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A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is
proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. 	is new approach has four phases:
(i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv)
Dynamical EquilibriumPhase (DEP). BAP andBEAP are simulated annealing searching procedures based onBoltzmann andBose-
Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the 
nal temperature
of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely
high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP
and BEAP range from high to low and from low to very low temperatures, respectively. 	ey are more restrictive for accepting
new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its
execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration
of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than
using only the Boltzmann distribution on the classical SA.

1. Introduction

In genetics DNA, RNA, and proteins are the basic elements
for many researches. DNA is a molecule that contains genetic
instructions, which are involved in protein synthesis process
[1]. 	is molecule represents a complete set of heredi-
tary information of any organism. DNA has four di�er-
ent nucleotides, which are adenine, cytosine, guanine, and
thymine. 	is molecule is divided into genes, and a gene is
a sequence of nucleotides that express a protein. A functional
protein is conformed in an approximated geometrical model
of the globalminimumenergy [2, 3].	is is a dinamic process
where the lowest free energy of the protein plus the solvent
can be reasonably approximated by theminimum free energy
found by Monte Carlo, conformational space annealing,

genetic algorithms, and some deterministicmethods [3, 4]. In
fact, there are some examples, such as insulin alphalytic [5, 6]
with natural conformations whose energy is not minimal.
	is structure is usually named Native Structure (NS). In
addition, the free energy of an NS conformation depends on
the interaction among the atoms and their relative positions.

Protein Folding Problem (PFP) is an enormous challenge
and important problem in bioinformatics, medicine, and
other areas [7]. 	e function of a protein is directly related to
its three-dimensional structure, and misfolded proteins can
cause a variety of diseases. 	e aim of this problem is to 
nd
the natural tertiary structure of a protein using only a target
sequence. A protein can take a high number of di�erent con-
formational structures from its primary structure to its NS.
	e computational problem involved to 
nd the NS is known
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as Protein Folding Problem. Because PFP is an NP-hard
problem [8], heuristic methods avoiding the generation of all
possible states of the protein are commonly used. In order
to 
nd an NS, computational methods search structures on
a huge space of possible solutions. 	ese methods can obtain
several structures very close to the NS. A particular class of
thesemethods is known to be ab initiowhich looks for the NS
using only the protein’s amino acid sequence.

As a consequence, to solve PFP, new metaheuristics are
applied, where simulated annealing (SA) [9, 10] is one of
the most successful [11–13]. Currently, classical SA applies
a Boltzmann distribution in order to accept bad solutions
and escape from local minima. However, to generate high-
quality solutions for PFP, new and more e�cient SA have
been designed; one of them, named Chaotic Multiquenching
Annealing Algorithm (CMQA), has obtained very good
results for proteins such as Met5-enkephalin, proinsulin,
T0549, T0335, and T0281 or 1PLXW, 1T0C, 2K5E, SR384, and
1A19, in PDB format, respectively. 	ere are three central
phases of this algorithm [14]: (i) Multiquenching Phase
(MQP), (ii) Annealing Phase (AP), and (iii) Dynamical
Equilibrium Phase (DEP). All of these phases are explained
in the paper; for this introduction all we need to know is that
each phase is designed with an annealing approach looking
for 
nding the best con
guration of the previous one. At the
beginning of the process, MQP improves a random con
gu-
ration through an annealing procedure executed at extremely
very high temperatures; AP searches for a better solution
than that of MQP with an annealing search applied at high
temperatures, and, 
nally, DEP is applied at low temperatures
looking for a better solution than that obtained by AP. As the
classical SA, all of these phases apply Boltzmann distribution
for accept bad solutions. However, Bose-Einstein distribution
can also be used for escape from local minima [15]. Never-
theless, algorithms using these two distributions in di�erent
ranges of temperatures have not been published for PFP.

In this paper, a new SA algorithm named MPSABBE
(Multiphase Simulated Annealing based on Boltzmann and
Bose-Einstein distributions) is introduced. MPSABBE ap-
plies the Boltzmann and Bose-Einstein distributions at high
and low temperatures, respectively. 	e paper shows that
using both distributions the quality solution is improved.	is
paper is organized as follows. In Section 2, PFP is described.
In Section 3, the classical SA and MPSABBE algorithms are
explained. In Section 4, the SA applied for solving PFP is
detailed. In Section 4, all the four MPSABBE’s phases are
presented. In Section 5, analytical tuning methods SA and
MPSABBE are described. In Section 6, experimental results
are shown. Finally, in Section 7, the conclusions of this
research are discussed.

2. Protein Folding Problem

PFP is related to the questions of how and why a protein is
folded into its NS. 	e proteins adopt an extreme number of
possible conformations [16], which depends on the number of
amino acids and the number of conformations by each amino
acid.	e essential concept introduced by Levinthal is that the
PFP is a random search problem. 	is general idea means

that all conformations of a protein (except the native state) are
equally likely. 	us, it is more e�cient to 
nd the native state
by a random search. PFP is an interdisciplinary problem that
involves molecular biology, biophysics, computational biol-
ogy, and computer science. In the ab initio case, NS prediction
requires di�erentmechanisms that lead the searching process
to a biological three-dimensional structure. Aswas previously
mentioned, this process requires only the amino acids’
sequence. PFP is an enormous challenge and is very hard to

nd the NS of a protein because the space of possible confor-
mations of the protein is in general extremely large. For all
practical purposes, PFP can be de
ned as follows.

Given

(i) a sequence of � amino acids �1, �2, . . . , �� that repre-
sents the primary structure of a protein,

(ii) an energy function �∗(�1, �2, . . . , ��), where the vari-
ables �1, �2, . . . , �� represent � dihedral angles,


nd the following:

(i) the Native Structure such that �∗(�1, �2, . . . , ��) rep-
resents the lowest energy value, where

(ii) the solution �∗ = �1, �2, . . . , �� de
nes the best three-
dimensional con
guration.

