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Abstract

Photonic graph states are underlying resources for one-way optical quantum compu-
tation, quantum error correction, fundamental test of quantum mechanics, and quan-
tum communication network. Most of existing works, however, are based on sponta-
neous parametric down-conversion source that intrinsically suffers from probabilistic
generation and double pair components. Here, we create two important classes of
graph states, a polarization-encoded four-photon Greenberger-Horne-Zeilinger (GHZ)
state and a linear cluster state, by actively demultiplexing a deterministic single pho-
ton source from a semiconductor quantum dot embedded in a micropillar. A state
fidelity of 0.763£0.004 (0.790£0.009) and a count rate of ~13 Hz are observed for
the four-photon cluster (GHZ) state. The results constitute a new route towards the

multiphoton entanglement with deterministic single-photon sources.
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Photons have been an important workhorse for quantum information technology, such as
optical quantum computing,! quantum simulation,? quantum enhanced measurement,® and
quantum communication network.? Almost all these processes involve a central source of
multiphoton entanglement.® As an important type of multiphoton entangled state, optical
graph states,®” such as Greenberger-Horne-Zeilinger (GHZ) states® and cluster states,”?

is key resource of one-way optical quantum computation,”! quantum error correction,!!

quantum communication network,'? and fundamental test of quantum mechanics. '3

It has been 20 years since the proposal of one-way quantum computation based on graph
states. Many schemes have been proposed to produce large-scale optical graph states, 46
together with significant progress to experimentally generate optical graph states.'”™2° Un-
fortunately, most of these experiments are relying on probabilistic generation of photon-pair
sources, in which there are inevitable multiphoton pair events and only few percent genera-
tion probability.2!2? This will seriously degrade entanglement’s quality and reduce number
of entangling photons, particularly for optical cluster state,?” which impose large limits on
their applications in quantum information processing (QIP). Recently, near-optimal sponta-
neous parametric down-conversion (SPDC) photon-pair sources have been used to generate
multiphoton entanglement states including entangled 12 photons?? and 18 qubits.?? Despite
these impressive results, deterministic light sources are needed to further develop QIP ap-
plications based on photons in a push-button manner.

Solid-state quantum emitters as intrinsically deterministic quantum light sources, have
attracted a great deal of attention.? Particularly, semiconductor quantum dot (QD) has been
demonstrated as a promising candidate for on-demand generating high-quality single pho-
tons, 2> and two-photon entangled states.?%>” The QD was also proposed to deterministically

28730 which has already been demonstrated in a proof-of-

generate large scale cluster states,
concept experiment between the QD spin and two photons in polarization, and all photons
travel in a single spatial mode.3' However, the very low generation rates and the length of

cluster string is limited to the spin coherence time, 3! which becomes considerable challenges



to allow small-scale applications and further scalability. Thanks to the rapid progress of
the high performance single-photon source (SPS) in recent years,? there has possibility to
generating multiphoton entanglement states by demultiplexing single push-button SPS and
entangling gates, and photons travel in multi-spatial modes. By this way, one can already do
some small-scale application research, which means a beginning for doing something that can
only be performed by SPDC sources before. Additional, with the continuous improvement
of the comprehensive performance of SPS, this method can even expect to exceed the upper
limit performance of the SPDC source in multiphoton experiments in the future.

In this work, we experimentally demonstrate generation of polarization-encoded and
individually-spatial-addressable photonic graph states by actively demultiplexing a deter-
ministic SPS and post-selection entangling gates. The SPS based on a single QD embedded
in a micropillar has high efficiency, purity and indistinguishability simultaneously. We are
able to generate high fidelity and high brightness of four-photon GHZ state and linear cluster
state, with the help of low loss active optical switches, high efficiency interferometer as well
as superconducting nanowire single-photon detector.? We also discuss the potential of our
system and compare its scalability with the best SPDC source nowadays.??

