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Abstract

In [8], the authors proposed the large deformation log-

unbiased diffeomorphic nonlinear image registration model

which has been successfully used to obtain theoretically and

intuitively correct deformation maps. In this paper, we ex-

tend this idea to simultaneously registering and tracking de-

forming objects in a sequence of two or more images. We

generalize a level set based Chan-Vese multiphase segmen-

tation model to consider Jacobian fields while segmenting

regions of growth and shrinkage in deformations. Deform-

ing objects are thus classified based on magnitude of homo-

geneous deformation. Numerical experiments demonstrat-

ing our results include a pair of two-dimensional synthetic

images and pairs of two-dimensional and three-dimensional

serial MRI images.

1. Introduction

Segmentation of homogeneous deformation is a chal-

lenging problem which incorporates several image process-

ing and computer vision areas including image registra-

tion, segmentation, and tracking. The goal of deformation

segmentation is to classify regions of homogeneous vol-

ume/density change based on magnitude of such change.

In this work, we employ a robust image registration model

for generating priors for further segmentation of deformed

features.

Image registration models are used to align, or spatially

normalize, one image to match another. Presented with a

choice of an image registration method, it is important to

ensure that the model in consideration generates meaning-

ful deformation fields. In general, the transformation that

defines the correspondence map between the images should

be diffeomorphic, to preserve the topology. As was de-

scribed in [8], not all widely used image registration models

generate theoretically and intuitively correct deformation

fields. In [8], the authors introduced the information theory

approach to quantifying deformation, proposing a frame-

work for constructing large deformation diffeomorphic im-
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Figure 1. Segmentation of deformation for 3D serial MRI image.

Volume cuts of image T , image S, and deformed image T are

shown. The surface (zero level set of function φ) of the ventricle

is shown. The ventricle surface is enlarged for better visualization.

age registration models. Section 2 of this paper describes

how to employ logarithmic priors in order to generate theo-

retically and intuitively correct deformation maps.

Even though a robust nonlinear registration model can

generate meaningful deformation maps, an automated seg-

mentation process would be required to classify regions of

homogeneous deformation in a sequence of images. In Sec-

tion 3 we generalize level set based active contour without

edges model [2] to classify regions of homogeneous defor-

mation.

2. Log-Unbiased Image Registration

Let us denote the template image as T (~x) and the study

image as S(~x), which are images defined on the spatial



domain Ω. The problem of image registration is to find

a smooth deformation ~h, such that the deformed template

T ◦~h(~x) is in some sense close to S(~x). The deformation ~h

is usually expressed at each voxel in terms of the displace-

ment vector ~u from the original position: ~h(~x) = ~x− ~u(~x).

It is desirable to obtain a bijective deformation ~h that is dif-

feomorphic and topology preserving. The inverse map of ~h

is denoted as ~h−1 and the Jacobian matrix of ~h as D~h. The

Jacobian map can thus be defined as the determinant of the

Jacobian matrix |D~h|.
In [8], the authors proposed to minimize the following

energy functional:

E(T, S, ~u) =
1

2

∫

Ω

|T (~x − ~u) − S(~x)|2 d~x

+λ

∫

Ω

(

|D~h(~x)| − 1
)

log |D~h(~x)|d~x,
(1)

where λ > 0 is the Lagrange multiplier. The first term of

the energy functional in (1), referred to as the sum of the

square differences (SSD), forces the deformed template to

match the study. The integrand of the second term is always

non-negative, and only evaluates to zero when ~h is volume-

preserving everywhere (|D~h| ≡ 1). Thus, minimizing the

second term leads to unbiased deformation in the logarith-

mic space, ensuring the deformation be diffeomorphic.

The functional in (1) is minimized using the gradient de-

scent of the corresponding Euler-Lagrange equations to ob-

tain the force field (or body force) ~f , which drives the tem-

plate into registration with the study:

~f(~x, ~u(~x, t)) = −
∂E(T, S, ~u)

∂~u
. (2)

Here, t is an artificial time.