Force 
elds are used to represent the energy of a protein;
some of the most common are AMBER [17], CHARMM [18],
ECEPP/2 [19–21], ECEPP/3 [22], and GROMACS [23].	ese
force 
elds compute energy components, for instance, the
electrostatic energy, the torsion energy, the hydrogen bond
energy, and the Lennard-Jones energy. In this paper ECEPP/2
force 
eld is used.

	e atoms of a protein are represented in three-dimen-
sional cartesian coordinates. 	ere are four types of torsion
angles or dihedral angles as follows:

(i) 	e angle between the amino group and the alpha
carbon is referred to as Phi (�). 	is angle represents
the angle between the amino group (or NH2) of the
amino acid � and the alpha CarbonC� in the sequence;
speci
cally, it represents the bond angle between N�
atom of amino group and the central carbon (�C�).

(ii) 	e dihedral angle between the alpha carbon and the
carboxyl group is referred to as Psi (	). Psi represents
the angle between the carboxyl (COOH�) group of the
amino acid � and the central carbon � (C�) of the same
amino acid. In particular, Psi measures the angle of
the covalent bond between C� of the carboxyl group
and the central carbon (�C�).

(iii) For every amino acids sequence, an omega angle (
)
is de
ned for each two consecutive amino acids � −1, �; speci
cally, it is the angle of the covalent bond
between the atom N� of amino acid � and carbon C�−1
of the carboxyl group amino acid � − 1.

(iv) And, 
nally, each Chi angle (�) is de
ned between
the two planes conformed by two consecutive carbon
atoms in the radical group.
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(1) Setting initial temperature (�initial)
(2) Setting 
nal temperature (��nal)
(3) Generate current from Initial Solution (initial)
(4) � = �initial
(5) While (� > ��nal) do //Temperature Cycle
(6) While (stop condition) //Metropolis Cycle
(7) Generate new by applying a perturbation to current
(8) Obtain di�erence between new and current
(9) If (di�erence ≤ 0) then
(10) Accept new
(11) else
(12) Boltzmann Probability = exp(−di�erence/�)
(13) If (Boltzmann Probability > random(0, 1)) then
(14) Accept new
(15) end if
(16) end if
(17) end while
(18) Decrease � by a cooling function
(19) end while
(20) Shown better solution (better)
Algorithm 1: Pseudocode of classical simulated annealing.

	e variables of the problem are all of these four angles which
are in the range [0, 360]. In the simulations conducted in this
research work, these angles are set with discrete values. Some
variables have well-de
ned ranges as is the case of Psi and
Phi angles whose ranges are de
ned by the Ramachandran
plot [24]. 	e Phi angle is de
ned in the ranges [180, 300]
and [45, 60].	e Psi angle is de
ned in three ranges [20, 180],[300, 330], and [180, 205]. Finally, the omega angle is 
xed at
180 degrees.

3. Simulated Annealing Algorithm

3.1. Simulated Annealing Based on Boltzmann Distribution.
Simulated Annealing (SA) Algorithm is a probabilistic

method proposed by Kirkpatrick et al. [9] and Černý [10] and
is an adaptation of the Metropolis algorithm, which is a
Monte Carlo method [25]. SA is based on the gradual metal
cooling for crystallization.	is algorithmworks by emulating
the physical process where a metal is heating at very high
temperature and then cooled very slowly until its frozen state.
When this process happens, the metal is crystallized with
the lowest energy con
guration. SA is an algorithm that has
been used for 
nding the optimal solution or close to it for
di�erent NP-hard problems including biological problems
such as sequence alignment [26–28], phylogenetic trees [29],
and PFP [30]. From a theoretical point of view, SA converges
to the optimal solution or close to the lowest free energy [31].
However, classical SA is not able to 
nd the lowest energy
because energy barriers are too high for SA and cannot escape
from localminima. As a consequence, variants of thismethod
are proposed [14, 30].

Simulated annealing usually starts at a very high initial
temperature (�initial). 	rough a cooling function, the tem-
perature value is gradually reduced from�initial to��nal, which

usually is very close to zero [9, 10]. 	ere are several cooling
functions used in SA [31–36], for example,

��+1 = ��� (1)

��+1 = �−��� (2)

��+1 = ��1 + ��� . (3)

	e most common function is (1). 	is function reduces
the temperature parameter by � factor, which is commonly in
the range of 0.7 ≤ � < 1.0. A slow cooling is applied when � is
very close to 1, while a fast cooling is appliedwhen� is around
0.70.

	e classical SA has two cycles as is shown inAlgorithm 1;
the 
rst one is named temperature cycle and is used to
decrease the value of the temperature with a speci
c cooling
function. 	e second cycle is named metropolis cycle and it
generates, accepts, or rejects solutions of the problem to be
optimized.	e initial and 
nal temperature values are set (see
lines (1)-(2)). 	ese values are obtained by an analytical (see
Section 5) or experimental way: �initial should be as high as
possible, while ��nal should be close to zero. An initial solu-
tion (initial) is required in SA; this solution is generated (see
line (3)) and is set to current. At the beginning of the process,
the parameter � is set at the initial temperature (see line (4)).
	e temperature cycle is executed from �initial to ��nal (see
lines (5)–(19)).	en themetropolis cycle is repeated (see lines
(6)–(17)) a certain number of times until a stop condition,
which is explained later in this paper. A new solution
(new) is generated within the metropolis cycle by applying a
small perturbation to the current solution current (see line
(7)). 	e di�erence between these two solutions (new andcurrent) is calculated (see line (8)). In practice, SA can be
stopped when the probability of accepting a new solution is
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negligible. For a minimization problem, if this di�erence is
less than or equal to zero (see line (9)), the new solution is
accepted (see line (10)). When this di�erence is greater than
zero, the Boltzmann distribution is applied. 	en, a Boltz-
mann probability is calculated using (4) in line (12). If this
probability is higher than a randomvalue between 0 and 1 (see
line (13)), then the new solution new is accepted (see line
(14)):

� (new) = �(−Δ�/	). (4)

A�er the metropolis cycle is completed, the temperature
value is reduced by a cooling function (see line (18)). For
a maximization problem, if the di�erence of new − current
is greater than zero, the new solution new is accepted; elsenew can be rejected or accepted depending on the Boltzmann
probability value.

