Multiple Access Channels with Arbitrarily Correlated Sources

THOMAS M. COVER, fellow, IEEe, ABBAS EL GAMAL, MEMBER, IEEE, AND MASOUD SALEHI, MEMBER, IEE

Abstract

Let $\left\{\left(U_{i}, V_{i}\right)\right\}_{i=1}^{\pi}$ be a source of independent identically distributed (i.i.d.) discrete random variables with joint probability mass function $p(u, v)$ and common part $w=f(u)=g(v)$ in the sense of Witsenhausen, Gacs, and Körner. It is shown that such a source can be sent with arbitrarily small probability of error over a multiple access channel (MAC)

$$
\left\{\mathscr{X}_{1} \times \mathscr{X}_{2}, \mathscr{Y}, p\left(y \mid x_{1}, x_{2}\right)\right\},
$$

with allowed codes $\left\{x_{1}(u), x_{2}(v)\right\}$ if there exist probability mass functions $p(s), p\left(x_{1} \mid s, u\right), p\left(x_{2} \mid s, v\right)$, such that

$$
\begin{gathered}
H(U \mid V)<I\left(X_{1} ; Y \mid X_{2}, V, S\right), \\
H(V \mid U)<I\left(X_{2} ; Y \mid X_{1}, U, S\right), \\
H(U, V \mid W)<I\left(X_{1}, X_{2} ; Y \mid W, S\right), \\
H(U, V)<I\left(X_{1}, X_{2} ; Y\right),
\end{gathered}
$$

where

$$
p\left(s, u, v, x_{1}, x_{2}, y\right)=p(s) p(u, v) p\left(x_{1} \mid u, s\right) p\left(x_{2} \mid v, s\right) p\left(y \mid x_{1}, x_{2}\right) .
$$

This region includes the multiple access channel region and the SlepianWolf data compression region as special cases.

I. Introduction

THE MULTIPLE access channel (MAC) $p\left(y \mid x_{1}, x_{2}\right)$ has a capacity region [1], [2] given by the convex hull of all $\left(R_{1}, R_{2}\right)$ satisfying, for some $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$, the inequalities

$$
\begin{align*}
& R_{1} \leqslant I\left(X_{1} ; Y \mid X_{2}\right), \\
& R_{2} \leqslant I\left(X_{2} ; Y \mid X_{1}\right), \\
& R_{1}+R_{2} \leqslant I\left(X_{1}, X_{2} ; Y\right) . \tag{1}
\end{align*}
$$

Suppose now that the source U for X_{1} and V for X_{2} are correlated according to $p(u, v)$. It follows easily that U

[^0]and V can be sent over the multiple access channel if, for some $p\left(x_{1}, x_{2}\right)=p\left(x_{1}\right) p\left(x_{2}\right)$,
\[

$$
\begin{align*}
H(U) & <I\left(X_{1} ; Y \mid X_{2}\right) \\
H(V) & <I\left(X_{2} ; Y \mid X_{1}\right) \\
H(U)+H(V) & <I\left(X_{1}, X_{2} ; Y\right) \tag{2}
\end{align*}
$$
\]

In this paper, we increase this achievable region in two ways: 1) the left side will be made smaller ${ }^{1}$, and 2) the right side will be made larger by allowing X_{1} and X_{2} to depend on U and V and thereby increasing the set of mass distributions $p\left(x_{1}, x_{2}\right)$. It will be shown (see Theorem 1 for a precise and more general statement) that U and V can be sent with arbitrarily small error to Y if

$$
\begin{align*}
& H(U \mid V)<I\left(X_{1} ; Y \mid X_{2}, V\right) \\
& H(V \mid U)<I\left(X_{2} ; Y \mid X_{1}, U\right) \\
& H(U, V)<I\left(X_{1}, X_{2} ; Y\right) \tag{3}
\end{align*}
$$

for some $p\left(u, v, x_{1}, x_{2}, y\right)=p(u, v) p\left(x_{1} \mid u\right) p\left(x_{2} \mid v\right)$ $\cdot p\left(y \mid x_{1}, x_{2}\right)$. This result can be further generalized to sources (U, V) with a common part $W=f(U)=g(V)$. The following theorem is proved.

Theorem 1: A source $(\mathbb{U}, V) \sim \Pi_{i} p\left(u_{i}, v_{i}\right)$ can be sent with arbitrarily small probability of error over a multiple access channel $\left\{\mathscr{X}_{1} \times \mathscr{X}_{2}, \mathscr{Y}, p\left(y \mid x_{1}, x_{2}\right)\right\}$, with allowed codes $\left\{\boldsymbol{x}_{1}(\boldsymbol{u}), \boldsymbol{x}_{2}(v)\right\}$ if there exist probability mass functions $p(s), p\left(x_{1} \mid s, u\right), p\left(x_{2} \mid s, v\right)$, such that

$$
\begin{align*}
H(U \mid V) & <I\left(X_{1} ; Y \mid X_{2}, V, S\right), \\
H(V \mid U) & <I\left(X_{2} ; Y \mid X_{1}, U, S\right), \\
H(U, V \mid W) & <I\left(X_{1}, X_{2} ; Y \mid W, S\right), \\
H(U, V) & <I\left(X_{1}, X_{2} ; Y\right), \tag{4}
\end{align*}
$$

where $p\left(s, u, v, x_{1}, x_{2}, y\right)=p(s) p(u, v) p\left(x_{1} \mid u, s\right)$ $\cdot p\left(x_{2} \mid v, s\right) p\left(y \mid x_{1}, x_{2}\right)$.

Remark 1: The region described above is convex. Therefore no time sharing is necessary. The proof of the convexity is given in Appendix B.

Remark 2: It can be shown that if error-free transmission is possible, then in order to generate a random code for error-free transmission, it is enough to consider those auxiliary random variables S whose cardinality is bounded above by $\min \left\{\left\|X_{1}\right\| \cdot\left\|X_{2}\right\|,\|Y\|\right\}$.

[^1]Example for Theorem 1: Consider the transmission of the correlated sources (U, V) with the joint distribution $p(u, v)$ given by

V2.		
	0	1
	$1 / 3$	$1 / 3$
1	0	$1 / 3$

over the multiple access channel defined by

$$
\begin{aligned}
\mathscr{X}_{1} & =\mathscr{X}_{2}=\{0,1\} \\
\mathscr{Y} & =\{0,1,2\}, \\
Y & =X_{1}+X_{2} .
\end{aligned}
$$

Here $H(U, V)=\log 3=1.58$ bits. On the other hand, if X_{1} and X_{2} are independent,

$$
\max _{p\left(x_{1}\right) p\left(x_{2}\right)} I\left(Y ; X_{1}, X_{2}\right)=1.5 \text { bits. }
$$

Thus $H(U, V)>I\left(Y ; X_{1}, X_{2}\right)$ for all $p\left(x_{1}\right) p\left(x_{2}\right)$. Consequently there is no way, even with the use of Slepian-Wolf data compression on U and V, to use the standard multiple access channel capacity region to send U and V reliably to Y. However, it is easy to see that with the choice $X_{1} \equiv U$, and $X_{2} \equiv V$, error-free transmission of the sources over the channel is possible. This example shows that the separate source and channel coding described above is not optimal-the partial information that each of the random variables U and V contains about the other is destroyed in this separation.

To allow partial cooperation between the two transmitters, we allow our codes to depend statistically on the source outputs. This induces dependence between codewords.

We note that, while there are $2^{n H(U)} x_{1}$ associated with the typical u and $2^{n H(V)} x_{2}$ associated with the typical v, there are only $2^{n H(U, V)}$ pairs $\left(x_{1}(u), x_{2}(v)\right)$ that are likely to occur jointly.

Applications of Theorem 1 yield the following known results as special cases.

Special Cases

a) Slepian and Wolf Data Compression [3]: Let (U, V) be correlated according to $p(u, v)$. To obtain the data compression rate region, we set up a noiseless dummy channel with $Y=\left(X_{1}, X_{2}\right)$. Let $p\left(u, v, x_{1}, x_{2}\right)=$ $p(u, v) p\left(x_{1}\right) p\left(x_{2}\right)$. Then the right side of (3) collapses, yielding the known rate region

$$
\begin{array}{ll}
H(U \mid V)<I\left(X_{1} ; Y \mid X_{2}, V\right)=H\left(X_{1}\right) & \left(=R_{1}\right) \\
H(V \mid U)<I\left(X_{2} ; Y \mid X_{1}, U\right)=H\left(X_{2}\right) & \left(=R_{2}\right) \\
H(U, V)<I\left(X_{1}, X_{2} ; Y\right)=H\left(X_{1}\right)+H\left(X_{2}\right) & \left(=R_{1}+R_{2}\right) . \tag{5}
\end{array}
$$

b) Multiple Access Channel (Ahlswede [1], Liao [2]): Let U and V be independent dummy sources with rates R_{1} and R_{2}, respectively. Choose $p\left(u, v, x_{1}, y\right)=$ $p(u) p(v) p\left(x_{1}\right) p\left(x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$. Now both sides of (3)
simplify to yield achievability of rates (R_{1}, R_{2}) for the multiple access channel to

$$
\begin{align*}
& H(U \mid V)=H(U)=R_{1}<I\left(X_{1} ; Y \mid X_{2}\right), \\
& H(V \mid U)=H(V)=R_{2}<I\left(X_{2} ; Y \mid X_{1}\right), \\
& H(U, V)=H(U)+H(V)=R_{1}+R_{2}<I\left(X_{1}, X_{2} ; Y\right) . \tag{6}
\end{align*}
$$

c) Cooperative Multiple Access Channel Capacity: If both X_{1} and X_{2} have access to the same source, we can find the cooperative capacity for the multiple access channel $p\left(y \mid x_{1}, x_{2}\right)$ as follows. Let U be a dummy source with rate R, and let $W=V=U$. Choose $p\left(u, s, x_{1}, x_{2}, y\right)=$ $p(u) p(s) p\left(x_{1} \mid s\right) p\left(x_{2} \mid s\right) p\left(y \mid x_{1}, x_{2}\right)$. Eliminating the trivial inequalities, we then have the achievability of rate R if

$$
\begin{equation*}
R<I\left(X_{1}, X_{2} ; Y\right) \tag{7}
\end{equation*}
$$

for some joint probability mass function $p\left(x_{1}, x_{2}\right)$.
d) The Correlated Source Multiple Access Channel Capacity Region of Slepian and Wolf [4]: Following Slepian and Wolf [4] for the multiple access channel $p\left(y \mid x_{1}, x_{2}\right)$, suppose that x_{1} sees a source of rate R_{1}, x_{2} sees a source of rate R_{2}, and in addition, both x_{1} and x_{2} see a common source of rate R_{0}. All three sources are independent.

