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Abstract. We present the benchmarking of a new finite element – finite volume (FEFV)

solution technique capable of modeling transient multiphase thermohaline convection for

geological realistic p−T −X conditions. The algorithm embeds a new and accurate equa-

tion of state for the NaCl–H2O system. Benchmarks are carried out to compare the

numerical results for the various component-processes of multiphase thermohaline con-

vection. They include simulations of (i) convection driven by temperature and/or con-

centration gradients in a single-phase fluid (i.e., the Elder problem, thermal convection

at different Rayleigh numbers, and a free thermohaline convection example), (ii) multi-

phase flow (i.e., the Buckley–Leverett problem), and (iii) energy transport in a pure H2O

fluid at liquid, vapor, supercritical, and two-phase conditions (i.e., comparison to the U.S.

Geological Survey Code HYDROTHERM). The results produced with the new FEFV

technique are in good agreement with the reference solutions. We further present the

application of the FEFV technique to the simulation of thermohaline convection of a

400◦C hot and 10 wt.% saline fluid rising from 4 km depth. During the buoyant rise, the

fluid boils and separates into a high-density, high-salinity liquid phase and a low-density,

low-salinity vapor phase.

Key words: brine, vapor, hydrothermal, porphyry copper, mid-ocean ridge, two-phase flow,

convection, numerical modeling, finite element, finite volume, NaCl–H2O, benchmarking.

Nomenclature

a Dispersion coefficient [m].

C Courant criterion [s].

cp Isobaric heat capacity [kJ kg−1 ◦C−1].

D Diffusivity [m2 s−1].
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g Gravitational acceleration vector [m s−2].

kr Relative permeability [–].

k Permeability tensor [m2].

K Thermal conductivity [W m−1 ◦C−1].

Nu Nusselt number [–].

p Pressure [Pa] or [bar].

Pe Peclet number [–].

Ra Rayleigh number [–].

S Saturation [–].

t Time [s].

T Temperature [◦C].

v Velocity [m s−1].

x Mass fraction fluid [–].

X Salinity [wt.% NaCl].

Greek Symbols

α Thermal expansivity [◦C−1].
β Compressibility [Pa−1].

γ Chemical expansivity [wt.% NaCl−1].

δ General diffusivity parameters [m2 s−1].

� Increment [–].

µ Viscosity [Pa s].

κ Thermal diffusivity [m2 s−1].

φ Porosity [–].

ψ General conserved variable [e.g., kg m−3].

ρ Density [kg m−3].

σ Heat capacity ratio [–].

Subscripts and Superscripts

f Fluid (all fluid phases present).

i Fluid phase.

l Liquid phase.

L Longitudinal.

p Pore space.

r Rock phase.

T Transversal.

th Thermal.

v Vapor phase.

1. Introduction

The setting of many geologic processes, such as deep fluid convection in

magmatic hydrothermal systems, commonly precludes direct observation

of active fluid flow. Hence, indirect observations such as fluid inclusions

measurements and chemical data are used to decipher potential flow sce-

narios (Roedder, 1971; Nehlig et al., 1991; von Damm, 1995; Heinrich

et al., 1999) and often indicate that fluid flow involves the simultaneous con-

vection of heat and salt. The data, however, commonly yield only an incom-
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plete or time-integrated picture. Numerical simulations of such thermohaline

convective systems hence would provide a valuable tool to analyze the tem-

poral and spatial evolution of hydrothermal fluid flow.

Numerical simulations of flow in magmatic hydrothermal systems have

so far been seriously hampered for two reasons. On the one hand, although

the properties of pure H2O are well known (Haar et al., 1984), the lack of

an equation of state for the NaCl–H2O system that is valid over the large

temperature, pressure, and compositional range that can be encountered

in magmatic hydrothermal systems is missing. On the other hand, compu-

tational tools capable of modelling energy transport (Pruess, 1987, 1991;

Hayba and Ingebritsen, 1994; Zyvoloski et al., 1996) usually lack the abil-

ity to model salt transport in two fluid phases and are sometimes restricted

to staggered grids that cannot resolve complex geologic structures accu-

rately. Hence, studies of thermohaline convection in magmatic hydrother-

mal systems have mostly been limited to incompressible single-phase flow

of thermohaline convection including linear T −X approximations for the

fluid density ρ and constant viscosities (Schoofs, 1999), or to energy trans-

port in a pure water fluid (Cathles, 1977; Norton and Knight, 1977; Del-

aney 1982; Dutrow and Norton, 1995; Hayba and Ingebritsen, 1997; Jupp

and Schultz, 2000). While these studies have revealed fundamental insight

into the time scales and flow patterns in hydrothermal systems, their results

do not account for the fact that NaCl–H2O fluids can separate into a high-

density, high-salinity liquid phase and low-density, low-salinity vapor phase

at temperatures and pressures well above the critical temperature and pres-

sure of pure H2O (Sourirajan and Kennedy, 1962). Studies of heat trans-

port in pure H2O further cannot account for the fact that thermohaline

convection exhibits a complex double-diffusive, double-convective behavior

(Phillips, 1991; Schoofs, 1999).

