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Abstract 

Vehicular differential hypoid gears play an important role on the Noise, Vibration and Harshness 

(NVH) signature of the drive train system. Additionally, the generated friction between their mating 

teeth flanks under varying load-speed conditions is a source of power loss in a drive train, whilst 

absorbing some of the vibration energy. The paper deals with the coupling between system 

dynamics and analytical tribology in a multi-physics, multi-scale analysis. Elastohydrodynamic 

lubrication of elliptical point contact of partially conforming hypoid gear teeth pairs with non-

Newtonian thermal shear of a thin lubricant film is considered, including boundary friction as the 

result of asperity interactions on the contiguous surfaces. Tooth Contact Analysis (TCA) has been 

used to obtain the input data required for such an analysis. The dynamic behaviour and frictional 

losses of a differential hypoid gear pair under realistic operating conditions are therefore 

determined. The detailed analysis shows a strong link between NVH refinement and transmission 

efficiency, a finding not hitherto reported in literature.  
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Nomenclature:   - Asperity contact area    - Vehicle frontal area    - Vehicle acceleration   - Half amount of backlash    - Drag coefficient of vehicle    - Solid thermal capacity    - Structural meshing damping     - Pinion bearing damping in x direction     - Pinion bearing damping in y direction     - Pinion bearing damping in z direction     - Gear bearing damping in x direction     - Gear bearing damping in y direction     - Gear bearing damping in z direction    - Reduced elastic modulus of the contact: 

  ((     )   ⁄  (     )   ⁄ ) 

   - Reduced elastic modulus of the contact:      
    - Young’s modulus of elasticity of the 

pinion    - Young’s modulus of elasticity of the gear 

     - Static unloaded transmission error     - Transmitted force     - Axial load on bearing     - Radial load on bearing     - Normal load of flank    - Total meshing load     - Total flank friction     - Is the rolling resistance coefficient    - Boundary friction contribution     - Viscous friction contribution     - Dimensionless central film thickness    - Moment of inertia of the pinion    - Moment of inertia of the gear  ̇ - Lubricant conductivity    - Surface solid conductivity    – “Inner ring - Element - Outer ring” 

nonlinear stiffness       - Meshing stiffness     - Pinion bearing stiffness in x direction     - Pinion bearing stiffness in y direction     - Pinion bearing stiffness in z direction 
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     - Gear bearing stiffness in x direction     - Gear bearing stiffness in y direction     - Gear bearing stiffness in z direction   - Vehicle mass   - Equivalent mass in the direction of the 

line of action    - Mass of the pinion    - Mass of the gear  ̅ - Average pressure       ,       - Pinion and gear contact radii    - Aerodynamic resistance     - Rolling resistance    - Gravitational resistance    - Transmission ratio    - Equivalent radius of contact     ,     - Applied torque to the pinion and 

gear     ,    - Externally applied torque to the 

pinion and gear      ,      - Frictional moments at pinion and 

gear    - Speed of entraining motion    - The component of gear motion along the 

instantaneous line of action    - The component of pinion motion along 

the instantaneous line of action 

V  - Vehicle speed  - Vehicle weight   - Load carried by asperities    - Pinion lateral displacement in x direction    - Gear lateral displacement in x direction    - Pinion lateral displacement in y direction    - Gear lateral displacement in y direction    - Pinion lateral displacement in z direction    - Gear lateral displacement in z direction 

Greek symbols:   – Pressure viscosity coefficient   - Average asperity tip radius  - Slope of the lubricant limiting shear stress-

pressure dependence    - Lubricant dynamic viscosity at 

atmospheric pressure   - Angle of entraining motion    - Poisson’s ratio of the pinion material    - Poisson’s ratio of the gear material   - Stribeck’s oil film parameter    - Critical film ratio    - Coefficient of friction   - Poisson’s ratio   - Asperity density per unit area   - Air density    - Solid surface density 
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   - Composite RMS surface roughness 

(  √       )   - Second surface roughness Ra   - First surface roughness Ra    - Eyring stress     - Limiting shear stress   - Bearing contact angle 

   - Pinion rotational displacement    - Gear rotational displacement 

Subscripts: 

b - Denotes boundary contribution 

g - Denotes gear wheel 

j - Refers to a teeth pair in mesh 

p - Denotes pinion 

v - Refers to viscous shear

 

1. Introduction 

Vehicle differential hypoid gears are usually subjected to varying load-speed conditions. Key concerns are 

transmission efficiency, refinement of Noise, Vibration and Harshness (NVH), and mitigating wear/fatigue. 