To obtain the desired region, let $U^{\prime}, V^{\prime}, W$ be independent dummy random variables with $R_{1}=H\left(U^{\prime}\right), R_{2}=$ $H\left(V^{\prime}\right), R_{0}=H(W)$. Let $U=\left(U^{\prime}, W\right)$ and $V=\left(V^{\prime}, W\right)$. Choose $p\left(u, v, s, x_{1}, x_{2}, y\right)=p\left(u^{\prime}\right) p\left(v^{\prime}\right) p(w) p(s) p\left(x_{1} \mid s\right)$ $\cdot p\left(x_{2} \mid s\right) p\left(y \mid x_{1}, x_{2}\right)$, where $u=\left(u^{\prime}, w\right), v=\left(v^{\prime}, w\right)$. We then have achievability of (R_{0}, R_{1}, R_{2}) if

$$
\begin{align*}
H(U \mid V) & =H\left(U^{\prime}\right)=R_{1}<I\left(X_{1} ; Y \mid X_{2}, S\right), \\
H(V \mid U) & =H\left(V^{\prime}\right)=R_{2}<I\left(X_{2} ; Y \mid X_{1}, S\right), \\
H(U, V \mid W) & =H\left(U^{\prime}\right)+H\left(V^{\prime}\right) \\
& =R_{1}+R_{2}<I\left(X_{1}, X_{2} ; Y \mid S\right), \\
H(U, V) & =H\left(U^{\prime}\right)+H\left(V^{\prime}\right)+H(W) \\
& =R_{0}+R_{1}+R_{2}<I\left(X_{1}, X_{2} ; Y\right) . \tag{8}
\end{align*}
$$

Theorem 1 shows that the multiple access channel capacity region and the Slepian and Wolf data compression region are special cases of a single theorem. Also, multiple source compression and multiple access channel coding do not seem to factor into separate source and channel coding problems. The work of Slepian and Wolf on correlated sources with common rate R_{0} and conditionally independent rates R_{1} and R_{2} can be generalized to sources with common rate R_{0} and conditionally dependent sources. Finally, as shown in Theorem 1, the dependence of U and V can be used to create the appearance of cooperation in the channel coding, even if U and V do not have a common part.
In the next section we shall give a formal definition of the problem and outline the proof for the simple achievability in (3). The proof of Theorem 1 is given in Section III. An expression for source-channel capacity is given in Section IV but does not satisfy the "single-letter" conditions that we seek.

II. Definition of the Problem

Assume we have two information sources U_{1}, U_{2}, \cdots and V_{1}, V_{2}, \cdots generated by repeated independent drawings of a pair of discrete random variables U and V from a given bivariate distribution $p(u, v)$. We shall require the following notion of the common part of two random variables.

Definition: The common part W of two random variables U and V is defined by finding the maximum integer k such that there exist functions f and g

$$
\begin{aligned}
& f: थ \rightarrow\{1,2, \cdots, k\} \\
& g: \mathscr{V} \rightarrow\{1,2, \cdots, k\}
\end{aligned}
$$

with $P\{f(U)=i\}>0, P\{g(V)=i\}>0, i=1,2, \cdots, k$, such that $f(U)=g(V)$ with probability one and then defining $W=f(U) \quad(=g(V))$.

With this definition, it is obvious that the observers of U and V can agree on the value of W with probability one. Note that any pair of sources (U, V) has a trivial common part $f(U)=g(V)=1$. Here $k=1$ in the construction that follows the definition. We shall say that U and V have a common part only if $k \geqslant 2$.

Also, it can be shown [7] that the common part of sequence $\left(U_{i}, V_{i}\right)$ i.i.d. $\sim p(u, v)$ is the sequence of the common parts W_{i}. The concept of the common part of two random variables will be used in Section III.

We now define the communication problem over the multiple access channel in Fig. 1. This includes the definition of block codes for sources, the definition of probability of error, and the definition of reliable transmission of sources over the channel.

A block code for the channel consists of an integer n, two encoding functions

$$
\begin{aligned}
& \boldsymbol{x}_{1}^{n}: \mathscr{U}^{n} \rightarrow \mathscr{X}_{1}^{n} \\
& \boldsymbol{x}_{2}^{n}: \mathscr{V}^{n} \rightarrow \mathscr{X}_{2}^{n}
\end{aligned}
$$

assigning codewords to the source outputs, and a decoding function

$$
\begin{equation*}
d^{n}: \mathscr{Y}^{n} \rightarrow \mathscr{U}^{n} \times \mathscr{V}^{n} \tag{9}
\end{equation*}
$$

The probability of error is given by

$$
\begin{align*}
P_{n}= & P\left\{\left(U^{n}, V^{n}\right) \neq d^{n}\left(\boldsymbol{Y}^{n}\right)\right\} \\
= & \sum_{(u, v) \in \mathscr{U}^{n} \times V^{n}} p\left(\boldsymbol{u}^{n}, \boldsymbol{v}^{n}\right) \\
& \cdot P\left\{d^{n}\left(\boldsymbol{Y}^{n}\right) \neq\left(u^{n}, v^{n}\right) \mid\left(U^{n}, V^{n}\right)=\left(u^{n}, v^{n}\right)\right\} . \tag{10}
\end{align*}
$$

where the joint probability mass function is given, for a code assignment $\left\{\boldsymbol{x}_{1}\left(\boldsymbol{u}^{n}\right), \boldsymbol{x}_{2}\left(\boldsymbol{v}^{n}\right)\right\}$, by

$$
\begin{equation*}
p(u, v, y)=\prod_{i=1}^{n} p\left(u_{i}, v_{i}\right) p\left(y_{i} \mid x_{1 i}\left(u^{n}\right), x_{2 i}\left(v^{n}\right)\right) \tag{11}
\end{equation*}
$$

Definition: The source $(\boldsymbol{U}, \boldsymbol{V}) \sim \Pi p\left(u_{i}, v_{i}\right)$ can be reliably transmitted over the multiple access channel ($\mathscr{X}_{1} \times$ $\left.\mathscr{X}_{2}, \mathscr{Y}, p\left(y \mid x_{1}, x_{2}\right)\right)$ if there exists a sequence of block codes $\left\{x_{1}^{n}\left(u^{n}\right), x_{2}^{n}\left(v^{n}\right)\right\}, d^{n}\left(y^{n}\right)$ such that

$$
P_{n}=P\left\{d^{n}\left(Y^{n}\right) \neq\left(U^{n}, V^{n}\right)\right\} \rightarrow 0
$$

The notions of jointly ϵ-typical sequences and the asymptotic equipartition property as defined in [5] and [6] will be used throughout this paper.

Fig. 1. Multiple access channel with arbitrarily correlated sources.

Since the proof of Theorem 1, given in the next section, is rather long and technical we shall outline here a proof of the simpler case in which U and V have no common part. In this case, we must show that U and V can be reliably sent to Y if, for $p(u, v) p\left(x_{1} \mid u\right) p\left(x_{2} \mid v\right) p\left(y \mid x_{1}, x_{2}\right)$,

$$
\begin{align*}
& H(U \mid V)<I\left(X_{1} ; Y \mid X_{2}, V\right) \\
& H(V \mid U)<I\left(X_{2} ; Y \mid X_{1}, U\right) \\
& H(U, V)<I\left(X_{1}, X_{2} ; Y\right) \tag{12}
\end{align*}
$$

The proof will employ random coding. We first describe the random code generation and encoding-decoding schemes and then analyze the probability of error.

Generating Random Codes: Fix $p\left(x_{1} \mid u\right)$ and $p\left(x_{2} \mid v\right)$; for each $u \in \mathscr{U}^{n}$ generate one x_{1} sequence drawn according to $\prod_{i=1}^{n} p\left(x_{1 i} \mid u_{i}\right)$ and for each $v \in \mathscr{V}^{n}$ generate one x_{2} sequence drawn according to $\Pi_{i=1}^{n} p\left(x_{2 i} \mid v_{i}\right)$. Call these sequences $x_{1}(\boldsymbol{u})$ and $x_{2}(v)$, respectively.

Encoding: Transmitter 1, upon observing u at the output of source 1, transmits $\boldsymbol{x}_{1}(\boldsymbol{u})$, and transmitter 2, after observing v at the output of source 2 , transmits $x_{2}(v)$. Assume the maps $\boldsymbol{x}_{1}(\cdot), \boldsymbol{x}_{2}(\cdot)$ are known to the receiver.

Decoding: Upon receiving \boldsymbol{y}, the decoder finds the only (u, v) pair such that $\left(u, v, x_{1}(u), x_{2}(v), y\right) \in A_{\epsilon}$, where A_{ϵ} is the set of jointly ϵ-typical sequences. If there is no such ($u, v)$ pair, or there exists more than one such pair, the decoder declares an error. A helpful picture is given in Fig. 2.

Error: Suppose $\left(u_{0}, v_{0}\right)$ is the source output. Then an error is made if
i) $\left(u_{0}, v_{0}, x_{1}\left(u_{0}\right), x_{2}\left(v_{0}\right), y\right) \notin A_{\epsilon}$,
or
ii) There exists some $(u, v) \neq\left(u_{0}, v_{0}\right)$ such that $\left(u, v, x_{1}(u), x_{2}(v), y\right) \in A_{\epsilon}$.
Then the probability of error P_{n} can be bounded as:

$$
\begin{align*}
& P_{n}= P\left\{\left(U_{0}, V_{0}, X_{1}\left(U_{0}\right), X_{2}\left(V_{0}\right), Y\right) \notin A_{\epsilon}\right\} \\
&+P\left\{\exists(u, v) \neq\left(U_{0}, V_{0}\right):\left(u, v, X_{1}(u), X_{2}(v), Y\right) \in A_{\epsilon},\right. \\
&\left.\left(U_{0}, V_{0}\right) \in A_{\epsilon}\right\} \\
& \leqslant \epsilon+\sum_{\substack{\left.u_{0}, v_{0}\right) \in A_{\epsilon}}} p\left(u_{0}, v_{0}\right) \\
& \cdot \sum_{\substack{u \neq u_{0}, v=v_{0}}} P\left\{\left(u, v, X_{1}(u), X_{2}(v), Y\right) \in A_{\epsilon} \mid\left(u_{0}, v_{0}\right)\right\} \\
& \cdot \sum_{\left(u_{0}, v_{0}\right) \in A_{\epsilon}} p\left(u_{0}, v_{0}\right) \sum_{\substack{u=u_{0}, v \neq v_{0}}}^{\sum} P\{\cdot\} \\
&+\sum_{\substack{\left(u_{0}, v_{0}\right) \in A_{\epsilon}}}^{\sum p\left(u_{0}, v_{0}\right) \sum_{\substack{u \neq u_{0}, v \neq v_{0}}} P\{\cdot\}} \\
& \leqslant \epsilon+2^{n(H(U \mid V)+\epsilon) 2^{-n\left(I\left(X_{1} ; Y \mid X_{2}, V\right)-\epsilon\right)}} \\
&+2^{n(H(V \mid U)+\epsilon) 2^{-n\left(I\left(X_{2} ; Y \mid X_{1}, U\right)-\epsilon\right)}} \\
&+2^{n H(U, V) 2^{-n\left(I\left(X_{1}, X_{2} ; Y\right)-\epsilon\right)} .}
\end{align*}
$$

Consequently $P_{n} \rightarrow 0$ if the conditions in (12) are satisfied.