To overcome the limitations and simplifying assumptions of previous

studies of fluid flow in magmatic hydrothermal systems, we use the older

version (Driesner and Heinrich, 2003) of a new equation of state for the

NaCl–H20 system valid from 0 to 750◦C, 0 to 4000 bar, and 0 to 100 wt.%

NaCl (Driesner, 2005; Driesner and Heinrich, 2005). The equation is uti-

lized by our novel finite element – finite volume (FEFV) algorithm. Our

solution technique is capable of modeling the simultaneous transport of

heat and salt in two fluid phases with highly varying fluid properties

(Geiger et al., 2005). This FEFV formulation permits a flexible discretiza-

tion of complex geological structures (Geiger et al., 2004). The development

of the governing equations, numerical methods, and thermodynamic fluid

properties are discussed in an accompanying paper (Geiger et al., 2006).

Unfortunately, no physical experiments of multiphase thermohaline con-

vection in porous media or comparable codes exist which can be used to

benchmark and verify our new solution technique. The different
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sub-processes of multiphase thermohaline convection, however, are intensely

studied and well understood. These processes comprise multiphase flow,

solute transport, single-phase convection driven by temperature and/or

salinity gradients, and energy transport with phase transitions. It is hence

possible to conduct a series of benchmark tests for these component pro-

cesses.

The benchmarking presented in this paper demonstrates the ability of

our FEFV algorithm to properly calculate the convection of heat and

salt during the simultaneous flow of a high-density, high-salinity liquid

phase and a low-density, low-salinity vapor phase. In particular, we verify

that (i) the operator splitting technique employed in our algorithm accu-

rately models the advection and diffusion of a solute (Strang, 1968), (ii)

the simultaneous flow of two incompressible fluids yields accurate results

when compared to the analytical solution of the Buckley–Leverett problem

(Buckley and Leverett, 1942; Helmig, 1997), (iii) convection of salt yields

the correct results when compared to the classical Elder problem (Elder,

1967), (iv) convection of heat in an incompressible pure H2O fluid can

be properly resolved at various Rayleigh numbers (Caltagirone, 1975), (v)

convection of heat and salt in a single, slightly compressible fluid yields

the correct behavior for the separation of the thermal and salt plumes for

different initial buoyancy configurations (Oldenburg and Pruess, 1999), and

(vi) that energy transport in a pure H2O fluid can be accurately modeled at

liquid, vapor, and supercritical conditions and for the case where a vapor

phase displaces a liquid phase. This is achieved by comparing our numer-

ical results to the well-established U.S. Geological Survey Code HYDRO-

THERM (Hayba and Ingebritsen, 1994).

Finally, we show an application of multiphase thermohaline convection

where a hot, saline and initially single-phase fluid rises and starts to boil.

Upon phase separation, the high-density, high-salinity liquid phase sinks

down and the low-density, low salinity vapor phase rises quickly.

2. Governing Equations and Numerical Solution

The derivation of the governing equations and the development of the

numerical solution algorithm are discussed in detail in the companion

paper (Geiger et al., 2005). Formulated in terms of fluid pressure p, tem-

perature T , and salinity X, conservation for energy is given by

(

(1−φ)ρrcpr +φ
(

Slρlcpl +Svρvcpv

)) ∂T

∂t

=−∇ ·
(

vvcpvρvT
)

−∇ ·
(

vlcplρlT
)

+∇ · (K∇T ) (1)

conservation of salt by
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φ
∂

∂t
ρf Xf =−∇ · (vvρvXv)−∇ · (vlρlXl)+

+∇ · (Dl∇ρlXl)+∇ · (Dv∇ρvXv) (2)

and for fluid mass written in terms of a fluid pressure evolution by

ρf

(

βr +φβf

) ∂p

∂t
=∇ ·

[

k

(

krl

µl

ρl +
krv

µv

ρv

)

∇p

]

+

+k

(

krl

µl

ρ2
l + krv

µv

ρ2
v

)

g∇z+φρf

(

γf

∂X

∂t
−αf

∂T

∂t

)

. (3)

The velocity v at which phase i moves is given by

vi =−k
kri

µi

[∇p −ρig] . (4)

In the above equations, ρ is the fluid density, µ the fluid viscosity, S

the phase saturation, cp the isobaric heat capacity, K the thermal con-

ductivity, D the dispersion tensor, k the permeability tensor, φ the poros-

ity, β the compressibility, α the thermal expansivity, γ the chemical

expansivity, kr the relative permeability, and g = [0,0,−g]T the gravita-

tional acceleration vector. The subscripts l, v, and r refer to the liquid,

vapor, and rock phase, respectively. The subscript f refers to the total

fluid mixture, i.e., ρf = Slρl + Svρv, ρf Xf = SlρlXl + SvρvXv, and Xf =
(SlρlXl +SvρvXv) / (Slρl +Svρv).

We solve the governing equations sequentially and decoupled, modelling

parabolic (diffusion) equations with the finite element method and hyper-

bolic (advection) equations with the finite volume method. The key advan-

tages of this FEFV formulation over a fully coupled formulation are that

the global solution matrices are better conditioned and hence are suitable

for fast (algebraic) multigrid solvers, that costly iterative schemes are omit-

ted, that although the size of the time-step is restricted due to the CFL cri-

terion, the runtime is favorably faster in the decoupled approach, and that

the geometric flexibility of the finite element method is retained (Geiger

et al., 2005). The new equation of state for NaCl–H2O (Driesner and Hein-

rich, 2003, 2005; Driesner, 2005) provides the fluid properties ρ, cp, µ, S,

β, α, and γ as a function of p, T , and X.

