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Abstract

The need for product customisation is driving industrial companies towards a very large product variety, which
affects many functions of a company, including the after-sales. Systematic maintenance records of very different product
individuals cannot be kept without an abstract view to the population of delivered products. However, the older the
product individual, the less systematically recorded information there usually is about it. We defined a novel mechanism
based on generic models of product individuals organised into a specialisation hierarchy to support multiple abstraction
levels. For creating such hierarchies, we defined a set of transformation operations on models. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Often, especially with rather expensive investment products, it is important for a manufacturing
company to know exactly what has been delivered to a customer. That is, for each product
individual, the as-manufactured view or, if the information of the installation environment is
essential, the as-installed view may need to be recorded. The as-manufactured information serves
at least partly as a basis for the as-maintained information, which is constantly updated infor-
mation about the product individual, possibly including its maintenance history. The possibilities
for recording such information vary considerably. In this section, we discuss some special aspects
of the after-sales management of products that have a large number of variants.

First, data structures suitable for manufacturing are not the most appropriate for after-sales.
After-sales requires its own concepts and its information must be presented in a view of its own.
For example, the product breakdown structure for after-sales should reflect the relevance of the
concepts in maintenance. Thus, components needing regular service, such as brakes, may deserve
a more prominent position in the after-sales view than in the manufacturing view.
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In addition, from the point of view of maintenance, it is not sufficient to know that a particular
component is a part of a product; it is equally important to know which role or function the
component serves. However, from a manufacturing bill-of-materials (BOM) it may be hard to
identify, for example, the motors used in any delivered crane as a hoisting motor. That is because
such function is not a unique property of a particular type of motor, which can be used as a
hoisting motor in one crane and as a traversing motor in another crane. Therefore, the modelling
approach must take a more functional view to the product than a BOM.

In addition to a role of a component, sometimes the separation of identical components in
identical roles is relevant. For example, certain types of cranes have a pair of identical traversing
motors, one at each end of the bridge. From the after-sales perspective they, however, may be
quite different if the motor in one end wears out much faster than the motor in the other end.
Therefore, as component types do not provide the required information, it must be modelled
otherwise.

Furthermore, instead of buying service hours after something breaks down, customers want to
buy ‘up-time’, that is, guaranteed operation without unexpected service breaks. This requires
accurate knowledge on the wear of different components and problems encountered earlier. It is
difficult to gather such statistical information about product individuals that are made to order
and are thus quite different from each other. To enable this, standardised means for modelling
product individuals are needed, i.e., a mechanism is needed for stating what information is rel-
evant, so that the same information is collected from all individuals. That is, for statistical ana-
lyses, it is more important to have some systematic information on all individuals than detailed
information on some individuals.

In addition, the wide variation in the age of product individuals means that one cannot speak of
all product individuals at the same level of accuracy — what is known of an old product individual
can be very inaccurate. The problem is increased when a service organisation also maintains
product individuals made by other manufacturers. Therefore, it must be possible to model
product individuals at varying levels of abstraction.

An approach for solving these problems is presented in this paper. The approach is a data
modelling methodology that supports the description of product individuals for after-sales pur-
poses. The essential issue is the possibility to identify similar functional components in different
product individuals so that after-sales operations, such as the change of a particular kind of
motor, can be recorded for them. Such information can then be utilised in various analyses, for
example, to improve preventive maintenance.

2. Background and related work

In this section, some common terms are defined as used in this paper and related work is briefly
reviewed. Not all terms have a universally accepted meaning and therefore they may be used
differently in other contexts.

A product is composed of components, which in turn are composed of further components, etc.
This hierarchical breakdown of a product is called its product structure, or also BOM. Sometimes
a distinction is made between a master BOM and an order BOM. The former serves as a recipe for
manufacturing many products, for example, in mass-production, while the latter specifically de-
scribes the structure of the product individual of a single customer order, for example, in make-
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to-order or assemble-to-order production. In the following, the term ‘BOM’ refers to an ‘order
BOM’. When the distinction is of importance, the term product type is used to refer to a type of
product, for example, ‘Car ¥ model LX7’. When the distinction is less important or clear from the
context the term ‘product’ is used. The terms ‘component’, component type and component indi-
vidual are used similarly. The term part refers to the relation between components. A component
can thus have other components as parts.

In illustrations, such as Fig. 1, we present components as rounded boxes, which contain an
identification of the component type, e.g., an item code, and possibly a serial number of the
component individual. The whole product and some critical components are typically identified
with a serial number but for basic components such as screws and bolts it is not necessary to
identify them individually. In figures, we show the parts of a component individual below the
component individual. In Fig. 1, for example, ‘crane #699861° has ‘t012’ as a part. Note that in
Fig. 1 the names in the boxes are names for components; they are not names for the part re-
lation, i.e., part names. A part name ‘hoist’ could for example, be attached to the relation be-
tween ‘crane #699861° and ‘t012°. In an ordinary BOM, part names are typically just position
numbers of the parts. The issue of not having part names will be discussed in Section 7 at the end
of this paper.

This paper concerns products that have a large number of variants. One special class of such
products is configurable products. They are configured to the needs of each customer in a
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Fig. 1. Sample BOM with components as parts of components.
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configuration process according to a pre-defined configuration model [14,15]. A product with a
large number of variants, however, need not be a configurable product. Therefore, a more generic
term for a configuration model is a generic product structure model [10]. The term ‘structure’
indicates that the interest is mainly in the variation of product structure, i.e., the components of
the product. The term ‘generic’ says that a single data model is used to represent multiple product
variants. In a similar sense, the term generic BOM is used in data modelling approaches in which
product variants are modelled by extending the traditional BOM concept [16]. For simplicity, we
use in this paper the term ‘configurable product’ as a synonym for ‘a product that has a large
number of variants’ although the usage is slightly inaccurate.