Multi-physics models are essential tools when investigating such multi-purpose integrated studies, because 

there are strong interactions between gear dynamics and contact tribology. This is mainly through 

generated conjunctional friction between the meshing teeth pairs. Friction is regarded as a major source of 

power loss in an otherwise lightly damped power train system. It consumes some of the excess engine 

order vibration energy, which is the underlying cause of various drive train NVH phenomena, such as 

transmission rattle [1] and axle whine [2]. Thus, friction consumes some energy and improves upon the 

lightly damped nature of the powertrain. 

Dynamics of gear pairs have been extensively studied, particularly for parallel axis transmissions [3-5]. 

There are fewer investigations of non-parallel axis gears, such as hypoid and bevel gears. This is because of 

the complexity of contact kinematics and meshing characteristics. The dynamic model of rear axle gears 

was studied by Remmers [6] in order to predict resonant conditions. Some experiments were also 

conducted to confirm the coincidence of vibration peaks with the generated noise. A two degree-of-
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freedom vibration model of a pair of bevel gears was investigated by Kiyono et al [7] for stability analysis, 

where the line-of-action vector was modelled using a sinusoidal form.  

Abe et al [8] carried out experiments to show that that axle gear noise could be reduced by modifying the 

prevailing vibration mode with the addition of an inertial disk. This can be mounted onto either side of the 

final drive flanges. Another experimental method was proposed by Hirasaka et al [9] to study the body and 

driveline sensitivity to the transmission error of an axle hypoid gear pair. It was found that the dynamic 

mesh force was affected by the torsional vibration characteristics of the driveline system. A dynamic model 

of a hypoid gear set was developed by Donley et al [10], where the mesh point and line-of-action were 

considered as time invariant. More recently, hypoid gear kinematic models, based on the exact teeth 

geometry have been proposed [11-13] in order to study the gear pair dynamics with transmission error 

excitation and Non-Linear Time Variant (NLTV) mesh characteristics. In another work, an NLTV dynamic 

model of a hypoid gear pair with mesh parameters, represented by a sinusoidal form, was used to 

investigate the system response [14]. A multi-point mesh model was developed by Wang [15], which was 

used to analyse the hypoid gear dynamics. In all the above investigations, the time-dependent teeth mesh 

parameters were expressed in the form of either fundamental harmonics or by inclusion of a few harmonic 

orders.  

A dynamic model including time varying contact parameters was developed by Wang et al [16]. The model 

took into account the backlash non-linearity. Results showed a number of interesting non-linear 

characteristics, such as the jump phenomenon, as well as sub-harmonic and chaotic behaviours. These 

characteristics were reported for lubricated contacts earlier in [17, 18], who also showed the lightly 

damped nature of lubricated contacts under high load, where the lubricant merely acts as an amorphous 

incompressible solid. A multi-body model of a TORSEN differential, considering component flexibility was 

presented by Virlez et al [19], comprising rigid and flexible bodies, constrained by flexible gear pair joints. 

The four working modes of the differential were observed with good accuracy. A new formulation for the 

calculation of transmission error was presented in [20], which took into account the derivative of the static 
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transmission error, where a parametric study of a hypoid gear pair with time variant mesh characteristics 

was presented.  

The mechanical inefficiencies in gearing, arising from the lubricated meshing gear pairs, where a line 

contact footprint approximation is made with flow along the contact width was investigated [21-22]. Other 

researchers have used the more realistic assumption of elliptical point contact footprint in hypoid gear 

teeth pair meshing [23-25]. However, the input torque was relatively low, not representative of vehicle 

differential conditions. Also, the lubricant inlet entrainment flow vector was assumed to be along the minor 

axis of the contact ellipse. However, experimental evidence [26] and numerical investigations [27-29] have 

suggested significant side-leakage flow from the contact footprint along the major axis of the contact 

ellipse. The repercussions of ignoring the side leakage flow is breach of continuity of flow condition, as well 

as errors introduced in the evaluation of contact temperatures due to the side leakage flow out of the 

contact. The assumption of a line contact footprint can be considered as reasonable under conditions that 

promote an elliptical point contact of large aspect ratio [30]. In Kahraman et al [21, 22], 

Elastohydrodynamic Lubrication (EHL) was assumed for the gear meshing problems.  Tooth Contact Analysis 

(TCA) was used for the completeness of the solution and elliptical contact conditions were assumed at 

relatively low contact loads. Recently, Mohammadpour et al [31] also used TCA in the EHL calculations of a 

hypoid gear pair with angled inlet flow and point contact assumptions. However, the reported work did not 

take into account the dynamics of the gear pair. In De la Cruz et al [32], a tribo-dynamic investigation was 

conducted for helical gears, taking into account the torsional oscillations of the gear wheels. 