As shown in Fig. 1, a single self-assembled InAs/GaAs QD is embedded inside a 2-pym
diameter randomly etched circular micro-pillar cavity (for more details on the sample growth
and fabrication, please see the note 28 of Ref.??). To reach the best QD-microcavity coupling
with optical resonance around 893nm, the whole sample wafer was placed inside a closed
recycle cryostat and cooled to ~4 K. Under pulse resonant excitation with a repetition rate
of 76 MHz,3*3% ~6.4 MHz polarized resonance fluorescence (RF) single photons are detected
(with detector efficiency ~0.8), has lifetime ~68 ps. The measured second-order correlation
function at zero-time delay is 0.03(1), which indicates intrinsic nature of the single-photon
source. The indistinguishability is measured by a Hong-Ou-Mandel interferometer, with a
visibility of 0.91(1) between two photons separated by 6.5 us.?3 Such a long stream of near-

transform-limited single photons makes it feasible to implement multiphoton entanglement
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Figure 1: Experiment setup. The quantum dot (QD) sample is placed at a closed-cycle
cryostat, and cooled to ~4 K. A pulse laser with a central wavelength around 893 nm excites
the QD resonantly through fiber coupled confocal microscope system (without draw). A
high extinction ratio (> 10° : 1) polarizing beam splitter (PBS) and a pair of half- and
quarter-wave plates (HWP, QWP) are used to extinguish the residual pump laser in cross
polarization. Resonate fluorescence (RF) single-photon stream is actively demultiplexed
into four free spatial mode by three fast optical switches, each one constructed by a Pockels
cell (PC) and a PBS. Four streams are then coupled respectively into four single-mode
fibers. The different length of fibers and four translation stages (without draw) are used to
finely compensate relative time delay of four photon streams. Time synchronized photons
are prepared into polarization state |4+) by wave plates, and then simultaneously fed into
interferometer (PBS1-3). The HWP1 between PBS2 and PBS3 are used to switch generation
between GHZ and cluster state by setting it at 0° or 22.5°. A pair of wave plates and PBS at
each output are used to do polarization analysis. Finally, the output photons are detected
by fiber-coupled superconducting nanowire single-photon detector (SNSPD) and registered
by a homemade coincidence count unit.*? The average efficiency of optical switches, optical
lines and SNSPDs is about 0.83, 0.80 and 0.70 respectively

experiments.

Afterwards, the single-photon stream is deterministically demultiplexed into four free
spatial modes by three cascade fast optical switches (see Fig. 1).% Each switch consists
of a polarizing beam splitter (PBS, with an extinction ratio >2000:1) and an active high
voltage Pockels cell (PC), which on-demand rotates the photon polarization by 90° driven by

~1800 volts (with an extinction ratio >100:1). The PCs are synchronized to the pulse laser



and operated at a repetition rate of 0.76 MHz. In each period, every 25 sequential photon
pulses are actively imported into one of four free spatial modes by optical switches, before
collected into four single-mode fibers. Each fiber has different length to roughly compensate
time delay among four modes, then four translation stages applied to make perfect temporal
overlap (not draw in Fig. 1). Thanks to the high transmission rate of PC (>99%) and high
single-mode fiber coupling efficiency (~85%), the average efficiency of demultiplexers reaches
about 83% for each photon stream mode. This type of multiple SPSs are generated from
the same SPS, thus eliminating the photon distinguishability from different SPSs.3%3" This
will ensure the high contrast of multiphoton interference.?3® Moreover, the demultiplexer is
deterministic and does not introduce extra loss in principle. Finally, each single photons can
be manipulated in temporal and spatial mode flexibly, which is crucial for a large-scale QIP.