3.2. Simulated Annealing Based on Bose-Einstein Distribution.
Statistical Mechanics (SM) study the overall behavior of a
system consisting of a large number of particles whose behav-
ior is unpredictable. SM uses statistics and probability theory
and thermodynamic principles. According to SM, the occur-
rence of each future result is determined by a probabilistic
function such as Boltzmann and Bose-Einstein distributions.
In addition, only the most probable behavior of the system in
thermal equilibrium at a given temperature is observed [37].
Bose-Einstein distribution is obtained by 
nding the most
probable distribution, that is, solving the problem de
ned
by maximizing the most probable distribution, subject to the
following constraints: (ℎ1) the number of particles (de
ned by
the summation of particles in eachmicrostate) is constant and(ℎ2) the total energy (de
ned by the summation of individual
energies of eachmicrostate) is constant.	eproblem is solved
using Lagrange multipliers. 	e parameters � and � are
de
ned as lagrage multiplier of ℎ1 and ℎ2, respectively [38].
	en the Bose-Einstein distribution applied for low and very
low temperatures is de
ned by

ℎ (Δ�) = 1
(�
+��� − 1) . (5)

	en particles behavior can be modeled by Bose-Einstein
distribution de
ned in (6). 	is equation de
nes the accep-
tance probability distribution of a new con
guration of parti-
cles:

ℎ (Δ�) = 1
(�
�(Δ/�	) − 1) , (6)

where � is the temperature parameter, � is related to the
constraint of the total of particles in the system, and � is
the Boltzmann constant. However, at very high temperatures
Bose-Einstein distribution practically becomes the Boltz-
mann distribution. Nevertheless, at low and very low temper-
atures, the particles behave di�erently and they tend to con-
gregate at the same lowest energy state; the result is known as
aBose-Einstein condensate [39]; as a consequence, the system
can be modeled by Bose-Einstein distribution. Section 4
presents a new SA applying both Boltzmann and Bose-
Einstein distributions for accepting bad solutions for high
and low temperatures.

3.3. Simulated Annealing Applied to Solve Protein Folding
Problem. 	e classical Simulated Annealing Algorithm can
be implemented to solve the Protein Folding Problem [40] as
is shown in the pseudocode of Algorithm 2. 	e initial and

nal temperature (see lines (1)-(2)) can be calculated accord-
ing to the instance of the problem by applying the analytical
method parameters of Section 5; that means that the protein
should be preprocessed.

Applying the cooling function (1), the cooling factor value� is required. 	e temperature value is reduced very slowly;
thus, �must be very close to 1 (see line (3)). In order to reduce
very fast the temperature, the cooling factor � is set very close
to 0.70. An initial solution of PFP is created, which is set to
the current solution current (see line (4)). 	e internal angles
of the initial solution are modi
ed at random. At this point,
the best solution better is current (see line (5)). 	e energy ofcurrent is calculated by applying a force 
eld function (see line
(6)). Before starting the temperature cycle, the initial is loaded
into � variable in line (7). 	en the temperature cycle starts
(see lines (8)–(26)) with a logic condition (� greater than��nal in line (8)). Inside of temperature cycle, the metropolis
cycle is executed (see lines (9)–(24)). A�er this cycle is
completed, the value of the temperature is decreased (see line
(25)).

Inside the metropolis cycle, a new solution of Protein
Folding Problem new is generated by modifying the previous
solution current.	is is done bymodifying the internal angles
of the protein (see line (10)). 	e energy of the protein is
calculated (see line (11)), and the di�erence of energies (i.e.,
between new and current) is determined (see line (12)). 	is
di�erence is denoted by Δ = current − new. 	e new
solution is accepted when the new solution is better than the
previous one; thus, the current solution current is replaced
by new (see line (14)). When a new solution is worse than
the current solution, it can be accepted using the Boltzmann
distribution (see line (21)).	e probability of this distribution
(or acceptance probability) is directly related to the current
value of the temperature and the di�erence of energy betweennew and current. 	is probability is calculated by (4). As
the temperature value is reduced, the acceptance probability�(new) decreases.
4. MPSABBE Algorithm

4.1. General Description. MPSABBE is a hybrid algorithm,
which has four phases (see Figure 1). 	ese phases are (i)
Multiquenching Phase (MQP) applied from extremely high
to high temperatures, (ii) BoltzmannAnnealing Phase (BAP),
which is executed from high to low temperatures, (iii) Bose-
Einstein Annealing Phase (BEAP) from low to very low
temperatures, and 
nally (iv) Dynamical Equilibrium Phase
(DEP) which applies an annealing process at extremely low
temperatures using Bose-Einstein distribution.

In order to accept worse solutions, BAP and BEAP apply
Boltzmann and Bose-Einstein distributions, respectively.
	is is donewith the aim of escaping from localminima. DEP
is an extension of BEAP, where the stochastic equilibrium
is dynamically detected. 	is is done by using a regression
method into the metropolis cycle; the iterations’ number is
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(1) Tune initial temperature (�initial) by analytical method
(2) Tune 
nal temperature (��nal) by analytical method
(3) Setting cooling factor (�)
(4) current is created by modifying the internal angles of protein
(5) better = current
(6) Calculate energy of protein applying a Force Field
(7) � = �initial
(8) While (� > ��nal) do //Temperature Cycle
(9) While (stop condition) //Metropolis Cycle
(10) Create new solution (new) by modifying internal angles of the protein
(11) Calculate Energy of proteins using a force 
eld funtion
(12) Obtain di�erence of energies between these two proteins
(13) If (di�erence ≤ 0) then
(14) current = new
(15) If energy(new) > energy(better) then
(16) better = current
(17) end if
(18) else
(19) Boltzmann Probability = exp(−di�erence/�)
(20) If (Boltzmann Probability > random(0, 1)) then
(21) current = new
(22) end if
(23) end if
(24) end while
(25) Decrease � by cooling function (��+1 = � ∗ ��)
(26) end while
(27) Show the best solution of PFP (better)

Algorithm 2: Pseudocode SA applied to protein folding problem.
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Figure 1: MPSABBE phases.

considered as the independent variable and the energy value
of each iteration as the dependent variable. 	e equilibrium
detection criterion is the slope of the energy function into the
metropolis cycle.	e four phases MQP, BAP, BEAP and DEP
are executed in the temperatures range shown in Table 1. 	e

initial and 
nal temperatures �initial and �� are determined
using the analytical tuning method of Section 6. 	e other
temperatures are determined using a variability criterion,
such as the variability being larger where the temperature is
higher.
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Table 1: Temperatures ranges of MPSABBE.