Fig. 2. Picture of joint typicality for multiple access channel. Dots correspond to jointly typical (X_{1}, X_{2}) pairs. Note that only $2^{n H(U, V)}\left(x_{1}(u), x_{2}(v)\right)$ pairs are likely to occur.

III. Proof of Theorem 1

The encoding and decoding schemes for Theorem 1 will be described; then the probability of error will be analyzed.

Generation of Random Codes: Fix the probability mass functions $p(s), p\left(x_{1} \mid s, u\right), p\left(x_{2} \mid s, v\right)$.
i) For each $\boldsymbol{w} \in \mathscr{U} \mathscr{S}^{n}$, independently generate one s sequence according to $\Pi_{i=1}^{n} p\left(s_{i}\right)$. Index them by $s(w)$, $\boldsymbol{w} \in \mathcal{W}^{n}$.
ii) For each $\boldsymbol{u} \in \mathcal{Q}^{n}$ find the corresponding $\boldsymbol{w}=\boldsymbol{f}(\boldsymbol{u})$ $=\left(f\left(u_{1}\right), \cdots, f\left(u_{n}\right)\right)$ and independently generate one x_{1} sequence according to $\prod_{i=1}^{n} p\left(x_{1 i} \mid u_{i}, s_{i}(w)\right)$. Index the x_{1} sequences by $x_{1}(u \mid s(f(u)))$ or for simplicity by $x_{1}(u \mid s)$, $u \in Q^{n}, s \in \mathbb{S}^{n}$, where u and s are such that $s=s(f(u))$, as generated in i). The same procedure, using $\Pi_{i=1}^{n} p\left(x_{2 i} \mid v_{i}, s_{i}(w)\right)$, is repeated for the v sequences. These sequences are indexed by $x_{2}(v \mid s(g(v)))$ or for simplicity by $x_{2}(v \mid s), v \in \mathbb{V}^{n}, s \in \mathscr{S}^{n}$, where v and s are such that $s=s(g(v))$.

Encoding: Upon observing the output \boldsymbol{u} of the source, transmitter 1 finds $s(f(u))$ and sends $x_{1}(u \mid s)$. Similarly, transmitter 2 sends $x_{2}(v \mid s)$, where $s=s(g(v))$.

Note that every $u \in \mathscr{U}^{n}$ and every $v \in \mathscr{V}^{n}$ is mapped into a codeword in \mathscr{X}_{1}^{n} and \mathscr{X}_{2}^{n}, respectively. However, with high probability only $2^{n H(U, V)}$ codeword pairs (x_{1}, x_{2}) can simultaneously occur. This fact is crucial in the proof of achievability.

Decoding: Upon observing the received sequence y, the decoder declares ($\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}$) to be the transmitted source sequence pair if $(\hat{\boldsymbol{u}}, \hat{v})$ is the unique pair $(\boldsymbol{u}, \boldsymbol{v})$ such that

$$
\left(u, v, w, s(w), x_{1}(u \mid s), x_{2}(v \mid s), y\right) \in A_{\epsilon}
$$

where $\boldsymbol{w}=\boldsymbol{f}(\boldsymbol{u})$.
Error: Suppose $\left(u_{0}, v_{0}\right)$ was the source output pair, then an error is made if
i) $\left(u_{0}, v_{0}, w_{0}, s\left(w_{0}\right), x_{1}\left(u_{0} \mid s\right), x_{2}\left(v_{0} \mid s\right), y\right) \in \mathrm{A}_{\epsilon}$,
or
ii) there exists some $(u, v) \neq\left(u_{0}, v_{0}\right)$ such that $\left(u, v, w, s(w), x_{1}(u \mid s), x_{2}(v \mid s), y\right) \in A_{\epsilon}$.
Analysis of the Probability of Error: Letting A_{e} denote the appropriate set of jointly ϵ-typical sequences (see [5] and [6]), we have
$\vec{P}_{n}=\sum_{(u, v) \in \mathscr{Q}^{n} \times \mathbb{V}^{n}} p(\boldsymbol{u}, v) P\{$ error made at decoder $\mid(\boldsymbol{u}, \boldsymbol{v})$ is the output of the source $\}$,
or
$\bar{P}_{n} \leqslant \sum_{(u, v) \in A_{e}} p(u, v) P\{$ error made at decoder $\mid(u, v)$
is the output of the source $\}+\sum_{(u, v, w) \notin A_{\epsilon}} p(u, v)$.

From the asymptotic equipartition property (AEP), for sufficiently large n,
$\bar{P}_{n} \leqslant \sum_{(u, v, w) \in A_{\epsilon}} p(u, v) P\{$ error made at decoder $\mid(u, v)$
is the output of the source $\}+\epsilon$. (16)
Now we show that as long as $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \in \mathrm{A}_{\epsilon}$, there exists an upper bound independent of ($u, v)$ for the terms in the summation. To show this, we assume that $\left(u_{0}, v_{0}, w_{0}\right) \in A_{\epsilon}$ and let \mathfrak{B} denote the event that this special triple is the output of the source. We are interested in an upper bound for $P\{$ error made at decoder $\mid \mathscr{B}\}$.

The event E that an error is made at decoder is the union of two events E_{1} and E_{2},

$$
\begin{equation*}
E=E_{1} \cup E_{2}, \tag{17}
\end{equation*}
$$

where
E_{1} : the event that $\left(u_{0}, v_{0}, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right)\right.$, $\left.X_{2}\left(v \mid S_{0}\right), Y\right) \notin A_{\epsilon} ;$
E_{2} : the event that there exists some $(u, v) \neq\left(u_{0}, v_{0}\right)$ such that

$$
\left(u, v, w, S(w), X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon}
$$

Note: Since we have generated our code randomly and we are averaging the probability of error over all coding schemes generated this way, S, X_{1}, X_{2}, and Y are the only random variables in the event E.

It follows from the AEP that n can be chosen large enough such that

$$
\begin{equation*}
P\left\{E_{1} \mid \mathscr{B}\right\} \leqslant \epsilon, \tag{18}
\end{equation*}
$$

and therefore by the union bound

$$
\begin{equation*}
P\{E \mid \mathscr{B}\} \leqslant P\left\{E_{2} \mid \mathscr{B}\right\}+\epsilon . \tag{19}
\end{equation*}
$$

Using (16) and (19) and the definition of the event E we have

$$
\begin{equation*}
\bar{P}_{n} \leqslant P\left\{E_{2} \mid \mathscr{B}\right\}+2 \epsilon . \tag{20}
\end{equation*}
$$

We decompose the event E_{2} into

$$
\begin{equation*}
E_{2}=E_{21} \cup E_{22} \cup E_{23} \cup E_{24} \cup E_{25} \tag{21}
\end{equation*}
$$

where
E_{21} : the event that there exists a $u \neq u_{0}$ such that

$$
\left(u, v_{0}, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right), X_{2}\left(v_{0} \mid S_{0}\right), Y\right) \in A_{\epsilon}
$$

$E_{22}:$ the event that there exists a $v \neq v_{0}$ such that

$$
\left(u_{0}, v, w_{0}, S_{0}, X_{1}\left(u_{0} \mid S_{0}\right), X_{2}\left(v \mid S_{0}\right), Y\right) \in A_{\epsilon}
$$

E_{23} : the event that there exists a $u \neq u_{0}$ and a $v \neq v_{0}$ such that

$$
f(u)=g(v)=w_{0}
$$

and

$$
\left(u, v, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right), X_{2}\left(v \mid S_{0}\right), Y\right) \in A_{\epsilon}
$$

E_{24} : the event that there exists a $\boldsymbol{u} \neq \boldsymbol{u}_{0}$ and a $\boldsymbol{v} \neq \boldsymbol{v}_{0}$ such that

$$
w=f(u)=g(v) \neq w_{0}, \quad S(f(u)) \neq S_{0}
$$

and

$$
\left(u, v, w, S(w), X_{1}(u \mid S), X_{2}(v \mid s), Y\right) \in A_{\epsilon} ;
$$

E_{25} : the event that there exists a $u \neq u_{0}$ and a $v \neq v_{0}$ such that

$$
w=f(u)=g(v) \neq w_{0}, \quad S(f(u))=S_{0}
$$

and

$$
\left(u, v, w, S(w), X_{1}(u \mid S), X_{2}(v \mid s), Y\right) \in A_{\varepsilon} .
$$

By the union bound, we have

$$
\begin{equation*}
P\left\{E_{2} \mid \mathfrak{B}\right\} \leqslant \sum_{i=1}^{5} P\left\{E_{2 i} \mid \mathscr{B}\right\} . \tag{22}
\end{equation*}
$$

Now it remains to bound $P\left\{E_{2 i} \mid \mathscr{G}\right\}$ for $i=1,2,3,4,5$.
Bound for $P\left\{E_{21} \mid \mathscr{G}\right\}$: We have

$$
\begin{align*}
P\left\{E_{21} \mid \mathscr{B}\right\} & =P\left\{\exists u \neq u_{0}:\left(u, v_{0}, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right),\right.\right. \\
& \left.\left.X_{2}\left(v_{0} \mid S_{0}\right), \boldsymbol{r}\right) \in A_{\epsilon} \mid \mathscr{B}\right\} . \tag{23}
\end{align*}
$$

Therefore,

$$
\begin{align*}
P\left\{E_{21} \mid \mathscr{G}\right\}= & \sum_{\substack{u \neq u_{0}: \\
\left(u, v_{0}, w_{0}\right) \in A_{c}}} P\left\{\left(u, v_{0}, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right),\right.\right. \\
& \left.\left.X_{2}\left(v_{0} \mid S_{0}\right), Y\right) \in A_{\mathrm{c}} \mid \mathscr{B}\right\} . \tag{24}
\end{align*}
$$

