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Abstract. We present a new finite element – finite volume (FEFV) method combined with
a realistic equation of state for NaCl–H2O to model fluid convection driven by tem-
perature and salinity gradients. This method can deal with the nonlinear variations in
fluid properties, separation of a saline fluid into a high-density, high-salinity brine phase
and low-density, low-salinity vapor phase well above the critical point of pure H2O, and
geometrically complex geological structures. Similar to the well-known implicit pressure
explicit saturation formulation, this approach decouples the governing equations. We for-
mulate a fluid pressure equation that is solved using an implicit finite element method.
We derive the fluid velocities from the updated pressure field and employ them in a
higher-order, mass conserving finite volume formulation to solve hyperbolic parts of the
conservation laws. The parabolic parts are solved by finite element methods. This FEFV
method provides for geometric flexibility and numerical efficiency. The equation of state
for NaCl–H2O is valid from 0 to 750◦C, 0 to 4000 bar, and 0–100 wt.% NaCl. This allows
the simulation of thermohaline convection in high-temperature and high-pressure environ-
ments, such as continental or oceanic hydrothermal systems where phase separation is
common.

Key words: brine, vapor, hydrothermal, mid-ocean ridge, porphyry copper, two-phase flow,
convection, numerical modeling, finite element, finite volume, NaCl–H2O.

Nomenclature
a Property gradient [kg m−3 m−1] or [◦C m−1].
a Dispersion coefficient [m].
A Area [m2].
A Mass matrix [–].
cp Isobaric heat capacity [kJ kg−1 ◦C−1].
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C Courant criterion [s].
D Diffusivity [m2 s−1].
e Finite element [–].
D Dispersion tensor [m2 s−1].
g Gravity constant [m s−2].
g Gravitational acceleration vector [m s−2].
H Specific enthalpy [kJ kg−1].
I Identity matrix [–].
kr Relative permeability [–].
k Permeability tensor [m2].
K Thermal conductivity [W m−1 ◦C−1].
K Stiffness matrix [–].
m Fluid mass [kg].
n Number of Lagrange points [–].
n Normal vector [–].
N Number of segments per finite volume [–].
N Vector of Lagrange points [–].
p Pressure [Pa] or [bar].
q Source/sink term [e.g., kg m−3 s−1].
q Right-hand side vector [–].
r Radius [m].
Rth Thermal retardation [–].
S Saturation [–].
t Time [s].
T Temperature [◦C].
v Velocity [m s−1].
V Volume [m3].
V Finite element space [–].
x Mass fraction [–].
x Coordinate vector [m].
X Salinity [wt% NaCl].

Greek Symbols

α Thermal expansivity [◦C−1].
β Compressibility [Pa−1].
γ Chemical expansivity [wt% NaCl−1].
δ General diffusivity parameters [m2 s−1].
� Increment [–].
ε General scalar multiplier [–].
ε Stability criterion [–].
µ Viscosity [Pa s].
φ Porosity [–].

 Finite element basis function [–].
ψ General conserved variable [e.g., kg m−3].
ρ Density [kg m−3].
σ Velocity divergence [s−1].
� Computational domain [–].
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Subscripts and Superscripts

crit Property at critical point (pure H2O).
f Fluid (all fluid phases present).
h Halite phase.
i Index.
j Index.
k Time-step.
l Liquid phase.
L Longitudinal.
lat Latent.
m Solid matrix.
p Pore space.
r Rock phase.
sat Saturation property (pure H2O).
th Thermal.
T Transversal.
v Vapor phase.
0 Ground state.

1. Introduction

The simultaneous transport of heat and solutes by aqueous fluids in porous
or fractured media within the Earth’s crust is a key driver for many
important geological processes, such as the formation of large ore deposits,
cooling of newly-formed oceanic crust along mid-ocean ridges, flow in sed-
imentary basins, topography-driven flow, metamorphism, or the evolution
of geothermal systems. In most of these processes, the motion of fluids is
dominated by buoyancy forces arising from density differences between the
fluids due to pressure, temperature and compositional variations (Ingebrit-
sen and Sanford, 1999). Convection of aqueous fluids may occur down to
9 km depth (Lüschen et al., 1993; Möller et al., 1997) or possibly even
15 km depth (Nesbitt and Muehlenbachs, 1991). Evidence from fluid inclu-
sions show that crustal fluids can experience temperatures exceeding 700◦C
(e.g., Ulrich et al., 2002).

Crustal fluids commonly contain various dissolved chemical components
(Hedenquist and Lowenstern, 1994; Shmulovich et al., 1995; von Damm,
1995; Barnes, 1997; Reed, 1997; Geiger et al., 2002). The component that
is most abundant and whose concentration can be constrained most accu-
rately from fluid inclusion data is salt, mainly sodium chloride NaCl. We
therefore consider the system NaCl–H2O here, and the term thermoha-
line convection refers to the simultaneous convection of heat and NaCl by
flowing fluids of variable density.

Although thermohaline convection in the Earth’s crust is an impor-
tant process, it has never been fully modeled for the wide range of
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pressure, temperature, and salinity conditions realized in the Earth’s crust.
This is primarily a consequence of the decisive and challenging thermo-
dynamic (Palliser and McKibbin, 1998a,b,c) and hydrodynamic (Phillips,
1991; Nield and Bejan, 1992) differences between the H2O and mixed
NaCl–H2O system.

The presence of NaCl in H2O produces a large p−T −X region where
a liquid and a vapor phase coexist (Figure 1). As a result, a NaCl-H2O
fluid can boil at temperatures and pressures well above the critical tem-
perature and pressure for pure H2O. Such two-phase fluid coexistence is
frequently recorded by fluid inclusions from magmatic hydrothermal sys-
tems (Bodnar et al., 1985; Heinrich et al., 1999). Furthermore, crystalline
salt (halite) can precipitate from the fluid at high salinities and/or low pres-
sures, for which there is evidence from fluid inclusions in magmatic (Cloke
and Kesler, 1979) and some metamorphic systems (Trommsdorff et al.,
1985). Numerous experimental studies have examined the phase equilibria,
vapor pressures, and resulting fluid properties of NaCl–H2O fluids (Souri-
rajan and Kennedy, 1962; Bischoff and Rosenbauer, 1985). These data were
recently compiled into a model applicable over the entire p−T −X range
of crustal fluids (Palliser and McKibbin, 1998a,b,c). This published model,
however, produces non-physical artifacts such as negative heat capacities in
certain p−T −X regions.

Convection of heat and salt is considerably different from convection of
heat alone, because it can lead to double-diffusive and double-convective
motion of heat and salt, i.e. flow patterns where both the advection and
diffusion rates are different for the solute (NaCl) and heat (Phillips, 1991;
Nield and Bejan, 1992). These processes may produce various complex and
nonlinear flow instabilities even if the fluid is not boiling.

Despite these thermodynamic and hydrodynamic difficulties, fluid flow
in important geologic environments has been studied numerically, mak-
ing some simplifying assumptions. Most commonly it was assumed that
the fluid is pure water, specifically if phase separation into a liquid and
vapor phase was modeled (Hayba and Ingebritsen, 1997; O’Sullivan et al.,
2001). Hence, double-diffusive and double-convective effects are neglected
and phase separation is restricted to temperatures and pressures below the
critical point of pure H2O. If thermohaline convection was modeled, it was
often assumed that the fluid is incompressible, the Boussinesq approxima-
tion is valid, and the density depends linearly on temperature and salinity.
In this case, the possibility of phase separation is a priori excluded and
usually a simplified linear equation of state with constant fluid viscosities
was employed (Schoofs, 1999).