Phase Initial temperature Final temperature

MQP (from very high to high temperatures) �initial ��MQP

BAP (from high to low temperatures) ��MQP ��BAP
BEAP (from low to very low temperatures) ��BAP ��BEAP
DEP (from very low to extremely low temperatures) ��BEAP ��

T
em

p
er

at
u

re

MQP 
phase

TfMQP

Tinitial

� ≈ 0

Figure 2: MQP phase of MPSABBE algorithm.

4.2. MQP Phase of MPSABBE. MQP has several subphases.
It starts at an extremely high initial temperature (�initial),
which is obtained by an analytical method [41]. 	is phase
is 
nished when a threshold temperature (��MQP) is reached.
MQP uses the cooling function given by

��+1 = �Quenching����, (7)

where �Quenching is a decrement factor of the temperature
parameter, in the range [0.7, 1.0], and de
nes how fast each
MQP subphase is decreased. A very low �Quenching value will
decrease the temperature very fast. Besides, �� is de
ned as

�� = 1 − ��. (8)

	e � parameter is de
ned by (9), where 0 < � < 1, and it
de
nes a quadratic decrement of the temperature. Notice that� converges to zero and (7) is equivalent to (10):

�� = �2�−1 (9)

��+1 = �Quenching��. (10)

	e transition between two subphases is based on �
parameter; it occurs when � converges to zero (� ≈ 0). When� is very close to zero, a new MQP subphase is started and� is set to its initial value. 	is process continues until the
temperature ��MQP is reached. In Figure 2, the MQP phase
is shown. In this phase, several subphases are shown.When a
subphase is started, the parameter � is set to its initial value.

In Algorithm 3, the MQP pseudocode of MPSABBE
is shown. At setting section (see lines (4)–(6)), the initial
temperature is calculated by an analytical method. 	e 
nal
temperature of this phase (��MQP) is set to an initial value,
determined in an experimental way. In line 
ve, the variable� is set to the initial temperature. 	e factors �Quenching

and � are set to their initial values. 	e initial solutioncurrent is generated (see line (8)). 	e energy of this solution
Energy(current) is calculated, and �(current) and min are set

to Energy(current) and current, respectively.
	e external cycle is started at line (10), and this is 
nished

at line (31). 	is internal cycle generates solutions of PFP and
accepts or rejects solutions using the Boltzmann distribution.
	e temperature parameter is decreased into this cycle by
applying a cooling function (see line (30)). In this cycle, � is
set by (9) (see line (26)). When � is very close to zero, this
variable is set to its initial value (see line (28)). 	e Tempera-
ture value is calculated by (7).

A�er the external cycle is started, the metropolis cycle is
started too. 	is cycle generates new solutions of PFP. A new
solution new is obtained by applying a small perturbation
to the current solution current (see line (12)). 	e di�erence
between the energies of new and current is calculated (see line
(13)). If this di�erence is less than zero (see line (14)), then
the new solution new is accepted. current is replaced by new
(see line (15)). �(current) is replaced by �(new) (see line (16)).
If the di�erence of energies between these solutions is larger
than zero, then the Boltzmann probability is applied (see
line (17)). If this probability is larger than a random number
between 0 and 1 (see line (17)), then the new solution new is
accepted (see line (18)). 	e current is replaced by new (see
line (19)). If �(current) is less than �(new) (see line (21)) thenmin is set to current (see line (22)). 	e �(min) is replaced by�(current) (see line (23)).
4.3. BAP Phase of MPSABBE. In Algorithm 4, pseudocode
of BAP is shown. BAP is based on simulated annealing. 	e
temperature parameter is decreased by (��+1 = �Annealing��)
or (��+1 = �−�Annealing��). On the other hand, the length of
metropolis cycle is determined by (21) or (27), respectively. In
the internal cycle of the BAP, new solutions for the instance
are generated. In this cycle, a better solution than a previous
one is always accepted.However, worse solutions are accepted
or rejected by applying the Boltzmann distribution (4). 	e
length of the Markov chain (i.e., the internal cycle length)
is determined by (21), where the increment � is calculated
with (22).	e initial temperature was set to a threshold value,
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(1) MQP Procedure( )
(2) Begin
(3) //Setting section
(4) �initial = Initial Temperature calculated by analytical method
(5) ��MQP = Initial value, � = �initial
(6) �Quenching = initial value, � = Initial value

(7) //Creation of initial solution
(8) current = Create the initial solution, �(current) = Energy(current)
(9) min = current, �(min) = �(current)
(10) Repeat //External Cycle
(11) Repeat //Internal Cycle (Metropolis Cycle)
(12) new = Perturbation (current) //Uniform perturbation
(13) Di�erence = �(new) − �(current)
(14) If Di�erence ≤ 0	en
(15) current = new
(16) �(current) = �(new)
(17) elseif exp(−Di�erence/�) > random[0, 1]	en //Boltzmann Probability
(18) current = new
(19) �(current) = �(new)
(20) end if
(21) If �(current) < �(min) then //save min

(22) min = current
(23) �(min) = �(current)
(24) end if
(25) Until Metropolis Cycle is Finished
(26) � = � ∗ �
(27) If � very close to 0	en
(28) � = initial value
(29) end if
(30) � = �Quenching ∗ (1 − �) ∗ �
(31) Until � > ��MQP //External Cycle

(32) End procedure

Algorithm 3: MQP pseudocode of MPSABBE algorithm.

which was the 
nal temperature of MQP phase. 	e 
nal
temperature of BAP phase is very close to zero.

4.4. BEAP Phase of MPSABBE. In Algorithm 5, pseudocode
of BEAP is shown. Again the external cycle decreases its
temperature value according to the cooling functions (1) or
(2). 	is time, the metropolis cycle length is constant, and
it is equal to the maximum length of the last metropolis
cycle in BAP phase. In this second cycle, the Bose-Einstein
distribution is applied for accepting worse solutions.