In this paper, a multi-physics model of differential hypoid gears is presented, incorporating the lateral/axial 

and torsional oscillations of the gear supporting shafts. Due to the geometric complexity of the interacting 

teeth surfaces, TCA is used to obtain the required gear input data (CALYX software was employed). These 

include the time-dependent varying geometry of contact and teeth meshing stiffness. The non-linear 

characteristics of the support bearings are also considered. System dynamics and analytical approach to 

contact tribology are coupled (tribo-dynamics). Due to the high transmitted loads, EHL elliptical point 

contact is assumed with non-Newtonian lubricant shear of thin films, as well as thermal effects and 
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interaction of real rough surfaces. The above features constitute a novel multi-physics analysis framework, 

which can be used to extract information about various important aspects of the differential’s operation 

(motion of the gear wheels, dynamic transmission error and friction) in a transient manner. This is a more 

comprehensive approach compared with the conventional numerical tools, which put emphasis on either 

the system dynamics or lubricated conjunctions along the contacting teeth flanks. The parametric study 

reveals potential design rules to control the characteristics of the transmitted force to the differential 

casing, affecting the NVH signature of the vehicle.  

 

2. Methodology  

2.1- Multi-Body model 

Equations of motion:  

The mechanical system of the hypoid gear pair (Fig. 1) comprises eight degrees of freedom (lateral/axial 

and torsional motions of the shafts). Shaft bending slope effects have not been considered due to evidence 

in the literature relating to their rather insignificant effects on the system dynamics. This has been 

demonstrated experimentally (Fujii et al. [33]) and numerically (Yinong et al. [34], Yang and Lim [35]) for 

similar systems. This assumption is also made considering the centred position of the gear wheel between 

symmetric bearings according to figure 1-a (similar to the configuration of cylindrical gears) and also 

relatively stiff carrier shaft of the gear, which make the bending slope even less. The point of origin O (also 

used in the TCA) is defined by the intersection of the pinion normal plane (containing the pinion axis) and 

the gear axis The corresponding multi-body dynamics model has been developed in the commercial 

software ADAMS (Fig. 1), using constrained Lagrangian dynamics. The inertial properties of the mating gear 

pair are listed in Table 1. 
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Figure 1. (a) The multi-body dynamics model and (b) The corresponding free body diagrams 

 

Table 1. Inertia/mass properties 

Part number Part name Inertia [kg m
2
] Mass [kg] 

1 Ground ----- ----- 

2 Pinion 1734 10
-6

 12 

3 Gear 5.81 10
-2

 49.9 

 

The equations of motion are obtained in the following form: 

[ ] ̈  [ ] ̇  [ ]                                                                            (1) 

where mass [M], damping [C] and stiffness [K] matrices are:  
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The position vector [X] and excitation vector [F] are: 
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cm is the structural torsional damping coefficient.       is the meshing stiffness obtained through TCA 

(exhibiting non-linear dependence on the applied load), which is introduced to the system dynamics as a 

Fourier series with the teeth meshing period being the fundamental period of the series [36, 37]. In fact a 

map of meshing stiffness Fourier coefficients is provided to the model by means of the CALYX software, 

arising from the calculations for different loading conditions [20]. The form of the Fourier function is 

presented in Appendix 1.       ,       and        are components of the instantaneous unit vectors in the 

direction of the line of action (also obtained using TCA and employed in the model as Fourier series). This 

normal vector varies from point to point and with the pinion angle of rotation.       and       are the 

instantaneous radii of contact for the pinion and the gear, respectively, which are defined at every point of 
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contact as well. They are also calculated through TCA and introduced in the dynamics model as Fourier 

series. Therefore, all these terms are time (pinion angle) variants. The general form of the Fourier series 

expression for these variables is:  

         ∑ [     (   )       (   )]     .  