To efficiently support the after-sales, one needs to aggregate information from product indi-
viduals. For configurable products this may be particularly complicated as all product individuals
are different [3]. The issue has also been addressed in STEP, which is a standard for product data
modelling [5,11]. The development work within STEP includes Application Protocol 221 for
process industries and in close relation to it, an initiative called STEPIlib [6,7]. STEPIib aims at
providing a standardised data model and a dictionary for describing individual process plants.
There are, however, some fundamental problems in representing generic product structures in
STEP [9]. For example, STEP makes it impossible for a company to build its generic products
structures with the powerful is-a relation and inheritance mechanism of the EXPRESS language,
which is only used for building the STEP data models. Nevertheless, also within STEP, it has
become quite evident that no single data model for a product can serve all the needs of a company.
For example, manufacturing and packaging see the structure of a product very differently. In
addition, the location and functional information about the components and collections of them
is sometimes important. These different aspects of a product are typically called views [3,17]. The
breakdown structure is not the only feature of a product that may differ between views. A view
may also need different concepts or different semantics for the concepts, such as, a is-a relation of
its own [10]. An interesting issue is how the views relate to each other. In this paper, we con-
centrate on data models for the after-sales view of different product individuals and on the
relation between this view and the manufacturing view.

3. Overview of the approach

The goal of this paper is to construct means for modelling product individuals of configurable
products. The construction has three main concepts: element structure, element model and element
model hierarchy. An overall picture of the goal is first given here with the help of Fig. 2; the rest of
the paper then defines the concepts in detail.

The basic assumption is that each product individual has a product structure of its own, called
an order BOM. Because of the very large variety, each product individual is potentially different.
In each order BOM, some essential components, such as hoisting motor and end carriage of a
crane, are identified. This is done by means of an element structure. An element structure consists
of elements, e.g., ‘aa’ in the figure, and it provides another viewpoint to the product individual; a
viewpoint relevant to after-sales.

The point, however, is not just to have another structure describing the product individual. The
point is to describe the product individuals in a standard manner, so that their history can be
consistently recorded and statistical analyses made on the similar properties of them. Therefore,
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Fig. 2. Overall view to basic concepts defined in the paper.

the element structures are required to conform to an element model, e.g., ‘.#m’ in the figure. An
element structure describes by means of element classes, e.g., ‘Aa’ in the figure, what elements
must be in an element structure and which are optional, for example. However, if there is only one
element model for all products of a company, the element model needs to be rather general.
Moreover, not all individuals are known at the same level of accuracy. For example, individuals
manufactured by other companies are not known as accurately as those manufactured by the
company itself and less strict element models are needed for them than for own products.
Therefore, multiple element models are needed. The idea in this paper is to organise element
models into a specialisation hierarchy called an element model hierarchy. From the element model
hierarchy, the most appropriate element model is selected for the element structure of a particular
product individual. Moreover, the element model hierarchy allows investigation of the individual
through more general element models. For example, all individuals can be seen through the most
general element model. In the following, the concepts will be dealt with in turn. Section 4 starts
with element structures, Section 5 discusses element models and Section 6 element model hier-
archy.

This works originates from the co-operation with a crane manufacturer, and therefore, as
examples this paper uses cranes. However, it should be noted that the examples are mainly in-
vented for illustrating the concepts and ideas of the paper and do not represent any actual
products.
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4. Element structure

In this section, we introduce the modelling basis of our approach for representing product
individuals. The approach consists of elements that form an element structure. An element
structure is an alternative view to a BOM of a product individual. While a BOM describes the
breakdown of a product individual from the manufacturing point of view, an element structure
describes the aspects of a product individual that are relevant for after-sales. We begin the in-
troduction with the concept element.

4.1. Element

A BOM specifies the structure of a product very precisely, specifying the type of each com-
ponent by an item code. Many functions, such as maintenance, however, need to identify the main
components found in different kinds of products of a company. In this paper, such identification is
realised by means of elements.

Components in a BOM can be associated with elements. When a particular component in a
particular product is associated with a particular element, one can also say the component is in the
role defined by the element. Different components can fulfil the role represented by an element.

As an example, consider a crane element, such as an end-carriage. Different cranes associate
different components with this particular element (or with the pair of them). This makes it possible
to take a crane and find the components that are used as end-carriages without knowing exactly
which kind of end-carriages the particular crane happens to have. Elements can also record in-
teresting data about cranes. For example, when the end-carriages of each delivered crane are
associated with the corresponding elements, it becomes possible to attach maintenance data to the
elements and analyse statistically the maintenance histories of end-carriages.

Note that elements are only defined for components that are “relevant” for some reason in
maintenance. For example, no element corresponds to a particular bolt in a particular kind of
product if the role or function of this particular bolt is not of a special interest.

4.2. Product individual and element structure

Consider a single delivered physical product, i.e., a product individual. A product individual
has a BOM. In addition to the BOM, the product individual also has an element structure. Like
the BOM, the element structure is a hierarchical breakdown of the product. The items in the
structure, however, are elements. The term part is used with element structures in the same way as
with BOMs. An element can thus have other elements as parts.

Elements in an element structure can be associated with components in a BOM. Compared to
the BOM, the element structure is intended to provide a more abstract or “higher level” view of a
product. Therefore, there are usually altogether much fewer different elements than different
components.

As an example, consider Fig. 3. The left-hand side of the figure shows a BOM of a product and
the right-hand side shows an element structure for the same product. The dashed lines denote the
associations between elements and components.

Each element that does not have parts must be associated with some component of the
corresponding BOM. That is, an element structure describes the after-sales structure of product
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Fig. 3. Association of BOM and element structure.

individual and the components that take the roles specified by elements must be identified from
the product individual. We say that an element is validly associated if it is associated with a
component or it has parts and its immediate parts are all validly associated. For example in
Fig. 3, element ‘hoist trolley’ is validly associated because all its parts are associated with
components.

In Fig. 3, the product as a whole is represented by the component ‘crane #699861°, which is
associated with the element ‘bridge crane’. The element ‘cabin’ is an immediate part of the element
‘bridge crane’, and the associated components are related in the same way, i.e., the component
‘99875’ associated with the element ‘cabin’ is an immediate part of the component ‘crane
#699861°. This condition need not be satisfied. For example, the element ‘trolley’ is not an im-
mediate part of ‘bridge crane’ although component ‘t012’ is an immediate part of ‘crane #699861°.
The idea of element structures is to provide a view to the existing set of product individuals. The
view is organised according to the requirements of after-sales.