Time synchronous single photon streams are prepared into |+) = (|H) +|V'))/v/2 state by
a pair of half- and quarter-wave plates (HWP and QWP), where H (V') represents horizontal
(vertical) polarization. Then photons are fed into three PBSs (PBS1-3), each of which acts
as the core of post-selection entangling gate. As the PBS transmits H and reflects V' polar-
ization, only if both incoming photons have the same polarization can they go to different
outputs. Thus, when HWPI is set at 0° (see Fig. 1), there is one-eighth probability for
four-fold coincidence of all four output modes, which corresponds to a successful generation

of the state:
1

V2

It is a four-photon polarization-entangled GHZ state, an equal superposition of two fully

|Ga)=—=([H)1[H)2 | H)3| H)a+|V)1|V)2|V)s|V)a) - (1)

distinguishable quantum states. This is because, for ideal pure and indistinguishable four
single photons interfering at the ideal PBS-based interferometer, there will be 16 photon
polarization combinations which are equal probability coherent superposition. Each compo-
nent corresponds to a special spatial modes and photon number distribution combination.
Such as |H)1|H)o|H)3|H)4 or |V)1]V)2|V)3|V)4 corresponds to each one of four output spa-

tial modes has only one photon. Different from other components, only they can contribute



to the four-fold coincidence events and these two possibilities are quantum mechanically
indistinguishable. Once detect a four-fold coincidence event, that means one have success-
fully picked out the GHZ state components by post-selection. We also note that, for this
method of generating states, one can also do some quantum gates to accomplish quantum
algorithm before pick out the target prepared states by coincidence-detection photons. Such

10,18

as measurement based quantum computation and some shallow optical quantum cir-

cuit,”* can be realized equally to the method of deterministic generating states. The only
limitation is that in the final photon detection process, we can still distinguish and pick out
the wanted evolution process from other branches (for example, through other freedoms of
degree), which is designed to operated on the target preparation state. In the similar way,
one just inputs two or three photons, then two-photon Bell state®’ or three-photon GHZ
state can be generated conveniently.®

When the HWP1 is set at 22.5°, the above scheme can be readily modified to generate a

four-photon polarization-entangled linear cluster state as follows:

C2) = SEIH)al H)s Y [ H V)3V ), N
VIVl HYalH)s = V0Vl )alV ),

which is successfully prepared when the four-fold coincidence events of all four output modes
is detected with a one-eighth probability. It is a special class of multipartite graph state. To
transform into the standard four-photon linear graph state, one only apply a local-unitary
operation U= H,IyI3H,, where H (I) represents Hadamard (Identity) operator. This state
displays strong entanglement between any two photons,” and enjoys improved robustness to
loss compared to the GHZ state.?’ It is worth noting that this configuration can be easily
extended to generate any photon number linear cluster state by sequentially adding PBS
and Hadamard gate (HWP set at 22.5°), and also to produce high-dimensional cluster state
1,17,18

by proper configuration.

To evaluate the quality of generated graph state, we measure the state fidelity that is
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Figure 2: Experiment results of four-photon GHZ state. (a) Four-fold coincidence counts
in H/V basis with data collection in 1.5 minutes, the vaule of ((|H)(H|)®*) + ((|]V)(V])®%)
is 0.860(18). (b) The expectation values of Mg/t = cos(kn/4)o, + sin(kn/4)o, (k=
0,1,2,3) obtained by the measurement in the basis of (|H) 4 *7/4|V))/+/2. Each basis
accumulates about 1500 events in a few minutes. The error bar is derived from raw detection

events by Poissonian counting statistics analysis with one standard deviation. The measured
expectation values are 0.724(12), -0.715(13), 0.729(10), -0.710(9) in order.