3. Tests for Accuracy and Benchmarks for Speed

3.1. comparison to analytical solutions

The comparison of numerical and analytical solutions for linear, incom-

pressible single-phase transport and non-linear, incompressible two-phase
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flow was used to test the accuracy of the operator splitting and decoupling

approaches inherent in our FEFV method.

3.1.1. Advection Diffusion Equation

We compare the numerical results and the analytical solution of the generic

one-dimensional advection-diffusion equation in an incompressible fluid at

various Péclet numbers, i.e. different ratios between solute transport due to

advection and diffusion (Figure 1). The generic one-dimensional advection-

diffusion equation is

∂ψ

∂t
=−vx

∂

∂x
ψ + δ

∂2

∂x2
ψ. (5)

It has the well-known analytical solution (Ogata and Banks, 1961)

ψ(x, t)= ψx=0

2
erfc

[

x − vx t

2
√

δt

]

+ ψx=0

2
exp

[vxx

δ

]

erfc

[

x + vx t

2
√

δt

]

, (6)

where ψ is the conserved quantity, δ the diffusivity, and erfc the com-

plementary error function. Excellent agreement between the numerical and
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Figure 1. Comparison between numerical (open symbols) and analytical (lines) solu-

tions for the generic advection-diffusion equation (Equation (5)) at different Péclet

numbers for solute transport in an incompressible fluid. The normalized grid res-

olution �x/xmax is �x/xmax =0.0101. Transport includes pure advection at Pe=∞
(squares and solid lines), diffusion dominated at Pe=100 (circles and dashed-dotted

lines), and an intermediate cases at Pe = 1 (triangles and dashed lines). The time-

step �t is given by the CFL criterion C, i.e, �t =C.
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analytical solutions, specifically for the purely advective case (P e = ∞),

is obtained (Figure 1). In the latter case, the jump in concentration is

resolved within three nodes. The exact representation of this discontinu-

ity is the result of the spatially second-order accurate finite volume scheme

employed in the FEFV method (Geiger et al., 2004).

3.1.2. Buckley–Leverett Problem

A classical test problem for the accuracy of a numerical method for incom-

pressible two-phase flow is the Buckley–Leverett problem for which an ana-

lytical solution can be derived (Buckley and Leverett, 1942; Helmig, 1997).

In the Buckley–Leverett problem, a wetting phase w displaces a non-wet-

ting phase n. The two phases are immiscible. A one-dimensional domain is

initially entirely saturated with the non-wetting phase (Sw = 0). The wetting

phase enters the domain at a saturation of Sw = 1, flows down a pressure

gradient, and displaces the non-wetting phase. A discontinuity (shock front)

originates where the wetting phase first displaces the non-wetting phase. Once

the pores are largely filled with the wetting phase, the non-wetting phase

becomes increasingly immobile. Left, i.e. upstream, of the shock front, the

nonlinear relative permeability model causes a nonlinear variation (rarefac-

tion fan) from the maximum wetting-phase saturation value at the shock

front (Sw ∼ 0.78) to the original wetting-phase saturation value at the inlet

boundary (Sw = 1.0). This test hence also indicates how well a numerical

method can deal with a non-linear flow problem.

We compare numerical solutions for the Buckley–Leverett problem with

the analytical solution. Table I lists the fluid and rock properties. Assum-

ing that the two fluids are incompressible, their viscosities are equal, and

that gravitational and capillary effects are absent, the governing equations

(Equations (1)–(3)) reduce to

0=∇ ·
[

k

(

krn

µn

+ krw

µw

)

∇p

]

,

φ
∂Si

∂t
=−∇ · vi i ∈{n,w} . (7)

In our simulations, numerical and analytical solutions show excellent agree-

ment (Figure 2). The rarefaction fan and shock front are accurately resolved

and the solution converges as the grid is refined. The shock front is resolved

within three nodes, independent of the grid size. Using the five-spot water-

flood problem (Spivak et al., 1977); Geiger et al. (2004) have shown that this

method accurately solves for (two-phase) fluid flow in different directions

relative to the grid orientation. The suitability of the numerical method to

simulate two-phase flow on unstructured grids with highly heterogeneous

permeability fields was also shown by Geiger et al. (2004).
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Table I. Input parameters for all benchmark tests

Buckley–Leverett problem

φ 0.1 [-]

k 1.0×10−14 [m2]

dp/dx 1.0×103 [Pa m−1]

µw =µn 0.0001 [Pa s]

krw S4
w [-]

krn (1−Sw)
2
(

1−S2
w

)

[-]

Elder problem

φ 0.1 [-]

k 4.845×10−13 [m2]

Dl =Dl 3.565×10−6 [m2 s−1]

µl 0.001 [Pa s]

ρl,t=0 1000 [kg m−3]

ρl 1000+200×Xl [kg m−3]

Free thermal convection

ρl ρz=0 (1−α (T −Tz=0)) [kg m−3]

µl, κ,k, α Function of Rath

Free thermohaline convection

φ 0.1 [-]

k 5.0×10−14 [m2]

ρr 2650 [kg m−3]

cpr 1.0 [kJ kg−1 ◦C−1]