The association between a BOM and an element structure makes it possible to see the product
from the point of view of the elements. The use of an element structure as a view to the product
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individual is based on the idea that an element structure alone is not a complete description for the
product individual. It provides a point of reference and a navigational support to the components
of the product individual, which are all included in the BOM of the product. Therefore, we see the
different views to a product individual so that there is at least one primary view, for example,
BOM. A primary view contains all the components and then there are separate views for accessing
and complementing the information of the primary view.

After-sales is supposed to mainly operate with the element view; for example, to attach service
operations, to analyse maintenance needs, and so on. Because of the association with BOMs, the
information gathered or analysed in the element view is also linked to the product view, for ex-
ample, to the actual components with high fault rates.

For recording the maintenance history, the creation and modification times of associations can
be preserved. For example, when a new component is associated to element ‘hoist’, the time of the
change is recorded. With such information, it is later possible to find the component associated to
‘hoist’ at a given time.

With respect to associating components with an element structure, we required only that all
elements must be validly associated. This requirement is set to guarantee some standard use of the
element structures. If all elements of an element structure cannot be validly associated, a different
element structure must be used. We do not restrict the number of elements that can be associated
with a single component or vice versa. It is possible, for example, that a role represented by an
element is implemented by a set of components instead of a single component and thus multiple
components are associated with the element. Examples for such associations are elements ‘end
carriage connection’ and ‘traversing mechanism’ in Fig. 3. Similarly, it is possible to associate one
component with multiple elements.

5. Element model

For after-sales, it is important to represent the product individual according to a standard
vocabulary. Therefore, we define element models, which describe the valid element structures. In
order to ensure standard descriptions, the element structure of a product individual must conform
to an element model. Recall that an element structure describes the structure of a single product
individual and that an element structure must be validly associated with the BOM. This, however,
is not adequate if there is no control over what kind of element structures are possible. Therefore,
to capture the wanted similarities in different products, the element structures must be constructed
in a standard manner, which is achieved by describing the valid element structures using element
models.

An element model is generic in the sense that it represents a number of structurally different
element structures. Element models specify the legal variation of element structures by means of
optional and alternative parts.

In general, we say that an element structure conforms to an element model if there is no
contradiction between the structure and the model. For instance, the structure must include all
elements that are compulsory in the model and it cannot include any elements that have not been
mentioned in the model. Next, we will elaborate this in more detail; more precise definitions can
be found in Appendix A.
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5.1. Element classes

An element model is built of element classes. Each element in an element structure is related to
an element class, and we say that the element is an individual of the element class. For simplicity,
we do not discuss in this paper any typical properties, such as attributes, of element classes.

Element classes are organised into a class hierarchy in which an element class may have sub-
classes. For example, ‘Hoist” can have subclasses ‘Chain hoist’ and ‘Wire rope hoist’, and ‘Wire
rope hoist’ can further have subclasses ‘Compact hoist” and ‘Open winch hoist’. In figures, such as
Fig. 4, element classes are graphically represented as boxes and so distinguished from elements,
which have rounded corners. An element model is represented by an oval that contains element
classes and the relationships between classes having other classes as parts. Fig. 4 uses abstract
names for element classes because its purpose is to introduce in a concise form the various ways
the element model represents the element structures. In practice, classes in an element model
would most probably have similar names as elements in Fig. 3; element ‘hoist’ could be an in-
stance of element class ‘Hoist’. The point in Fig. 4 is to illustrate the means for representing the
allowed variety for element structures. These means will be discussed next.

Fig. 4. Element model .Z1.
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We also use the term superclass for the relations between element classes in the class hierarchy.
In figures, an arrow pointing from the subclass to the superclass represents is-a relation between
the element classes. In Fig. 4, element classes E2-1 and E2-2 are subclasses of E2 and E2 is a
superclass of E2-1.

The is-a relation is used together with parts. We say that an element class inherits the parts of its
superclasses. For example, in Fig. 4 element class E2-1 has parts E10 and E3. This means, for
example, that in an element structure an individual of E2-1 must have an individual of E10 as a
part. Since we have ignored other properties of classes, parts are the only inherited properties in
this paper.

If ‘Hoist’ has subclasses “Wire rope hoist’ and ‘Chain hoist’, there is the question whether el-
ements of ‘Hoist’ are allowed in element structures or whether one is required to select one of its
subclasses to describe the hoist element more precisely. As the answer seems to depend on the
element class, each element class must be designated either as abstract or concrete. All elements in
a valid element structure must be individuals of concrete element classes. For example, if ‘Hoist’ is
an abstract element class in a model, a more specific hoist class must be selected in a valid element
structure, e.g., ‘Chain hoist’. In figures, we denote abstract element classes by dashed boxes. The
terms have been used similarly in object-oriented modelling and in relation to product configu-
ration modelling [8,13,15,18].

An abstract element class without subclasses does not “make sense” because there cannot be
any individual of the class, and therefore, we require that a class without subclasses cannot be
abstract. This invariant must be fulfilled by each element model. If a concrete element class has
subclasses, typically the subclasses are concrete, too. This, however, is not required.

Concreteness of element classes is important for the definition of a model since it allows one to
specify how strict an element model is. We will shortly return to this issue in the discussion of
element model hierarchies.

5.2. Generic has-part relation between element classes

In order to model multiple different element structures, an element model must include some
mechanisms for generic aspects. Typical concepts of generic has-part relations are optional part,
alternative parts and cardinality, i.e., a specified range for the valid number of parts [15]. For
example, ‘Lighting’ could be an optional part of a crane. ‘“Thyristor control’ and ‘Inverter control’
could be alternative parts. A cardinality specification could state that there must be exactly two
‘End-carriages’ in a particular type of crane.