These functions are represented with respect to pinion angle of rotation, using the teeth meshing period as 

the fundamental period for the series. The exact forms of these Fourier functions are presented in 

Appendix 1 for the case study examined. The remaining damping and stiffness coefficients are described in 

the following sections. 

The model can be reduced to seven degrees of freedom, after eliminating the rigid body torsional mode 

[37]. The procedure is explained briefly here. Both sides of the first equation of motion are multiplied by 

       ; the second equation is multiplied by 
       . After subtracting these two, a new equation of motion is 

obtained. Thus, the equations of motion of the seven degree-of-freedom reduced system comprise the 

following matrices (the general form of equations of motion is similar to the set of equations (1)): 
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where   is the equivalent mass in the direction of the line of action: 

22

pggp

gp

RIRI

II
m




                                                                           (2) 

and following simplification,    is defined as: 

    [               ̈   ]                                                               (3) 

  denotes the teeth relative displacement along the instantaneous line of approach between the engaged 

teeth pairs. This is the Dynamic Transmission Error (DTE), hence: 

     ∫     ̇     ∫     ̇                                                          (4) 

where 

                                                                           (5) 

      represents the contribution of the supporting bearing deflections (lateral and axial motions) in DTE 

along the instantaneous line of action. These depend on the bearing specifications (stiffness, number of 

rolling elements etc.), as well as loading that originates from the flank meshing point. Equation (4) is an 

extension of the DTE equation used in [20], where only the torsional degrees of freedom were considered.      represents the static unloaded transmission error, which is also calculated using TCA considering 

almost zero applied torque and it is introduced in the model as a Fourier series. Its derivatives can be 

calculated using the series and are introduced in the model (again, the exact definition of the      Fourier 

function presented in Appendix 1).  

In order to take into account the non-linear effects of backlash, the piece-wise linear function      has 

been introduced: 



12 

 















bxbx

bxb

bxbx

xf

       ,

            ,0

       ,

)(

 

                                                  (6) 

b  is half the total amount of backlash. There are two critical thresholds that represent severe NVH 

conditions. The first of these is teeth separation leading to single-sided impacts. This condition is defined as 

a combination of:           and             . The second - even worse condition - is when teeth 

exhibit double-sided impacts:           and           . 

 

Calculation of damping coefficients: 

In order to determine the contribution of structural damping in the system, the method described in [38] is 

used. The natural frequencies are obtained by solving the eigen-value problem (where the stiffness matrix 

is the result of linearization, containing only the constant coefficients of the stiffness Fourier series): 

   (      0
2  MKDet  and      0ˆ2  xMK  )  (7) 

The matrix of the orthonormal eigenvectors [ ] can be obtained using the orthogonality conditions 

([ ] [ ][ ]      Finally, the damping coefficients are derived using the following expression and 

assumed damping ratios, according to [12] (3% in the torsional direction and 2% in lateral/axial directions): 

[ ] [ ][ ]  [ ]  (                 )                                                                 (8) 

It should be noted that in the current study, constant damping ratios are assumed for any degree of 

freedom as already mentioned above. Using these values and mass/stiffness data (with meshing stiffness 

being load-dependent), the presented method is utilized to calculate damping coefficients that are 

implemented in the equations of motion. These take into account the load varying operating conditions. 

 

Bearing stiffness modelling:  

The bearing stiffness is calculated, taking into account the localised Hertzian contact non-linearity [39]. The 

non-linear relationship between the bearing reaction force (radial and axial directions) and deflection is: 
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                      and 
                                                               (9) 

Thus, instead of calculating the stiffness coefficients (   ,    ,     ,    ,    ,    ) in the radial and axial 

directions at any time step/iteration, the bearing reactions are determined based on the system dynamics 

(deflection at the bearing locations). The flank contact load in the lateral and axial directions is the 

excitation, which leads to bearing deflection and consequently to the non-linear bearing reaction force in 

the respective direction. This process is subjected to iteration until convergence is achieved for any given 

time step. In these equations,       and       are the numerically predicted integral values [39];   is a 

constant equal to 10/9 for roller bearings and 3/2 for ball bearings;    is the non-linear stiffness of the 

inner ring – rolling element bearing – outer ring assembly, which depends on the geometry and material 

properties;   is the maximum bearing deflection along the contact normal vector.   