K 1.8 [W m−1 ◦C−1]

Dp 1.0×10−8 [m2 s−1]

Tt=0 200.0 [◦C]

Xt=0 0.0 [wt.% NaCl]

ρl,t=0 875.0 [kg m−3]

Energy benchmark

φ 0.1 [-]

ρr 2750 [kg m−3]

cpr 0.88 [kJ kg−1 ◦C−1]

K 2.25 [W m−1 ◦C−1]

3.2. convection benchmarks

We have verified the suitability of our numerical method to model free

convection driven by concentration and/or temperature gradients by com-

paring the obtained results with published results for a series of classical

benchmarks tests for single-phase flow.
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Figure 2. Comparison of the one-dimensional numerical solution (open symbols) for

a coarse (circles) and fine (triangles) grid to the analytical (solid line) solution of

the Buckley–Leverett problem. The wetting phase w displaces the non-wetting phase

n in a homogeneous porous medium.

3.2.1. Elder Problem

The classical benchmark test to validate a code for modeling free convec-

tion driven by concentration gradients is the Elder problem (Elder, 1967).

In the Elder problem, a saline fluid that is 20% denser than pure water

sinks downwards from the top boundary, driven by buoyancy forces only.

The domain is a rectangular box of 600 × 150 m of saturated, homoge-

neous, and isotropic porous medium (Figure 3). The Elder problem is very

suitable for testing density-dependent fluid flow because the flow pattern is

entirely determined by the internal balance of the gravitational and pres-

sure forces (Simpson and Clement, 2003). For this test-case, the governing

equations (Equations (1–3)) reduce to

φ
∂

∂t
ρlXl =−∇ · (vlρlXl)+∇ · (Dl∇ρlXl) ,

ρlφβf

∂p

∂t
=∇ ·

[

k

(

1

µl

ρl

)

∇p

]

+k

(

1

µl

ρ2
l

)

g∇z+φρlγ
∂Xl

∂t
. (8)

The parameters for the classical configuration are listed in Table I. The

obtained results are in very good agreement with results published for

similarly fine meshes in Koldtiz et al. (1998) and Ackerer et al. (1999)

(Figure 3). The flow patterns are axisymmetric with a central up-flow zone
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Figure 3. Solution to the Elder problem showing the salt concentrations for a

coarse grid (left) and fine grid (right) consisting of 2048 and 8192 uniform trian-

gular finite elements, respectively, at 2, 10, and 20 years (top to bottom). Contour

lines show the salinity in 0.1 intervals from 0.0 to 1.0 wt.% NaCl.

bordered by two down-flow zones. Our solutions to the Elder problem are

less sensitive to grid resolution than the reference solutions (Kolditz et al.,

1998; Ackerer et al., 1999). This becomes evident in the salt concentrations,

which do not change significantly with a mesh refinement by a factor four.

This suggests mesh convergence is obtained already on the coarse mesh.

The second order accurate advection scheme contributes to the fast mesh

convergence. The runtime properties are shown in Figure 4. The runtime

increases with the power of ∼1.5 with increasing mesh refinement.

3.2.2. Thermal Convection

Free thermal convection at high Raleigh numbers in a closed square

domain has been extensively studied (Caltagirone, 1975; Kimura et al.,

1986; Steen and Aidun, 1988; Caltagirone and Fabrie, 1989; Cherkaoui and

Wilcock, 1999; Schoofs, 1999) and serves as a test-case for the ability of

our numerical method to resolve small scale features. In this test-case, a

constant basal temperature is applied. The temperature at the top bound-

ary is held constant as well. Normally, the Boussinesq approximation is

employed in those simulations, i.e., the assumptions that the fluid is a sin-

gle-phase incompressible liquid (β = 0) and that the density term can be

neglected everywhere (α = γ = 0) but in the buoyancy term ρg in the fluid

pressure equation (Equation (3)). As a result, the divergence of the fluid

velocity is zero, i.e., ∇ · vl =0. The governing equations (Equations (1)–(3))

reduce to (Caltagirone, 1975).



MULTIPHASE THERMOHALINE CONVECTION IN THE EARTH’S CRUST 445

A [m2]

1 10 100

C
P

U
 [
s
e
c
]

102

103

104

105

Figure 4. CPU time for the Elder Problem plotted as a function of the area of an

individual finite element. Simulations where carried out with a Intel P4 (2.2 GHz)

processor. The coarsest mesh comprises 2048 finite elements, the finest mesh 65536

elements.

σ
∂T

∂t
=−∇ · (vlT )+∇ · (κ∇T ) ,

0=∇ ·
[

k

(

1

µl

)

∇p

]

+k

(

1

µl

ρl

)

g∇z, (9)

where σ is the ratio of the volumetric heat capacities in rock and fluid σ =
(

cprρr

)

/
(

cplρl

)

. It is commonly assumed that σ ≈1. κ is the thermal diffu-

sivity κ =K/
(

cplρl

)

. In the simulations, the thermal Rayleigh number Rath

Rath = (ρmax −ρz=0) gzkz

µlκ
(10)

is computed for fixed values of µl, κ,k, xmax = zmax, Tz=0, Tmax, ρz=0, and α.