Although simplifications were made in earlier studies, these provided
fundamental insight into crustal fluid flow processes and solved challenging
problems. For example, it could be shown why the temperatures of black
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Figure 1. Phase diagram of the binary NaCl–H2O system (Driesner and Hein-
rich, 2005, in revision). Five different regions can be distinguished. A region of
liquid and vapor coexistence (I) bounded by the liquid plus vapor (LV) and
halite plus liquid plus vapor (HLV) surfaces, a region of halite and vapor coex-
istence (II) bounded by the HLV surface, regions where the fluid is a sin-
gle phase with either vapor-like (III) or liquid-like properties (IV) properties,
and a region of halite and liquid coexistence (V) bounded by the HLV sur-
face and the halite liquidus. The critical curve for NaCl–H2O, which forms the
crest of the LV surface, extends from the critical point of H2O (373.976◦C,
220.561 bar, open circle) to the critical point of NaCl (>3000◦C, ∼ 300 −
400 bar). The two-phase curve of pure H2O starts at the triple point of pure
H2O (0.01◦C, 0.0061 bar) and terminates in the critical point of pure H2O.

smokers on the seafloor cannot exceed 400◦C (Jupp and Schultz, 2000),
under which conditions a magmatic pluton can be cooled most efficiently
(Hayba and Ingebritsen, 1997), how various types of brine transport influ-
ence the formation of Mississippi Valley Type ore deposits (Garven et al.,
1999), that free thermohaline convection can drive fluid flow in sedimen-
tary basins (Sarkar et al., 1995; Schoofs et al., 2000), that layered ther-
mohaline convection may be common in geothermal systems and could
explain the occurrence of distinct fluid types (Oldenburg and Pruess, 1998),
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or that the interface of a brine layer and the overlying seawater at a
mid-ocean ridge is not stable (Schoofs and Hansen, 2000).

Recently, several numerical studies have tried to asses the general
behavior of hydrothermal systems at seawater salinity (3.2 wt.% NaCl),
including the full complexity of super-critical phase separation into a low-
density vapor and high-density brine phase. Seyfried et al. (2003) have
shown, using one-dimensional simulations, that phase separation and brine
condensation could account for the large chemical variability of the hydro-
thermal fluids expelled at the Main Endavour Field. Bai et al. (2003) have
examined the effects of permeability and basal heat flux on one-dimen-
sional heat-pipe solutions for multiphase hydrothermal systems at seawater
salinity. Kawada et al. (2004) have calculated two-dimensional steady state
solutions for multiphase thermohaline convection at low Rayleigh numbers
and seawater salinity, using the Boussinesq approximation, constant and
identical heat capacities and viscosities for both fluid phases, and neglect-
ing the latent heat of vaporization. Lewis and Lowell (2004), assuming that
heat transfer occurs mainly by thermal conduction, showed that the maxi-
mum width of the two-phase zone adjacent to an intruded dike is approx-
imately 20 cm and halite can precipitate.

While the one-dimensional models by Seyfried et al. (2003) and
Bai et al. (2003) yielded insight into the dynamics of counter-current liquid
and vapor flow, they could not asses the complex multi-dimensional aspects
occurring during thermohaline convection, such as oscillatory and chaotic
flow patterns (Schoofs et al., 1999) or transient separation of thermal and
saline plumes (Oldenburg and Pruess, 1999). The study by Kawada et al.
(2004) was the first to investigate the dynamics of multi-dimensional ther-
mohaline convection including phase separation. Their numerical setup,
however, does not represent the physics of these systems accurately. The
compressibility of a liquid–vapor system is orders of magnitude higher than
the compressibility of a slightly compressible liquid or highly compressible
vapor (Grant and Sorey, 1979). Hence, the Boussinesq approximation can-
not be applied for a liquid–vapor system. It also severely underpredicts the
onset and vigor of convection if the fluid properties change nonlinearly
as a function of pressure and temperature (Strauss and Schubert, 1977).
In addition heat capacity and viscosity are not identical for the vapor
and brine phase and vary nonlinearly over orders of magnitude as a func-
tion of pressure, temperature, and composition. Assuming that these para-
meters have constant and identical values for both phases is likely to lead
to inaccuracies for the high-temperature systems considered by Kawada
et al. (2004). The steady state solutions calculated by Kawada et al. (2004)
are only applicable to low Rayleigh numbers and cannot account for the
possibly high permeabilities of the continental or oceanic crust (Fisher,
1998; Manning and Ingebritsen, 1998), giving rise to instable thermohaline
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convection patterns (Schoofs et al., 1999). Similarly, the study by Lewis
and Lowell (2004) cannot be applied to the many hydrothermal systems
where convection is the dominating transport process.

Simulations of geologic processes involving both salinity variations and
phase separation at elevated pressures and temperatures hence require an
approach that faces two major challenges. First, a robust and consistent
equation of state valid over geologically realistic pressure, temperature, and
salinity ranges is necessary. Second, an accurate and numerically robust
transport algorithm is required that can resolve complex geological struc-
tures in multiple dimensions and can deal with flow of two compressible,
miscible fluids with contrasting properties in systems with orders of
magnitude variations in permeability.

In this paper we use an accurate description of the thermodynamics of
the NaCl–H2O system (Driesner and Heinrich, 2003) in combination with
a geometrically flexible, accurate, efficient, and stable transport algorithm.
This tool permits us to gain new insight into the transient evolution of
a variety of high-temperature, high-pressure geological processes involving
the convection of NaCl–H2O fluids. Our new transport method combines
finite element with finite volume schemes. This finite element – finite vol-
ume (FEFV) method can resolve complex geological structures and many
orders of magnitude of permeability variations which are widespread in the
Earth’s crust. It can also deal with phase separation and multiphase trans-
port of fluid phases with greatly varying properties in double-diffusive and
double-convective systems.

We first discuss the thermodynamics of the NaCl–H2O system and the
associated fluid properties. This is followed by the derivation of the gov-
erning equations for multiphase thermohaline convection. The numerical
method is then described in detail. We close by discussing the implemen-
tation of the described methods into our object oriented C++ code CSP
(Matthäi et al., 2001).

In an accompanying paper (Geiger et al., 2005), we present numeri-
cal solutions for various benchmarking tests representing sub-problems of
multiphase thermohaline convection. These are compared to their reference
solutions to verify the numerical method. The accompanying paper also
shows the example application of phase separation of a convecting NaCl–
H2O fluid.

2. NaCl–H2O Thermodynamics and Fluid Properties

To model convection of a NaCl–H2O fluid, density ρ, enthalpy H ,
viscosity µ, and saturation S must be computed as a function of the evolv-
ing fluid pressure p, temperature T , and salinity X fields. In addition,
derivatives of the basic properties ρ and H are commonly needed, i.e. the
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compressibility β, thermal expansivity α, chemical expansivity γ , and iso-
baric heat capacity cp. All of these fluid properties vary nonlinearly and
over orders of magnitude in the NaCl–H2O system.