 

2.2- Excitation torques 

The excitation    (i = p, g) in torsional directions comprises the applied torques on the pinion and the ring 

gear, as well as the contribution due to flank friction: 

                                                            (10) 

The torque applied on the road wheels includes the rolling friction resistance (   ), aerodynamic resisting 

force (  ) and any grading load (  ) [40]: 

      ∑                                                           (11) 

where    is the laden dynamic tire radius and: 

             ,                                                            (12) 

    is the coefficient of rolling resistance and W is the vehicle weight.    is zero for vehicle motion on a flat 

road (zero grading).  

The instantaneous input torque from the engine (on pinion) is defined as [36]: 

           (        (      ))                                                   (13) 
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where the second term in the brackets accounts for the dominant second engine order harmonic for the 4 

cylinder 4-stroke diesel engine [41] considered in the current study.  

The friction generated between the engaged gear teeth pairs contributes to the system excitation as an 

additional internal damping term. A thin elastohydrodynamic lubricant film is assumed between the 

meshing teeth pairs, which is subject to non-Newtonian viscous shear, supplemented by any asperity 

interactions (boundary friction as the result of the direct contact of surfaces). Therefore: 

fri i r
T R f

                                        (14) 

where the flank friction is given by: 

r v b
f f f 

                                        (15) 

   is the viscous friction with coefficient of   and normal load on the flank,    :  
                                                           (16)  

An analytical-experimental equation for the calculation of the viscous friction coefficient is used, 

considering the non-Newtonian behaviour of the lubricant and thermal effects [42]: 

                 ̅   (         (   ̇        )  ⁄ )                                    (17) 

where:  

     ̇     ⁄ (  ̅            )  ⁄
 

To calculate boundary friction   , the method presented by Greenwood and Tripp [43] is used, where a 

Gaussian distribution of the asperity heights is assumed, with a mean radius of curvature for an asperity 

summit. Boundary friction comprises non-Newtonian shear of thin films, as well as adhesive elasto-plastic 

friction of opposing asperities:  

                 (18) 
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   is analogous to the adhesive coefficient of friction at asperity level junctions and     is the lubricant 

limiting shear stress [42]. A share of the contact load,    , is carried by the asperities and the total asperity 

contact area,   , thus [43]:  

     √          √                (19) 

                      (20) 

According to Greenwood and Tripp [43], the roughness parameter (   ) is reasonably constant with values 

in the range of 0.03-0.05 for steel surfaces. The ratio   ⁄  is a representation of the average asperity slope, 

in the range of      -      [44]. In the current study it is assumed that       ,    = 0.055 and   ⁄ =0.001. 

The statistical functions       and         are expressed as [45]: 

   ⁄     {                                                                                                                                                                                              (21) 

      {                                                                                                                                                                                               (22) 

   
 

 is the Stribeck’s oil film parameter, where   is the composite root mean square roughness of the 

contiguous surfaces.       is the critical film ratio below which mixed regime of lubrication (including 

asperity interactions) is expected to occur. 

The film thickness   is required for friction calculations. This can be obtained using an extrapolated oil film 

thickness expression for elliptical point contacts with angled lubricant flow entrainment [28, 29]: 

                                  {     [     (    )   ]}                           (23) 

where, the non-dimensional groups are:                                                                                          
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and  

                                              

 

2.3 Tooth Contact Analysis (TCA) 

The TCA method is described in detail by Litvin and Fuentes [46]. The main points of the approach are 

briefly described here. The contact load     for all the simultaneously meshing gear teeth pairs is calculated 

and the data obtained include the instantaneous contact radii of curvature of the teeth surfaces, the teeth 

pair contact stiffness and the static transmission error. The contact load per teeth pair is a function of the 

dynamic response. However, its distribution among the teeth pairs in simultaneous contact is defined 

quasi-statically (for an equal amount of the total contact load). A load distribution factor is calculated as a 

function of the pinion angle (i.e. time) for all teeth contacts. This is the ratio of the applied load     on a 

given flank under consideration to the total transmitted load    [21]: 

                                                                                  (24) 

Full details about the face hobbed, lapped hypoid gear pair used in this study are provided in 

Mohammadpour et al [31]. 

 

3. Results and discussion  

The present work investigates the dynamics of a pair of differential hypoid gears in a light truck with a 4-

cylinder, 4-stroke diesel engine. A summary of the input parameters and physical properties of the system 

is provided in Tables 2 - 5.  