From Appendix A (A13) we have for $\left(u, v_{0}, w_{0}\right) \in A_{\epsilon}$, $P\left\{\left(u, v_{0}, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right), X_{2}\left(v_{0} \mid S_{0}\right), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\}$

$$
\begin{equation*}
\leqslant 2^{-n\left[I\left(X X_{1} ; Y \mid X_{2}, V, S\right)-8 \epsilon\right]} . \tag{25}
\end{equation*}
$$

Notice that this bound is independent of \boldsymbol{u} as long as (u, v_{0}) $\in A_{\epsilon}$. Substituting (25) into (24), we have

$$
\begin{equation*}
P\left\{E_{21} \mid G \beta\right\} \leqslant \sum_{\substack{u \neq u_{0}: \\\left(u, v_{0}, w_{0}\right) \in A_{\epsilon}}} 2^{-n\left[I\left(X_{1} ; Y \mid X_{2}, V, S\right)-8 \epsilon\right]} \tag{26}
\end{equation*}
$$

or
$P\left\{E_{21} \mid \mathscr{B}\right\} \leqslant 2^{-n\left[I\left(X_{1} ; Y \mid X_{2}, V, S\right)-8 \epsilon\right]} \cdot\left\|\left\{u:\left(u, v_{0}, w_{0}\right) \in A_{\epsilon}\right\}\right\|$,
but typicality yields

$$
\begin{equation*}
\left\|\left\{u:\left(u, v_{0}, w_{0}\right) \in A_{\epsilon}\right\}\right\| \leqslant 2^{n[H(U \mid V, W)+2 \epsilon]} . \tag{28}
\end{equation*}
$$

From (27) and (28) and using the fact that $H(U \mid V, W)=$ $H(U \mid V)$, we have

$$
\begin{equation*}
P\left\{E_{21} \mid \mathscr{B}\right\} \leqslant 2^{n\left[H(U \mid V)-I\left(X_{1} ; Y \mid X_{2}, V, S\right)+10 \epsilon\right]} . \tag{29}
\end{equation*}
$$

Thus if

$$
\begin{equation*}
H(U \mid V)<I\left(X_{1} ; Y \mid X_{2}, V, S\right)-10 \epsilon, \tag{30}
\end{equation*}
$$

then for large enough n, we have

$$
\begin{equation*}
P\left\{E_{21} \mid \mathscr{B}\right\} \leqslant \epsilon . \tag{31}
\end{equation*}
$$

Bound for $P\left\{E_{22} \mid \mathscr{B}\right\}$: This case is parallel to the previous case and it can be shown similarly that if

$$
\begin{equation*}
H(V \mid U)<I\left(X_{2} ; Y \mid X_{1}, U, S\right)-10 \epsilon, \tag{32}
\end{equation*}
$$

then by choosing n sufficiently large, we have

$$
\begin{equation*}
P\left\{E_{22} \mid \mathscr{B}\right\} \leqslant \epsilon . \tag{33}
\end{equation*}
$$

Bound for $P\left\{E_{23} \mid \mathscr{1}\right\}$: Here we have
$P\left\{E_{23} \mid \mathscr{B}\right\}=P\left\{\exists \boldsymbol{u} \neq u_{0}, v \neq v_{0}: f(u)=g(v)=w_{0}\right.$ and

$$
\begin{equation*}
\left.\left(u, v, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right), x_{2}\left(v \mid S_{0}\right), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\} \tag{34}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& P\left\{E_{23} \mid \mathscr{B}\right\}= \sum_{\substack{u \neq u_{0}, v \neq v_{0} \\
\left(u, v, w_{0}\right) \in A_{c}}} P\left\{\left(u, v, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right),\right.\right. \\
&\left.\left.\quad X_{2}\left(v \mid S_{0}\right), \boldsymbol{Y}\right) \in A_{\epsilon} \mid \mathfrak{B}\right\} \tag{35}
\end{align*}
$$

Again, note that u, v, and w_{0} are fixed and $S_{0}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2}$, and \boldsymbol{Y} are random variables. Using Appendix A (A17) we have

$$
\begin{align*}
P\left\{\left(u, v, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right),\right.\right. & \left.\left.X_{2}\left(v \mid S_{0}\right), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\} \\
& \leqslant 2^{-n\left[I\left(X_{1}, X_{2} ; Y \mid W, S\right)-8 \varepsilon\right]} . \tag{36}
\end{align*}
$$

Substituting this bound into (35), and noting that this bound is independent of $(\boldsymbol{u}, \boldsymbol{v})$, we have

$$
\begin{equation*}
P\left\{E_{23} \mid \mathscr{B}\right\} \leqslant \sum_{\substack{\boldsymbol{u} \neq \boldsymbol{u}_{0}, v \neq \mathbf{v}_{0}: \\
\left(\boldsymbol{u}, \boldsymbol{v}, w_{0}\right) \in A_{\begin{subarray}{c}{ } }}}\end{subarray}} 2^{-n\left[I\left(X_{1}, X_{2} ; Y \mid W, S\right)-8 \epsilon\right]}, \tag{3}
\end{equation*}
$$

or

$$
\begin{align*}
P\left\{E_{23} \mid \mathscr{B}\right\} & \leqslant 2^{-n\left[I\left(X_{1}, X_{2} ; Y \mid W, S\right)-8 \epsilon\right]} \\
& \cdot\left\|\left\{(u, v):\left(u, v, w_{0}\right) \in A_{\epsilon}, u \neq u_{0}, v \neq v_{0}\right\}\right\| . \tag{38}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
\left\{(u, v):\left(u, v, w_{0}\right) \in A_{\epsilon},\right. & \left.u \neq u_{0}, v \neq v_{0}\right\} \\
& \subset\left\{(u, v):\left(u, v, w_{0}\right) \in A_{\epsilon}\right\}, \tag{39}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\left\{(u, v):\left(u, v, w_{0}\right) \in A_{\epsilon}\right\}\right\| \leqslant 2^{n[H(U, V \mid W)+2 \epsilon]} \tag{40}
\end{equation*}
$$

Using (38)-(40), we obtain

$$
\begin{equation*}
P\left\{E_{23} \mid \mathscr{B}\right\} \leqslant 2^{n\left[H(U, V \mid W)-I\left(X_{1}, X_{2} ; Y \mid W, S\right)+10 \epsilon\right]} . \tag{41}
\end{equation*}
$$

Thus if

$$
\begin{equation*}
H(U, V, W)<I\left(X_{1}, X_{2} ; Y \mid W, S\right)-10 \epsilon, \tag{42}
\end{equation*}
$$

then by choosing n large enough, we can make

$$
\begin{equation*}
P\left\{E_{23} \mid \mathscr{B}\right\} \leqslant \epsilon . \tag{43}
\end{equation*}
$$

Bound for $P\left\{E_{23} \mid \mathscr{B}\right\}$: Recall from the definition of E_{24} that
$P\left\{E_{24} \mid \mathcal{B}\right\}=P\left\{\exists u \neq u_{0}, v \neq v_{0}:\right.$
$w=f(u)=g(v) \neq w_{0}, S(f(u)) \neq S_{0}$ and
$\left.\left(u, v, w, S(w), S(f(u)), X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\}$,
from which we have

$$
\begin{align*}
& P\left\{E_{24} \mid \mathfrak{B}\right\}=\sum_{\substack{u \neq u_{0}, v \neq \boldsymbol{v}_{0}: \\
(u, v \neq w) \in \mathcal{A}_{0}, w \neq w_{0}}} P\left\{S(w) \neq S_{0}\right. \text { and } \\
& \left.\quad\left(u, v, w, S(w), X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\} . \tag{45}
\end{align*}
$$

But, by the chain rule,

$$
\begin{align*}
P\{S(w) \neq & S_{0} \text { and }(u, v, w, S(w), \\
& \left.\left.X_{1}(u \mid S), X_{2}(v \mid S), \boldsymbol{Y}\right) \in A_{\epsilon} \mid \mathfrak{B}\right\} \\
= & P\left\{S(w) \neq S_{0} \mid \mathscr{B}\right\} P\left\{\left(u, v, w, S(w), X_{1}(u \mid S)\right.\right. \\
& \left.\left.X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid S(w) \neq S_{0}, \mathscr{B}\right\} \tag{46}
\end{align*}
$$

Therefore

$$
\begin{align*}
P\{S(w) \neq & S_{0} \text { and }(u, v, w, S(w), \\
& \left.\left.X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\} \\
\leqslant & P((u, v, w, S(w) \\
& \left.\left.X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid S(w) \neq S_{0}, \mathscr{B}\right\} \tag{47}
\end{align*}
$$

But

$$
\begin{align*}
P\{ & (u, v, w, S(w), \\
& \left.\left.X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid S(w) \neq S_{0}, \mathscr{B}\right\} \\
= & \sum_{s^{\prime} \in S^{n}} P\left\{\left(u, v, w, s^{\prime},\right.\right. \\
& \left.\left.X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in A_{\epsilon} \mid S_{0} \neq s^{\prime}, \mathscr{B}\right\} \cdot P\left\{S(w)=s^{\prime} \mid \mathscr{B}\right\} \\
= & \sum_{s^{\prime} \in A_{\epsilon}} P\left\{\left(u, v, w, s^{\prime},\right.\right. \\
& \left.\left.X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in A_{\epsilon} \mid S_{0} \neq s^{\prime}, \mathscr{B}\right\} \cdot P\left\{S(w)=s^{\prime} \mid \mathscr{B}\right\} \tag{48}
\end{align*}
$$

where the last equality follows from the fact that for $\boldsymbol{s}^{\prime} \notin A_{\epsilon}$,

$$
P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in A_{\epsilon} \mid S_{0} \neq s^{\prime}, \mathscr{B}\right\}=0
$$

From Appendix $\mathrm{A}(\mathrm{A} 20)$ for $s^{\prime} \in A_{\epsilon}$, we have

$$
\begin{align*}
P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right)\right.\right. & \left., Y) \in A_{\epsilon} \mid S_{0} \neq s^{\prime}, \mathscr{B}\right\} \\
& \leqslant 2^{-n\left[I\left(X_{1}, X_{2} ; Y\right)-8 \epsilon\right]} \tag{49}
\end{align*}
$$

Therefore

$$
\begin{align*}
& P\{(u, v, w, S(w) \\
& \left.\left.\qquad X_{1}(u \mid S), X_{2}(v \mid S), \boldsymbol{Y}\right) \in A_{\epsilon} \mid S(w) \neq S_{0}, \mathscr{B}\right\} \\
& \leqslant \sum_{s^{\prime} \in A_{\epsilon}} 2^{-n\left[I\left(X_{1}, X_{2} ; Y\right)-8 \epsilon\right]} 2^{-n[H(S)+\epsilon]} \tag{50}
\end{align*}
$$