We solve the viscous fluid model proposed by Chris-

tensen et al. [3]. Of note, in [3], the authors used the SSD as

a cost functional for minimization (no control over the dis-

tribution of the Jacobian values was employed). Given the

velocity field ~v, the following partial differential equation

can be solved to obtain the displacement field ~u:

∂~u

∂t
= ~v − ~v · ~∇~u. (3)

The instantaneous velocity as in [4] is obtained by convolv-

ing ~f with Gaussian kernel Gσ of variance σ:

~v = Gσ ∗ (−~f(~x, ~u)). (4)

We solve this equation using the Fast Fourier transform

(FFT).

3. Segmentation of Deforming Objects

The unbiased registration model described in Section

2 yields theoretically and intuitively correct deformation

maps ~h. Jacobian maps of such deformations closely depict

the underlying volume/density changes the modeled sys-

tems undergo. In this section, we describe the two-phase

segmentation model, originally used for segmenting images

based on their intensity values, and explain how the model

can be generalized to classify the regions of homogeneous

deformation obtained with the unbiased registration model.

3.1. The Chan-Vese Intensity Based Segmentation
Model

The One Level Set (Two-Phase) Framework. Based on

the Mumford and Shah functional [5] for segmentation,

Chan and Vese [2] proposed a level set method based ac-

tive contour model to detect objects whose boundaries are

not necessarily defined by a gradient.

Let us denote a given image by I0 : Ω → R and suppose

C (C = ∂R) is a hypersurface representing a boundary of

a region of interest R ⊂ Ω. The Chan-Vese (CV) model

minimizes the following energy:

FCV

2 (c1, c2, C) =

∫

R1=R

(I0(~x) − c1)
2 d~x

+

∫

R2=Ω\R

(I0(~x) − c2)
2 d~x + β

∫

∂R

ds,
(5)

where c1, c2 are unknown constants, and β > 0 is the

length parameter. This problem is solved using the level

set method of Osher and Sethian [6]. In a level set formula-

tion, a hypersurface C is represented implicitly by the zero

level set of a Lipshitz continuous function φ : Ω → R, such

that:

φ(~x) < 0 in R, φ(~x) > 0 in Ω\R. (6)

The Chan-Vese functional in (5) written in the level set for-

mulation is:

FCV

2 (c1, c2, φ) =

∫

Ω

(I0(~x) − c1)
2(1 − H(φ)) d~x

+

∫

Ω

(I0(~x) − c2)
2H(φ) d~x + β

∫

Ω

|∇H(φ)| d~x,
(7)

where H(y) is a heaviside function. The functional is min-

imized using incremental updating along the gradient de-

scent direction of the Euler-Lagrange equation in φ:

∂φ

∂t
= δ(φ)

[

β∇ ·

(

∇φ

|∇φ|

)

+ (I0 − c1)
2 − (I0 − c2)

2

]

,

(8)

where δ(y) is the delta function and t is an artificial time.

The constants c1 and c2 are evaluated as

c1(φ) =

∫

Ω
I0(~x)(1 − H(φ(t, ~x)))d~x
∫

Ω
(1 − H(φ(t, ~x)))d~x

,

c2(φ) =

∫

Ω
I0(~x)H(φ(t, ~x))d~x
∫

Ω
H(φ(t, ~x))d~x

.

(9)
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Figure 2. Segmentation of deformation for a synthetic image. (a) image T ; (b) image S; (c) image T is deformed into image S. The upper-

left circle in the image undergoes the largest expansion (density change), while the lower-right ellipsoid undergoes the contraction. The

upper-right square does not deform. (d) The Jacobian map of the deformation. Dark and bright spots represent expanding and contracting

areas, respectively. (e) The deformed grid; (f) the deformed grid and the deformed image. Here, blue, yellow, and red contours represent

boundaries of objects in T , S, and deformed T , respectively. (g) Segmentation results are obtained using the four-phase (multiphase)

segmentation model, which enables to find up to four regions in the image. Green and yellow contours represent the zero level sets of φ1

and φ2, respectively. The four regions of homogeneous change in density are located. (h) The segmented Jacobian map is displayed.

Note that c1 and c2 are the averages of the intensities

of I0 inside and outside C, respectively. The two-

phase segmentation of the image I0(~x) is given by

I(~x) = c1(1 − H(φ(~x))) + c2H(φ(~x)).

The Two Level Set (Multiphase) Framework. In [7], the

authors generalized the one level set active contour without

edges model to two or more level set multiphase framework.