Most of the gear NVH phenomena (structure-borne noise effects) usually occur during transient conditions 

(acceleration/deceleration of the vehicle). Consequently, numerical results for accelerating and 

decelerating driving conditions are presented in this paper. Variables of particular importance are the DTE 

and lateral motion of the gear wheels, which are indications of the NVH signature of the assembly, as well 

as teeth separation phenomena, leading to loss of contact [2]. Furthermore, the variation of force 
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transmissibility through the bearings provides the excitation conditions that reach the differential housing. 

These induce structure-borne noise from the lightly damped differential housing. 

 

Table 2. Gear pair parameters 

Parameter Pinion Gear 

Teeth number 13 36 

Facewidth (mm) 33.851 29.999 

Face angle 29.056 59.653 

Pitch angle 29.056 59.653 

Root angle 29.056 59.653 

Spiral angle 45.989 27.601 

Pitch apex (mm) -9.085 8.987 

Face apex (mm) 1.368 10.948 

Outer cone distance (mm) 83.084 95.598 

Offset (mm) 24.0000028 24 

Sense (Hand) Right Left 

 

Table 3. Bearing properties  

Type Tapered roller bearing (          (number of rolling elements) 14   (Bearing contact angle) 15
°    (inner ring - element - outer ring assembly) 3×10

8
 

Preload 0 

 

Table 4. Input operating conditions 

Frontal area 2.2 m
2
 

Coefficient of rolling resistance 0.0166 

Drag coefficient 0.33 

Air density 1.22 kg/m
3
 

Vehicle weight 1300 kg 

Tyre (type) 195/65R16 

 

Figure 2 depicts the DTE amplitude variation for the nominal case examined (damping ratios of 3% and 2% 

have been used for the torsional/lateral motion, respectively), where the maximum and minimum 

amplitude values are plotted for accelerating/decelerating vehicle motions. In order to provide a better 

physical representation of the operating conditions, the corresponding  pinion torque during this speed 
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sweep is depicted in the appendix 2 (Fig. A1). This is calculated using equations (11) - (13) and the data in 

table 4.    

 

Table 5. Physical properties of the lubricant and solids  

Pressure viscosity coefficient  2.383 10
-8 

[Pa
-1

] 

Atmospheric dynamic viscosity  0.0171 [Pa.s] 

Lubricant Eyring shear stress  2 [MPa] 

Heat capacity of fluid 0.14 *J/kg˚K+ 
Thermal conductivity of fluid  2000 [W/m˚K+ 

Modulus of elasticity of contacting solids 210 [GPa] 

Poisson’s ratio of contacting solids 0.3 

Density of contacting solids 7850 [kg/m
3
] 

Thermal conductivity of contacting solids 46 *W/m˚K+ 
Heat capacity of contacting solids  470 *J/kg˚K+ 

Surface roughness of solids, Ra 0.5 µm 

 

A zero DTE value signifies the threshold of teeth separation. The latter can be observed when the meshing 

frequency is in the region of the system’s natural frequencies, which are presented in Table 6 (with the 

corresponding vehicle speed). The normalised eigenvectors (in the same Table) indicate the dominant DoF 

in the relevant resonant motion (highlighted in bold): i) the relative rotation of the gear teeth, ii) the pinion 

lateral DoF xp and iii) the pinion axial DoF yp. The corresponding mode shapes for each resonant condition 

are presented in the insets in Fig. 2. Super-harmonics of the resonant frequencies also appear in the lower 

intervals of the frequency spectrum.  

At the resonant frequency regions the contact pressure fluctuates heavily (diminishing when teeth 

separation occurs). Figure 3 shows one meshing cycle of the DTE time history for the vehicle speed 

corresponding to the section A-A of Fig. 2. The pressure peak values are indicated for two locations of the 

cycle. The relatively low contact pressure is due to the relatively low applied load in section A-A 

characteristics. This is because of the low tractive resistance at that vehicle speed. The illustrated severe 

fluctuations are eventually transferred through the supporting bearings, affecting the system’s NVH 

characteristics. When the gear teeth are in continuous contact the pressure fluctuations are reduced, 

therefore fewer disturbances are transmitted through the meshing gear pair.  
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Figure 2. Frequency spectra of the maximum and minimum DTE amplitudes (nominal case) 

 

Figure 3. One meshing cycle (time period = 0.005s) of the DTE variation of section A-A (Fig. 2). 