2.1. phase diagram

The topology of the binary NaCl–H2O system (Figure 1) is constrained
by the high melting temperature of NaCl at a low vapor pressure, and
by an intermediate fluid immiscibility region extending to much higher
pressures. Five different regions can be distinguished in the NaCl–H2O
phase diagram (Figure 1). Region I is is a large miscibility gap in which
a NaCl–H2O fluid separates into a brine and a vapor phase. The brine
phase is of higher density and has a salt concentration higher than the
bulk salinity of the liquid–vapor mixture. The vapor phase is of lower den-
sity and has a salt concentration lower than the bulk salinity. To high
pressures, the miscibility gap is bounded by the liquid-saturated vapor and
vapor-saturated liquid surfaces. In the following, we call the combined two
surfaces the liquid plus vapor (LV) surface. The crest of the LV surface is
the critical curve of NaCl–H2O. It starts at the critical point of pure H2O
(373.976◦C, 220.561 bar) and extends to the critical point of pure NaCl
(>3000◦C, ∼300−400 bar). Below the critical point of pure H2O at X=0,
the liquid-saturated vapor surface and vapor-saturated liquid surface meet
in the saturation curve of pure H2O. At low pressures, the miscibility gap
is bounded by the halite plus liquid plus vapor (HLV) surface. Below the
HLV surface at low pressures lies Region II. Here, solid salt (halite) coex-
ists with a low-density vapor phase of near-zero salinity. Region III and IV
lie above the LV surface at high pressures and temperatures. Here, the fluid
has either gas-like properties and a low salinity (Region III) or liquid-like
properties and a higher salinity (Region IV). A continuous transition of
the fluid properties between Regions III and IV exists for pressures above
and temperatures below the LV surface. If the salinity of a single-phase
liquid-like fluid from Region IV is further increased, the halite liquidus is
reached. In Region V, the fluid is saturated with halite, i.e. a high-density,
high-salinity liquid phase coexists with halite.

A NaCl–H2O fluid can hence take p − T − X paths along which it
evolves very differently from a pure H2O fluid. For example, a fluid at
500 bar, 100◦C, and 10 wt.% NaCl is isobarically heated. When the fluid
encounters the LV surface, it separates into a brine and vapor phase
in Region I. The fluid remains in this phase state if the temperature is
increased further. The vapor fraction, however, will continue to increase.
If the same fluid is isobarically heated at 300 bars, it will again separate
into a brine and vapor phase in Region I when encountering the LV sur-
face, albeit at lower temperatures. Upon further heating, the fluid will then
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encounter the HLV surface. Here, the brine phase is completely boiled off,
precipitating halite and proceeding into Region II. Continued heating then
leads to the dissolution of halite in a newly forming brine phase when
the fluid encounters the HLV surface again, just below 700◦C. The fluid
remains in Region I if the temperature is further increased. A pure H2O
fluid at 300 bar and 500◦C, instead, is supercritical. It will remain super-
critical if heated and its fluid properties change continuously from liquid
to vapor like.

2.2. existing formulations

Individual p−T −X regions of the NaCl–H2O system have been intensely
studied and equations of state for these regions have been derived (e.g.,
Rogers and Pitzer, 1982; Bischoff and Rosenbauer, 1985; Anderko and Pitzer,
1993). None of these equations of state, however, are fully suitable for the use
in the present context because most formulations are valid only over limited
ranges of temperature, pressure, and composition and/or provide only a small
number of fluid properties. Typically, these formulations do not smoothly
overlap at the boundaries of their validity ranges. This often produces discon-
tinuities in the fluid properties which precludes the combination of different
formulations for different portions of the phase diagram (Figure 1). In addi-
tion, the more modern equations of state (Anderko and Pitzer, 1993) are
free energy formulations. Therefore, these equations do not provide the fluid
properties as a function of the most practical state variables of the fluid flow
simulation, i.e. p, T , and X. For example, direct extraction of the compo-
sitions of coexisting liquid and vapor phases is hence not possible. Instead,
costly iterative schemes are required to generate this basic information.

An alternative approach is the derivation of correlation functions for
the fluid properties of interest. This general approach was recently used
by (Palliser and McKibbin, 1998a,b,c), employing different correlation for-
mulae above and below the critical temperature of water for vapor pres-
sures, densities, and enthalpies on the LV surface and in the one-phase
regions. Unfortunately, their mathematical formalism, which employs a
function for sub-critical and a function for supercritical temperatures for
each fluid property, yields non-physical artifacts where the two functions
meet. For example, the enthalpy versus temperature curve for a given
composition shows a negative slope just above the critical temperature of
water, implying a negative heat capacity. Also, some linear interpolation
schemes in the one phase regions provide properties that can be substan-
tially different from known experimental data, in particular in the highly
compressible region around and above the critical point of water. This
region, however, is frequently encountered in the simulation of magmatic
hydrothermal systems.
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We therefore decided to develop our own set of correlations (Driesner
and Heinrich, 2003, 2005; Driesner, 2005). The formulation is based on a
critical review of essentially all published experimental data on the phase
boundaries in the NaCl–H2O system and all available data for volumet-
ric and thermodynamic properties. Its accuracy is within the uncertainty of
the best available experimental data, resolving most of the apparent incon-
sistencies. Its validity range is from 0 to 1000◦C, from 0 to 5000 bar, and
from 0 to 100 wt.% NaCl. The pure water side is described by the func-
tions of Haar et al. (1984) since this is available in a convenient form
for computation (Bauer, 2002). For this study, we have used an older ver-
sion (Driesner and Heinrich, 2003) of the model by Driesner and Heinrich
(2005) and Driesner (2005), which is only valid from 0 to approximately
750◦C, 0 to 4000 bar, and 0–100 wt.% NaCl.

2.3. fluid properties and phase state

The correlations are based on temperature, pressure, and salinity. For any
given p− T −X combination, the phase state of the fluid along with the
properties ρ, H , µ, S, β, and cp can be calculated directly for each indi-
vidual phase. Pressure-temperature profiles of fluid density ρf and enthalpy
Hf at varying salinities are shown in Figure 2. ρf and Hf change con-
tinuously in Region IV. Both properties change rapidly from liquid-like to
vapor-like along the interface between Regions IV and I because the vapor
fraction increases rapidly with increasing temperature or decreasing pressure
in Region I. Due to the presence of halite in Region II, a discontinuity in ρf
and Hf appears at the boundaries between Region II and Regions IV and I.

2.4. fluid properties at two-phase conditions

Our formulation for the NaCl–H2O system provides the properties for each
individual phase. Special care must be taken when computing the satura-
tion S, compressibility β, thermal expansivity α, and chemical expansivity
γ at two-phase conditions, because they are a function of the proportions
of the two phases present. At two-phase conditions, β, α, and γ describe
the thermodynamic behavior of the brine-vapor mixture.

2.4.1. Saturation

In Region I (Figure 1), the saturations of the phases are computed
employing a balance for the mass fraction NaCl in the liquid and vapor
phase

Sl = ρv (Xv −X)
ρl (X−Xl)+ρv (Xv −X) and Sv =1−Sl. (1)
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Figure 2. p−T profiles of fluid density ρf = (ρvSv +ρlSl) (left) and enthalpy Hf =
(HvρvSv +HlρlSl)/(ρvSv +ρlSl) (right) at bulk salinities of 3.2, 20, and 40 wt.%
NaCl (top to bottom). Units of the contour labels are in [kg m−3], respectively
[kJ kg−1]. The roman numbers in the density profiles indicate the phase regions from
Figure 1. Dotted lines mark boundaries between different phase regions. Note that
the salinity of the fluid phase is below 40 wt.% NaCl in Region V where halite
coexists with a liquid phase and practically zero in Region II where halite coex-
ists with a vapor phase.



410 SEBASTIAN GEIGER ET AL.

In Region II or V, halite precipitates and its saturation Sh is computed as

Sh=

⎧
⎪⎪⎨

⎪⎪⎩

ρv (Xv −X)
ρh (X−Xh)+ρv (Xv −X) in Region II,

ρl (Xl −X)
ρh (X−Xh)+ρl (Xl −X) in Region V.

(2)

Since part of the pore volume is now occupied by solid salt, the saturation
of the fluid phase that coexists with halite remains one. Halite is treated as
rock matrix. This changes the porosity of the medium

φ=φ0 (1−Sh) , (3)

where φ0 is the initial porosity and a potential hysteresis effect is ignored
here. Depending on the nature of the porous medium, a corresponding
change in the permeability k can be computed using an empirical φ-k rela-
tion. In Region II the amount of precipitated halite is very small. Hence
Sh is initially low. Thus changes in porosity are of importance for the
hydrodynamics only if halite precipitates for a long time in Region II or
coexists with a liquid phase in Region V.