overlap of experimentally generated state and the ideal one:*'"43 F (l/JN) = <¢N | Pexcpel ¢N> =
Tr (pideal Pexpe )- Where |9V) represents the ideal N-photon state, and pigeal (Pexpe) denotes
the density matrix of ideal state (experimentally generated state), the value of fidelity will
be unity for a perfect match. For the GHZ state, F (1/)N) = (<PN> + <C’N>) /2, with
(PN = ((IH)(H|)®N) 4+ ((JV)(V])®N), which denotes the population of [H)®Y and [V)®V

components of the GHZ state. In addition,

()= S (Y. ¥

with Myz/n = 04 cos(kn/N) + o,sin(kn/N), where o, and o, are Pauli operators, k =
0,1,.... N — 1. The <CN > is defined by the off-diagonal elements of the density matrix and
reflects the coherent superposition between the |H)®Y and |V)®N components of the GHZ
state. The Mp is a single qubit observable with eigenstate of [p)* = (|H) £ €"|V)) /v/2
and eigenvalue of +1. The single qubit projective measurement can be realized by a pair of
wave plates and a PBS (see Fig. 1).

The experimental data of the four-photon GHZ state are shown in Fig. 2. We observe
~13 Hz four-fold coincidence count rate. Each measurement setting accumulates about 1,500
coincidence counts for computing the fidelity. Finally, we maintain a fidelity of 0.79040.009,
which exceeds the entanglement threshold of 0.5 by 32.2 standard deviations. This ensures
presence of genuine four-partitive entanglement, excluding possibilities from any partial en-
tanglement (e.g.,biseparable states).

To evaluate the four-photon linear cluster state, we estimate its fidelity as Foy = (Cy|pexpe|Ca),
by averaging 16 stabilizers’ expectation values.*? As a four-photon linear cluster state, its

stabilizer generators are:
G =24711,g0=XXZ1,93=1ZXX,9.=1177, (4)

where X, Y, Z, and I represent Pauli operators o, 0y, 0., and Identity operator respectively.
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Figure 3: Experiment results of four-photon cluster state with QD works at the same ex-
citation condition as generating GHZ state. (a) Four-fold coincidence counts acquired in
H/V basis. (b) The expectation values of stabilizers of the four-photon cluster state (the
Identity stabilizer is not shown). Each setting has about one thousand coincidence counts
accumulated in few minutes. The I, X, Y, Z represent Identity matrix, o, 0,, o, Pauli op-
erators respectively. The error bar is deduced from propagated Poissonian counting statistics
of the raw detection events with one standard deviation. The measured expectation values
are 0.854(15), 0.899(15), 0.787(15), 0.745(15), 0.731(15), 0.704(16), 0.763(16), 0.716(14),
0.716(14), 0.756(16), 0.752(16), 0.679(15), 0.703(16), 0.705(16), 0.689(13) in order.
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All stabilizers can be derived from the stabilizer generators’ cyclic products [as shown in
the x-axis of Fig. 3(b)]. Each expectation value can be calculated from the probability of
projecting into their eigenstates, whose all 16 combinations are recorded at the same time. As
shown in Fig. 3, with the same excitation condition as generating GHZ state, we measure all
the 16 stabilizers. Because of the non-ideal multiphoton interference, the expectation values
of different stabilizers have fluctuations, but all greater than the classical threshold of 0.5.
Finally, the fidelity of four-photon linear cluster state is shown to be 0.763+0.004, which
exceeds the threshold of 0.5 by 65.7 standard deviations, witnessing genuine multipartite
entanglement with a large confidence.*?

To verify non-locality of four-photon cluster state, the stabilizer correlations can also be

used for constructing a Bell-type inequality with the following Bell operator:'”

S=ZIXX+XYYX+XYXY - ZIYY. (5)

The maximal expectation value of S is Tr(Sp.) = 4 for the cluster state from quantum
mechanics, while the bound for local hidden variable model is S = 2. In our experiment we
reach 2.897 + 0.032, which clearly violates the classical bound 2 by 28 standard deviations,
indicate high quality of the four-photon cluster state.

