale equations having the same form as
the Darcy-scale equation. In this case, local variations
of the saturation are small enough to be discarded in the
closure problem, i.e., in Darcy-scale equations, while,
of course, they remain in the large-scale averaged
equations. We do not list here all the equations
pertaining to this quasi-static theory that can be found
in [23] since it is beyond the scope of this paper to
discuss the domain of validity of such an assumption.
However, it has been recognized [24] that the results
can be applied in many practical instances to systems
exhibiting large spatial and temporal gradients. Within
the quasi-static theory, the local-scale closure problem
specifies the saturation field over the representative unit
cell as:

(46)

where P*c is the large-scale capillary pressure. This in
turn specifies the multiphase permeabilities Ka. The
large-scale pressure deviations can be expressed as:

(47)

where fa is specified by the following closure problem.

(48)

along with conditions similar to Equations (39) and
(40). Finally, the resulting large-scale equations take
the following form:

(49)

(50)

where the large-scale multiphase permeability tensors
are expressed as:

(51)

The average of Equation (46) can be used to build a
large-scale capillary pressure relationship. With that in
hand, along with Equations (44) and (47) one can
obtain for a given large-scale capillary pressure and
large-scale pressure gradient an estimate of the two
velocity fields, Vb and Vg, which can be used to solve
the dispersion problem.

If one could recover the concentration deviation
equation, Equation (34), one would be faced with two
different problems for C~b and C~g similar to the one
solved for the case where the g-phase is at residual
saturation. This is only possible if time-derivatives and
large-scale gradients can be discarded in Equation (34).
Since these assumptions have been used when
introducing the quasi-static theory for the multiphase
flow problem, it seems consistent to use these assump-
tions in order to get a simplified equation for the
concentration deviation. Once again, we remind the
reader that these assumptions are only used at the
closure level, and that this does not mean that the flow
is steady, nor that it has zero large-scale gradients. With
these assumptions, Equations for C~b and C~g can be
solved independently. Each solution is similar to the
development leading to Equations (36) to (42).

2.2 Numerical Solution and Examples

In this section we explain how these different
closure problems can be solved in order to build
dispersion tensor relationships as a function of the
saturations and velocities for a given porous medium
geometry.

Geometry is rendered discrete by using blocks on a
cartesian grid. For the two-phase flow calculations, we
used a numerical model discussed in [21]. For the
closure problem associated with dispersion, the PDEs
are solved by using approximations that are discussed
in detail in [5] and [19]. The overall algorithm follows
the steps described below:
– Choose of a large-scale capillary pressure;
– Solve for Equation (46);

Ka
*  = {Ka} + {Ka · Ñfa}

{Va} = – 
Ka

*

ma

 · Ñ{Pa} – rag

¶ {ea}

¶t
 + Ñ · {Va} = 0

Ñ · Ka · Ñfa  + Ñ · Ka = 0

Pa = Pa – {Pa} = fa · Ñ {Pa} – rag

eb = pc
–1(Pc

*)

P
g
 – P

b
 = p

c
 S b

Va = – 
Ka

ma

 · ÑPa – rag       a = b, g

¶ea

¶t
 + Ñ · Va = 0      a = b, g
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– Calculate of the large-scale saturation;
– Solve for the closure problems, Equation (48);
– Calculate of the multiphase permeabilities, Equa-

tion (51);
– Choose of the large-scale pressure gradients;
– Calculate of the Darcy-scale closure velocity fields,

by using Equations (47) and (44);
– Solve for the dispersion closure problems that are

similar to Equations (38) through (40);
– Calculate of the multiphase dispersion tensors,

Equation (42).
This process can be repeated to build a complete

mapping of the multiphase permeabilities, large-scale
capillary pressure, and multiphase dispersion tensors
with respect to saturation and large-scale pressure
gradients. This latter relationship can be replaced by a
dependence on the velocities.

Steps 1 through 5 in the above procedure have been
described in [21] and [19]. Results obtained for the unit
cell shown in Figure 8 are presented in Figures 9, 10
and 11. Steps 6 and 7 do not pose any problem, and
solutions are readily obtained. A solution of the closure
problem for b*

b (Step 8) is shown in Figure 12. Values
of the large-scale dispersion coefficients for the b-phase
are shown in Figures 13 and 14. For a given large-scale
saturation, the plots show the expected dependence
upon the large-scale Peclet number defined as:

(52)

Figure 8

Unit cell and representation of a coarse grid discretization.

Figure 9

Darcy-scale and large-scale capillary pressure curve.

Figure 10

b-phase permeabilities.

Figure 11

g-phase permeabilities.
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Figure 12

Field (b*
b)x.

Figure 13

Longitudinal b-phase large-scale dispersion coefficient.

Figure 14

Transversal b-phase large-scale dispersion coefficient.

However, the dependence on both the large-scale
saturation and the Peclet number is quite complicated.
For instance, the dispersion coefficient increases with 
saturation at low Peclet numbers, and behaves in an
opposite way at large Peclet numbers. This is due to a
complex influence of the large-scale saturation on the
Darcy-scale values. Similar results can be obtained for
the g-phase, but it is beyond the scope of this paper to
present a complete analysis of many cases. The
emphasis is rather on the methodology and the tools
that have been designed to deal with such problems.

CONCLUSION

In this paper, a complete up-scaling theory of a binary,
two-phase flow in heterogeneous media has been
proposed. Several assumptions have been made that
allowed us to introduce a large-scale dispersion theory.

Among these assumptions, the most important ones
are associated with the fact that large temporal and
spatial gradient effects have been discarded, thus
suppressing large-scale dynamic, non-local, anomalous
behavior. In addition, the large-scale problem did not
incorporate all the features of a multicomponent system.

If these constraints were removed, one would have to
overcome difficulties associated with the treatment of
equilibrium conditions. If the model assumes that local
equilibrium does not exist at Darcy's scale, the expected
large-scale behavior would be very complicated, with
possible history effects. If the Darcy's scale model
assumes local equilibrium, this does not mean that, due
to large spatial gradients, the resulting large-scale
model will feature partitioning equations corresponding
to the equations valid at Darcy's scale. There is
obviously a need for further theoretical development
within the perspective of up-scaling theories described
in this paper.

Even with the simplifying assumptions made here,
the large-scale dispersion coefficients exhibit very
complex behavior with respect to the large-scale
saturation, and the large-scale Peclet number. Tools
proposed in this paper can be used to quantify all the
aspects of this complex physical phenomenon.
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