The density is computed as a linear function of T (Table I). The dimen-

sionless heat transport, expressed as the horizontally averaged thermal Nus-

selt number Nuth

Nuth =−∂T

∂z
(11)

is measured at the top of the domain as a function of Rath. In the defi-

nition of Nuth, the bar denotes the normalized quantity z = z/zmax and

T = (T −Tz=0) / (Tmax −Tz=0). The results of Nuth obtained for a given
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Table II. Comparison of the average thermal Nusselt number Nuth for closed-top

convection in a square domain

Rath Nuth

This study 1 2 3 4 5 6

100 2.560 2.65 – 2.651 – 2.647 2.643

200 3.818 3.81 – 3.810 – 3.801 3.806

300 4.503 4.52 – 4.523 – 4.519 4.511

500⋆ 5.87 – 5.90 – 5.86 5.82 5.86

800⋆ 9.62 – 9.30 – 9.42 9.14 9.07

The star denotes unsteady convection. Column entries are 1 = Caltagirone (1975),

2 = Kimura et al. (1986), 3 = Steen and Aidun (1988), 4 = Caltagirone and Fab-

rie (1989), 5 = Cherkaoui and Wilcock (1999), 6 = Schoofs (1999).

Figure 5. Oscillatory convection at Rath 800. The evolution of the normalized tem-

perature T is shown at three different time-steps for one oscillatory cycle. Small

convection cells shear off at the bottom boundary at a characteristic dimensionless

frequency of 270 and merge with the main plume in the center. At Ra =800, other

studies reported dimensionless frequencies of 280 (Kimura et al., 1986), 296 (Caltag-

irone and Fabrie, 1989), 299.7 (Cherkaoui and Wilcock, 1999), and 287.2 (Schoofs,

1999). Contour levels are in 0.1 intervals from 0.0 to 1.0.

Rath (Table II) are in good agreement with the published results and

small differences can be explained by the different choices of discretization.

Figure 5 shows the evolution of the normalized temperature field over one

oscillatory cycle at Rath = 800. Here, the measured frequency is the lowest

of all other published frequencies but is still in relatively good agreement

with the other data.

3.2.3. Thermohaline Convection

The separation of the thermal plume and the salt plume by transient ther-

mohaline double-advective convection for a NaCl–CaCl2–H2O brine has

recently been studied numerically (Oldenburg and Pruess, 1999). Here, the

full set of governing equations (Equations (1–3)) can be applied with Sl =1
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and Sv = 0, i.e., no vapor phase present. Our simulations use a different

equation of state, but the differences between our NaCl–H2O model and

the NaCl–CaCl2–H2O equation of state in Oldenburg and Pruess, (1999)

are small. However, because Oldenburg and Pruess, (1999) assume that the

concentration of CaCl2 is low we have adjusted our initial NaCl concen-

tration to obtain similar fluid densities (Table III).

This benchmark is very useful for two reasons. First, the simulations do

not rely on the Boussinesq approximation. Instead the fluids are treated

correctly as slightly compressible. Second, the qualitative behavior of plume

separation can be verified. The input properties for the initial parcel are

listed in Tables I and III. The initial and boundary conditions are shown

in Figure 6. The initial rock and fluid properties for both simulations are

listed in Table I. We discretized the domain using 8192 triangular finite ele-

ments (4425 finite volumes), which results in a uniform nodal spacing of

39.06 m. The grid spacing is 100.0 m in Oldenburg and Pruess (1999).

The results of the numerical solutions show the correct behavior and,

although the employed equation of states describe different fluid com-

positions, the spatial and temporal evolution of the fronts agree very

well. When the hot brine parcel is buoyant, the overall motion of fluid

is upward. Because the temperature front is thermally retarded, a high-

density lid develops on top of a low-density region. This retards the over-

all movement of the plume but the motion of the thermal and salt plume

is still upward (Figure 7). When the hot brine parcel is negatively buoyant,

the thermal and brine plumes separate. The high-density zone that evolves

below the initial parcel location accelerates the downward-motion of brine

while the thermal plume rises after plume separation (Figure 8).

Table III. Input parameters for the free thermohaline convection problem as used

in this study and by Oldenburg and Pruess (1999)

Property This study Oldenburg and Pruess (1999) Unit

T+ 300.0 300.0 [◦C]

X+ 10.0 11.6 [wt.% NaCl]

ρ+ 834.9 831.0 [kg m−3]

T− 250.0 250.0 [◦C]

X− 12.0 13.5 [wt.% NaCl]

ρ− 916.8 919.0 [kg m−3]

Brine NaCl–H2O NaCl–CaCl2–H2O [-]

The subscripts + and − denote the properties for positive and negative initial

buoyancy, respectively, in the initial parcel.
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Figure 6. Domain, initial, and boundary conditions for the transient thermohaline

convection benchmark as given in Oldenburg and Pruess (1999).

3.3. energy benchmarks

We have also compared our numerical method with results calculated

using the well established U.S. Geological Survey’s finite difference code

HYDROTHERM (Hayba and Ingebritsen, 1994) for pseudo one-dimensio-

nal energy transport in pure H2O at liquid, vapor, two-phase, and super-

critical conditions. In all simulations, a hot fluid enters cold fluid-saturated

rock from the left and flows down a pressure gradient. The hot fluid dis-

places and mixes with the cold fluid and heats up the rock. A number of

simulations were carried out for heat transport dominated by advection or

diffusion, as indicated by the thermal Péclet number Peth defined as

Peth =
(

vlcplρl + vvcpvρv

)

xmax

κ
. (12)

Table I lists the rock properties used in the energy benchmarks. Table IV

shows the boundary condition and permeability values for advection or

diffusion dominated transport. The same spatial resolution of �x = 2 m

was used in CSP and HYDROTHERM.