Compared to the early optical graph state experiments which was built on SPDC en-

171844 our generation state have better state fidelity and

tangled photon pair (EPR) source,
higher generation rate. This means that it is feasible to demonstrate one-way quantum
computation in a way like Ref.,'® and high fidelity quantum teleportation like Ref.** by our
generated states. However, the generated states are still imperfect, mainly due to non-unity
purity and non-ideal indistinguishability of SPS. The non-unity purity of single photons
means that there is a small fraction of multiphoton events in RF pulse, mainly comes from

residual pump laser background and fluorescence of some other QDs.?> The non-unity in-

distinguishability will result in imperfect multiphoton interference. It is primarily caused

11



25 such as

by phonon sideband of RF and some residual effects leading to QD decoherence,
charge and spin noise in environment around the QD.*> Both of them contribute to unwanted
background of effective four-fold coincidence, which degrades the fidelity of generated state,
and imposes an upper limit of the number of entangled photons.*® As a rough estimation,
we use the fidelity of genuine two-photon Bell state ~0.92 (which is limited by the indis-
tinguishability and purity of SPS), to estimate the fidelity of N-photon entanglement state
F (¢¥N)=0.92""1 and when N = 9(10), the F (¢°10) = 0.513(0.472). Thus, the largest
number of photons being entangled goes to nine. It is smaller than the optimal experiment
results of 12 photons or 18 qubits based on SPDC source.??** However, in principle, the in-
distinguishability and purity of solid-state SPS can all be improved to near-unity.?*3* Thus,
the fidelity of generated states by SPS can approach to one and the upper limit of entangled
photons can be greatly extended. These strategies, such as low density and high quality

47-49 and

QD wafer growth, better single QD-cavity coupling by optimizing cavity structure,
proper excitation method®®®® will help to approach an ideal SPS.%

As the number of entangled photons increase, a change in the production rate of the
prepared state is another factor for performance, which is related to scalability of system. In
fact, N-photons quantum experiments usually constitute three steps: preparing photons with
probability 7,,. and repetition rate R,.,, operating photons states with successful probability
Nope (such as entangled gate operations), and detecting photons with probability 74,. Then
the probability of catching a N-fold coincidence event which evolve as we expected is P, =
NpreNopeNdet; With N-fold count rate defined as Reon = RyepPesp. In our experiment (the best
SPDC EPR source based experiment to date®?), suppose the repetition of pump laser is Rp;
(Rpr2), and the average efficiencies for each photon are as following: photon brightness at

fiber output end is 1y (142), optical switches efficiency 1,1 (152 = 1 they don’t need optical

switches), optical lines and interferometer efficiency n;; (1), detecting efficiency 141 (742),

12



the N-fold coincidence count rate Roony for our system is:

R R 1
Reent = %Peaﬂpl = # ((nfb17751)N2N1 (771177d1)N) : (6)

where 7,pe1 =1/2V~1 denotes the successful probability of generation N-photon entanglement
states (such GHZ and linear cluster states) by a minimal number of N —1 entanglement gates,
which achieved by PBSs based interferometer and post-selection measurement. Bringing
the actucal experiment parameters: Ry = T6MHz,np ~ 6.4M/0.8/76M = 0.105, 15 ~
0.830, 71 ~ 0.80,7n4 =~ 0.70 into equation (6), we compute Rconi = 1.52 x 10® % %,
it will decrease exponentially with NV increases. However, it will be improved significantly
by improving the efficiency of optical lines and detectors to near unity, and increasing the

repetition rate of the pump laser at least 8 times.

For the best SPDC EPR source based experiment to date like Ref.,?? the rate Roons is:

1
Reene = RroPeypo = Rio ((Uflﬂ)N/zW (mzndz)N) . (7)

For maximizing advantage of SPDC EPR source and easily deriving, here we suppose that
N is even. The EPR source always produce two entangled photons at the same time, so
the Npre2 = (nﬂ,g)N/ 2. We note that the Ngye is approximately equal to the probability
of generation single EPR. Because the EPRs is directly emitted from nonlinear crystals
to free space, with the spacial mode almost ideal matching to single mode fiber in that

experiment.

