
1

Multiple Access for Mobile-UAV Enabled
Networks: Joint Trajectory Design and Resource

Allocation
Fangyu Cui, Yunlong Cai, Zhijin Qin, Minjian Zhao, and Geoffrey Ye Li

Abstract—In this article, we investigate joint trajectory design
and resource allocation algorithms to maximize the minimum
average rate among ground users for unmanned aerial vehicle
(UAV) communication systems, where both the orthogonal mul-
tiple access (OMA) and non-orthogonal multiple access (NOMA)
modes are considered. We first formulate the problems for UAV
communications with the OMA and NOMA modes, respectively,
which contain binary variables and highly coupled nonconvex
objective functions and constraints. In order to handle the
challenging problems, we transform the original problems into
more tractable forms and then develop novel algorithms based
on penalty dual-decomposition (PDD) technique to solve them.
Simulation results show that the proposed algorithms outperform
the benchmarks.

Index Terms—UAV communications, trajectory optimization,
resource allocation, NOMA.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) can improve the
capacity and support massive connectivity in the fifth gen-
eration (5G) and Internet of Things (IoT) networks [1]–[4].
Different from traditional orthogonal multiple access (OMA),
NOMA1 utilizes power domain in multiplexing in order to
support multiple users sharing the same resource block. As a
result, more users can be served with limited resource blocks
and the network capacity is also improved but at the cost of
extra interference and additional complexity at the receiver.
The basic NOMA has been first proposed in [5]. Then,
various NOMA related techniques have been investigated,
including multiple antenna based NOMA [6]–[8], cooperative
NOMA [9]–[11], power allocation in NOMA [12]–[14], phys-
ical layer security in NOMA [15], and spectral and energy
efficiency in NOMA [16]–[18].

Unmanned aerial vehicle (UAV) communications are also
attracting increasing interest recently due to flexible deploy-
ment, high mobility, and low cost [19], [20]. The UAV can be
either used as an aerial user equipment (UE) [21]–[24] or a
base station (BS) [25]–[37]. In [21], a three-dimensional (3D)
cellular network is introduced, where both the BS and UE are
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UAVs. In [22]–[24], the UAVs are regarded as aerial users and
connected to the ground BSs of cellular networks. In [22], the
pathloss between the UAV UE and the ground BS is measured.
In [23] and [24], the uplink of the cellular-connected UAV
network is investigated and the interference due to the unique
air-to-ground channel is managed. While in [25]–[30], the
UAVs are considered as aerial quasi-static BSs or relays to
support ground users in a given area. The deployment and al-
titudes of the UAVs are optimized to improve the performance
of the network with a limit number of UAVs. Mobile-UAV
networks, with the moving UAV BS instead of hovering at
a fixed place, are also investigated. In [31], the UAV relay
flies in a circular trajectory and the resource allocation is
optimized to maximize the energy efficiency. Recently, the
UAV trajectory is also considered in optimization to further
improve the capacity [32], [33], physical security [34], energy
efficiency [35], [36], and average age-of-information [37].
In [37], the authors jointly optimize the trajectory as well as
energy and service time allocations to minimize the average
age-of-information for IoT networks.

Usually, the users are assumed to be multiplexed in a time
division multiple access (TDMA) mode when performing UAV
trajectory optimization [32], [34], [36], [37]. In TDMA, a user
either communicates in a basic time slot or not. Therefore,
the scheduling variable must be binary. However, for the
algorithms already proposed in the literature, the scheduling
variables are usually non-binary for optimal performance. One
way to address the issue is to divide the original time slots into
more sub-slots and assign fractional resource accordingly [32],
[34], [36]. Nevertheless, dividing a large time slot into too
many small time slots may increase the burden of synchro-
nization and cause other practical issues. Motivated by this, we
investigate the algorithm that can directly converge to binary
solutions in this paper. On the other hand, NOMA with proper
power allocation may achieve higher transmission rate than
OMA [5], which can be potentially used in UAV networks.
There have been several studies that investigate the application
of NOMA in UAV networks [38]–[40]. The work in [38]
analyzes the outage performance of mobile-UAV network with
a fixed circular trajectory. In [39], NOMA is employed in
the network where the UAV works as the static BS and
optimize the altitude. However, to the best of our knowledge,
the trajectory optimization for NOMA based UAV network has
not been investigated yet. The challenge of this issue comes
from the varying successive interference cancellation (SIC)
order in NOMA detection during the flight of the UAV. In this
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paper, we adopt NOMA in mobile-UAV networks and jointly
optimize the UAV trajectory and power allocation to maximize
the capacity of the NOMA communications.