Using the fact that

$$
\begin{equation*}
\left\|\left\{s^{\prime}: s^{\prime} \in A_{\epsilon}\right\}\right\| \leqslant 2^{n[H(S)+\epsilon]} \tag{51}
\end{equation*}
$$

we have

$$
\begin{align*}
& P\{(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{S}(\boldsymbol{w}), \\
& \left.\left.X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid S(w) \neq S_{0}, \mathscr{B}\right\} \\
& \leqslant 2^{-n\left[I\left(X_{1}, X_{2} ; Y\right)-8 \epsilon\right]} . \tag{52}
\end{align*}
$$

Substituting this result into (46) and then into (49) we have

$$
\begin{equation*}
P\left\{E_{24} \mid \mathscr{B}\right\} \leqslant \sum_{\substack{u \neq u_{0}, v \neq v_{0} \\(u, v, w) \in A_{e}, w \neq w_{0}}} 2^{-n\left[I\left(X_{1}, X_{2} ; Y\right)-8 \epsilon\right]} \tag{53}
\end{equation*}
$$

or

$$
\begin{equation*}
P\left\{E_{24} \mid \mathscr{B}\right\} \leqslant 2^{-n\left[1\left(X_{1}, X_{2} ; Y\right)-8 \epsilon\right]} \cdot\left\|\left\{(u, v):(u, v) \in A_{\epsilon}\right\}\right\|, \tag{54}
\end{equation*}
$$

but

$$
\begin{equation*}
\left\|\left\{(u, v):(u, v) \in A_{\epsilon}\right\}\right\| \leqslant 2^{n[H(U, V)+\epsilon]} . \tag{55}
\end{equation*}
$$

Hence

$$
\begin{equation*}
P\left\{E_{24} \mid \mathscr{B}\right\}<2^{n\left[H(U, V)-I\left(X_{1}, X_{2} ; Y\right)+9 \epsilon\right]} \tag{56}
\end{equation*}
$$

From this inequality it follows that if

$$
\begin{equation*}
H(U, V)<I\left(X_{1}, X_{2} ; Y\right)-9 €, \tag{57}
\end{equation*}
$$

then we can choose n sufficiently large that

$$
\begin{equation*}
P\left\{E_{24} \mid \mathscr{B}\right\}<\epsilon . \tag{58}
\end{equation*}
$$

Bound for $P\left\{E_{25} \mid G B\right\}$: Recall from the definition of E_{25} that

$$
\begin{align*}
& P\left\{E_{25} \mid \mathscr{B}\right\}=P\left\{\exists u \neq u_{0}, v \neq v_{0}\right. \\
& w=f(u)=g(v) \neq w_{0}, S(w)=S_{0} \\
&\left.\left(u, v, w, S(w), X_{\mathrm{I}}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\} \tag{59}
\end{align*}
$$

Here, as in the previous cases, we can write,

$$
\begin{align*}
& P\left\{E_{25} \mid \mathscr{B}\right\}=\sum_{\substack{u \neq u_{0}, v \neq v_{0}: \\
(u, v, w) \in A_{\epsilon}, w \neq w_{0}}} P\left\{S(w)=S_{0}\right. \text { and } \\
& \left.\quad\left(u, v, w, S(w), X_{1}(u \mid S), X_{2}(v \mid s), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\}, \tag{60}
\end{align*}
$$

but by the chain rule we have

$$
\begin{align*}
& P\left\{S (\boldsymbol { w }) = S _ { 0 } \text { and } \left(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{S}(\boldsymbol{w}), X_{1}(\boldsymbol{u} \mid \boldsymbol{S})\right.\right. \\
&\left.\left.X_{2}(v \mid S), \boldsymbol{Y}\right) \in A_{\epsilon} \mid \mathscr{B}\right\}= P\left\{\boldsymbol{S}(\boldsymbol{w})=\boldsymbol{S}_{0} \mid \mathscr{B}\right\} \\
& \cdot P\left\{\left(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{S}(\boldsymbol{w}), X_{1}(\boldsymbol{u} \mid \boldsymbol{S})\right.\right. \\
&\left.\left.X_{2}(v \mid \boldsymbol{v}), \boldsymbol{Y}\right) \in A_{\epsilon} \mid \boldsymbol{S}(\boldsymbol{w})=\boldsymbol{S}_{0}, \mathscr{B}\right\} \tag{61}
\end{align*}
$$

It can be easily seen that

$$
\begin{align*}
& P\left\{S(w)=S_{0} \mid \mathscr{B}\right\} P\left\{\left(u, v, w, S(w), X_{1}(u \mid S)\right.\right. \\
& \left.\left.\quad X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid S(w)=S_{0}, \mathscr{B}\right\} \\
& =\sum_{s^{\prime} \in \delta^{n}} P\left\{S(w)=s^{\prime} \mid \mathscr{B}\right\} P\left\{S_{0}=s^{\prime} \mid \mathscr{B}\right\} \\
& \cdot \tag{62}\\
& P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in A_{\epsilon} \mid S_{0}=s^{\prime}, \mathscr{B}\right\},
\end{align*}
$$

but since $s^{\prime} \notin A_{\epsilon}$ we have
$P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in A_{\epsilon} \mid S_{0}=s^{\prime}, \mathscr{B}\right\}=0$.

Therefore, using this and (60)-(62), we have

$$
\begin{array}{r}
P\left\{E_{25} \mid \mathscr{G}\right\}=\sum_{\substack{u \neq u_{0}, v \neq v_{0}: \\
(u, v, w) \in A_{e}, w \neq w_{0}}} \sum_{s^{\prime}: s^{\prime} \in A_{e}} P\left\{S(w)=s^{\prime} \mid \mathscr{B}\right\} \\
\cdot P\left\{S_{0}=s^{\prime} \mid \mathscr{B}\right\} P_{25}^{\prime} \tag{64}
\end{array}
$$

where

$$
\begin{align*}
& P_{25}^{\prime}=P\left\{\left(u, v, w, s^{\prime}\right.\right. \\
& \left.\left.\qquad X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in A_{e} \mid S_{0}=s^{\prime}, \mathscr{B}\right\} \tag{65}
\end{align*}
$$

By using Appendix A (A23), we can bound P_{25}^{\prime} by

$$
\begin{equation*}
P_{25}^{\prime} \leqslant 2^{-n\left[\left(X_{1}, X_{2} ; Y \mid S\right)-8 \epsilon\right]} \tag{66}
\end{equation*}
$$

On the other hand for $s^{\prime} \in A_{\epsilon}$ we have

$$
\begin{equation*}
P\left\{S(w)=s^{\prime} \mid \mathscr{B}\right\} \leqslant 2^{-n[H(S)-\epsilon]} \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left\{S_{0}=s^{\prime} \mid \mathscr{B}\right\} \leqslant 2^{-n[H(S)-\epsilon]} \tag{68}
\end{equation*}
$$

Substituting this result in (64), we have

$$
\begin{align*}
P\left\{E_{25} \mid \mathscr{B}\right\} \leqslant & \sum_{\substack{u \neq u_{0}, v \neq v_{0}: \\
(u, v, w) \in A_{\epsilon}, w \neq w_{0}}} \sum_{s^{\prime}: s^{\prime} \in A_{\epsilon}} 2^{-n[2 H(S)-2 \epsilon]} \\
& \cdot 2^{-n\left[I\left(X_{1}, X_{2} ; Y \mid S\right)-8 \epsilon\right]} \tag{69}
\end{align*}
$$

or

$$
\begin{align*}
P\left\{E_{25} \mid \mathscr{B}\right\} & <2^{-n\left[f\left(X_{1}, X_{2} ; Y \mid S\right)+2 H(S)-10 \epsilon\right]} \\
& \cdot\left\|\left\{(u, v):(u, v) \in A_{\epsilon}\right\}\right\| \cdot\left\|\left\{s^{\prime}: s^{\prime} \in A_{\epsilon}\right\}\right\| . \tag{70}
\end{align*}
$$

Substituting

$$
\begin{gather*}
\left\|\left\{(u, v):(u, v) \in A_{\epsilon}\right\}\right\| \leqslant 2^{n[H(U, V)+\epsilon]} \tag{71}\\
\left\|\left\{s^{\prime}: s^{\prime} \in A_{\epsilon}\right\}\right\| \leqslant 2^{n[H(S)+\epsilon]} \tag{72}
\end{gather*}
$$

into (70), we have

$$
\begin{equation*}
P\left\{E_{25} \mid \mathscr{B}\right\}<2^{n\left[H(U, V)-I\left(X_{1}, X_{2} ; Y \mid S\right)-H(S)+12 \epsilon\right]} \tag{73}
\end{equation*}
$$

This shows that if

$$
\begin{equation*}
H(U, V)<I\left(X_{1}, X_{2} ; Y \mid S\right)+H(S)-12 \epsilon, \tag{74}
\end{equation*}
$$

then by choosing a sufficiently large n

$$
\begin{equation*}
P\left\{E_{25} \mid \mathscr{B}\right\}<\epsilon \tag{75}
\end{equation*}
$$

Now we prove that inequality (57) dominates inequality (74), thus establishing the redundancy of condition (74). Expand the right side of (74):

$$
\begin{align*}
& I\left(X_{1}, X_{2} ; Y \mid S\right)+H(S)-12 \epsilon \\
& \quad=H(Y \mid S)+H(S)-H\left(Y \mid X_{1}, X_{2}, S\right)-12 \epsilon \\
& \quad \stackrel{(1)}{=} H(Y, S)-H\left(Y \mid X_{1}, X_{2}\right)-12 \epsilon \\
& \quad \geqslant H(Y)-H\left(Y \mid X_{1}, X_{2}\right)-12 \epsilon \\
& \quad=I\left(X_{1}, X_{2} ; Y\right)-12 \epsilon \tag{76}
\end{align*}
$$

where in step (1), we have used the fact that S and Y are independent given (X_{1}, X_{2}). Using the fact that ϵ is arbitrary, this shows that if (57) is satisfied, then (74) is also satisfied.

The bounds on $P\left\{E_{2 i} \mid \mathscr{B}\right\}$ for $i=1,2,3,4,5$ show that if conditions (30), (32), (42), and (57) are satisfied, we will have (see (22)),

$$
\begin{equation*}
P\left\{E_{2} \mid \mathscr{B}\right\}<5 \epsilon . \tag{77}
\end{equation*}
$$

Finally from (20) we see that

$$
\begin{equation*}
\bar{P}_{n}<7 \epsilon, \tag{78}
\end{equation*}
$$

if the conditions of Theorem 1 are satisfied. This completes the proof of Theorem 1.