A four-phase model, described in this section, allows for up

to four regions to be segmented. Here, we suppose C1 and

C2 are hypersurfaces separating an image into four disjoint

regions Ri ⊂ Ω, 1 ≤ i ≤ 4. Some of these regions are

allowed to be empty. The four phase model thus minimizes

the following energy:

FCV

4 (c11, c12, c21, c22, C1, C2)

=

∫

R1

(I0(~x) − c11)
2 d~x +

∫

R2

(I0(~x) − c12)
2 d~x

+

∫

R3

(I0(~x) − c21)
2 d~x +

∫

R4

(I0(~x) − c22)
2 d~x

+ β

∫

C1

ds + β

∫

C2

ds,

(10)

where c11, c12, c21, c22 are unknown constants, and β > 0

is the length parameter. Representing C1 and C2 implicity

as zero level sets of functions φ1 and φ2, respectively, such

that

φ1(~x) < 0, φ2(~x) < 0 in R1,

φ1(~x) < 0, φ2(~x) > 0 in R2,

φ1(~x) > 0, φ2(~x) < 0 in R3,

φ1(~x) > 0, φ2(~x) > 0 in R4,

(11)

we can write the Chan-Vese functional in (10) in the level

set formulation as:

FCV

4 (c11, c12, c21, c22, φ1, φ2)

=

∫

Ω

(I0(~x) − c11)
2(1 − H(φ1))(1 − H(φ2)) d~x

+

∫

Ω

(I0(~x) − c12)
2(1 − H(φ1))H(φ2) d~x

+

∫

Ω

(I0(~x) − c21)
2H(φ1)(1 − H(φ2)) d~x

+

∫

Ω

(I0(~x) − c22)
2H(φ1)H(φ2) d~x

+β

∫

Ω

|∇H(φ1)| d~x + β

∫

Ω

|∇H(φ2)| d~x.

(12)

This functional can be minimized using the gradient descent

of the corresponding Euler-Lagrange equations for φ1 and
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Figure 3. Segmentation of deformation for 2D serial MRI image. (a) image T ; (b) image S; (c) image T is deformed into image S. The

ventricle is noticeably enlarged. (d) The Jacobian map of the deformation; (e) the deformed grid; (f) the deformed grid and the deformed

image. Here, blue, yellow, and red contours represent the boundaries of objects in T , S, and deformed T , respectively. (g) Segmentation

results are obtained using the four-phase (multiphase) segmentation model, which enables to find up to four regions in the image. However,

since only the ventricle had undergone the deformation, the image is partitioned into two parts. (h) The deformed image is superimposed

with the segmentation of the deformation.

φ2 to obtain the following evolution equations:

∂φ1

∂t
= δ(φ1)

[

β∇ ·

(

∇φ1

|∇φ1|

)

+
(

(I0 − c11)
2 − (I0 − c21)

2
)

(1 − H(φ2))

+
(

(I0 − c12)
2 − (I0 − c22)

2
)

H(φ2)
]

,

∂φ2

∂t
= δ(φ2)

[

β∇ ·

(

∇φ2

|∇φ2|

)

+
(

(I0 − c11)
2 − (I0 − c12)

2
)

(1 − H(φ1))

+
(

(I0 − c21)
2 − (I0 − c22)

2
)

H(φ1)
]

.

(13)

The constants c11, c12, c21, c22 are evaluated as

c11(φ1, φ2) =

∫

Ω
I0(1 − H(φ1))(1 − H(φ2))d~x

∫

Ω
(1 − H(φ1))(1 − H(φ2))d~x

,

c12(φ1, φ2) =

∫

Ω
I0(1 − H(φ1))H(φ2)d~x

∫

Ω
(1 − H(φ1))H(φ2)d~x

,

c21(φ1, φ2) =

∫

Ω
I0H(φ1)(1 − H(φ2))d~x

∫

Ω
H(φ1)(1 − H(φ2))d~x

,

c22(φ1, φ2) =

∫

Ω
I0H(φ1)H(φ2)d~x

∫

Ω
H(φ1)H(φ2)d~x

.

(14)

Here, c11, c12, c21, and c22 correspond to averages of in-

tensities of I0 in R1, R2, R3, and R4, respectively. The

four-phase segmentation of the image I0(~x) is given by

I(~x) = c11(1 − H(φ1))(1 − H(φ2))
+ c12(1 − H(φ1))H(φ2)
+ c21H(φ1)(1 − H(φ2))
+ c22H(φ1)H(φ2).