In this work, we investigate joint trajectory design and
resource allocation to maximize the minimum average rate
among ground users for mobile-UAV communication systems,
where both the OMA and NOMA modes are considered.
The constraints of optimization problems include initial and
final locations, UAV speed, and the scheduling variables. The
optimization problems contain highly coupled nonconvex ob-
jective functions and are hard to handle. Moreover, the binary
discrete constraints make the problems more challenging. For
NOMA, SIC detection is used at the receiver [5]. Therefore,
we should also take signal detection order into consideration,
which may vary during the flight of the UAV and should be
updated according to the trajectory in the optimization.

In order to address the above challenges, we first introduce
some auxiliary variables and transform the original problems
into more tractable forms. Specifically, we equivalently trans-
form the binary variables into continuous ones with some
equality constraints. In order to tackle the equality constraints,
we incorporate the corresponding augmented Lagrangian (AL)
terms into the objective functions. Then, with the aid of
penalty dual-decomposition (PDD) technique, we develop
double-loop iterative algorithms to solve the problems.

The main contributions of this paper are summarized as
follows:

1) We present mobile-UAV enabled communication net-
works in the OMA and NOMA modes, respectively, and
then formulate the corresponding joint trajectory design
and resource allocation problems.

2) We transform the original problems to identical ones
in the sense of optimal solutions and develop the PDD
based algorithms to solve them. The proposed algorithms
guarantee to converge to the local stationary solutions
of the transformed problems, which are feasible for the
original mixed-integer problems and meet the necessary
conditions of optimal solutions.

3) We provide the complexity analysis of the algorithms
and show that the proposed algorithms outperform other
benchmarks through simulations.

The rest of this paper is organized as follows. Section II
presents the system model of the mobile-UAV communica-
tion networks and formulates the problems. Sections III and
IV propose the PDD based optimization algorithms for the
OMA and NOMA modes, respectively. Section V provides
the complexity analysis of the algorithms and Section VI
presents the simulation results. Finally, the paper is concluded
in Section VII.

Notations: Scalars are denoted by lower-case letters, vectors
are denoted by boldface lower-case letters, and matrices are
denoted by boldface upper-case letters. For a matrix A, AH ,
and A−1 denote the conjugate transpose and pseudo-inverse,
respectively. Moreover, |x|, ∥x∥, and ∥X∥ denote the absolute
value of a scalar x, the Euclidean norm of a vector x,
and the Frobenius norm of a matrix X, respectively. The
notations ℜ{.} and ℑ{.} represent the real and imaginary parts
of a variable, respectively. For spaces, Rm×n denotes the space

Fig. 1: The mobile-UAV communication systems accessed in either
OMA mode or NOMA mode.

of m×n real matrices and Cm×n correspondingly denotes the
space of m× n complex matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the models of the UAV
communication systems with OMA and NOMA, respectively.
Then, we formulate the optimization problems.

A. System model
Consider a downlink mobile-UAV communication system

as shown in Fig. 1, where one UAV is employed to serve K
users on the ground. The UAV takes time T to fly from the
initial location q0 to the final location qT at a fixed altitude dh
above the ground2. The initial and final locations of the UAV
are assumed to be fixed. Moreover, the maximum speed of the
UAV is denoted as Vmax. All the users served by the UAV are
assumed to share the same frequency band and multiplexed in
other domains. The users are usually multiplexed in a TDMA
mode, which can be regarded as a type of OMA scheme.
Meanwhile, we can also employ NOMA in multiplexing to
provide more access opportunities or higher transmission rates
for each user. In the NOMA mode, all the users are served
at the same time with different allocated power levels. At the
receiver, SIC is employed to detect the signals for different
users in ascending order of the channel gains.