Fig. 4 shows an example of the generic has-part concepts we consider in this paper. The
cardinality is denoted as a pair of numbers in square brackets next to the has-part relation, e.g., as
[1,2] between E1 and E7. An optional part can be represented as a special case of cardinality in
which the lower limit for the number of parts is zero. In the figure, E3 is an optional part of E2.

For alternative parts, we use graphical notation of a branching line, for example, ES and E6 are
alternative parts of E4. It could be possible to attach a cardinality before the branch or to the
branches (or to both). A cardinality for a single branch would define the number of parts from
that particular element class whereas the cardinality before the branch restrict the total number of
parts from the alternative element classes. For simplicity, we only allow a cardinality to be at-
tached before the branch as in Fig. 4. The element model specifies that an E4 has as its parts two
ES5s, two E6s or one of each.
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Next, we briefly discuss some detailed properties of element models that are needed for con-
sistency. Our intention is to support element models such as in Fig. 4, and therefore, some in-
variants are set for element models and element structures.

o No multiple inheritance. We do not find the expressive power of multiple inheritance necessary
for the models presented in this paper, and since it always induces further problems, we opt not
to include it into the supported concepts. Therefore, it is required that each element class has at
most one immediate superclass.

o No circular class definitions. It is required that no element class is directly or transitively a sub-
class of itself. This is simply an anomaly we want to rule out.

e No element class is part of itself. It is also required that no element class is a part (directly or
transitively) of itself. For example, X1 must not be both a part and a subclass of class X because
then X1 would have itself as a part via inheritance. (This invariant is actually not necessary, but
we decided to keep the model simpler by requiring it.)

o Element structures are trees. For element structures, the requirement that an element cannot be
a part (directly or transitively) of itself is quite natural. That and having an element as part of
two elements is prohibited by requiring that an element structure must form a tree. This require-
ment also prohibits element structures that are not connected.

o Existence of root element class. It is also required that exactly one element class is declared as
the root element class. The root element class must not have superclasses, and neither the root
element class itself nor any of its subclasses must be a part of any element class. The root of
the element structure must be an individual of the root element class or its subclass. For ex-
ample, in Fig. 4, the box of El is drawn with a thick line to denote it is the root element
class.

6. Element model hierarchy

It is impossible to describe all the product individuals of a company with a single element
model-unless the model is extremely generic and therefore rather useless. This means that a
company needs multiple element models, for example, one for each different basic construction.
To make it easier to use and manage element models, we organise the models in an element model
hierarchy. With these concepts, a large number of different product individuals can be represented
with a vocabulary that allows an effective analysis of them.

As discussed before, we want to define element models at different abstraction levels. The
structure that is common to all product individuals having a similar product architecture and
manufactured or maintained by the company is specified by the most general element model, such
as a general crane model. The product can be further divided into different types. For each
product type, there can be a separate, more specific element model describing the structure of the
particular product type. Furthermore, these models can have more specific element models with
more detailed descriptions. The result is a tree-like hierarchy of element models as illustrated in
Fig. 5. The general element model is at the top of the hierarchy, and the element models for
different product types are located under the general model. For example, jib crane is a particular
type of crane with its own element model. Jib cranes can further be specialised into pillar jib
cranes, wall jib cranes and fixed jib cranes, each of which in turn has its own element model under
the model describing jib cranes.
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Fig. 5. Example of an element model hierarchy.

Each model in the hierarchy, e.g., each oval in Fig. 5, contains an element model as presented
earlier, e.g., .#1 of Fig. 4. The point is that one chooses as detailed an element model as possible
to represent an element structure of a particular product individual. An element model can be
used for analysing all element structures conforming to it or any of the models “below” it.
Consequently, all element structures can be analysed through the most generic element model, i.e.,
‘general crane model’ in Fig. 5. We will next elaborate on the relation of models in the hierarchy.

6.1. Specialisation of element model

Two element models can be related through specialisation. We say that element model & is a
specialisation of element model .# if any element structure that conforms to element model %
also conforms to element model .#. In other words, if element model ¥ is a specialisation of
element model .# and we have an element structure that conforms to model .#, we know that the
structure also conforms to model ..

The specialisation relation is transitive. In other words, if element model ./ is a specialisation
of element model ., and model .¥ is a specialisation of model .#, then model .7 is also a spe-
cialisation of model .Z.

In this form, specialisation is a nice property, since it allows one to look at different product
individuals through the same concepts. For example, in Fig. 5, the concepts defined in the model
for jib cranes apply to all models below it. The definition, however, does not provide any in-
structions for creating specialisations. Therefore, we define a set of transformation operations,
called specialisation operations, that produce a specialisation for a given element model. The idea
is that a ““higher level” element model declares all the parts that are used in its specialisations,
which represent more specific product types. In the higher level model, many parts are defined as
optional whereas the specific models either forbid or allow them. This is an example of one
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specialisation operation, namely replacement of cardinality range. With the specialisation oper-
ations, one can construct a useful element model hierarchy that has the specialisation property.

Definition. Specialisation operations:

o A class is changed from concrete to abstract. This operation makes the model stricter by requir-
ing a more detailed specification of element classes in element structures.

o An alternative part of an element class is removed, e.g., E6 is removed as a part of E4 in Fig. 4.
This simply removes one choice, thus making the model stricter.

o A cardinality range is replaced by a subrange. This includes refinement of an optional part as
compulsory (e.g., [0,1] — [1,1]) and removal of an optional part (e.g., [0, 1] — [0, 0]). Again,
the possibilities are more limited after the operation.

e Part refinement means, for example, that in the most generic crane model the element class
‘Crane’ may have ‘Hoist’ as a part with cardinality [1,2]. In a specialised element model for
jib cranes, the element class ‘Crane’ may have refined the part to ‘Jib hoist’ with cardinality
1, 1].

The definition of the operation is rather complex. Assume a part definition for element class E
that specifies the part must be from the set of element classes D. This part definition is refined by
moving a subrange of its cardinality to another part definition for E. The domain for the other
part definition must be a set D’ such that each member of D' is either a member of D or a subclass
of a member of D. In addition, the sum of new cardinalities must be contained by the sum of
original cardinalities (for E has-part D and E has-part D’).