2.4.2. Compressibility

The isothermal compressibility β is defined as

β= 1
ρ

(
dρ
dp

)

T,X

=− 1
V

(
dV
dp

)

T,X

, (4)

where V is the specific volume of fluid. This formula is applied directly at
single-phase conditions. At two-phase conditions in Region I, however, a
pressure drop will cause liquid to evaporate and a pressure increase will
force vapor to condense. This is accompanied by a redistribution of mass
and heat. As a result, the two-phase compressibilities β̃ are orders of mag-
nitude higher than those for single-phases. We approximate these as (Grant
and Sorey, 1979)

β̃= 1
φ

[
(1−φ)ρrcpr +φSlρlcpl

]
[

ρl −ρv
(hv −hl) ρlρv

]2

(T +273.15) . (5)

2.4.3. Thermal Expansivity

The thermal expansivity α is defined as

α=− 1
ρ

(
dρ
dT

)

p,X

= 1
V

(
dV
dT

)

p,X

(6)
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and can be computed directly using this formula at single phase conditions.
dT is zero in Region I if the fluid continues to boil or condense at con-
stant pressure. α hence becomes infinity if computed from Equation (6).
Computing the mass of fluid that has boiled off from Equation (26), the
volume change during boiling �V , i.e. the two-phase thermal expansivity α̃,
is given by

α̃=�V =mf xl
(

1
ρv

− 1
ρl

)

, (7)

where mf is the total mass of fluid. Similarly, the mass fraction of condensed
vapor xv and the volume change due to condensation can be computed.

2.4.4. Chemical Expansivity

The chemical expansivity γ is defined as

γ = 1
ρ

(
dρ
dX

)

p,T

=− 1
V

(
dV
dX

)

p,T

(8)

and can be computed directly from this formula at single phase conditions
but requires special treatment at two-phase conditions. In Region I, the
chemical expansivity γ̃ is given by

γ̃ =
(

1
ρl

− 1
ρv

)
1

Xl −Xv . (9)

3. Governing Equations

We formulate the governing transport equations in terms of fluid pressure
p, temperature T , and salinity X. We assume that porous medium and flu-
ids are always in thermodynamic equilibrium, heat conduction is predomi-
nant in the rock and can be described by a bulk thermal conductivity, and
that capillary pressure effects are negligible (Bear, 1972; Faust and Mer-
cer, 1979a; Huyakorn and Pinder, 1983). For simplicity, we omit any fluid,
energy, or salt source terms in the discussion of the governing equations.

3.1. fluid mass conservation

The mass balance of a fluid consisting of two fluid phases can be expressed
as (Bear, 1972)

φ
∂ρf

∂t
+ρf ∂φ

∂t
=−∇ · (vvρv)−∇ · (vlρl) , (10)
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where φ is the porosity of the porous medium, ρ is the density, v is the Darcy
velocity vector of the fluid phase, and the subscripts l and v denote the liquid
and vapor phase, respectively. The average fluid density ρf is given by

ρf =Slρl +Svρv, (11)

where S is the saturation (volume fraction) and requires Sl+Sv=1. The fluid
velocity vi for each fluid phase i is derived from Darcy’s law (Bear, 1972)

vi =−k
kri

µi
[∇p−ρig] . (12)

Here k is the permeability tensor, kr is the relative permeability, µ is the
fluid viscosity, p is the fluid pressure, and g = [0,0,−g]T is the vector of
gravitational acceleration. The total velocity of the fluid vf is the sum of
both phase velocities vf = vl + vv. A common theoretical function for the
simultaneous flow of a liquid and vapor phase is (Faust and Mercer, 1979b)

krl =S4
l krv =S2

v

(
1−S2

l

)
. (13)

Xu (2004) has shown that in situations where diffusive transport becomes
important (e.g., at low permeabilities or very steep concentration gradients
in NaCl), diffusion terms for both NaCl and H2O should be added to
Equation (10).

The fluid density ρf is a function of p, T , and X. This is expressed as

dρf =
(
∂ρf

∂p

)

T ,X

dp+
(
∂ρf

∂T

)

p,X

dT +
(
∂ρf

∂X

)

T ,p

dX

=ρf
(
βfdp−αfdT +γfdX

)
, (14)

where βf is the fluid’s compressibility, αf is the fluid’s thermal expansivity,
and γf is the fluid’s chemical expansivity as defined above.

The change in porosity φ in Equation (10) is not only due to precipita-
tion of halite (Equation 3), but also partly a function of the compressibility
of the pore space

∂φ

∂t
= ∂φ

∂p

∂p

∂t
. (15)

This relation, however, does not account for the compressibility of the solid
rock matrix. The compressibility of the rock βr , i.e. solid plus pore space,
is given by (Bear, 1972)

βr =−(1−φ) 1
Vm

dVm
dp

−φ 1
Vp

dVp
dp

, (16)

where V is the volume and the subscripts m and p denote the solid matrix
and pore space, respectively. In the hot hydrothermal systems considered



MULTIPHASE THERMOHALINE CONVECTION IN THE EARTH’S CRUST 413

here, the fluid compressibility is commonly orders of magnitude larger than
the rock compressibility, i.e. βf �βr .

A parabolic equation that describes the evolution of fluid pressure p

results from inserting Equation (12) into (10) and using Equations (14) and
(16) to account for the compressibility of the fluid, solid matrix, and pore
space

ρf
(
βr +φβf

) ∂p

∂t

=∇ ·
[

k
(
krl

µl
ρl + krv

µv
ρv

)

∇p
]

+

+k
(
krl

µl
ρ2
l + krv

µv
ρ2
v

)

g∇z+φρf
(

γf
∂X

∂t
−αf ∂T

∂t

)

. (17)

Equation (17) expresses the fluid mass conservation in the systems in terms
of changes in fluid pressure. Note that the thermal expansivity of the fluid
αf can readily be expanded to include the thermal expansion of the rock
as well.

3.2. solute mass conservation

Conservation of the mass fraction NaCl in H2O is given by (Bai et al.,
2003)

φ
∂

∂t
ρfXf =−∇ · (vvρvXv)−∇ · (vlρlXl)+

+∇ · (Dl∇ρlXl)+∇ · (Dv∇ρvXv) , (18)

where ρfXf is the total mass of NaCl in the fluid defined as

ρfXf =SlρlXl +SvρvXv. (19)

The dispersivity tensor Di of phase i is given by

Di =DpiI + (aL−aT ) vixviz
| vi | +aT | vi | I, (20)

where Dpi is the porous-medium diffusivity of NaCl in phase i, aL and aT
are the longitudinal and transversal dispersivities, respectively, and I is the
identity matrix.
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3.3. energy conservation

Conservation of energy by the fluid phases is given by (Bear, 1972;
Delaney, 1982)

(
(1−φ)ρrcpr +φ

(
Slρlcpl +Svρvcpv

)) ∂T

∂t

=−∇ · (vvcpvρvT
)−∇ · (vlcplρlT

)+∇ · (K∇T ) , (21)

where cp is the isobaric heat capacity and K is the thermal bulk conduc-
tivity of fluid and rock commonly given by (Bear, 1972)

K= (1−φ)Kr +φKf . (22)

The subscript r denotes the rock property. It should be pointed out that for-
mulations for K are available in the literature that use a different weighting of
Kr and Kf , for example K=Kφ

f +K(1−φ)
r (Raffensperger, 1996). K can also

be replaced, analogous to Equation (18), by a thermal dispersion tensor. In
Equation (20), Dpi then corresponds to K and a to the thermal dispersivity
that is scaled by the heat capacity cp and fluid density ρ (Marsiliy, 1986).