Figure 9 shows that there is good agreement between the simulations

carried out with CSP and HYDROTHERM at all conditions. The devia-

tion in the energy balance is less than one percent for liquid, vapor, and

supercritical conditions and less than two percent at two-phase conditions.

For advection dominated transport, the temperature fronts are always

steeper in the CSP simulations, which is due to the second order spatial
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Figure 7. Solution to the positive buoyancy free thermohaline convection problem.

From top to bottom: (a) Temperature, (b) brine salinity, (c) fluid density, and (d)

streamlines after 2 years (left) and 20 years (right). The streamlines were traced using

the velocity field of the respective time-steps.
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Figure 8. Solution to the negative buoyancy free thermohaline convection problem.

From top to bottom: (a) Temperature, (b) brine salinity, (c) fluid density, and (d)

streamlines after 2 years (left) and 20 years (right). The streamlines were traced using

the velocity field of the respective time-steps.
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Table IV. Boundary conditions for energy transport comparisons between CSP and

HYDROTHERM for a pure H2O fluid and advection dominated (Peth = 500) or

diffusion dominated (Peth =3) liquid, vapor, two-phase, and supercritical conditions

Property Liquid Vapor Two-phase Supercritical Unit

Tx=0 100.0 350.0 300.0 800.0 [◦C]

Tx=max 10.0 230.0 50.0 500.0 [◦C]

Tt=0 10.0 230.0 50.0 500.0 [◦C]

px=0 20.0 20.0 20.0 400.0 [bar]

px=xmax 10.0 10.0 10.0 390.0 [bar]

kPeth=3 5.03×10−16 8.37×10−15 9.91×10−16 1.08×10−15 [m2]

kPeth=500 8.39×10−14 1.40×10−12 1.65×10−13 1.80×10−13 [m2]

Figure 9. Comparison of energy transport in pure H2O with CSP (open symbols)

and HYDROTHERM (lines) at (a) liquid, (b) vapor, (c) two-phase, and (d) super-

critical conditions. Simulations were carried out for advection dominated trans-

port at Peth = 500 (circles and bold lines) and diffusion dominated transport at

Peth =3 (diamonds and dashed lines). The triangles at liquid and vapor conditions

at Peth = 500 show CSP simulations with a first-order accurate advection scheme.

Material properties and initial conditions are listed in Tables I and IV. Profiles

were recorded at 0.8 years (Peth =500) and 30 years (Peth =3) for liquid conditions,

0.4 years (Peth = 500) and 30 years (Peth = 3) for vapor conditions, 50 days (Peth =
500) and 26 years (Peth = 3) for two-phase conditions, and at 0.8 years (Peth = 500)

and 30 years (Peth =3) for supercritical conditions.
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accuracy of our advection scheme. HYDROTHERM only uses a first order

accurate spatial resolution. If the spatial resolution in CSP is reduced to

first order accuracy, the temperature fronts are also in very good agreement

for advection dominated transport (Figure 9a, b). Coumou et al. (2004)

have recently demonstrated, however, that it is necessary to use higher-

order transport schemes for numerical simulations of high-temperature sin-

gle-phase convection at high Rayleigh Numbers to detect emergent flow

patterns. At two-phase conditions and advection-dominated transport, a

steep temperature front is also produced by the first-order accurate trans-

port schemes, because in this case the saturation equation is asymptotically

identical with the Buckley–Leverett problem (Young, 1993), which causes a

self-sharpening of the saturation front (Helmig, 1997).

At vapor conditions and advection dominated transport (Figure 9b),

HYDROTHERM computes temperatures that are lower than the initial

temperatures close to the outflow boundary, and this is probably not the

correct physical solution. Similarly, at supercritical conditions and advec-

tion dominated transport (Figure 9d) the temperature profile in the HY-

DROTHERM simulation depicts a sharp decrease close to the outflow

boundary.

At two-phase conditions and advection dominated transport (Figure 9c),

a steep temperature drop is associated with the phase boundary between

vapor (left of the temperature drop) and liquid (right of the tempera-

ture drop). The temperature profile and location of the phase boundary at

advection dominated conditions are in good agreement for the two simu-

lations. A small difference in the position of the saturation fronts can be

attributed to the error introduced by the decoupling of the governing equa-

tions (Dicks, 1993).