 

In Figure 4, the enlarged views of the first and second resonant regions are presented. It can be clearly 

seen that activation of the system’s non-linearities (gear pair - bearings) induces jump phenomena in 

the DTE amplitudes, which differ slightly between the decelerating and accelerating motions of the 

vehicle. Similar behaviour has been observed experimentally (E) and numerically (N) by a number of 

researchers, such as Yamada et al. [47] (E), Kahraman and Singh [48] (E) for parallel axis gears, 

Theodossiades and Natsiavas [37] (N) and Cheng and Lim [49] (N) in the case of spur and hypoid gears, 
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respectively. The information here is in line with experimental observations related to the axle whine 

NVH in light trucks [2]. 

Table 6. Natural frequencies and mode shapes 

Natural 

frequencies 

[Hz] 

Equivalent 

vehicle speed 

[km/h] 

Normalised eigenvectors (                                                                                                        )  

166.10 32 1 0.173 0.004 0.208 -0.031 -0.001 -0.039 

415.24 80 1 -5.97 0.019 4.95 -0.120 -0.004 -0.171 

591.72 114 1 -0.686 -368.25 -0.827 -0.435 -0.034 -1.429 

1100.40 212 1 -1.719 0.033 -2.072 -0.168 -0.006 -0.269 

2103.12 405.2 1 -0.496 -0.051 -0.598 46.147 0.019 0.815 

2453.34 472.7 1 -0.602 -0.141 -0.726 -0.686 4.887 -1.162 

2888.17 556.4 1 -0.594 -0.126 -0.716 -0.736 0.288 12.124 

 

A parametric study has been conducted for the effect of damping upon system dynamics. Figure 5 

shows the DTE amplitudes, assuming the damping ratios of 1.5% and 1% for the torsional and 

lateral degrees of freedom, respectively [12]. It can clearly be seen (compared with Figure 2) that 

the maximum/minimum amplitude variations around the resonant regions exhibit stronger 

fluctuations, which lead to teeth separation, as well as to double-sided impacts in the most severe 

cases (the threshold for double-sided impacts is 150μm, being the total amount of nominal 

backlash). In addition, the frequency region that teeth separation occurs, occupies a larger vehicle 

speed range compared with the nominal case. Considering the physics of the investigated gear 

tribodynamics problem, both structural and lubricant damping, including friction contribute to the 

behaviour of the real system, absorbing some amounts of energy and consequently, smoothening 

the system dynamics. It should be noted that with tooth separation, conjunctional friction 

diminishes. Specifically, significant variations in the differential oil sump temperature conditions 

(30 - 40C temperature increase) lead to altered NVH signature, as it has been observed 

experimentally in [2]. 

 



21 

 

 

 

Figure 4. Magnified views of the first and second resonance regions of Figure 2 

 

In order to investigate the effect of supporting bearing rigidity, a study for bearings of higher stiffness has 

been conducted. Figure 6 shows the DTE amplitude frequency spectra for the case that the bearing inner 

ring – rolling element - outer ring non-linear stiffness has increased by more than 50% (        ). All 

other parameters are kept constant as for the nominal case. As it can be seen, the stiffer bearings lead to 

more extensive teeth separation conditions (compared with the nominal case) in the vicinity of the second 

natural frequency, where the pinion lateral motion is dominant. This behaviour is closely related to 

worsening NVH performance (with teeth separation events lasting longer during the phases of acceleration 



22 

 

and deceleration). Additionally, severe double-sided impact events also take place for longer periods of 

time.  

 

Figure 5. Frequency spectra of the maximum and minimum DTE amplitudes (low damping) 

 

Figure 6. Frequency spectra of the maximum and minimum DTE amplitudes (high bearing stiffness) 

 

A comparison of the system dynamics to those of a gear pair with rotational degrees of freedom only is 

established through Figure 7, where the DTE amplitude frequency spectra are presented for the simplified 

model. Damping ratio of 3% has been assumed, as for the nominal case. It can be seen that apart from the 

resonant region, the simplified model gives similar results to those of a system with higher bearing 
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stiffness. This is an expected observation, since the purely torsional model does not allow for the same 

amount of energy release (in additional directions), as the model with more degrees of freedom. 

Nevertheless, the reduced model fails to predict double-sided impacts which occur at resonance. In 

addition, the torsional model cannot provide any information about the transmitted force for the purpose 

of any structure-borne noise calculations.  