The operation is defined more formally in Appendix A and the idea is illustrated by the fol-
lowing example. The has-part between E1 and E2 with cardinality [0, 3] is refined into two rela-
tions: E1 has-part E2 with [0, 1] and E1 has-part E2-1 with [1, 2]. The sum of original cardinalities
of El has-part E2 and El has-part E2-1 was [0,3] + [0,0] = [0, 3] and the new cardinalities are
[0,1] + [1,2] = [1, 3], which is contained by [0, 3].

o A tree that is unconnected with the root is removed. This clean-up operation does not actually
affect the extension of the model since an element structure cannot have elements not connected
with the root.

Theorem. If an element model is modified by applying specialisation operations, the resulting model
is a specialisation of the original.

The proof is presented in Appendix A.

The specialisation operations are selected to cover the most useful and intuitive ways to
specialise an element model. There are specialisations of a model that satisfy the definition of
specialisation as given above but cannot be obtained by the defined specialisation operations. In
Fig. 6, element models at the bottom row are examples of specialisations of their counterparts at
the top. The examples are presented here merely to show that the specialisation operations are not
complete. That is, not all specialisations can be derived using them.

6.2. Example of specialisation

Fig. 7 shows element model .#2, which is a specialisation of element model .#1 presented in
Fig. 4. The specialisation of .Z1 to .#2 is made with the following operations:
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Fig. 7. Element model .#2, which is a specialisation of element model .#1 of Fig. 4.

e Element class E2, which was originally concrete, is changed to abstract.
e The optional has-part between E2 and E3 is changed to compulsory, i.e., its cardinality is chan-
ged from [0,1] to [1,1].



T. Mannisto et al. | Data & Knowledge Engineering 36 (2001) 55-78 69

e6

o o -

Fig. 8. Two element structures.

The has-part between E1 and E2 with cardinality [0, 3] is refined as E1 has-part E2 with [0, 1]
and El has-part E2-1 with [1,2].

E6 is removed from the alternative parts of E4.

The optional part E8 of El is removed, i.e., the cardinality is changed from [0, 1] to [0, 0].
The unconnected tree of E68 (i.e., E68, E69, E6 and ES8) is removed.

The cardinality of E7 as a part of E1 is limited to two, i.e., to [2,2].

Fig. 8 shows two element structures, ES1 and ES2. The labels in the boxes refer to the element
classes of the elements. In practice, the elements would be given unique identifications and the
relation to the element classes is recorded separately. ES1 and ES2 both conform to the element
model .#1 of Fig. 4, but only ES2 conforms to the element model .#2, which is a specialisation of
1. Since E2 is not abstract in .41, it can be used as a definition for valid elements as has been
done in ES1. Element model .#2 on the other hand has specified E2 as abstract, which necessitates
the selection of the appropriate subclass of it as the element class for the corresponding element,
e.g., E2-1.

7. Discussion and conclusions

We have addressed the after-sales support of products with a large number of variants. The
large variety means, for example, that the aggregation of meaningful data from the product in-
dividuals is difficult with traditional BOM information. Therefore, we proposed a data modelling
methodology for the after-sales support of such products. The proposed approach provides a
more abstract view to product individuals than an order BOM. It captures the information of a
product individual by means of elements that corresponds to the roles of components relevant to
after-sales. The systematic collection of information is ensured by conformance to element
models. A specialisation hierarchy of element models provides different levels of abstraction in
collecting the information so that the more special cases still conform to general models. This
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means that all product individuals can be investigated according to the most general model. The
approach was developed in a co-operation with a crane manufacturer. They defined a number of
element classes, a general crane model and models for certain specific cranes in a prototype
system. The prototype proved the concept but additional work is still needed before the approach
can be taken in real use.

Each product individual is represented by an element structure. A set of potential element
structures is modelled by an element model. Element models are organised into a specialisation
hierarchy called element model hierarchy. An element model higher in the hierarchy describes a
larger number of element structures, although at a higher level of abstraction; that is, with less
detailed information. Each product individual that is maintained by the company is described by
an element structure that conforms to the element model that most appropriately corresponds to
the product individual. In addition to an element structure, a product individual also has a BOM
description that tells the components of the individual. The components in the BOM are asso-
ciated with the elements in the element structure. As the element structures are less detailed than
BOMs, products with different BOMs may have identical element structures. The idea is that a
wide range of different product individuals can be represented by element structures of one ele-
ment model, which then provides a uniform representation for the product individuals in a
manner relevant for after-sales.

The presented modelling methodology is a simplification of the concepts needed in configu-
ration models [13,15] with the important distinction that parts (i.e., relations between components
or elements) are not named in this approach. In this respect, our element models closely resemble
to the conceptual hierarchies of PLAKON configurator [1]. The main difference to PLAKON and
other configuration models is that the goal of this paper was to construct a specialisation hier-
archy of models to support after-sales rather than to construct a mechanism for searching a
product individual as a solution to a configuration task. There are also many other approaches to
configuration modelling [2,4], but most of them do not give product structures as important role
as emphasised in this paper. Some approaches based on description logics, however, have quite
similar concepts as presented in this paper [12,18]. One distinction lies in the treatment of the part
relation. With subsumption, description logics provide a specialisation mechanism, which is based
on role names corresponding to part names. However, that does not directly allow the speciali-
sation of a single part relation to multiple ones, e.g., by splitting a set of alternative parts into two,
which is included in our approach. This view to part refinement may be applicable to other
modelling in which the relations has-part and is-a are combined.

Not having part names has its own problems as it is impossible to distinguish between parts
that are identical but need to be separately identified. The end-carriages with identical brakes that
wear out differently were already mentioned as an example. This can be circumvented by defining
separate element classes for the right and the left end-carriage as subclasses of end-carriage. If the
subclasses have exactly the same properties in their different roles, it would be conceptually more
appropriate to make the distinction with part names than by defining new subclasses. The
combination of specialisation operations of this paper and part names increases the conceptual
complexity of the methodology and is left here as future work.