IV. An Uncomputable Expression for the Capacity Region

The previous theorem develops so-called single letter characterizations of an achievable rate region for correlated sources sent over a multiple access channel. This region is computable in the sense that it can be calculated to any desired accuracy in finite time. The following theorem exhibits the capacity region but does not lead to a finite computation.

Theorem 2 (Capacity Region): The correlated sources (U, V) can be communicated reliably over the discrete memoryless multiple access channel ($\mathscr{X}_{1} \times$ $\left.\mathscr{X}_{2}, \mathcal{Y}, p\left(y \mid x_{1}, x_{2}\right)\right)$ if and only if

$$
(H(U \mid V), H(V \mid U), H(U, V)) \in \bigcup_{k=1}^{\infty} C_{k}
$$

where

$$
\begin{align*}
C_{k}=\left\{\left(R_{1}, R_{2}, R_{3}\right): \quad\right. & R_{1}<\frac{1}{k} I\left(X_{1}^{k} ; Y^{k} \mid U^{k}, X_{2}^{k}\right) \\
& R_{2}<\frac{1}{k} I\left(X_{2}^{k} ; \boldsymbol{Y}^{k} \mid V^{k}, X_{1}^{k}\right) \\
& R_{3}<\frac{1}{k} I\left(X_{1}^{k}, X_{2}^{k} ; \boldsymbol{Y}^{k}\right) \tag{79}
\end{align*}
$$

for some

$$
\left.\prod_{i=1}^{k} p\left(u_{i}, v_{i}\right) p\left(x^{k} \mid u^{k}\right) p\left(x^{k} \mid v^{k}\right) \prod_{i=1}^{k} p\left(y_{i} \mid x_{1 i}, x_{2 i}\right)\right\}
$$

Remark 1: It is easily seen that $C_{k} \subseteq C_{2 k} \subseteq C_{3 k} \subseteq \cdots$. In fact, $C_{n+m} \supseteq(m /(m+n)) C_{m} \cup(n /(m+n)) C_{n}$, for all m, n. Also, the sets C_{k} are uniformly bounded above. Thus, from Gallager [1, Appendix 4A], $\cup_{k=1}^{\infty} C_{k}=$ $\lim _{k \rightarrow \infty} C_{k}$.

Remark 2: The existence of $C=\lim _{k \rightarrow \infty} C_{k}$ suggests that C is computable. However, there are no evident bounds on the computation error, so, while we know $C \supseteq C_{k}$, we do not have an upper bound $\bar{C}_{k}, C \subseteq \bar{C}_{k}$, and hence do not know when C has been defined to sufficient accuracy to terminate the computation.

Proof of Theorem 2:

1) Achievability: Reliable transmission for \boldsymbol{H} in C_{k} follows immediately from Theorem 1 if we replace the channel by its k th extension.
2) Converse: Given the two correlated sources

$$
(\boldsymbol{U}, \boldsymbol{V}) \sim \prod_{i=1}^{n} p\left(u_{i}, v_{i}\right)
$$

and a code book

$$
\mathcal{C}=\left\{\left(x_{1}(u), x_{2}(v)\right): u \in \mathscr{U}^{n}, v \in \mathcal{V}^{n}\right\}
$$

we construct the empirical probability mass function on the set $\mathscr{Q}^{n} \times \mathscr{V}^{n} \times \mathscr{X}_{1}^{n} \times \mathfrak{X}_{2}^{n} \times \mathscr{Y}^{n}$ defined
by

$$
\begin{align*}
p\left(u, v, x_{1}, x_{2}, y\right)=\prod_{i=1}^{n} & \left(p\left(u_{i}, v_{i}\right) p\left(x_{1} \mid u\right) p\left(x_{2} \mid v\right)\right. \\
& \prod_{i=1}^{n} p\left(y_{i} \mid x_{1 i}, x_{2 i}\right) \tag{80}
\end{align*}
$$

Now, applying Fano's inequality, we obtain

$$
\begin{align*}
(1 / n) H(U, V \mid Y) & \leqslant P_{n}(1 / n) \log \left\|थ^{n} \times \mathscr{V}^{n}\right\|+1 / n \\
& =P_{n}(\log \|U\|+\log \|V\|)+1 / n \triangleq \lambda_{n} \tag{81}
\end{align*}
$$

where $\|U\|$ and $\|V\|$ are the respective alphabet sizes (assumed finite) of U and V. Thus if $P_{n} \rightarrow 0$, λ_{n} must converge to zero. Standard inequalities yield

$$
\text { i) } \begin{align*}
(1 / n) H(\boldsymbol{U} \mid \boldsymbol{V})= & H(U \mid \boldsymbol{V}) \\
= & (1 / n) H\left(\boldsymbol{U} \mid \boldsymbol{V}, \boldsymbol{X}_{2}\right) \\
= & (1 / n) I\left(\boldsymbol{U} ; \boldsymbol{Y} \mid \boldsymbol{V}, \boldsymbol{X}_{2}\right) \\
& +(1 / n) H\left(\boldsymbol{U} \mid \boldsymbol{V}, \boldsymbol{Y}, \boldsymbol{X}_{2}\right) \\
\leqslant & (1 / n) I\left(\boldsymbol{X}_{1} ; \boldsymbol{Y} \mid \boldsymbol{V}, \boldsymbol{X}_{2}\right)+\lambda_{n} \tag{82}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\text { ii) } \quad H(V \mid U) \leqslant(1 / n) I\left(X_{2} ; Y \mid U, X_{1}\right)+\lambda_{n} \tag{83}
\end{equation*}
$$

Finally,

$$
\text { iii) } \begin{align*}
H(U, V) & \leqslant(1 / n) I(\boldsymbol{U}, \boldsymbol{V} ; \boldsymbol{Y})+\lambda_{n} \\
& \leqslant(1 / n) I\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2} ; \boldsymbol{Y}\right)+\lambda_{n} . \tag{84}
\end{align*}
$$

Now, if (U, V) is to be transmitted reliably, then $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows from (82), (83), and (84), that

$$
(H(U \mid V), H(V \mid U), H(U, V)) \in \lim _{n \rightarrow \infty} C_{n}
$$

which proves the converse
Finally, for m correlated sources, we have the following result.

Theorem 3: The correlated sources $\left\{U_{1}, U_{2}, \cdots, U_{m}\right\}$ can be communicated reliably over the MAC ($\mathscr{X}_{1} \times \mathfrak{X}_{2}$ $\left.\times \cdots \times \mathcal{X}_{m}, \mathscr{Y}, p\left(y \mid x_{1}, x_{2}, \cdots, x_{m}\right)\right)$ if and only if there exists some k such that

$$
\begin{equation*}
H\left(U(S) \mid U\left(S^{c}\right)\right)<(1 / k) I\left(X(S) ; \boldsymbol{Y} \mid X\left(S^{c}\right), U\left(S^{c}\right)\right) \tag{85}
\end{equation*}
$$

for all subsets $S \subseteq\{1,2, \cdots, m\}$.
In Theorem 2, as well as in the previous sections, we assumed that the observed number of source symbols per unit time was equal to the number of channel transmissions per unit time.

We now generalize the problem to allow the observation of R source symbols per channel transmission.

Theorem 4: The correlated sources $\left\{\left(U_{i}, V_{i}\right)\right\}_{i=1}^{\infty}$, arriving at the channel at the rate R symbols per channel use, can be communicated reliably over the discrete memoryless multiple access channel if and only if

$$
(H(U \mid V), H(V \mid U), H(U, V)) \epsilon \bigcup_{n=1}^{\infty} C_{n}
$$

where

$$
\begin{align*}
C_{n}=\left\{\left(R_{1}, R_{2}, R_{3}\right):\right. & R_{1}<\frac{1}{\lfloor n R\rfloor} I\left(X_{1}^{n} ; Y^{n}, U^{\lfloor n R]}, X_{2}^{n}\right) \\
& R_{2}<\frac{1}{\lfloor n R\rfloor} I\left(X_{2}^{n} ; Y^{n}, V^{[n R]}, X_{1}^{n}\right) \\
& R_{3}<\frac{1}{\lfloor n R\rfloor} I\left(X_{1}^{n}, X_{2}^{n} ; Y^{n}\right) \tag{86}
\end{align*}
$$

for some

$$
\begin{equation*}
\left.\prod_{i=1}^{[R n]} p\left(u_{i}, v_{i}\right) p\left(x_{1}^{n}\left(u^{[R n]}\right)\right) p\left(x_{2}^{n}\left(v^{[R n]}\right)\right) \prod_{i=1}^{n} p\left(y_{i} \mid x_{1 i}, x_{2 i}\right)\right\} \tag{87}
\end{equation*}
$$

Proof: The proof follows easily from that of Theorem 2 by choosing a sequence of integers p_{i}, q_{i} such that $p_{i} / q_{i} \rightarrow R$ and breaking the ($\boldsymbol{U}, \boldsymbol{V}$) sequences into blocks of superletters of length p_{i} and breaking the X sequence into blocks of superletters of length q_{i}.

Appendix A

In this appendix, we shall bound

$$
P\left\{\left(u, v, w, S(w), X_{1}(u \mid S), X_{2}(v \mid S), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\}
$$

under the various assumptions of independence on $u, v, \boldsymbol{v}, \boldsymbol{s}, \boldsymbol{X}_{1}$, X_{2}, and \boldsymbol{Y} that arise in the proof of Theorem 1. Recall that ($\left.u_{0}, v_{0}, w_{0}\right) \in A_{\epsilon}$, where A_{ϵ} denotes the set of all jointly typical ($u, v, w)$ sequences, and \mathscr{G} denotes the event that this particular (μ_{0}, v_{0}) is the output of the source. Our bound will hold uniformly for each $\left(u_{0}, v_{0}\right) \in A_{e}$.