For diffusion dominated transport, however, the temperature profiles

and locations of the phase boundary differ. We have not been able to

reproduce the HYDROTHERM results for diffusion dominated two-phase

energy transport with CSP, even if the spatial resolution in CSP was

reduced to first order accuracy. We explain the differences in this par-

ticular case as a result of the decoupling of the pressure equation from

the energy equation in CSP. The computation of the fluid pressure in

HYDROTHERM is a result of the fully coupled and iterative solution

of the governing equations while CSP computes the diffusion of the fluid

pressure directly. The resulting pressure profiles in HYDROTHERM, over-

all, yield higher pressures on the vapor side than the CSP simulations. If

H2O is a vapor and the pressure increases, its density increases faster than

its enthalpy decreases, hence more energy per unit pore volume is trans-

ported at higher pressures, and the temperature front moves more rap-

idly. This effect increases as permeability decreases. We believe that the

direct computation of the diffusion of the fluid pressure yields the more
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accurate results and that the temperature profiles computed by CSP are

more likely to represent the actual physics. For simulations of convective

fluid flow, however, the differences between HYDROTHERM and CSP

in the temperature profiles at diffusion dominated energy transport are

negligible because convection cannot occur if diffusion is the dominant

transport process. For the same number of node points, simulations carried

out with CSP are generally several times faster than those carried out with

HYDROTHERM.

4. Example Application

To illustrate the applicability of our new numerical algorithm, we have

modeled the buoyant rise of a hot, saline fluid at 400◦C and 10 wt.% NaCl

from a depth of 4 km. We use a model-setup that is comparable to the

studies of Wilcock (1998), Cherkaoui and Wilcock (1999), and Schoofs

et al. (1999) (Figure 10, Table V). We apply an open-top boundary con-

dition (Wilcock, 1998; Cherkaoui and Wilcock, 1999), i.e. pressure, tem-

perature, and salinity are held constant at the upper boundary such that

fluid can leave or enter through the top boundary. All other boundaries

Figure 10. Domain, initial, and boundary conditions for the multiphase

thermohaline convection example (see also Table V). An open top boundary

is applied by fixing the pressure at 1 bar. This allows fluid to leave or enter

through the top boundary (Wilcock, 1998; Cherkaoui and Wilcock, 1999).
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are no flow boundaries. Temperature and salinity are also held constant

along the bottom boundary at the elevated values of 400◦C and 10 wt.%

NaCl, respectively. The pressure, however, can vary and is calculated as

the current hydrostatic pressure. Initially, the salinity in the porous medium

is zero everywhere but along the basal boundary. Away from the basal

boundary, the initial geothermal gradient is 22◦C km−1. For the applied

model-setup, the fluid is a single-phase liquid along the basal boundary. It

separates into a high-density, high-salinity brine phase and a low-salinity,

low-density vapor phase during its ascent, once the fluid pressure drops

below the liquid-vapor surface for the given T −X combination.

4.1. simulation results

Compared to thermally driven convection in pure H2O, the onset of

convection and development of convection cells is delayed. When the

convective instability causes hot, saline fluid to move upwards, salt is ad-

vected faster than heat. As in the buoyant case in the free thermoha-

line convection test (Figure 7), this produces a stabilizing high-density lid

of relatively cold and saline fluid, which initially opposes the advective

rise of the underlying hot and saline fluid. The rising thermal plume and

diffusive spreading of the temperature front continuously destabilizes this

Table V. Input parameters for the multiphase thermohaline convection

example

Property Value Unit

Tz=0 20.0 [◦C]

Xz=0 0.0 [wt.% NaCl]

pz=0 1.0 [bar]

ρz=0 998.2 [kg m−3]

Tz=zmax 400.0 [◦C]

Xz=zmax 10.0 [wt.% NaCl]

pz=zmax 388.0 [bar]

ρz=zmax 717.3 [kg m−3]

k 1.0×10−15 [m2]

φ 0.05 [-]

ρr 2750 [kg m−3]

cpr 0.88 [kJ kg−1 ◦C−1]

K 2.25 [W m−1 ◦C−1]

aT 20.0 [m]

aL 2.0 [m]

aT and aL are the transversal and longitudinal dispersivities, respectively.
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density stratification. The convection cell begins to form after 200,000 years

(Figures 11a and 12a). As the convection cell develops further, salt and

energy are quickly advected upwards in a hot, saline, and low-density

plume in the center of the model. This central upflow zone develops from a

thin basal layer in which the fluid has its maximum temperature and salin-

ity and which persists for the remainder of the simulation. Since salt is

transported faster by advection than heat, relatively cold and saline fluid

sinks down parallel to the hot, saline upflow zone and the salinity in

almost the entire model is larger than ∼5 wt.% NaCl (Figures 11b and

12b). After approximately 233,000 years, the fluid starts to boil in the up-

flow zone, separating into a high-salinity, high-density brine and a low-

salinity, low-density vapor phase. The vapor phase rises quickly, diluting

the saline fluid in the shallower parts of the model (Figures 11c and 12c).

Within approximately 3,000 years, the flow field reorganizes itself into a

narrow upflow zone of hot intermediate salinity fluid (∼ 3−5 wt.% NaCl,

and ∼340−380◦C) feeding a v-shaped boiling zone about 1.5 km below the

surface (Figures 11d and 12d). The boiling zone is marked by a disconti-

nuity in the salinity profile. During the reorganization of the flow field, the

salinity in the model is continuously reduced until saline fluid exists only

in the upflow zone and along the basal boundary. In the boiling zone, part

of the low-salinity, low-density vapor continues to rise temporarily precip-

itating halite. The other part recondenses and the condensate mixes with

the high-salinity, high-density brine to form an intermediate density liq-

uid that percolates from the boiling zone downwards parallel to the upflow

zone and disperses. Dissolving halite also contributes salt to the intermedi-

ate density fluid. Once the reorganization of the flow field is complete, the

fluid in the boiling zone cools and the isotherms retract to greater depth.