The main difference to the basic description logics and previous product configuration
modelling is the introduction of the specialisation for models. In principle, the specialisation of
a model can be seen as a specialisation of its root element class. There are, however, some



T. Mannisto et al. | Data & Knowledge Engineering 36 (2001) 55-78 71

differences, which are best explained by an example in Fig. 9. On the left-hand side the model .# is
specialised in .#' so that all the optional parts become compulsory. If the same is modelled by
deriving a subclass for 4, B also needs a “dummy’” subclass B, which specifies C as a compulsory
part. Our approach also more explicitly distinguishes between .# and its specialisation .#’. The
modelling methods proposed in this paper and their formalisation in Appendix A were con-
structed from the after-sales viewpoint but they are applicable to representing structural variety of
products, especially with specialisations of models.

The hierarchy of element models in this paper is constructed so that the root model has all the
element classes that can occur in the models. The root model in a way introduces all the element
classes, which has its advantages. It defines the basic terminology for the element structures, that
is, the names of the element classes as well as their position in the element structure. It would be
possible to allow the addition of new subclasses in more specific models. Then, however, an el-
ement class could be in different positions in different element models, for example, as a subclass
of totally different element classes. This can be avoided by requiring that all element classes are
introduced in the root model. This has also disadvantages, as adding a new element class in any
model requires modification of the root model. These changes, however, are not needed each time
a product is changed since the element models provide an abstract view to the product more on an
architectural level, which does not change that often. That is, adding a new type of a hoist into
some product line does not affect element models unless it requires architectural changes to the
cranes that use the particular type of hoist.

Another disadvantage in having all element models in the root model is that the root model
may become hard to understand and manage. This can be helped to some extent by hiding

015
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Fig. 9. Example of specialisation between and within models.



72 T. Mannisto et al. | Data & Knowledge Engineering 36 (2001) 55-78

unnecessary classes in tools for manipulating the element models. For example, subclasses of a
concrete class can be hidden since valid element structures can be defined without them.

There is always the dilemma between the full and free description of individuals and the ability
to aggregate statistical information about them. On one hand, the more freely the individuals are
described the more difficult it is to aggregate common information about them. On the other
hand, the more strictly their structure is dictated the easier it is to analyse them statistically but the
more difficult it is to describe all their nuances. The methodology described in this paper aims
specifically to support statistical analysis of varying product individuals and has therefore a rather
strict nature.

For new designs, the constructed model can be populated with relatively accurate data but old
product individuals or ones manufactured by another company may have less accurate infor-
mation. These differences are supported by different models that describe the product individuals
at different levels of abstraction. The models are organised into an element model hierarchy,
which enables aggregation of data from product individuals even though they are all different, and
moreover, described with different accuracy.

The methodology provides means for supporting the evolution of product individuals. The
evolution of models themselves is more complicated. New models can be added to the hierarchy
quite freely as long as the specialisation property of the model remains. Therefore, if the more
abstract models remain rather stable when the product is further developed, the evolution of the
models can be supported, at least partly. Radical changes to the basic architecture of the product
cannot be supported by such means. It is, however, a totally different question whether and how
the common aspects of product individuals of entirely different technological generations should
be recorded. In practice, the most feasible solution may be to create a separate model hierarchy
for a product generation that significantly differs from the old products.
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Appendix A

Definition 1 (Element model). An element model .# = (Sg,Sc, Pp, T), where Sg is a non-empty
finite set of element classes, S¢ is a non-empty set of concrete element classes, i.e., Sc € Sg. Pp is a
set of part definitions and 7 is the ‘is-a’ relation between element classes.

Definition 2 (Part definition). A part definition in Pp for an element class £ € Sg with domain
D C Sg of . is given as (.#,E,D,r,r,), where D is a non-empty set of element classes (i.e., the
alternative parts or just one class if there are no alternatives). The cardinality is given by | and r,
s.t. 0<r <r and r, > 0 and denoted as [ry,r,]. (For clarity, the model is repeated in part defi-
nitions, although it is redundant.)
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Definition 3 (Is-a relation). T C Sg x Sg is a relation such that the transitive closure of T is ir-
reflexive and (E,X) € TA (E,Y) € T = X =Y. That is, with Sg, T forms trees. In addition, each
abstract class must have at least one subclass, i.e., VE € (Sg — Sc) 3 E’ € Sg such that (E',E) € T.

Definition 4 (Subclasses). E' < , E denotes that E’ is E or a subclass of E in .#. In other words,
relation < , is the reflexive transitive closure of 7. In addition, we define, Cs(.#,S) = {E|[E< 4
E; and 1<i<k}, where S ={E|,E,,...,E;}. Thatis, Cs(.#,S) denotes the union of S and the
subclasses of its members.

Definition 5 (Concrete subclasses). Cc(.4,S) denotes the subset of concrete classes in Cs(.#,S).

Definition 6 (Root element class). One of the element classes denoted as Er € Sg of .# is desig-
nated as the root element class. It is required that Er has no superclasses, i.e., there exists no
element class E such that (Ez,E) € T, and is not defined as a part, i.e., for no part definition
<%,E,D,F1,I’2>,ER S Cs(eﬂ,D)

Note that the root element class represents the whole product, i.e., “the root of the part hi-
erarchy’’; it is also a root but not the only root of the taxonomy induced by is-a.

Definition 7. Basic arithmetic operation with cardinalities:
c,d|=la+c,b+d,

f a<x<b and

¢,d) iff c=aand b=d

c,d] iff c<aand b<d and (c #a or b #d)
¢,d] iff c<a and b<d.

B
=
+

1

—_—

Definition 8 (Inheritance of part definitions). Subclasses of an element class inherit its part defi-
nitions. If element class E defines a part definition or inherits them with the domain D, the ef-
fective part definition, denoted as Ppg = (.#,E,D,ry,r2),, where [ri,r] is the sum of the
cardinalities of all inherited part definitions and (possibly) the part definition defined in E.

As there are no part names, there is no part refinement within an element model; there is,
however, part refinement between element models (defined below).