4.5. DEPPhase ofMPSABBE. InAlgorithm6, theDEP goal is
to detect the stochastic equilibrium by determining the itera-
tionwhere the slope of the energy function remains very close
to zero. In order to do that, let us de
ne the next variables:
(a) �� the number of the iterations in the metropolis cycle(1, 2, . . . , �) and (b) �� the energy found for the algorithm in
iteration ��. Using a standard least squares method, the slope
for � iterations is de
ned by

� = �∑��=1 ���� − (∑��=1 ��) (∑��=1 ��)�∑��=1 �2� − (∑��=1 ��)2 , (11)

which becomes

� = !1
�∑
�=1
��� − !2

�∑
�=1
��, (12)

where

!1 = 12
�3 − � ,

!2 = 6
�2 + � .

(13)

Notice that the complexity of the computation of (12) is#(�). 	is equation contains only summations; thus, it is less
complex than (11). 	ese summations are computed using
simple data structures. !1 and !2 are only constants for a
particular � value.
5. Analytical Tuning Method

5.1. Parameters Setting Based on Boltzmann Distribution.
Parameters of MPSABBE are tuned by the analytical method
[42]. 	e initial temperature is de
ned by the maximum
di�erence named maximum decrement Δ$max, which is
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(1) BAP Phase( )
(2) Begin
(3) � = ��MQP (Final temperature of MQP Phase)

(4) ��BAP = Final Temperature of this phase

(5) � = initial value (very close to one)
(6) � = Value calculated by analytical method
(7) CM = Initial value
(8) While (� > ��BAP) do
(9) ! = 1
(10) while (! ≤ CM) do
(11) new = perturbation system(current)
(12) Di�erence = �new − �current

(13) If (Di�erence ≤ 0) then
(14) current = new
(15) �(current) = �(new)
(16) ElseIf (exp(−Di�erence/�)) > random[0, 1]) then
(17) current = new
(18) �(current) = �(new)
(19) End if
(20) If �(current) < �(min) then //save min

(21) min = current
(22) �(min) = �(current)
(23) end if
(24) ! = ! + 1
(25) end while
(26) � = � ∗ � or � = (exp(−�)) ∗ �
(27) CM = � ∗ CM
(28) End while
(29) End

Algorithm 4: Pseudocode of BAP phase of MPSABBE.

(1) BEAP Phase( )
(2) Begin
(3) � =	reshold value; Determine exp(�)
(4) ��nal = value very close to zero
(5) � = initial value
(6) � = Value calculated by analytical method
(7) CM = Initial value
(8) While (� > ��nal) do
(9) ! = 1
(10) while (! ≤ CM) do
(11) � = perturbation system(�)
(12) Δ� = �� − ��
(13) If (Δ� ≤ 0) then
(14) � = �
(15) ElseIf ((1/(exp(�) ∗ exp(Δ�/�) − 1))) > random[0, 1]) then
(16) � = �
(17) End if
(18) ! = ! + 1
(19) end while
(20) � = � ∗ � or � = (exp(−�)) ∗ �
(21) End while
(22) End

Algorithm 5: Pseudocode of BEAP phase.
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(1) DEP Phase( )
(2) Begin
(3) While (� > 0) do
(4) � = 1
(5) �summary = 0, Summary = 0
(6) while (! ≤ CM) do
(7) � = perturbation system(�)
(8) If �(�) = total clausule then stop( )

(9) Δ� = �� − ��
(10) If (Δ� ≥ 0) then
(11) � = �
(12) ElseIf ((1/(exp(�) ∗ exp(Δ�/�) − 1)) > random[0, 1]) then
(13) � = �
(14) End if
(15) � = � + 1
(16) Summary = Summary + � ∗ ��
(17) �summary = �summary + ��
(18) end while
(19) � = � ∗ � or � = (exp(−�)) ∗ �
(20) !1 = 12/(� ∗ � ∗ � − �)
(21) !2 = 6/(� ∗ � + �)
(22) � = !1 ∗ Summary + !2 ∗ �summary

(23) End while
(24) End

Algorithm 6: Pseudocode of DEP phase.

calculated using a sample of random protein structures at the
highest temperature range. In this sample, the energy of two
consecutive protein structures de
nes a simple decrement of
energy Δ$�,�, and Δ$max is the maximum di�erence in the
sample. On the other hand, the 
nal temperature is calculated
by applying the minimum deterioration (i.e., minimum
decrement) Δ$min of a sample of protein structures taken at
low temperatures. Analytical tuning based on Boltzmann dis-
tribution can be helpful for setting up the initial temperature.
	e probability of accepting any new solution new is near to
one (�(new) ≈ 1) at high temperatures, so the decrement of
the cost function is maximal. 	e initial temperature (�initial)
is associated with the maximum deterioration admitted and
the de
ned acceptance probability �(new).

Let current be the current solution and new a new pro-
posed one, and$(current) and$(new) are the costs associated
to current and new, respectively. 	e maximum and mini-
mum deteriorations are Δ$max and Δ$min, respectively; then�(Δ$max) probability of accepting a new solution new with
the maximum deterioration is de
ned by

� (Δ$) = exp(−Δ$� ) . (14)

	is equation is basically the Boltzmann distribution, which
is applied for calculating �initial. 	is temperature value is
de
ned by

�initial = −Δ$max

ln (� (Δ$max)) . (15)

Similarly, the 
nal temperature (��nal) is established accord-
ing to the probability of accepting a new solution new with

the minimum deterioration. 	e equation for calculating the

nal temperature is de
ned by

��nal = −Δ$min

ln (� (Δ$min)) . (16)

	ere are other parameters of MPSABBE that are calculated
by applying a particular cooling function; for example, the
metropolis cycle length is calculated by applying

��+1 = ���. (17)

	e analytical method determines the metropolis cycle
length *� with a simple Markov model [42]; at high tem-
peratures, only a few iterations are required because, in this
condition, the stochastic equilibrium is reached very fast.
Nevertheless, at low temperatures, a more exhaustive explo-
ration is needed and *� should be as largest as possible. Let*1
be *� at the temperature �initial and let *max be the maximum
metropolis cycle length. Let the temperature �� be decreased
by the cooling function (17) and let *�+1 be calculated by

*�+1 = �*�, (18)

where � is the increment coe�cient of metropolis cycle (� >1), so *�+1 > *� and *1 is the initial value. 	e markov chain
length of the last metropolis cycle is equal to *max. Functions
(17) and (18) are consecutively applied in simulated annealing
from �initial to ��nal; consequently �� and *max are obtained
by (19) and (20), respectively,

�� = ���initial (19)
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Table 2: Average results of Met5-enkephalin with MPSABBE algorithm.