From Equation (21) it can be shown that the temperature front moves
at the heat transfer velocity vth defined as

vth= cplρlvl + cpvρvvv
φ
(
Slcplρl +Svcpvρv

)+ (1−φ) cprρr
. (23)

From Equation (18) it can be seen that the salt front moves at the pore
velocity

vp= vl + vv
φ

. (24)

Hence, the thermal front is retarded with respect to the salt front by the
factor Rth

Rth= vth
vp
<1 (25)

3.3.1. Latent Heat during Boiling

By writing the left-hand side of Equation (21) in terms of cp∂T /∂t , the
latent heat of vaporization that is intrinsically used in an enthalpy-based
formulation (e.g., Faust and Mercer, 1979a), is no longer accounted for.
Using pure H2O as an example, this can be compensated in the following
manner.

To avoid artificial flash boiling (all liquid boils to vapor during a sin-
gle time-step), an energy balance is employed if T t > Tsat and T t−�t < Tsat

to compute the mass fraction of the liquid phase �xl that boils off. Tsat is
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the saturation temperature for the given pressure. Assuming that φ is small
such that the energy in the solid phase is higher than in the fluid phase, i.e.
the rock matrix buffers the energy provided by the fluid, the mass fraction
of the liquid phase �xl being boiled off is given by

�xl =
(1−φ)ρrcpr

(
T t −Tsat

)

Hlatφρl,satSl,sat
, (26)

where Hlat is the latent heat of boiling Hlat =Hv−Hl. The saturation of the
liquid phase is then computed as

Sl =1−
(

(1−�xl)ml/ρl
�xlml/ρv + (1−�xl)ml/ρl

)

sat
(27)

For the case of condensation (T t <Tsat and T t−�t >Tsat), the energy balance
yielding the mass fraction vapor being condensed �xv is given by

�xv = (1−φ)ρrcpr
(
Tsat −T t

)

Hlatφρv,satSv,sat
. (28)

The saturation of the vapor phase can be calculated from

Sv =
(

(1−�xv)mv/ρv
�xvmv/ρl + (1−�xv)mv/ρv

)

sat
. (29)

4. Numerical Methods

4.1. existing numerical approaches

The governing equations are strongly nonlinear and coupled, because the
fluid properties ρ, cp, µ, α, β, γ , and the saturation S depend nonlinearly
on p, T , and X and may vary over orders of magnitude. The governing
equations have mixed parabolic (diffusive) and hyperbolic (advective) char-
acter.

The numerical techniques commonly employed in research codes to
solve the governing equations are finite difference (FD) (Hayba and
Ingebritsen, 1994), integrated finite difference (IFD) (Pruess, 1987, 1991),
or finite element methods (FE) (Zyvoloski et al., 1996). These techniques
are formulated such that they solve simultaneously for pressure, tempera-
ture, and concentration, i.e. the solution approach is fully coupled. A New-
ton iteration is employed to account for the nonlinearities. Each method
is, in principal, well suited to solve the governing equations for multiphase
flow, heat and/or salt transport and the computer codes have been success-
fully applied to simulate challenging physical problems.
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The comprehensive discussion by Steefel and MacQuarrie (1996) has
highlighted the advantages and disadvantages of each numerical technique.
FD methods are a common choice because they are relatively easy to
implement and grid generation is straightforward. The drawback is that
such uniform FD grids may not resolve geological structures adequately.
IFD methods allow a more flexible grid generation and better representa-
tion of the geologic domain (Narasimhan and Witherspoon, 1976). Since
gradients are still calculated on the basis of FD schemes, IFD grids require
that the interface between two nodes is perpendicular to the line connect-
ing them. This requirement may cause problems when generating grids
that need to resolve geometrically complex structures or when dealing with
tensor quantities. FE methods can efficiently resolve complex non-rect-
angular structures, for example if Delaunay grids are employed in two
(Shewchuk, 2002) or poly-element meshes in three dimensions (Matthäi,
2003; Matthäi et al., 2004b). Of these three numerical methods, the FE
technique is probably the most difficult to implement in computer codes
and special software is needed to generate quality meshes, particularly in
three dimensions. All methods have in common that, unless special care
is taken, non-physical oscillations in the vicinity of concentration or tem-
perature fronts may occur if the characteristic time for advection greatly
exceeds that for diffusion. Upstream weighting techniques can be employed
to alleviate this problem, but this introduces numerical dispersion, i.e., con-
centration or temperature fronts are artificially broadened. Numerical dis-
persion can be limited by high-resolution spatial schemes, for example total
variation diminishing (TVD) schemes (Harten, 1983; Sweby, 1984). Such
a scheme has been successfully employed in combination with the IFD
method in the computer code TOUGH (Oldenburg and Pruess, 2000).
Upstream weighting in FE methods imposes certain requirements onto the
finite element mesh, reducing its ability to resolve complex geological struc-
tures. If these requirements are not met, conditions can occur in which
the transmissibility becomes negative, i.e. fluid will flow from low to high
potential (Forsyth, 1991).

Aside from these advantages and disadvantages of each method to
resolve geological structures and deal with advection-dominated transport,
the fully coupled solution approach has additional drawbacks. The linear-
ized global solution matrices are often very poorly conditioned such that
small time-steps are required, the use of fast matrix solvers (e.g., alge-
braic multigrid solvers) may be prohibited, and convergence towards a
unique solution is not guaranteed (Trangenstein and Bell, 1989a,b; Burri,
2004). A fully coupled implicit formulation commonly requires as many
iteration-steps as a decoupled explicit formulation needs grid-restricted
time-steps (Küther, 2002; Burri, 2004). This combination of relatively
small time-steps with a large number of iterations decreases computational
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efficiency of fully coupled implicit schemes (Huber and Helmig, 1999;
Burri, 2004).

4.2. combination of finite elements and finite volumes

Recently, the combination of higher-order FEFV schemes was suggested
to be a very efficient approach that overcomes the aforementioned numer-
ical problems of modeling the non-linear flow of two immiscible and
incompressible fluid phases in porous and fractured media (Trangenstein
and Bell, 1989a,b; Durlofsky, 1993; Huber and Helming, 1999; Geiger
et al., 2004). In the FEFV method, the pressure equation is solved de-
coupled from the conservation equations. This decoupling is based on
the well-known implicit pressure explicit saturation (IMPES) approach for
modeling immiscible and incompressible two-phase flow (Aziz and Set-
tari, 1979). In the IMPES method it is permissible to solve the governing
equations separately because they operate on different timescales: Pres-
sure diffuses more rapidly to steady state than saturation changes advect
through the porous medium. This decoupling of pressure and conservation
equations, however, permits to employ the optimal numerical method for
the solution of the respective sub-equations: Finite volume methods model
the hyperbolic and finite element methods the parabolic equations (Durlof-
sky, 1993; Huber and Helmig, 1999; Geiger et al., 2004). It was further
shown that FEFV methods can be successfully applied to model nonlinear
two-phase flow in highly heterogeneous and geometrically complex porous
medium (Huber and Helmig, 1999; Geiger et al., 2004) or compressible and
compositional multiphase flow (Dicks, 1993; Bergamaschi et al., 1998).

In order to derive a robust solution algorithm that makes use of the
advantages that the finite element and finite volume methods have to offer
for solving certain types of equations, we linearize the governing equation
by decoupling the pressure equation from the energy and solute conserva-
tion equations. In this operator-splitting, the hyperbolic sub-equations are
solved by the finite volume method by surface-integration of the flux term
over an area A, e.g.