We assume that the horizontal coordinate of user k is
denoted as wk ∈ R2, k ∈ K ≜ {1, . . . ,K}, and the
time-varying horizontal coordinate of the UAV is denoted
as q(t) ∈ R2, 0 ≤ t ≤ T . To make the problem more
tractable, the flight time T is discretized into N time slots
and the horizontal trajectory coordinates of the UAV can be
denoted as q(n) ∈ R2, n ∈ N ≜ {1, . . . , N}. Moreover, the
trajectory should meet the following constraints determined by
the maximum speed, initial and final locations, respectively:

∥q(n+ 1)− q(n)∥ ≤ Vmaxδt, n ∈ N , (1)

q(1) = q0, (2)

2Omnidirectional antenna and the dominating line-of-sight links are con-
sidered in this paper. The performance will increase when the UAV is closer
to the ground users, i.e., flies at a lower altitude. Hence, the altitude of the
UAV is set as the lowest allowed height.
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and
q(N) = qT , (3)

where δt denotes the time slot length. The time slot length δt
should be small enough so that the location of the UAV can be
seen as approximately unchanged within each time slot. On the
other hand, δt should not be too small with the consideration
of complexity.

The distance between the UAV and user k at time slot n is
denoted as

dk(n) =
√
d2h + ∥q(n)−wk∥2, ∀n, k. (4)

Since there are no obstacles in the air, we can assume that the
links between the UAV and the users are dominated by line-
of-sight (LoS) links3 As a result, the channel gain follows the
free-space model and path loss only depends on the distance.
By presuming the path loss index to be 2, we can express the
channel gain for user k at time slot n as

hk(n) =

√
ρ0

d2h + ∥q(n)−wk∥2
, ∀n, k, (5)

where ρ0 denotes the channel power gain at the reference
distance 1 m.

The main difference between the OMA and NOMA modes
is the access scheme of ground users. In the OMA mode, the
UAV only communicates with one user during each time slot
so that all the transmission power is allocated to one user.
Therefore, the signal-to-noise ratio (SNR) for user k at time
slot n in OMA can be expressed as

γOMA,k(n) ≜
|hk(n)|2P

σ2
=

ρ0P

σ2(d2h + ∥q(n)−wk∥2)
, ∀n, k,

(6)

where σ2 denotes the variance of the additive white Gaussian
noise (AWGN), and P denotes the downlink transmission
power of the UAV. While in the NOMA mode, the UAV
serves multiple users at the same time. Moreover, the signals
for users closer to the UAV and with higher channel gains
are regarded as interference for those farther from the UAV
and with lower channel gains due to the ascending order
of the channel gains in SIC [5]. Therefore, we impose a
type of binary indicator βk,l(n) ∈ {0, 1} to indicate that the
distance from the UAV to user k is larger than that to user
l when βk,l(n) = 1, otherwise, βk,l(n) = 0. As a result,
the signal-to-interference-plus-noise ratio (SINR) for user k at
time slot n can be expressed as in (7), where Pk(n) denotes
the downlink transmission power allocated to user k at time
slot n and should meet the following constraints

Pk(n) ≥ 0, ∀n, k, (8)

and ∑
k∈K

Pk(n) ≤ P, ∀n. (9)

3The problem will be more complicated if both LoS and non-LoS (NLoS)
links are considered. For example, the study in [27] employs the probabilistic
LoS/NLoS channel model, in which the altitude will affect the probabilities of
having LoS connectivity for the ground users and should also be optimized.
But, the problem framework does not change too much and our proposed
algorithm can be directly extended to this case.