Definition 9 (Is-individual-of). 1(e) denotes the element class element e is individual of.

Definition 10 (Element structure). An element structure is Es = (r, S, P.), where r is an element
called root element, S, is a set of elements, containing r, connected with immediate parts relation
P. C S, x S,, so that there is no e € S,, such that (e,r) € P,. (L.e., r is not a part of any element
class in S,.)

Definition 11 (Immediate parts of element). P(e) denotes the set of elements that are the imme-
diate parts of element e, i.e., {¢'|(e,€) € Pe}.
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Definition 12 (Validity of element structure). An element structure Eg = (r,S,, P.) is valid if
Ve €S, : (r,e) € P, (where P, is the transitive closure of Pe), P, is irreflexive and (x,e) € P.A

(v,e) € P. = x = y. That is, P, with S, induces a tree with r as the root.

Definition 13 (Effective cardinality). Card,, (.4 ,E,D,S) of part definition (.#,E,D,r,r,), for a
set of element classes S is:

[I’],I"z} if Cc(eﬂ,D) QCC(%,S),
[0, 7’2] if Cc(%,D) §Z Cc(%, S) and Cc(%, D) N Cc(%, S) 7é @,
[0,0] otherwise.

Effective cardinality indicates how many elements as individuals of element classes in S or their
subclasses the part definition for E with domain D, i.e., (.#,E,D,r, )., requires and allows for
an element structure.

Definition 14 (Combined effective cardinality). Card" (., E,S) is the sum of effective cardinalities
Cardey (A, E, Dy, S) over all domains D; for which E defines or inherits a part definition in ..

Card” combines Card.’s for all part definitions for E. It provides, for example, the minimum
and maximum values for the number of individuals of the element class £’ (in case .S contains only
E’) and its subclasses.

Definition 15 (Conformance of an element). An element e such that I(e) = E conforms to model
M = (Sg,Sc, Pp, T), denoted as e = 4, if

(i) £ € Sc,

(i) Ve; € P(e)3Ppy = (M, E,D,ry, 1) such that I(e;) € Cc(4,D),

(i) VPpg = (M ,E,D;,r1,r)g holds that | {e; | e; € P(e) and I(e;) < .4E;, where E; € D;} |

Card* (4 ,E,Dy).
That is, the element class £ = I(e) is concrete in .# and all the immediate parts of e are individuals
of concrete element classes (and subclasses of D). In addition, for each part definition of E (in-
cluding inherited ones), e has the correct number of parts.

Definition 16 (Conformance of an element structure). An element structure Es = (r,S,, P.) con-
forms to model .# = (Sg,Sc, Pp, T), denoted as Es = .#, if Es is valid and I(r) € Cc(A4,{Er}),
where Ep is the root element class of .#, and {E | E = I(e) and e € S.} C Sg and each element of
Es conforms to .#, i.e., Ve €S, = e = /.

Definition 17 (Specialisation). A model .#' is specialisation of model .# if any element structure
that conforms to .#' also conforms to .#. That is, for any Es it holds that Es | .#' = Es = /.

Definition 18 (Specialisation operations). Change class from concrete to abstract. A concrete class
that has subclasses is simply tagged as abstract.

Part refinement. A part refinement for a part definition (#,E, Dy, r,r,) specifies a domain D,
and a range [ry, 7] such that D, C Cs(.#,D,), i.e., D, contains only classes of D, or their sub-
classes, and [ry, 7] C [r1, r12]. If E originally had part definition with domain D, # D, assume its
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cardinality is given as [ry, 7], i.e., the part definition was (.#Z,E,D,,ry,r»).Otherwise, i.e.,
D; =D, or E has no part definition with domain D,,r,; = r; = 0 After part refinement, the
specialised model has:

(M ,E,Dy,ri1,r2)(and no (M, E, D3, q21,92)) if [r,r)]
<%,E,D1,q“,q12)(and no <ﬂ,E,D2,q21,q22>) if [}"1,1’2]
(M ,E, Dy, q21,q0)(and no (#,E,Dy,qu1,q12)) if [r1,r)]
<ﬂ,E,D1,CI11,6]12> and <%,E, Dz,é]z],q22> otherwise,

= [}"11,}"12] and D1 = Dz, or
C [}"11,1"12] and Dl = Dz, or
= [r11, 72} and Dy # Dy, or

ri,12

where [q11,q12] = [ri1 — 1,712 — 2] and [qa1, 9] = (11 + a1, + ).

In other words, a subrange of the refined part definition is moved to a more specific part
definition. Part refinement is a powerful operation. It has special cases of which some were in-
troduced separately in the text because of their intuitive nature. For example,

e restriction of cardinality, i.e., Dy = D and [ry, 2] C [r11,712],
e refinement of a part definition with a subclass of the original domain, i.e., [ry, 7] = [r11,712] and

D, C Cs(ﬂ,D]),

e removal of an alternative part, e.g., D, C Dy and [ry, 7] = [r11,712),

e conversion of subclasses into an alternative part definition, e.g., D; = {4}, A has subclasses 4,
and Az, Dz = {A],Az} and [I"],I’z} = [1"11,1"12],

o gsplitting a set of alternative parts into two part definitions (with two operations).

Note that part refinement is allowed only for part definitions defined in £, not for inherited ones.

Removal of unconnected tree. Assume two sets of unconnected element classes S; and S,. That
is, for any pair (E|, E;) € Sy x S; it is not true in .# that E, is subclass of E, or E, has E, as part
(directly or via inheritance) or vice versa. Now, the one that does not contain the root element
class is removed.

Theorem. If element model 4" is modified from element model .4 by specialisation operations, M' is
a specialisation of M .

Proof. Before a specialisation operation .# = .4, i.e., Sg = S, Sc =S¢, Pp =Py and T =T'.
Next, the result is shown for each specialisation operation.

(1) Concrete class to abstract. Let .#' be modified from .# by changing the element class E,
from concrete to abstract, i.e., Spo=Sc—{E;}. Assume an e such that I(e)=E and
el M = e¥ 4 and any ¢ such that ¢ € P(e):

1. there is ¢’ € P(e) such that I(¢') = E;. Now, e ¥ .#' because E) is abstract in ./'.
2. there is no element of E; in P(e). Thus, the part definitions for all element classes of elements of

P(e) are equal in .#" and .#, and therefore, e = M = e = M.