First we prove a lemma which is used repeatedly in the proof.
Lemma: Let ($Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$) be random variables with joint distribution $p\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right)$. Fix $\left(z_{1}, z_{2}\right) \in A_{\epsilon}$, and let $\boldsymbol{Z}_{3}, \boldsymbol{Z}_{4}, \boldsymbol{Z}_{5}$ be drawn according to
$P\left(Z_{3}=z_{3}, Z_{4}=z_{4}, Z_{5}=z_{5} \mid z_{1}, z_{2}\right)$

$$
\begin{equation*}
=\prod_{i=1}^{n} p\left(z_{3 i} \mid z_{1 i}, z_{2 i}\right) p\left(z_{4 i} \mid z_{3 i}, z_{2 i}\right) p\left(z_{5 i} \mid z_{3 i}, z_{1 i}\right) \tag{A1}
\end{equation*}
$$

In other words \boldsymbol{Z}_{3} depends only on $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2} ; \boldsymbol{Z}_{4}$ depends only on $\boldsymbol{Z}_{3}, \boldsymbol{Z}_{2}$; and \boldsymbol{Z}_{5} depends only on $\boldsymbol{Z}_{3}, \boldsymbol{Z}_{1}$. Then

$$
\begin{align*}
& P\left\{\left(z_{1}, z_{2}, Z_{3}, Z_{4}, Z_{5}\right) \in A_{\epsilon}\right\} \\
& \quad \leqslant 2^{-n \mid I\left(Z_{1} ; Z_{4} \mid Z_{2}, Z_{3}\right)+I\left(Z_{5} ; Z_{2}, Z_{4} \mid Z_{1}, Z_{3}\right)-8 \epsilon 1} \tag{A2}
\end{align*}
$$

Proof: Since $\left(z_{1}, z_{2}\right) \in A_{\epsilon}$, we have
$P\left\{\left(z_{1}, z_{2}, Z_{3}, Z_{4}, Z_{5}\right) \in A_{\varepsilon}\right\}$

$$
\begin{equation*}
=\sum_{\substack{\left(z_{3}, z_{4}, z_{5}\right): \\\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in A_{e}}} P\left\{\left(Z_{3}, Z_{4}, Z_{5}\right)=\left(z_{3}, z_{4}, z_{5}\right) \mid z_{1}, z_{2}\right\} . \tag{A3}
\end{equation*}
$$

But from (A1)

$$
\begin{align*}
& P\left\{\left(Z_{3}, Z_{4}, Z_{5}\right)=\left(z_{3}, z_{4}, z_{5}\right) \mid z_{1}, z_{2}\right\} \\
& \quad=P\left\{Z_{3}=z_{3} \mid z_{1}, z_{2}\right\} \cdot P\left\{Z_{4}=z_{4} \mid z_{3}, z_{2}\right\} \cdot P\left\{Z_{5}=z_{5} \mid z_{3}, z_{1}\right\} \tag{A4}
\end{align*}
$$

and since $\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in A_{6}$, we have from the AEP

$$
\begin{align*}
& P\left\{Z_{3}=z_{3} \mid z_{1}, z_{2}\right\} \leqslant 2^{-n\left[H\left(Z_{3} \mid Z_{1}, Z_{2}\right)+2 \epsilon\right],} \tag{A5}\\
& P\left\{Z_{4}=z_{4} \mid z_{3}, z_{2}\right\} \leqslant 2^{-n\left[H\left(Z_{4} \mid Z_{3}, Z_{2}\right)+2 \epsilon\right]}, \tag{A6}\\
& P\left\{Z_{5}=z_{5} \mid z_{3}, z_{1}\right\} \leqslant 2^{-n\left[H\left(Z_{5} \mid Z_{3}, Z_{1}\right)+2 \epsilon\right]}, \tag{A7}
\end{align*}
$$

Using (A5)-(A7) and the bound on the cardinality of the set $\left\{\left(z_{3}, z_{4}, z_{5}\right):\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \in A_{6}\right\}$, we have
$P\left\{\left(z_{1}, z_{2}, Z_{3}, Z_{4}, Z_{5}\right) \in A_{\epsilon}\right\} \leqslant 2^{n\left[H\left(Z_{3}, Z_{4}, Z_{5} \mid Z_{1}, Z_{2}\right)-z_{6}\right]}$
$.2^{-n\left[H\left(Z_{3} \mid Z_{1}, Z_{2}\right)+2 \epsilon\right]} 2^{-n\left[H\left(Z_{4} \mid Z_{3}, Z_{2}\right)+2 \epsilon\right]} 2^{-n\left[H\left(Z_{5} \mid Z_{3}, Z_{1}\right)+2 \epsilon\right]}$.

Substituting

$$
\begin{array}{r}
H\left(Z_{3}, Z_{4}, Z_{5} \mid Z_{1}, Z_{2}\right)=H\left(Z_{3} \mid Z_{1}, Z_{2}\right)+H\left(Z_{4} \mid Z_{1}, Z_{2}, Z_{3}\right) \\
+H\left(Z_{5} \mid Z_{1}, Z_{2}, Z_{3}, Z_{4}\right) \tag{A9}
\end{array}
$$

into (A8) we have

$$
\begin{align*}
& P\left\{\left(z_{1}, z_{2}, Z_{3}, Z_{4}, Z_{5}\right) \in A_{\epsilon}\right\} \\
& \leqslant 2^{-n\left[I\left(Z_{4} ; Z_{1} \mid Z_{2}, Z_{3}\right)+I\left(Z_{5} ; Z_{2}, Z_{4} \mid Z_{1}, Z_{3}\right)-8 \varepsilon\right]} \tag{A10}
\end{align*}
$$

This completes the proof.
Now we bound $P\left\{\left(u, v, f(u), S(f(u)), X_{1}(u \mid S), X_{2}(v \mid S), Y\right)\right.$ $\left.\in A_{e} \mid \mathscr{B}\right\}$ in different cases. Note that in all cases we are assuming $(u, v, w) \in A_{\epsilon}$. We now consider specific conditions.

1) $\boldsymbol{u \neq u _ { 0 }}, \boldsymbol{v}=\boldsymbol{v}_{0}$ (therefore $\boldsymbol{w}=\boldsymbol{w}_{0}, \boldsymbol{S}=\boldsymbol{S}_{0}$).

Here $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}_{0}$ are fixed and $\boldsymbol{S}_{0}, \boldsymbol{X}_{1}\left(\boldsymbol{u} \mid \boldsymbol{S}_{0}\right), \boldsymbol{X}_{2}\left(\boldsymbol{v} \mid \boldsymbol{S}_{0}\right), \boldsymbol{Y}$ are random variables. We use Lemma 1 with $Z_{1}=\left(V_{0}, \boldsymbol{w}_{0}\right), \boldsymbol{z}_{2}=u$, $Z_{3}=S_{0}, Z_{4}=X_{1}\left(u \mid S_{0}\right), Z_{5}=\left(X_{2}\left(v_{0} \mid S_{0}\right), Y\right)$. Note that the assumption of the lemma on the conditional distribution of Z_{3}, Z_{4}, Z_{5} given $\boldsymbol{z}_{1}, \boldsymbol{z}_{2}$ are satisfied. In (A10), we have

$$
\begin{align*}
I\left(Z_{4} ; Z_{1} \mid Z_{3}, Z_{2}\right) & =I\left(X_{1} ; V, W \mid U, S\right) \\
& =H\left(X_{1} \mid U, S\right)-H\left(X_{1} \mid U, V, W, S\right) \\
& =H\left(X_{1} \mid U, S\right)-H\left(X_{1} \mid U, S\right)=0, \tag{A11}
\end{align*}
$$

where the last step follows from the fact that X_{1} and (V, W) are conditionally independent given (U, S).

We also have

$$
\begin{align*}
& I\left(Z_{5} ; Z_{2}, Z_{4} \mid Z_{1}, Z_{3}\right)= I\left(X_{2}, Y ; U, X_{1} \mid V, W, S\right) \\
& \stackrel{(1)}{=} I\left(X_{2}, Y ; U, X_{1} \mid V, S\right) \\
&= H\left(X_{2}, Y \mid V, S\right)-H\left(X_{2}, Y \mid U, V, X_{1}, S\right) \\
& \stackrel{(2)}{=} H\left(X_{2} \mid V, S\right)+H\left(Y \mid X_{2}, V, S\right) \\
&-H\left(X_{2} \mid U, V, X_{1}, S\right)-H\left(Y \mid X_{1}, X_{2}\right) \\
& \stackrel{(3)}{=} H\left(X_{2} \mid V, S\right)+H\left(Y \mid X_{2}, V, S\right) \\
&-H\left(X_{2} \mid V, S\right)-H\left(Y \mid X_{1}, X_{2}\right) \\
& \quad \stackrel{(4)}{=} H\left(Y \mid X_{2}, V, S\right)-H\left(Y \mid X_{1}, X_{2}, V, S\right) \\
&= I\left(Y ; X_{1} \mid X_{2}, V, S\right), \tag{A12}
\end{align*}
$$

where each equality is justified by the following reasoning:

1) because W is a deterministic function of V;
2) from the chain rule for conditional entropy and the fact that Y and (U, V, S) are conditionally independent given (X_{1}, X_{2});
3) from the fact that X_{2} and (U, X_{1}) are conditionally independent given (V, S);
4) from the fact that Y and (V, S) are conditionally independent given (X_{1}, X_{2}).

From (A10)-(A12) it follows that

$$
\begin{align*}
P\left\{\left(u, v_{0}, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right), X_{2}\left(v_{0} \mid S_{0}\right), Y\right) \in A_{\epsilon} \mid \mathscr{G}\right\} \\
\leqslant 2^{-n\left[I\left(Y ; X_{1} \mid X_{2}, V, S\right)-8 \epsilon\right]} . \tag{Al3}
\end{align*}
$$

2) $v \neq v_{0}, u=u_{0}$ (therefore $w=w_{0}, S=S_{0}$).

Again we assume ($\left.u_{0}, v, w_{0}\right) \in A_{\epsilon}$. This case is similar to case (A1), and we obtain

$$
\begin{align*}
P\left\{\left(v, u_{0}, w_{0}, S_{0}, X_{1}\left(u_{0} \mid S_{0}\right),\right.\right. & \left.\left.X_{2}\left(v \mid S_{0}\right), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\} \\
& \leqslant 2^{-n\left[I\left(Y ; X_{2} \mid X_{1}, U, S\right)-8 \epsilon\right]} \tag{A14}
\end{align*}
$$

3) $\boldsymbol{u} \neq \boldsymbol{u}_{0}, v \neq \boldsymbol{v}_{0}$ but $\boldsymbol{w}=\boldsymbol{w}_{0}$ (hence $\boldsymbol{S}=\boldsymbol{S}_{0}$).