B. OMA mode

We formulate the optimization problem for the OMA mode
here. The achievable average rate of user k over all the N
time slots can be expressed as

ROMA,k ≜ 1

N

N∑
n=1

αk(n) log(1 + γOMA,k(n)), (10)

where αk(n) ∈ {0, 1} is imposed as the scheduling variable.
When αk(n) = 1, the time slot n is allocated to user k.
In order to achieve fairness, we maximize the achievable
minimum average rate among the users by jointly optimizing
the UAV trajectory, {q(n)}, and user scheduling, {αk(n)}.
Therefore, the problem can be formulated as

max
{q(n),αk(n)}

min
∀k

ROMA,k (11a)

s.t. ∥q(n+ 1)− q(n)∥ ≤ Vmaxδt, ∀n, (11b)
q(1) = q0, q(N) = qT , (11c)∑
k∈K

αk(n) ≤ 1, ∀n, (11d)

αk(n) ∈ {0, 1}, ∀n, k, (11e)

where (11d) and (11e) ensure that at most one user is sched-
uled at each time slot.

C. NOMA mode

We formulate the optimization problem for the NOMA
mode here. The achievable average rate of user k over all
the N time slots can be expressed as

RNOMA,k ≜ 1

N

N∑
n=1

log(1 + γNOMA,k(n)). (12)

To maximize the achievable minimum average rate among the
users, we jointly optimize the UAV trajectory, {q(n)}, and
power allocation, {Pk(n)}. This problem can be formulated
as

max
{q(n),Pk(n)}

min
∀k

RNOMA,k (13a)

s.t. ∥q(n+ 1)− q(n)∥ ≤ Vmaxδt, ∀n, (13b)
q(1) = q0, q(N) = qT , (13c)
Pk(n) ≥ 0, ∀n, k, (13d)∑
k∈K

Pk(n) ≤ P, ∀n, (13e)

βk,l(n) =


1, if dk(n) > dl(n)

0, if dk(n) < dl(n)

0 or 1, if dk(n) = dl(n)

, ∀n, k, l,

(13f)
βk,l(n) + βl,k(n) = 1, ∀n, k, l, (13g)

where (13f) ensures that the signals of stronger users are
regarded as interference for signals of weaker users. When
the channel gains are equal, either user can be chosen as the
stronger one and the other is the weaker one. The constraint
in (13g) avoids the case where both users are regarded as
stronger ones or weaker ones.
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γNOMA,k(n) ≜
|hk(n)|2Pk(n)∑

l∈K,l ̸=k βk,l(n)|hk(n)|2Pl(n) + σ2
=

ρ0Pk(n)∑
l∈K,l ̸=k ρ0βk,l(n)Pl(n) + σ2(d2h + ∥q(n)−wk∥2)

, ∀n, k, (7)

Both problems in (11) and (13) contain binary variables
and highly coupled nonconvex terms in the objective function,
which makes it hard to find the global optimal solution.
Moreover, the problem in (13) is even more challenging due
to the additional binary indicators {βk,l(n)} determined by
the trajectory variables. Therefore, we transform the prob-
lems into more tractable forms and propose PDD based
joint optimization schemes to find the local stationary so-
lutions in the following sections. The basic framework of
the PDD method can be found in Appendix A. Note that if
nonconvex constraints exist in the problem, concave-convex
procedure (CCCP) method [41] can be employed in the inner
loops of the PDD method to handle them. We summarize the
procedures on developing the PDD-based algorithm in this
paper in Fig. 2.

III. OPTIMIZATION FOR OMA MODE

In this section, we first transform the original problem for
the OMA mode, i.e., (11), into an equivalent one that is more
tractable. Then we develop a PDD based algorithm to solve
it.

A. Problem transformation

First, in order to handle the highly coupled objective func-
tion, we introduce the auxiliary variables {t̃, tk(n), θk(n),
θ̃k(n)} and transform the problem in (11) as

max
ZOMA

t̃ (14a)

s.t.
N∑

n=1

tk(n) ≥ t̃, ∀k, (14b)

αk(n)θ̃k(n) ≥ tk(n), ∀n, k, (14c)

log(1 + θk(n)) ≥ θ̃k(n), ∀n, k, (14d)
γOMA,k(n) ≥ θk(n), ∀n, k, (14e)
(11b) − (11e), (14f)

where ZOMA ≜ {t̃, tk(n),q(n), αk(n), θk(n), θ̃k(n)}. The
equivalence between (11) and (14) is demonstrated in Ap-
pendix B.