∫

A

n ·
[

k
kri

µi
∇p

]

dA, (30)

where n is the outward-pointing normal of A. The parabolic sub-equations
are solved by the finite element method by volume integration of the flux
term over a volume V , e.g.

∫

V

[

∇k
kri

µi
∇p

]

dV. (31)
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The operator splitting of the governing equations is done as follows
(Strang, 1968). Consider a general advection diffusion equation for a con-
served quantity ψ of the form

ε
∂ψ

∂t
=∇ · (δ∇ψ)−∇ · (vψ)+q, (32)

where δ is the diffusivity parameter, ε is some multiplier (e.g., porosity),
and q is a source or sink of ψ . The partial solution ψ̂ t+�t of Equation (32)
for the diffusion part ∇ · (δ∇ψ) at time t+�t is obtained by finite element
methods by solving

ε
ψ̂ t+�t −ψt

�t
=∇ · (δ∇ψt

)+q. (33)

The result of the diffusive contribution ψ̂ t+�t is then used to solve the
advection part −∇ · (vψ) of Equation (32) to obtain the final solution
ψt+�t at time t+�t by using a finite volume method on

ε
ψt+�t − ψ̂ t+�t

�t
=−∇ ·

(
vψ̂ t+�t

)
. (34)

Comparable to the IMPES method (Aziz and Settari, 1979), this
operator-splitting approach results in a parabolic pressure-diffusion equa-
tion (Equation 17), which describes mass conservation of the fluid phases,
and conservation equations for energy (Equation (21)) and salt (Equa-
tion (18)). As shown by Kissling et al. (1992) and Young (1993), pressure
diffusion is faster than the advection of saturation in typical geothermal
reservoirs and two-phase geothermal flows are hence asymptotically iden-
tical to the Buckley–Leverett theory for immiscible and incompressible
two-phase flow, which is commonly modeled by IMPES-based numerical
schemes (Durlofsky, 1993; Huber and Helmig, 1999; Geiger et al., 2004).

Hence, as in the IMPES approach, we solve the governing equations for
pressure, temperature, and salinity sequentially. First, the fluid pressure is
updated and the fluid velocities are obtained from Darcy’s law (Equation
(12)). Then the energy and solute conservation equations are solved. Last,
the fluid properties are updated from the equation of state using the new
values for p, T , and X. The volume change of the fluid due to temperature
and concentration changes feeds back as source terms into the solution of
the fluid pressure equation for the next time-step. The decoupling of the
governing equations into a pressure evolution, and transport equations for
energy and solute in conjunction with implicit and explicitly time-stepping
offers considerable advantages:
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– Each sub-equation is solved by the best suited numerical method.
– Node-centered finite volumes are constructed on the basis of the finite

elements and are fully mass conserving even for strongly heterogeneous
permeability fields and complex geometric structures.

– Spatially higher-order accurate transport methods are employed to re-
solve the hyperbolic shock-fronts.

– Due to the parabolic nature of the fluid pressure equation, a change in
the mobility k kri/µi of phase i at a single finite element forces the fluid
pressure to change in the entire model. This is implemented using a very
robust implicit temporal discretization.

– The global solution matrices for the governing equations are symmetric
positive definite, well conditioned and, hence, suitable for fast algebraic
multigrid solvers.

– Iterative methods that may require very small time-steps or fail to con-
verge are no longer necessary.

4.3. spatial discretization

We discretize two-dimensional domains by a constrained conforming Del-
auney triangulation (Shewchuk, 2002). This allows to resolve complex
structures in great detail. Node-centered finite volumes are constructed on
the basis of the finite elements, such that a dual finite volume grid is
formed (Figure 3). It is not necessary to restrict the finite element mesh to
triangles in two dimensions or tetrahedra in three dimensions. Node-cen-
tered finite volumes can be constructed also for mixed element meshes con-
sisting of different finite element types, which allows to maximize geometric
flexibility while minimizing the number of nodes and elements, specifically
in three dimensions (Matthäi, 2003; Matthäi et al., 2004b).

Figure 3. Node-centered finite volumes (bold lines) on nodes i and j constructed on
a triangular finite element mesh consisting of triangles e (dashed lines). The bary-
centers of the finite elements e are connected with the midpoints of their edges to
form finite volume segments s.
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4.4. finite element formulation

We solve the fluid pressure equation (Equation (17)) and the parabolic
components of the energy (Equation (21)) and salt (Equation (18)) conser-
vation equations by the Bubnov–Galerkin formalism. While mixed-element
formulations are often used to simultaneously compute fluid pressure and
velocity (Huber and Helmig, 1999), the lowest order mixed-element method
requires to solve between 1.5 and 4 times more unknowns than a Galerkin
formulation but yields exactly the irreducible Galerkin formulation (Cordes
and Kinzelbach, 1996). Thus, excellent results can be obtained using a
Galerkin formulation to solve Equation (17) even for nonlinear flow sys-
tems (Geiger et al., 2004; Matthäi and Belayneh, 2004). As the Galerkin
finite element formulation is well known and excellent descriptions can be
found (Huyakorn and Pinder, 1983; Zienkiewicz and Taylor, 2000), only
a brief description is given here. We discuss the Galerkin discretization
for the parabolic part (Equation (33)) of the general advection-diffusion
equation (Equation (32)). By appropriate substitution of ψ , δ, ε, and q,
Equations (17), (21), and (18) are solved.

The computational domain � is discretized into a set of finite elements
spanning the finite element space V of continuous linear polynomial func-
tions. V has n Lagrange points N = {xi}ni=1 and a set of basis functions
{
i(x)}ni=1. Here, x is the coordinate vector in two or three dimensions. By
writing ψ ∈ V as ψ(x)=∑n

j=1ψ(xj )
j (x), the basis functions 
 can be
used to approximate Equation (33) for a fixed time t as

∫

�

ε
∂ψ

∂t

i dx =

∫

�

δ∇ψ∇
i dx +
∫

�

q
i dx. (35)

With the decomposition ψ(x, t)=∑n
j=1ψj(t)
j (x), the coupled system of

ordinary differential equations is defined as
n∑

j=1

dψj
dt

(t)Aij (t)=
n∑

j=1

ψj(t)Kij (t)+qi(t), (36)

where the mass matrix A, stiffness matrix K, and on the right-hand side
vector q are given by

Aij (t)=
∫

�

ε
j
i dx,

Kij (t)=
∫

�

∇
jδ∇
i dx, (37)

qi(t)=
∫

�

q
i dx.

Note that we diagonalize A for each finite element by mass-lumping using
a row-sum technique (Geiger et al., 2004).
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An implicit Euler time-stepping formulation is used to evolve the solu-
tion of ψ from time t to time t+�t as

n∑

j=1

(At+�t
ij +�tKt+�t

ij )ψ̂ t+�t
j =

n∑

j=1

At
ijψ

t
j +�tqt+�ti . (38)

This time-discretization ensures that the solution is unconditionally stable
as long as the matrices are positive definite and that no iterative methods
need to be used if A or K are functions of ψ (Zienkiewicz and Taylor,
2000).

From the updated pressure field, element-wise constant fluid velocities
are obtained by differentiating the pressure field and solving for Darcy’s
law (Equation (12)) within each finite element. Although the fluid veloci-
ties are discontinuous between adjacent finite elements, they are continuous
across the face of a node-centered finite volume and conserve mass on the
finite volumes (Durlofsky, 1994).