As usual we are assuming $\left(u, v, w_{0}\right) \in A_{\epsilon}$. Here u, v, w_{0} are fixed and $S_{0}, X_{1}\left(u \mid S_{0}\right), X_{2}\left(v \mid S_{0}\right)$, and Y are random variables. We apply the lemma with $z_{1}=w_{0}, z_{2}=(u, v), Z_{3}=S_{0}, Z_{4}=$ $\left(X_{1}\left(u \mid S_{0}\right), X_{2}\left(v \mid S_{0}\right)\right), \boldsymbol{Z}_{5}=Y$. Again, with this choice, the conditions of the lemma on the joint distribution function of Z_{3}, Z_{4}, Z_{5} given z_{1}, z_{2} are satisfied, and we can apply inequality (A10). We have

$$
\begin{equation*}
I\left(Z_{4} ; Z_{1} \mid Z_{2}, Z_{3}\right)=I\left(X_{1}, X_{2} ; W \mid U, V, S\right)=0 \tag{A15}
\end{equation*}
$$

because W is a deterministic function of U and V. Also

$$
\begin{align*}
I\left(Z_{5} ; Z_{2}, Z_{4} \mid Z_{1}, Z_{3}\right) & =I\left(Y ; U, V, X_{1}, X_{2} \mid W, S\right) \\
& \stackrel{(1)}{=} H(Y \mid W, S)-H\left(Y \mid X_{1}, X_{2}, W, S\right) \\
& =I\left(Y ; X_{1}, X_{2} \mid W, S\right) \tag{A16}
\end{align*}
$$

where (1) follows from the conditional independence of Y and (U, V) given (X_{1}, X_{2}). From (A10), (A15), and (A16) it follows that

$$
\begin{align*}
P\left\{\left(u, v, w_{0}, S_{0}, X_{1}\left(u \mid S_{0}\right), X_{2}(v \mid\right.\right. & \left.\left.\left.S_{0}\right), Y\right) \in A_{\epsilon} \mid \mathscr{B}\right\} \\
& \leqslant 2^{-n\left[I\left(X_{1}, X_{2} ; Y \mid W, S\right)-8 \epsilon\right]} . \tag{A17}
\end{align*}
$$

4) $u \neq u_{0}, v \neq v_{0}, w \neq w_{0}, S_{0} \neq s^{\prime}$.

Here u, v, w, s^{\prime} are fixed, X_{1}, X_{2}, and Y are random variables, and we wish to bound $P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in\right.$ $\left.A_{\epsilon} \mid S_{0} \neq s^{\prime}, \mathscr{B}\right\}$. It is assumed that $(u, v, w) \in A_{\epsilon}$ and $s^{\prime} \in A_{\epsilon}$. Therefore by the independence of S from U, V, W it follows that $\left(u, v, w, s^{\prime}\right) \in A_{\epsilon}$. In the lemma, let

$$
\begin{array}{ll}
z_{1}=\varnothing, \quad z_{2}=\left(u, v, w, s^{\prime}\right), & Z_{3}=\varnothing, \\
Z_{4}=\left(X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right),\right. & Z_{5}=Y .
\end{array}
$$

From the lemma, we have

$$
\begin{equation*}
I\left(Z_{4} ; Z_{1} \mid Z_{2}, Z_{3}\right)=I\left(X_{1}, X_{2} ; \varnothing \mid U, V, W, S\right)=0 \tag{A18}
\end{equation*}
$$

and
$I\left(Z_{3} ; Z_{2}, Z_{4} \mid Z_{1}, Z_{3}\right)=I\left(Y ; U, V, W, S, X_{1}, X_{2}\right)=I\left(Y ; X_{1}, X_{2}\right)$.

Hence

$$
\begin{align*}
& P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right)\right.\left.\in A_{\epsilon} \mid S_{0} \neq s^{\prime}, \mathscr{B}\right\} \\
& \leqslant 2^{-n\left[I\left(X_{1}, X_{2} ; Y\right)-8 \epsilon\right]} \tag{A20}
\end{align*}
$$

5) $u \neq u_{0}, v \neq v_{0}, w \neq w_{0}, S_{0}=s^{\prime}$.

Here, as in (A4), ($\left.u, v, w, s^{\prime}\right) \in A_{\epsilon}$ are fixed and X_{1}, X_{2}, and \boldsymbol{Y} are random variables, and we wish to bound

$$
P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right), Y\right) \in A_{\epsilon} \mid S_{0}=s^{\prime}, \mathscr{B}\right\}
$$

In the lemma, set

$$
\begin{aligned}
& z_{1}=s^{\prime}, \quad z_{2}=\left(u, v, w, s^{\prime}\right), \quad Z_{3}=\varnothing \\
& Z_{4}=\left(X_{1}\left(u \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right)\right), \quad Z_{5}=Y
\end{aligned}
$$

thus obtaining

$$
\begin{equation*}
I\left(Z_{4} ; Z_{1} \mid Z_{2}, Z_{3}\right)=I\left(X_{1}, X_{2} ; S \mid U, V, W, S\right)=0 \tag{A21}
\end{equation*}
$$

and

$$
\begin{align*}
I\left(Z_{5} ; Z_{2}, Z_{4} \mid Z_{1}, Z_{3}\right) & =I\left(Y ; U, V, W, S, X_{1}, X_{2} \mid S\right) \\
& \stackrel{(1)}{=} H(Y \mid S)-H\left(Y \mid X_{1}, X_{2}, S\right) \\
& =I\left(Y ; X_{1}, X_{2} \mid S\right) \tag{A22}
\end{align*}
$$

where step (1) follows from the conditional independence of Y and (U, V, W) given (X_{1}, X_{2}). Again, from the lemma, we obtain the bound

$$
\begin{align*}
& P\left\{\left(u, v, w, s^{\prime}, X_{1}\left(v \mid s^{\prime}\right), X_{2}\left(v \mid s^{\prime}\right)\right.\right.\left., Y) \in A_{\xi} \mid S_{0}=s^{\prime}, \mathscr{G}\right\} \\
& \leqslant 2^{-n\left[I\left(X_{1}, X_{2} ; Y \mid S\right)-8 \epsilon\right]} \tag{A23}
\end{align*}
$$

Appendix B

Proof of Convexity in Theorem 1
Let $p_{1}(s) p_{1}\left(x_{1} \mid u, s\right) p_{1}\left(x_{2} \mid v, s\right)$ and $p_{2}(s) p_{2}\left(x_{1} \mid u, s\right)$ $\cdot p_{2}\left(x_{2} \mid v, s\right)$ be two arbitrary conditional mass functions on $\mathcal{S} \times \mathfrak{X}_{1} \times \mathfrak{X}_{2}$. To show convexity, it suffices to show that for any $\alpha \in[0,1]$, there exists a conditional mass function $p\left(s^{\prime}\right) p\left(x_{1} \mid u, s^{\prime}\right) p\left(x_{2} \mid v, s^{\prime}\right)$ such that $\alpha I_{1}\left(X_{1} ; Y \mid X_{2}, V, S\right)+(1-\alpha) I_{2}\left(X_{1} ; Y \mid X_{2}, V, S\right)$ $\leqslant I\left(X_{1} ; Y \mid X_{2}, V, S^{\prime}\right)$,
$\alpha I_{1}\left(X_{2} ; Y \mid X_{1}, U, S\right)+(1-\alpha) I_{2}\left(X_{2} ; Y \mid X_{1}, U, S\right)$

$$
\begin{equation*}
\leqslant I\left(X_{2} ; Y \mid X_{1}, U, S^{\prime}\right) \tag{B2}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha I_{1}\left(X_{1}, X_{2} ; Y\right)+(1-\alpha) I_{2}\left(X_{1}, X_{2} ; Y\right) \leqslant I\left(X_{1}, X_{2} ; Y\right), \tag{B3}
\end{equation*}
$$

where the subscripts on the I refer to the conditional mass function used.

Define the independent random variable T, taking the value 1 with probability α and 2 with probability $1-\alpha$. let $S^{\prime}=(S, T)$ and observe that

$$
\begin{aligned}
& (\mathrm{B} 1)=I\left(X_{1} ; Y \mid X_{2}, V, S^{\prime}\right), \\
& (\mathrm{B} 2)=I\left(X_{2} ; Y \mid X_{1}, U, S^{\prime}\right),
\end{aligned}
$$

and

$$
(\mathrm{B} 3)=I\left(X_{1}, X_{2} ; Y \mid T\right) \leqslant I\left(X_{1}, X_{2} ; Y\right),
$$

thus establishing convexity.

References

[1] R. Ahlswede, "Multi-way communication channels," in Proc. 2nd Int. Symp. on Information Theory, Tsahkadsor, Armenian S.S.R., 1971, pp. 23-52, Publishing House of the Hungarian Academy of Sciences, 1973.
[2] H. Liao, "A coding theorem for multiple access communications," presented at the International Symp. on Information Theory, Asilomar, 1972. Also Ph.D. dissertation, "Multiple access channels," Dept. of Electrical Engineering, University of Hawaii, 1972.
[3] D. Slepian and J. K. Wolf, "Noiseless coding of correlated information sources," IEEE Trans. Inform. Theory, vol. IT-19, pp. 471-480, July 1973. Reprinted in Key Papers in the Development of Information Theory, D. Slepian, Ed. New York: IEEE, 1974, pp. 450-459.
[4] D. Slepian and J. K. Wolf, "A coding theorem for multiple access channels with correlated sources," Bell Syst. Tech. J., vol. 52, pp. 1037-1076, Sept. 1973.
[5] T. Cover, "An achievable rate region for the broadcast channel," IEEE Trans. Inform. Theory, vol. IT-21, no. 4, pp. 399-404, July 1975.
[6] T. Cover, "A proof of the data compression theorem of Slepian and Wolf for ergodic sources," IEEE Trans. Inform. Theory, vol. IT-21, no. 2, pp. 226-228, Mar. 1975. Reprinted in Ergodic and Information Theory, L. Davisson and R. Gray eds.), Benchmark Papers in Electrical Engineering and Computer Science, Dowden, Hutchinson, and Ross, Penn.
[7] H. Witsenhausen, "On sequences of pairs of dependent random variables," SIAM J. Appl. Math., vol. 28, pp. 100-113, Jan. 1975.

[^0]: Manuscript received November 28, 1978; revised February 28, 1980. This work was supported in part by the National Science Foundation under Grant ENG 76-23334, in part by the Stanford Research Institute under International Contract DAHC-15-C-0187, and in part by the Joint Scientific Engineering Program under Contracts N00014-75-C-0601 and F44620-76-C-0601. This paper was presented at the 1979 IEEE International Symposium on Information Theory, Grignano, Italy, June 25-29, 1979.
 T. M. Cover is with the Departments of Electrical Engineering and Statistics, Stanford University, Durand Building, Room 121, Stanford, CA 94305.
 A. El Gamal was with the Department of Electrical Engineering, University of Southern California, University Park, Los Angeles, CA. He is now with the Department of Electrical Engineering, Stanford University, Stanford, CA 94305.
 M. Salehi was with the Department of Electrical Engineering, Stanford University, Stanford, CA. He is now with the Department of Electrical Engineering, University of Isfahan, Isfahan, Iran.

[^1]: ${ }^{1}$ This improvement could be obtained from the results of Slepian and Wolf [3].