This causes the boiling zone to move upwards, shrink, and vanish after

approximately 256,000 years (Figures 11e and 12e). Once the boiling zone

has vanished, a steady-state convection cell forms in which hot and inter-

mediate salinity fluid of ∼ 3−5 wt.% NaCl and ∼ 280 − 380◦C rises in the

center, and cools and sinks down as an intermediate salinity fluid on the

flanks (Figures 11f and 12f).

5. Discussion

All benchmark tests show that our results are qualitatively and quantita-

tively in good agreement with the respective analytical or numerical ref-

erence solutions. Also, the example application, which, to the best of our

knowledge, for the first time ever included the full complexity of thermoha-

line convection, demonstrates that our new solution technique yields results

that are representative of the geologists qualitative understanding of mul-

tiphase thermohaline convection. Field data, for example from porphyry
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Figure 11. Temperature profiles after (a) 200,000 years, (b) 230,000 years, (c)

232,796 years, (d) 235,239 years, (e) 249,956 years, and (f) 498,709 years.

copper deposits (Henley and McNabb, 1978; Eastoe, 1982), indicates the

upward-movement of steam and downward-movement of brines.

This new solution technique now opens the door to realistically and

accurately simulate a variety of flow phenomena in geologic processes

such as brine convection around cooling magmatic intrusions, flow in oce-

anic hydrothermal systems, or thermohaline convection of basin brines.

These processes could previously only be modeled by making simplifying

assumptions such as a pure H2O fluid, incompressibility, linear dependency
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Figure 12. Salinity profiles and streamlines after (a) 200,000 years, (b) 230,000 years,

(c) 232,796 years, (d) 235,239 years, (e) 249,956 years, and (f) 498,709 years. Stream-

lines were traced using the total fluid velocity vf = vl + vv of the respective time-

steps. The maximum of the magnitude of the total fluid velocity |vf | varies from

∼1.0×10−9 m s−1 at 200,000 years to ∼5.5×10−7 m s−1 at 235,239 years.

of density on temperature and salinity, or the absence of phase separation.

With the presented work, we have developed a code that can improve our

current understanding of the above flow processes.

For future applications it would be desirable if our numerical method

could be further benchmarked against field or experimental data, e.g.

from geothermal fields, and against other numerical codes that have the
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capability of modeling multiphase thermohaline convection with a realistic

equation of state of NaCl–H2O. Little is known about the hydrodynamics

of a boiling saline fluid. Only if several codes can be applied to model a

suite of thermohaline convection test cases and if these results can be com-

pared to field or experimental data, we will be certain to distinguish numer-

ical artifacts from actual physical process. This will help us to continuously

improve the quality of our simulations and will also increase our quantita-

tive understanding of geologic flow phenomena that include the transport

of heat and salt. Such benchmarking of numerical methods, for example,

has been successfully established with the test cases provided by the Soci-

ety of Petroleum Engineers to model various aspects of oil–water flow (e.g.,

Christie and Blunt, 2001).

6. Conclusions

In this paper, we have presented the benchmarking and application of a

FEFV framework for numerical simulations of multiphase thermohaline

convection. The development of this FEFV technique is discussed in the

companion paper (Geiger et al., 2005). A series of test cases, each evaluat-

ing a component process of multiphase thermohaline convection, was used

for the benchmarking. The algorithm was then applied to model, for the

first time ever, the full complexity of convective transport of an initially

hot, saline, single-phase liquid phase that is separating into a high-density,

high-salinity brine phase and a low-density, low-salinity vapor phase during

its ascent.

The simulation framework was implemented into the object-oriented

C++ code CSP (Matthäi et al., 2001). Numerical solutions were com-

pared to analytical solutions for the advection-diffusion equation (Ogata

and Banks, 1961) and the Buckley–Leverett problem (Buckley and Leverett,

1942; Helmig, 1997), reference solutions for the Elder problem (Elder,

1967) and thermally driven convection at varying Rayleigh numbers

(Caltagirone, 1975; Kimura et al., 1986; Steen and Aidun, 1988; Caltag-

irone and Fabrie, 1989; Cherkaoui and Wilcock, 1999; Schoofs, 1999), a

free single-phase thermohaline convection problem (Oldenburg and Pruess,

1999), and energy transport simulations at liquid, vapor, two-phase, and

supercritical conditions for pure H2O, carried out with the U.S. Geologi-

cal Survey Code HYDROTHERM (Hayba and Ingebritsen, 1994).

The numerical results of the simulations computed with the new solu-

tion technique in CSP all are in good agreement with these benchmarks.

This implies that our new scheme accurately captures the transient features

of multiphase thermohaline convection. This is true also for a full complex-

ity model where a hot, saline and initially single-phase fluid rises and starts
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boil. Upon phase separation, the high-density, high-salinity liquid phase is

sinking down due to recondensation of vapor as a single-phase interme-

diate salinity fluid. The low-density, low salinity vapor phase is rising up

quickly diluting the fluid above the boiling zone.

With the help of our FEFV framework and its embedded equation of

state for NaCl–H2O, it is now possible to more accurately model thermoha-

line convection and fluid flow in geologic environments where p-T -X con-

ditions promote boiling and commonly applied simplifications are invalid.
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