4.5. finite volume formulation

The fluid velocity field computed from Equation (12) is integrated over the
node-centered finite volumes. Integrating Equation (34) over the finite vol-
ume Vi connected to node i yields

∫

Vi

εi
∂ψ

∂t
dVi =−

∫

Vi

∇ · (vψ)dVi (39)

Application of the divergence theorem to Equation (39) and discretizing in
time using an explicit Euler method leads to the solution that evolves the
diffusion step ψ̂ t+�t to the final solution ψt+�t

ψt+�t
i = ψ̂ t+�t

i − �t

εi |Vi |
Ni∑

j

[
Ajvtj ψ̂

t+�t
j∗

]
·nj , (40)

where Aj is the area, respectively length in two dimensions, of the finite
volume segment j . |Vi | is the volume, respectively area in two-dimensions,
of control volume i. nj is the outward-pointing normal of segment j . Ni is
the total number of segments belonging to finite volume i. The subscript
j∗ denotes that the value of ψ is taken from the upwind finite volume at
segment j . We reconstruct the gradient a of ψ in i using a least squares
method and the MINMOD limiter to avoid spurious oscillations and ascer-
tain that the scheme is total variation diminishing as discussed in Geiger
et al. (2004). This yields a second order accurate solution of Equation (34)
in space and resolves shock-fronts occurring in purely hyperbolic systems
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in great detail while maintaining mass conservation for nonlinear systems
(Geiger et al., 2004).

Although the finite volume discretization is straightforward, care must
be taken when applying Equation (40) to the hyperbolic parts of the energy
(Equation (21)) and salt conservation (Equation (18)) laws. Using the defi-
nition of vth in Equation (23) and noting that ∇ · (vthT )=vth ·∇T +T∇ ·vth,
the divergence, σ , of vth is non-zero, i.e.

σ =∇ · vth �=0 (41)

the hyperbolic part of the energy conservation law written in terms of vth

takes the form

∂T

∂t
=−vth ·∇T −T∇ · vth. (42)

This hyperbolic part of the energy conservation law is discretized as

T t+�ti = T̂ t+�ti − �t

|Vi |
Ni∑

j

[
Ajvtthj T̂

t+�t
j∗

]
·nj + �t

|Vi |σiT̂
t+�t
i . (43)

For the hyperbolic parts of the salt conservation equation (Equation 18),
the finite volume algorithm for each phase i is defined as

ρt+�ti Xt+�ti = ρ̂t+�ti X̂t+�ti − �t

|Vi |
Ni∑

j

[
Ajvtij ρ̂

t+�t
ij∗ X̂t+�tij∗

]
·nj . (44)

4.5.1. Error Estimation

We conserve energy in our scheme using a cp − T formulation (Equation
(21)) employing the heat transfer velocity vth (Equation (23)) to express
energy changes as a variation in temperature T advected at vth. This is,
strictly speaking, not an energy conservation scheme because temperature
is conserved instead of enthalpy H . This scheme implicitly assumes that cp
is constant over a single time-step. This can introduce an error if tempera-
ture changes rapidly over a single time-step due to advection and enthalpy
varies non-linearly within the given temperature interval. In this case, a
fluid enthalpy change �H cannot be accurately represented by the linear
approximation �H ≈ cp�T = (dH/dT )�T . As a consequence, fluid tem-
perature T at the new time-step is over- or under-estimated by a factor
�T ∗ (Figure 4). The largest errors occur along the critical isobar (220.0561
bar in the formulation of Haar et al. (1984)) of pure H2O. Here, enthalpy
changes rapidly with temperature, specifically close to the critical point
where cp → ∞. The temperatures, however, do not become infinite for
infinite fluid heat capacities because energy transport is buffered by the
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(a)

(b)

Figure 4. Error source for a vth-based energy transport scheme. Fluid advects energy
and mass, expressed as enthalpy Hf and density ρf , at pore velocity vf /φ in and
out of a control volume (a). The entering fluid is hotter than the exiting fluid (T1>

T2). Hence fluid enthalpy increases with �Hf . After thermal equilibration between
fluid Hf and rock enthalpy Hr , they are at temperature TH and T1 � TH >T2. In
our vth-based energy advection scheme, this process is approximated by transport of
temperature T in and out of a control volume at velocity vth (b). Since T1>T2, this
results in a temperature Tv and T1 �Tv>T2. Due to the definition of vth (Equation
23), rock and fluid are in equilibrium at Tv. The two temperatures are not equal,
i.e. Tv �=Th, if enthalpy Hf changes rapidly over increment �T because �H �=cp�T .
For the estimation of error �T ∗ between TH and Tv (Figure 5), it is assumed that
v=1.0. All other properties are calculate as a function of temperature and porosity
φ with �T =T1 −T2 =Tcrit −T2

rock matrix. A calculation of �T ∗ at the critical isobar for various �T
and porosity values shows that this error only becomes significant if �T
is unrealistically high (Figure 5). Since we use an explicit time-stepping
scheme to solve advection equations, the time-step and, hence, �T is small
if vth is large. Temperature variations during a single time-step are there-
fore commonly �T � 10◦C. The error hence remains small over this tem-
perature increment, i.e. �T ∗ ∼−1.5%. Away from the critical point, �T ∗ is
lower, i.e. |�T ∗|< 0.01%, even for unrealistically large �T variations dur-
ing a single time-step. Tcrit is the critical temperature of pure H2O.

4.6. time stepping

The pressure equation (Equation (17)) is solved by an implicit Euler time-
discretization and the time-step �t could hence be chosen to be arbitrary
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Figure 5. Absolute error �T ∗ = (TH −Tv)/TH along the critical isobar of pure H2O
resulting from the vth-based energy advection scheme (Figure 4).

large. The size of �t , however, is controlled by the Courant Friedrich Levy
(CFL) criterion computed for the explicit Euler solution of the hyperbolic
parts of the energy and solute conservation equations (Equations (21) and
(18)). The CFL criterion Cth for energy conservation equation is given by

Cth =
(
ri

vmax
th

)

min

i ∈V. (45)

The CFL criterion Cx and for the solute conservation equation

Cx =
(
ri

vmax
p

)

min

i ∈V. (46)

Here ri is the approximate radius of the control volume i. The super-
script max denotes the maximum elemental velocity within an element ei
belonging to control volume i (Figure 3). Note that by using ri rather
than the diameter of the finite volume cell, the CFL criterion is reduced
by a factor 2. Since Rth � 1 and φ � 1, the two CFL criteria are not
equal and usually Cth �Cx . Hence it is convenient to set the time-step �t

equal to Cth. This, however, violates the stability criterion for the hyper-
bolic parts of Equation (18) because Cth �Cx . They can be solved using a
smaller sub-time-step �t∗ that is equal to Cx . When

∑
�t∗ =�t , the hyper-

bolic parts of equation (18) are solved for exactly the same time-step as
all other equations, albeit using Cth/Cx calculations. This sub-time-stepping
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saves computational costs because it allows for a relaxation of �t for all
governing equations but the hyperbolic parts of Equation (18). At the same
time, however, it grants that the CFL criterion for the each transport equa-
tion is not violated. This is permissible for

�t=
{

Cth if Cx
Cth � ε1 and �Xγf

�T αf
� ε2,

Cx 1
max(ε1,ε2)

otherwise.
(47)

where ε is a user defined tolerance. As long as the thermal front moves
slower than the salt front by a given factor and density variations due to
concentration changes are smaller than those due to temperature changes
by a given factor, the global time-step can be set equal with the CFL cri-
terion for the energy transport equation.

We introduce an additional stability criterion for the global time-step to
avoid instabilities if the CFL criterion increases significantly between two
successive time-steps k−1 and k

�t=
{

Ck if Ck−Ck−1

Ck � ε3,
Ck + (Ck −Ck−1

)
ε3 otherwise.