�Annealing Average energy (kcal/mol) Processing time (minutes) Average RMSD (Å)

0.75 −3.0836 0.1252 0.4517

0.80 −4.3025 0.1701 0.4327

0.85 −4.4093 0.2023 0.3510

0.90 −4.6493 0.3384 0.5097

0.95 −5.0634 0.8427 0.3610

*max = ��*1, (20)

where � is the steps number from �initial to ��nal.
Notice that the increment coe�cient � can be calculated

if the initial length *1 and the maximum length value *max

are available. As is well known the former can simply be set
close to one, while the second depends on the exploration
level established in the algorithm as follows.

	us, the number of times that themetropolis cycle is exe-
cuted can be simply obtained by using (21). Once � is deter-
mined the increment of the metropolis cycle length can be
calculated by (22):

� = ln (��nal) − ln (�initial)
ln (�) (21)

� = exp( ln (*max) − ln (*1)� ) . (22)

5.2. Parameters Setting Based on Bose-Einstein Distribution.
	e initial and 
nal temperatures can be calculated by
applying the Bose-Einstein distribution.	en, the probability
of accepting a new solution with the maximum deterioration�(Δ$max) is de
ned by (23). Consequently, the initial and

nal temperatures are calculated with (24) and (25), respec-
tively,

� (Δ$) = 1
�Δ�/	 − 1 (23)

�initial = Δ$max

ln ((� (Δ$max) + 1) /� (Δ$max)) (24)

��nal = Δ$min

ln ((� (Δ$min) + 1) /� (Δ$min)) . (25)

Let �� be decreased by the cooling function (2). 	us, ��
is calculated by

�� = �−���initial. (26)

As a consequence, � and � are calculted by

� = ln (��nal) − ln (�initial)−� (27)

� = exp( ln (*max) − ln (*1)� ) . (28)

Notice that the increment coe�cient � can be calculated
if the initial and maximum metropolis length *1 and *max

are available [42]. As is well known the former can simply be
set close to one, while the second depends on the exploration
level established in the algorithm. 	erefore, for any � solu-
tion, the value of *max depends on the size of neighborhood|:��|. 	us, *max = ;|:��| and ; = − ln(��(�)), where ��(�)
is the rejection probability for a solution �. 	e parameter; ranges from 1 to 4.6; the larger value of ; assures a good

exploration level in the neighborhood of � at the 
nal tem-
perature. Hence, di�erent exploration levels can be applied.
When we explore with ��(�) values of 63%, 86%, 95%, or
99%, the exploration levels are; = 1, 2, 3, or 4.6, respectively.
Because *max can be very large for PFP instances, it is impor-
tant to apply a particular process for detecting the stochastic
equilibrium; this is done in DEP phase of MPSABBE that
detects e�ciently the stochastic equilibrium.	enext section
explains all MPSABBE phases and the performance of using
Boltzmann and Bose-Einstein distribution.

6. Experimental Results

MPSABBE is tested with 
ve instances of PFP, which are
Met5-enkephalin, proinsulin, T0549, T0335, andT0281.	ese
instances have di�erent sequence’s length and a di�erent
number of variables (dihedral angles). 	e smallest sequence
is Met5-enkephalin, which has 
ve amino acids and 19
variables. 	e largest sequence is a hypothetical protein
(CASP T0281), which has 90 amino acids and 458 variables.
	e proinsulin instance has 31 amino acids and 132 variables;
the 2K5E (CASPT0549) has 73 amino acids and 343 variables.
	e instance Bacillus subtilis (CASP T0335) has 85 amino
acids and 450 variables. 	e dihedral angles used in the sim-
ulations were phi (Φ), psi (Ψ), omega (
), and Chi (�). 	e
initial and 
nal temperature are tuned analytically. In MQP,
parameters �Quenching and � are set with 0.85 and 0.999,
respectively. In each subphase of MQP the 
nal value of � is
set to 0.001.

In Table 2, the results of Met5-enkephalin obtained with
MPSABBE algorithm are shown. In this table, we show
the traditional average energy, processing time in minutes,
and the average of the traditional RMSD (Root-Mean-
Square Deviation) [43].	e RMSDwas calculated using TM-
Align [44]. 	e best average solution for Met5-enkephalin
is −5.0634 kcal/mol with 0.8427 minutes of processing time,
and the average RMSD obtained was 0.361 Å (Angstroms).
	e RMSD is a measure which represents a structural
alignment between two proteins (target and solution). 	e
target used in this paper was taken from Protein Data Bank
(PDB). An RMSD near to zero is taken as a perfect structural
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Table 3: Average results of proinsulin with MPSABBE algorithm.

�Annealing Average energy (kcal/mol) Processing time (minutes) Average RMSD (Å)

0.75 −94.2520 3.0279 3.1370

0.80 −102.5484 3.8918 3.1153

0.85 −102.1247 5.1319 3.1253

0.90 −108.1093 7.8184 3.3083

0.95 −122.4350 20.7302 3.1273
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Figure 3: Energy and RMSD for Met5-enkephalin.

alignment between both proteins. 	e RMSD is commonly
used in protein folding to represent how a new obtained
solution by simulation is structurally similar to the target
solution. In this case, in Figure 3, the graphic of energy and
RMSD for each solution is shown. In this graphic, all energies
of Met5-enkephalin calculated by MPSABBE are plotted.
	is is a solution with poor quality because there are better
solutions in the literature; the energy found by MPSABBE
was −7.2787 kcal/mol. In Figure 4, the graphics of landscape
of Met5-enkephalin is shown. 	e results obtained in the
literature for this case by using ECEPP/2 and with 
 
xed at
180 or 
 variable were −10.72 [20] and −12.90 [43, 45],
respectively. Examining the features of MPSABBE the explo-
ration ability is not good enough; thus, the algorithm requires
improvement. Figure 3 shows all solutions generated by
MPSABBE; the curve enveloping the number of solutions in
Figure 3 is only a descriptive tool to illustrate that the optimal
solution is reachedwhen theRMSD is too small; however, this
is not really a very good stop condition. Notice that the best
result obtained with the classical simulated annealing in the
literature using Boltzmann distribution was only −5 kcal/mol
[43], while the best result obtained in this case for MPSABBE
using Bose-Einstein distribution was −7.2787 kcal/mol.