 

Figure 7. Frequency spectra of the maximum and minimum DTE amplitudes (torsional model) 

 

Figure 8. Frequency spectra of the lateral motion maximum and minimum amplitudes (nominal case) 
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Figures 8 and 9 exhibit the lateral and axial displacements of the pinion shaft for the nominal case 

examined. These results generally follow the DTE variation trend. As it can be seen, the bearing is loaded in 

both directions near resonant frequencies. This action deteriorates the teeth separation conditions, leading 

to worsening NVH performance and structural excitations transmitted to the differential housing and 

potentially to the vehicle chassis. An additional observation is that the axial displacement is lower than the 

lateral motion with high amplitudes in the region of the third resonance only (where the axial motion is 

dominant in the corresponding mode shape). 

 

Figure 9. Frequency spectra of the axial motion maximum and minimum amplitudes (nominal case) 

 

An additional important output of the dynamic model is the variation of the transmitted force through the 

supporting bearings in lateral directions, which is presented in Figures 10 and 11. The transmitted force 

(   ) has been calculated using equation (9) and the corresponding damping coefficients as: 

                                 (25) 

The jump phenomena observed in the transmitted force frequency spectra are indicative of the severity 

that structural vibrations are driven by the excitation conditions during vehicle speed range intervals that 

coincide with resonances of the system. 
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Figure 12 depicts the flank friction torque applied to the pinion. As expected, the graph shows zero torque 

values during teeth separation, which is observed in the three resonant regions. Furthermore, the peak 

friction torque values are particularly high near resonance and at relatively low speeds. This is due to 

predominance of boundary lubrication, which gives higher friction. In order to monitor the frictional losses 

for a complete meshing cycle, the amount of energy lost is calculated at four different vehicle speeds 

near/away from resonance (positions A, B, C and D of figure 12), where: 

 

Figure 10. Frequency spectra of the maximum and minimum radial transmitted force amplitudes 

 

Figure 11. Frequency spectra of the maximum and minimum axial transmitted force amplitudes 
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    ∫                            (26) 

The results are presented in Table 7. It can be seen that although the friction torque amplitudes are higher 

near resonance (positions B and D), the total loss of energy is reduced when compared with that away from 

resonance (positions A and C). Thus, less frictional damping acts near resonance. Figures 13 and 14 exhibit 

the frictional torque variation on the pinion for one meshing cycle (corresponding to the vehicle speeds at 

A and B, respectively). The friction torque does not exhibit any direction reversals, since in hypoid gears the 

relative sliding motion between the teeth flanks does not reverse direction when the contact footprint 

crosses the mean pitch point [22, 49]. As it can be seen, friction is absent for a significant part of the cycle 

near resonance because of the teeth contact loss, which explains why less energy is lost in comparison with 

vehicle speed regions away from resonance.  

Table 7. Frictional energy loss 

Vehicle speed A B C D 

Frictional energy loss during one meshing cycle (kJ) 12.75 7.37 7.15 1.58 

 

 

Figure 12. Frequency spectra of the maximum and minimum pinion friction torque. 
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Figure 13. One meshing cycle of the friction torque variation (position A in figure 12) 

 

Figure 14. One meshing cycle of the friction torque variation (position B in figure 12) 

 

4. Concluding remarks         

Efficiency and NVH are two main concerns in hypoid gear pairs. These performance criteria can be 

estimated at early design stages using numerical models with integrated tribo-dynamics (multi-physics, 
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multi-scale analysis). The results have shown that single-sided impacts (teeth separation) can take place 

around resonant frequencies. With lower system damping, double-sided impacts are also possible during 

resonant conditions, where system non-linear behaviour is induced. On the other hand, higher supporting 

bearing rigidity leads to longer teeth separation and severe peak-to-peak DTE values (an indication of 

worsening NVH). The force transmissibility through the bearings is estimated, indicating strong correlation 

with modal response in the region of resonance (a key point for axle whine investigations). Finally, friction 

of meshing teeth pair and the associated energy loss directly affect system dynamics and signature of NVH 

response.  Paradoxically, higher frictional losses can lead to better NVH refinement, a link that can only be 

ascertained through a detailed tribo-dynamic analysis.  
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Appendix 1: Definitions of time varying values (Fourier functions extracted from 

TCA)  
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where: 

                                                                                                                                                                                                                                              
 

Appendix 2: Input torque variations 

 

Figure A1. Input pinion torque for the considered case study 