The photons can be considered equivalent output from sing mode fibers. The
item of 7ppe2 = QN/%, denotes the successful probability of minimum N/2 — 1 entangled gates
for generating N-photons entanglement states (such GHZ and some cluster states) from N/2
entangled photon pairs.

For facilitating comparison of the Rocopy differences between them, and highlighting

the main factors affecting scalability in production rate, we suppose Rp1/N = Rpo,mn =

13



M2, Na1 = Naz (the actual experimental parameters are almost like this), and define:

B 1
Ky = Reeni/Reene = (M)N— (8)

ez~ 2N/

which denote the relative generation rate for generating the same N-photon entanglement
states. With the real experiment parameters 7, ~ 6.4M/0.8/76M =0.105, 751 ~ 0.830, ngpe ~
0.050,%2 one has Ky = 0.333Y. With N increases, Ky will decrease exponentially, denote
the best SPDC source to date has a better scalability than our system. However, for SPDC
EPR source of Ref.,?* nps = 0.050 almost is its optimal value when consider the trade-off
between high heralded efficiency and high single EPR productivity and purity. But, for our
system, the 7,1 and 1, can respectively gradually increase to one in principle. And, when
N1 * Ne1 > v0.05 % 2 =~ 0.316 (nowadays the highest value of QD SPS based multi-SPSs is
~0.2173%), the Ky will larger than one, means the scalability of SPS based configuration
will be better than SPDC based. It is feasible that with the recent beautiful work reported
methods by coupling QD to an asymmetric micro-cavity®? or pumping SPS by bi-chromatic
laser pulse,” the fiber output brightness 1, of SPS will be hopefully reached to dramat-
ically near unity. That will be a crucial step forward for helping implement scalable multi
photon quantum experiments without SPDC EPR source.

In addition, based on recent progress by using natural or artificial atoms to engineer
photon-photon interactions,® improving the operation probability 7,,. to unity is also pos-
sible. Thus, the Roeon1 will almost not decrease when increasing entangled photon number
N, the scalability will be ideal. Notably, another way to achieve high 7, SPS is to multiplex
heralded SPSs which are from SPDC sources® or four-wave mixing.®® Still, there are some
challenges that limit their applications in multiphoton experiments, such as the trade-off be-
tween the purity of SPS and resource consumption, the lower repetition rate which limited
by the speed of optical switches, and the switches losses increase with the multiplex modes

in both spatial and temporal multiplexing. Therefore, to our knowledge, there has been no

14



multiphoton entanglement experiment implement by this type SPS, although they already
outperform existing QD sources on only certain individual indicator (refer to the discussion
in Ref.®®). For multiplex heralded SPS, it is still difficult to achieve high efficiency, high
purity, high indistinguishability and high production rate at the same time, however, in
principle it can also have the similar utility as QD based SPS.

In summary, we have for the first time generated both four-photon GHZ and cluster states
in high fidelity and high count rate by a QD-micropillar based deterministic SPS, which is
demultiplexed into four spatial modes by active fast photonic switches. The method can
be readily extended to entangle more photons, and the scalability in production rate can
be approach the best in principle, thus opening a new way for multiphoton entanglement
experiments with a single deterministic SPS. Our results also led to a beginning, to do some
experiments that could only be carried out with SPDC sources before, and even expect to
exceed the upper limit performance of SPDC sources in the future. Many interesting ex-
periments can be performed with this system in the near future, such as graph-state-based
quantum error correction,®” triggered Bell-state generation,®® and demonstrate heralded uni-
versal quantum computation.! Combined with high dimensional®® and multiple degrees of
freedom techniques,*?? the system can also provide platforms for other promising quantum
photonic experiments and applications. %

Note added—During preparation of our manuscript, we note that there is one similar

experiment for realization of four-photon cluster state.®!
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