In Table 3, the results of proinsulin obtained with
MPSABBE algorithm are shown. 	e best average solution
for this instance is −122.4350 kcal/mol with 20.7302 minutes
of processing time, the averageRMSD is 3.127 Å.	is solution
was obtained with �Annealing = 0.95. In Figure 5 the graphic
of energy and RMSD for each solution is shown. In this
Figure, some energies of proinsulin calculated by MPSABBE
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Figure 4: Landscape of energy, RMSD, and processing time for
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Figure 5: Energy and RMSD of proinsulin.

are plotted. 	e best solution found by MPSABBE was−142.7586 kcal/mol. In Figure 6, the landscape of proinsulin
is shown.

In Table 4, the results of T0549 instance obtained with
MPSABBE algorithm are shown. 	e best average solution
for this instance is −257.0625 kcal/mol with 106.6151 minutes
of processing time, the average RMSD is 4.30 Å.	is solution
was obtained with �Annealing = 0.95. In Figure 7, the energy
and RMSD for each solution are shown. In this 
gure, some
energies of T0549 instance calculated by MPSABBE are
plotted. 	e best solution found was −317.2117 kcal/mol. In
Figure 8, the landscape of T0549 is shown.

In Table 5, the results of T0335 instance obtained with
MPSABBEalgorithmare shown.	ebest average solution for
this instance is −378.6827 kcal/mol with 202.2453 minutes of
processing time; the average RMSD is 3.5793. 	is solution
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Table 4: Average results of T0549 with MPSABBE algorithm.

�Annealing Average energy (kcal/mol) Processing time (minutes) Average RMSD (Å)

0.75 −183.6351 19.4805 4.3933

0.80 −190.2890 24.9117 4.4180

0.85 −208.0338 31.1958 4.2933

0.90 −231.2849 48.6717 4.2887

0.95 −257.0625 106.6151 4.3037

Table 5: Average results of T0335 with MPSABBE algorithm.

�Annealing Average energy (kcal/mol) Processing time (minutes) Average RMSD (Å)

0.75 −249.4399 32.9611 3.7413

0.80 −267.4245 40.4676 3.6750

0.85 −293.0409 52.2383 3.6160

0.90 −335.0567 78.9619 3.5828

0.95 −378.6827 202.2453 3.5793

 2
 2.5

 3
 3.5  4

 4.5 2
6

10
14

18
22

RMSD Tim
e (m

in)

E
n

er
g

y

−130
−120
−110
−100
−90
−80 −80

−85
−90
−95
−100
−105
−110
−115
−120
−125
−130

Figure 6: Landscape of energy, RMSD, and processing time for
proinsulin.

−320
−310
−300
−290
−280
−270
−260
−250
−240
−230
−220
−210
−200
−190
−180
−170
−160
−150
−140
−130
−120
−110

E
n

er
g

y 
(k

ca
l/

m
o

l)

2.5 3 3.5

RMSD

4 4.5 5 5.5

Figure 7: Energy and RMSD for T0549.

was obtained with �Annealing = 0.95. In Figure 9, the energy
and RMSD for each solution are shown. In this 
gure,
some energies of T0335 instance calculated byMPSABBE are
plotted. 	e best solution was −427.2939 kcal/mol. In Fig-
ure 10, the landscape of T0335 is shown.

In Table 6, the results of T0281 instance obtained with
MPSABBEalgorithmare shown.	ebest average solution for
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this instance is −322.3821 kcal/mol with 187.5070 minutes of
processing time; the average RMSD is 4.5 Å.	is solutionwas
obtained with �Annealing = 0.95. In Figure 11, the graphic of
energy and RMSD for each solution are shown. In this 
gure,
some energies of T0281 instance calculated by MPSABBE are
plotted. 	e best solution found was −380.1765 kcal/mol. In
Figure 12, the landscape of T0281 is shown.
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Table 6: Average results of T0281 with MPSABBE algorithm.

�Annealing Average energy (kcal/mol) Processing time (minutes) Average RMSD (Å)

0.75 −188.9717 32.7761 4.6160

0.80 −193.9981 40.4018 4.6347

0.85 −236.3011 53.3635 4.5507

0.90 −263.1571 79.3565 4.4467

0.95 −322.3821 187.5070 4.5515
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Figure 10: Landscape of energy, RMSD, and processing time of
T0335.
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Figure 11: Energy and RMSD for T0281.

Figures 13–15 show the graphs of energy, which are
obtained from consecutive solutions in the cycle of metropo-
lis in speci
c executions. 	ese 
gures correspond to the
results of energies obtained from the MPSABBE algorithm
with Met5-enkephalin, proinsulin, and T0281 instances,
respectively.