(15)

3.2. Jacobian Based Segmentation using the CV
Model

Instead of segmenting the image based on its intensity

values, we propose to classify and track regions of homo-

geneous deformation using the Jacobian values |D~h|. As a

result, the two-phase Chan-Vese functional in (7) applied to

segmentation of deformation becomes

F2(c1, c2, φ) =

∫

Ω

(|D~h(~x)| − c1)
2(1 − H(φ)) d~x

+

∫

Ω

(|D~h(~x)| − c2)
2H(φ) d~x + β

∫

Ω

|∇H(φ)| d~x,
(16)

with equations (8) and (9) modified accordingly.



The multiphase functional in (12) for homogeneous de-

formation segmentation becomes

F4(c11, c12, c21, c22, φ1, φ2)

=

∫

Ω

(|D~h(~x)| − c11)
2(1 − H(φ1))(1 − H(φ2)) d~x

+

∫

Ω

(|D~h(~x)| − c12)
2(1 − H(φ1))H(φ2) d~x

+

∫

Ω

(|D~h(~x)| − c21)
2H(φ1)(1 − H(φ2)) d~x

+

∫

Ω

(|D~h(~x)| − c22)
2H(φ1)H(φ2) d~x

+β

∫

Ω

|∇H(φ1)| d~x + β

∫

Ω

|∇H(φ2)| d~x,

(17)

with the corresponding generalizations of equations (13)

and (14).

Of note, for providing additional flexibility, both inten-

sity values and the Jacobian field could be incorporated as

two channels into a multichannel model described in [1].

Depending on an application, additional channels may be

incorporated into the model.

4. Results

In this section, we tested the proposed segmentation of

homogeneous deformation framework. In the first numeri-

cal example in Figure 2 we considered matching two syn-

thetic images (each of size 256 by 256, λ = 1000 in

(1)). The geometrical objects on each of these images (Fig-

ure 2(a,b)) are of identical intensity; however, each of these

four objects undergoes a deformation of a different magni-

tude (Figure 2(d,e,f)). The upper-left object (a circle to an

ellipse transformation) undergoes the biggest positive de-

formation (expansion) and the lower-right object (an ellipse

to a circle transformation) is being contracted. Note that

the square does not deform. In this example, the segmenta-

tion was done using the four-phase segmentation model (17)

with the length parameter β = 0.02 ·2552. The four regions

of homogeneous deformation were detected (Figure 2(g,h)).

The background and non-deforming square were classified

as a single region of zero (or almost zero) deformation.

In Figure 3, we show the results of matching a pair of

2D slices (Figure 3(a,b)) from a set of serial MRI images

(each of size 226 by 256, λ = 400 in (1)), where visually

significant ventricle enlargement is present. Here, it is desir-

able to distinguish the region of ventricular expansion from

the rest of the image. This is successfully accomplished

using the segmentation of homogeneous deformation pro-

cedure (Figure 3(g,h)). The four-phase segmentation model

was employed in this example (with the length parameter

β = 0.1 · 2552 in (17)), locating only two regions of homo-

geneous deformation, which is intuitively correct.

In the last numerical example (Figures 1 and 4), we

tested the proposed model using a pair of 3D serial MRI vol-

T

S

T ◦ ~h and segmentation

Figure 4. Segmentation of deformation for 3D serial MRI image.

Columns depict: axial (column 1), sagittal (column 2), and coro-

nal (column 3) slices of image T ; image S; deformed image T

superimposed with the segmentation of deformation. Segmenta-

tion results are obtained using the two-phase segmentation model,

which enables to separate two regions in the image. Since the ven-

tricle underwent the largest deformation, it is separated from the

rest of the image.

umes (each of size 112x128x128) which, similar to a pre-

vious 2D example, display significant ventricular growth.

A fully three-dimensional computation was employed, with

λ = 500 and β = 0.05 · 2552 in a two-phase segmentation

model (16). Figure 1 displays the volume cuts of the two

volumes matched as well as the result of segmentation in

the form of a surface (zero level set of function φ) of the

ventricle. The two-dimensional slices of the 3D volume, as

well as the corresponding segmentation of deformation, are

shown in Figure 4. The region of growth was identified and

separated from the rest of the image in this example.
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