(48)

4.7. sequential solution

The sequential solution of the governing equations uses a linearization of
the equation of state (Dicks, 1993). The fluid velocities from the previous
time-step are employed to evolve the hyperbolic system of Equations (21)
and (18) using the explicit finite volume method freezing the pressure in
time and computing the advection of T and X for t +�t . The size of �t
is given by Equations (47) and (48) using the phase velocities from the
previous time-step. The diffusive terms of the energy and salt conservation
laws (Equations (21) and (18)) are updated using the implicit finite element
method (Figure 6). The compressibility β, mobilities ρikri/µi , expansivities
α and γ are updated after the transport step. Finally, the pressure equa-
tion (Equation (17)) is solved for time t+�t via the finite element method
for the updated parameters. The updated pressure field yields the phase
velocities at t+�t for the next transport step.

4.8. splitting error

The splitting of the governing equations into pressure and transport equa-
tions introduces an error of the order O (�t) for the pressure fields that
can be reduced using iterative techniques (Dicks, 1993). Mass conservation,
however, is not affected by this error. It also has been shown that the split-
ting error is relatively small even for compressible multiphase simulations
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Figure 6. Flow chart of the solution procedure for multiphase thermohaline
convection simulations in CSP.

and that it only results in a slight dislocation of the saturation fronts.
While iteration can reduce the error in the pressure field, the corrected field
may become non-physical if phase changes occur (Dicks, 1993). For highly
compressible fluids, the reduction of the CFL criterion by a factor of 2, the
use of a first order accurate finite volume algorithm when phase changes
occur introduces enough numerical dissipation for the results to be stable
and oscillation-free (Dicks, 1993). Since our CFL criterion is computed on
the radii of the finite volume cell it automatically introduces the required
reduction factor of 2. Our finite volume scheme is also automatically first
order accurate when phase changes occur.
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4.8.1. Second Order Accuracy in Time

The splitting error introduced by the decoupling of the governing equa-
tions can be reduced from first to second order accuracy by using a
predictor-corrector time-stepping scheme. In this improved Euler time-dis-
cretization, the transport equations for energy and salt (Equations (21) and
(18)) are solved for a half-step in the predictor step. The dependent vari-
ables, i.e. µ,ρ, kr, α, β, and γ are then evaluated at time t+�t/2 such that,
after solving the pressure equation (Equation (17)) at time t +�t/2, the
fluid velocities v can be obtained at time t+�t/2. These fluid velocities are
then employed in the corrector step to evolve Equations (21) and (18) from
time t to t+�t with the flux given at time t+�t/2. Finally, Equation (17)
is evolved from time t to t+�t .

5. Implementation

Our new formalism to model multiphase thermohaline convection has been
implemented in the object-oriented C++ library ‘Complex System Platform’
(CSP) (Matthäi et al., 2001). CSP is used extensively for high-resolution
multi-physics simulations in two and three-dimensions such as immiscible
two-phase flow in reservoirs with complex geological structures (Burri, 2004;
Geiger et al., 2004; Matthäi et al., 2004b; Belayneh et al., 2005), reactive sol-
ute transport (Geiger et al., 2002; Matthäi, 2003), heat and solute transport
in hydrothermal systems (Matthäi et al., 2004a), or fluid flow in geometrically
realistic fracture networks (Matthäi and Roberts, 1996; Matthäi et al., 1998;
Matthäi and Belayneh, 2004). The advantage of the object-oriented design is
the modularity, reusability, and extensibility of the code that is impossible to
obtain when programming in procedural languages. Reusability and extensi-
bility, however, is crucial when simulating such processes as multiphase ther-
mohaline convection because they comprise a series of component-processes
that must be computed by individual modules.

CSP employs the state-of-the-art algebraic multigrid solver SAMG
(Stueben, 2002) to solve the system of algebraic equations that arise from
the finite element and finite volume discretization. Fluid and transport
properties are updated using the Visitor pattern (Gamma, 2002) on the
finite element – finite volume hierarchy. Visitor objects automatically check
input and output properties for validity when interacting with each other.
They raise exceptions when computations fail. A 105 MB binary lookup
table calculated from the implementation of the pure H2O equation of state
(Haar et al., 1984) in the C-library PROST (Bauer, 2002) provides the
properties for pure H2O from 5 ◦C to 800◦C and 1–4000 bars. The equa-
tion of state for NaCl–H2O extracts the properties of pure H2O from the
lookup table using bi-linear interpolation with 1◦C and 2.5 bar spacing, or
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0.1◦C and 0.1 bar spacing near the critical point. Figure 6 depicts a flow
chart of the implementation and solution algorithm in CSP.

6. Conclusions

A new computational formulation for the simulation of transient multi-
phase thermohaline convection is presented. A novel equation of state is
employed for the thermodynamic properties of the NaCl–H2O system from
0 to 750◦C, 0 to 4000 bar, and 0 to 100 wt.% NaCl. The governing equa-
tions are decoupled into a parabolic pressure diffusion equation and hyper-
bolic and parabolic parts of the energy and salt conservation equations.
The pressure diffusion equation is evolved in time using an implicit finite
element algorithm. The hyperbolic parts of the conservation equations
are solved by an explicit second order accurate finite volume method
employing fluid velocities derived from Darcy’s law and the updated pres-
sure field. The parabolic components of the energy and salt conservation
equations are also solved by an implicit finite element method. Our formu-
lation satisfies the conservation laws without the necessity of costly nonlin-
ear iteration methods.

The novel solution algorithm allows the modelling of thermohaline con-
vection and fluid flow in a variety of geological settings where p − T −
X conditions are such that boiling occurs, for example in continental
magmatic hydrothermal systems or mid-oceanic hydrothermal systems, and
which were insufficiently modeled by single-phase thermohaline convection
or pure H2O fluid flow. In a companion paper (Geiger et al., 2005), the
benchmarking of the algorithm is discussed and an example application is
presented.
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Appendix A. Volume Derivatives at Two-Phase Conditions

A.1. thermal expansivity

The fluid volume at two-phase conditions V can be calculated as

V =mf
(
xl

ρl
+ xv

ρv

)

(A.1)
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Noting that xl = (x−xv)/(xl −xv) and xv = 1 − xl, Equation (A.1) can be
written as

V =mf
(
(x−xv)/(xl −xv)

ρl
+ (1−x−xv)/(xl −xv)

ρv

)

(A.2)

The mass fraction of the liquid phase xl that is being boiled is given in
Equation (26), the mass fraction of the vapor phase xv that condenses in
Equation (28). The change in mass of the two phases is simply �ml=mf xl
and �mv =mf xv, respectively. The change in volume �Vf during boiling
due to a temperature change corresponds to the thermal expansivity. It can
now be straightforwardly calculated from the above equations as

�Vf = α̃=�mv
(

1
ρv

− 1
ρl

)

(A.3)

A.2. chemical expansivity

The derivative of the two-phase fluid volume V (Equation A.1) with
respect to salinity, ∂V/∂X is

∂

∂X

[
X−Xv
Xl −Xv

(
1
ρl

− 1
ρv

)

+ 1
ρv

]

. (A.4)

Applying the chain-rule yields
(

1
ρl

− 1
ρv

)
d

dX
X−Xv
Xl −Xv + X−Xv

Xl −Xv
d

dX

(
1
ρl

− 1
ρv

)

+ d

dX
1
ρv

(A.5)

Noting that the density derivatives are zero allows further simplification
and provides the chemical expansivity at two-phase conditions γ̃

γ̃ =
(

1
ρl

− 1
ρv

)
1

Xl −Xv (A.6)
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Matthäi, S. K., Heinrich, C. A. and Driesner, T.: 2004a, Is the Mount Isa copper
deposit the product of forced brine convection in the footwall of a major reverse
fault? Geology 32, 357–360.
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