6.1. Test Hypothesis. In Table 7, the average and deviation
of energy and time for each instance applying MPSABBE
algorithm are shown. 	e null hypothesis is de
ned as B0 :D�MPSABBE ≤ D�CMQA, which means that the average energy
of MPSABBE (D�MPSABBE) for each instance is less than or
equal to CMQA (D�CMQA) [14]. 	e alternative hypothesis is
de
ned asB1 : D�MPSABBE > D�CMQA. In Table 8, the average
and standard deviation of energy and time for each instance
applying the proposed algorithm are shown.	e average pro-
cessing times are used for testing the null hypothesis, which
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Figure 12: Landscape of energy, RMSD, and processing time for
T0281.
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Figure 13: Energy of MPSABBE with Met5-enkephalin instance.

is de
ned asB0 : D	MPSABBE ≤ D	CMQA, whichmeans that the
average processing time ofMPSABBE (D	MPSABBE) is less than
or equal to the average processing time of CMQA (D	CMQA).
	e alternative hypothesis is de
ned as B1 : D	MPSABBE >D	CMQA. In Table 9, the values obtained for E-student are
shown; these values were calculated by applying the average
and standard deviation of energy and execution time from
Tables 7 and 8.

	e value of E-student is −2.6363 (Table 9). 	e critical
value is 1.645. 	e statistic test determined that the null
hypothesis is accepted; thus, MPSABBE generates better
quality solution than CMQA, when these approaches are
applied with Met5-enkephalin instance. 	erefore, the null
hypothesis B0 : D�MPSABBE ≤ D�CMQA is rejected, and

the average energy of MPSABBE (D�MPSABBE) for Met5-
enkephalin instance is less than or equal to CMQA (D�CMQA).
For processing execution time, the value of the statistic test
(E-student) is −2.4022. 	us, MPSABBE (applied to Met5-
enkephalin instance) uses less processing execution time than
CMQA.
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Table 7: Average of energy and standard deviation of MPSABBE.

Instance Energy average (kcal/mol) Energy standard deviation Time average (minutes) Time standard deviation

Met5-enkephalin −4.3016 0.7410 0.3357 0.2943

Proinsulin −105.8938 10.4815 8.8670 8.1788

T0549 −214.0610 30.3024 46.1749 35.5258

T0335 −304.7289 52.3785 91.6016 76.1357

T0281 −240.9620 54.8912 85.0103 71.3112

Table 8: Average of energy and standard deviation of CMQA.

Instance Energy average (kcal/mol) Energy standard deviation Time average (minutes) Time standard deviation

Met5-enkephalin −3.7820 0.7848 0.5719 0.4509

Proinsulin −104.7165 10.8593 18.9617 16.2658

T0549 −217.1220 36.7019 121.9018 96.2037

T0335 −311.3921 39.3025 204.2191 154.3906

T0281 −254.3024 42.6025 231.8738 185.2004

Table 9: E-student for each instance.

Instance
E-student

(for energy)
E-student (for
time execution)

Met5-enkephalin −2.6363 −2.4022
Proinsulin −0.4272 −3.0368
T0549 0.3522 −4.0444
T0335 0.5573 −3.5832
T0281 1.0515 −4.0533
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Figure 14: Energy of MPSABBE with proinsulin instance.

When the proinsulin instance is applied, the value of
the statistic test (E-student) is −0.4272; thus, MPSABBE
generates better quality solution than CMQA. For processing
execution time, the value of the statistic test (E-student) is−3.0368. MPSABBE (applied to proinsulin instance) uses less
processing execution time than the average processing time
of CMQA. When the T0549 instance is applied, the value
of the statistic test (E-student) is 0.3522, so that MPSABBE
generates better quality solution than CMQA. For processing
time, the value of the statistic test (E-student) is −4.0444. 	e
MPSABBE (applied to T0549 instance) uses less processing
execution time than CMQA. When the T0335 instance is
applied, the value of the statistic test (E-student) is 0.5573, so
thatMPSABBE generates better quality solution thanCMQA.
For the processing execution time, the value of the statistic
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Figure 15: Energy of MPSABBE with T0281 instance.

test (E-student) is −3.5832. 	e MPSABBE (applied to T0335
instance) uses less processing time than CMQA. When the
T0281 instance is applied, the value of the statistic test (E-
student) is 1.0515; thus, MPSABBE generates better quality
solution than CMQA. For processing execution time test,
the value of the statistic test (E-student) is −4.0533. 	en
MPSABBE (applied to T0281 instance) uses less processing
execution time than CMQA.	erefore, MPSABBE generates
the better quality solution and uses less processing execution
time than CMQA in all instances.

Notice that the improvement obtained when the two
distributions are used is better when the protein is smaller.
For instance, for Met5-enkephalin and proinsulin (with 
ve
and thirty-one amino acids) MPSABBE surpass CMQA by
13.73 and 1.1243%, respectively; otherwise for T0549, T0335,
and T0281 (with 73, 85, and 90 amino acids), these 
gures
were −1.12, −2.13, and −3.75%, respectively. 	us, the new
algorithm obtains better results for small proteins than the
classical SA.

7. Conclusions

In this paper, a new Simulated Annealing Algorithm named
MPSABBE for Protein Folding Problem is presented. 	is
algorithm includes Bose-Einstein and Boltzmann distribu-
tions in SA. Traditionally, for PFP, SA only uses the Boltz-
mann distribution function as the acceptance probability of
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bad solutions. MPSABBE was compared to a classical SA for
protein folding which only applies Boltzmann distribution.
According to the experimentation, the new algorithm ismore
e�cient by the use of the two distributions when the proteins
are small. 	e quality of the solutions obtained by the new
approach is not always the best alternative, although the
di�erence of the quality solution is only 2 to 5% for the worse
cases. Besides, the new approach can overtake the classical
quality solution of SA by one to ten percent while execution
time is in general lower.
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[10] V. Černý, “	ermodynamical approach to the traveling sales-
man problem: an e�cient simulation algorithm,” Journal of
Optimization �eory and Applications, vol. 45, no. 1, pp. 41–51,
1985.

[11] K. T. Simons, C. Kooperberg, E. Huang, and D. Baker, “Assem-
bly of protein tertiary structures from fragments with similar
local sequences using simulated annealing andBayesian scoring
functions,” Journal of Molecular Biology, vol. 268, no. 1, pp. 209–
225, 1997.

[12] K. W. Kaufmann, G. H. Lemmon, S. L. Deluca, J. H. Sheehan,
and J. Meiler, “Practically useful: what the R osetta protein
modeling suite can do for you,” Biochemistry, vol. 49, no. 14, pp.
2987–2998, 2010.

[13] D. Simoncini and K. Y. J. Zhang, “E�cient sampling in frag-
ment-based protein structure prediction using an estimation
of distribution algorithm,” PLoS ONE, vol. 8, no. 7, Article ID
e68954, 2013.
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