No such e exists for which e E .#' = e¥ .

Assume element structure Es = (r, S, P.) = .#'. That is, Eg is valid, 1(r) € Cc(.4',{Er}),
{E|E=1I(¢") and " € S;} CS; and V" €S, = ¢ E 4.

As Sg =Sy, Sc CSc and T =T, it follows that I(r) € Cc(4,{Er}),{E|E =1(¢") and
' €S} CSg and because e = 4" = e | M for all e € S,, it holds that Es F .#' = Es | /.

(2) Part refinement. Assume the part definition (.#, E, Dy, ryy, r12), domain D, C Cg(.#,Dy) and
range [ry, 73] C [r11,712],72 > 0 and the part definition (#,E, Dy, r1, ) for which after the part
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refinement there will (possibly) be (.#',E,Dy,q11,q12) and (4'E, Dy, qa1,92) as defined in Defi-
nition 18.

Assume element e such that I(e) = E and e | .#' = e¥ 4. For such e to exists one of the
requirements (i)—(iii) of Definition 15 must hold in .#’ but not in .#. These are proven in Cases
A-C, respectively. (Note the specialisation relation is the same in .#' and ./, i.e., T =T'.)

Case A. For (i) not to hold, E € S¢. but E ¢ Sc, which is a contradiction since Si. = Sc.

Case B. Assume that e has part ¢ € P(e) and there is (.#',E, Dy, ki, k»), such that E' =
I(¢) € Cc(A',Dy), but in # there is no part definition (.#,E, Dy, m;,my), such that E' €
CC (’ﬂa Dm) .

If D; = D, then for E a part definition with Dy also exists in .# as in part refinement with
D; = D, no part definition domain is changed (nor part definitions added).

Otherwise,

1. Dx # Dq and Dy # D, then the part definition with Dy for E also exists in .#.

2. Dy = Dy, as was initially assumed, a part definition with Dy for E exists in .Z.

3. Dy =Dy, now D, C Cs(%,Dl) = Cc(%,Dz) - Cc(%,Dl) and thus [(6/) € Cc(ﬂ,Dl).
Thus, the assumed ¢’ cannot exist.

Case C. Now, for some domain D such that (%', E, D, r,r12), exists, | {e; | e; € P(e) and
I(e;) < 4E;, where E; €Dy} | is within Card"(.#',E,Dy) but not Card"(.#,E,Dy), ie.,
Card" (/' E,Dy) ¢ Card” (4, E, Dy).

If D; = D,, exactly one cardinality is changed to a subrange, thus, Card*(.Z’, E,Dy) must be
contained in Card"(.#, E, Dy).

For Dy # D,, There are 16 cases how Cc(#,D,) and C¢(.#,D;,) relate to Cc (4, Dy).

In Table 1 the symbol in the column “D;” denotes the relation between Cc(.#,D;) and
Cc(A,Dy) so that N means the sets intersect but neither contains the other and A means the sets
do not intersect, whereas D and C denote the set containment. Column “D,” has the same
meaning for D,. Relation C corresponds to the first case of Definition 13, N and D to the second
case and (A to the last case.

Table 1
# Dy “Dy “Card’(M,E,Dy)” “Card’ (.4, E, Dy)”
1 Cc c [Fi,ra] + [rar, m2) (911, q12] + [q21,.g22] = [r + 721,712 + 122)
2 C n Not applicable since Cc(.#,Dy) C Cc(A,Dy) = Cc(M,D,) C Cc(M,Dy)
3 C ) As 2
4 C 72 As 2
5 N c [0, 712] + [r21, 7] [0,q12] + [g21,922] = [r1 + 721,712 + 1]
6 N n [0,712] + [0, 75] [0,g12] +[0,92] = [0,712 — 12 + 120 + 1] = [0, 112 + 122]
7 N D) Not applicable since Cc(.#,Dx) C Cc(4,D;) = Cc(.4,Dx) C Cc(-4,Dy)
8 n (7‘\ [0,}”12] + [0.0} [O,q]g} + [0,0] = [0,}“12 77‘2]
9 ) C As 5 As 5
10 D n As 6 As 6
11 o) 2 As 6 As 6
12 D 72 As 8 As 8
13 7 C Not applicable since Cc(.#,D;) N Ce (M, Dy) # O = Cc(A,Dy) N Ce(M,Dy) # 0
4 A n As 13
15 72 o) As 13
16 72 7a) [0,0] + [0,0] [0,0] + [0, 0]
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Card" (. ,E,Dy) = Cardes (.4, E,Dy,Dy) + Cardeg (4, E, Dy, Dg) + - -+ and

Card” (ﬂ/,E, Dk) = Cardeff(%', E, Dy, Dk) + Cardeff(%’,E, D,, Dk) =+
The rest of the terms in the sums are equal between .#' and .#. Table 1 shows the (possibly)
changed terms for Card"(.#,E,Dy) and Card"(.#',E,Dy). That is, the terms resulting from the
part definitions for Dy and D, defined in E, as the inherited ones have not changed.

In all cases Card" (/' E,Dy) C Card"(.#,E,Dy) thus (iii) holds.

Therefore, after a part refinement: e | .#' = e | 4. As Sg =Sg,Sc =S¢ and T = T', the
conclusion that Eg | .#' = Eg | . is similar as in (1).

(3) Removal of an unconnected tree. No element class in the tree unconnected with the root
element class belongs to the domain D of any part definition in an element class in the tree con-
nected with root element class. Therefore, the unconnected tree does not affect the conformance
of any element structure containing an element of the root class. Thus, Es £ .#' = Eg | /.

(1)~(3) show that after any specialisation operation that modifies .# to .#', any element that
conforms to .#' also conforms to .#. Derivation of .#' from ./# by series of specialisation
operations therefore implies that .4’ is a specialisation of ..
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