Since the expression of SNR, i.e., γOMA,k(n), is in fractional
form, the constraint in (14e) is hard to handle. Therefore,
we introduce the auxiliary variables {πk(n)} as the upper
bound of the expression σ2(d2h + ∥q(n) − wk∥2)), and then
equivalently transform (14e) as the following two constraints

πk(n)θk(n) ≤ ρ0P, ∀n, k, (15)

and

σ2(d2h + ∥q(n)−wk∥2)) ≤ πk(n), ∀n, k. (16)

Moreover, the binary variables {αk(n)} are also hard
to handle. Therefore, we introduce the auxiliary vari-
ables {α̃k(n)} and equivalently transform the binary con-
straints in (11e) as

αk(n)(1− α̃k(n)) = 0, ∀n, k, (17)

and
αk(n) = α̃k(n), ∀n, k. (18)

We can easily find that the equality constraints hold only
when αk(n) = α̃k(n) ∈ {0, 1}. Therefore, the actual feasible
set of the solution is not changed if we utilize these two
equality constraints, which are easier to tackle in the PDD
based algorithm, to replace the binary constraints in (11e).

From the above discussion, we can finally transform the
problem in (11) to the following equivalent problem

max
Z̃OMA

t̃ (19a)

s.t. (14b) − (14d), (15), (16), (19b)
(17), (18), (11b) − (11d), (19c)

where Z̃OMA ≜ {t̃, tk(n),q(n), αk(n), θk(n), θ̃k(n), πk(n),
α̃k(n)}. We can observe that the objective function t̃ is a
scalar continuously differentiable function. All the variables
in Z̃OMA can be searched in the real number field, which is a
closed convex set. Moreover, the functions in inequality con-
straints (11b), (11d), (14b) − (14d), (15), and (16) are all dif-
ferentiable. While the functions in equality constraints (11c),
(17) and (18) are continuously differentiable. Therefore, the
problem in (19) satisfies the general framework for the PDD
method, which is shown in (45) in Appendix A.

B. Algorithm
In this subsection, we utilize the PDD method to solve

the problem in (19). First, in order to tackle the equality
constraints, we incorporate the corresponding AL terms into
the objective function. In each outer loop, the penalty param-
eter, ϱ, or the dual variable, λ, will be updated according to
the constraint violation. Then, by applying linearization, we
approximate the nonconvex constraints of the AL problem as
convex ones and propose an algorithm to solve the problem
in each inner loop. Finally, we present the overall PDD based
double-loop iterative algorithm.

1) AL problem: In order to address the equality constraints,
we incorporate the corresponding AL terms into the objective
function and obtain the following AL problem

max
Z̃OMA

t̃− 1

2ϱ

N∑
n=1

K∑
k=1

(
|αk(n)− α̃k(n) + ϱλ1,k(n)|2

+ |αk(n)(1− α̃k(n)) + ϱλ2,k(n)|2
)

(20a)
s.t. (14b) − (14d), (15), (16), (11b) − (11d), (20b)

0 ≤ αk(n) ≤ 1,∀n, k, (20c)
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Fig. 2: The procedures on developing the PDD-based algorithm in this paper.

where (20c) has no influence on the optimality and is intro-
duced to improve the convergence speed4. The PDD method
utilizes a double-loop structure. In each outer loop, the dual
variable, λ, is updated when the constraint violation is under
some threshold, otherwise the penalty coefficient, ϱ, is up-
dated. While in the inner loops, we iteratively solve the AL
problem in (20) to find the optimal solution of the current
outer loop.

2) Proposed iterative algorithm for solving (20): As dis-
cussed above, in the outer loops we only need to update the
dual variable, λ, or the penalty coefficient, ϱ. Therefore, the
main procedure in the proposed algorithm is to solve the AL
problem in (20) with the fixed λ and ϱ in the inner loops.
Referring to the PDD framework in Appendix A, the AL
problem in (20) is solved in a block coordinate descent fashion
in the inner loops. Since there exist nonconvex constraints in
the AL problem, CCCP method is employed for the inner
loops to approximate them as convex ones. In this case,
the subproblems corresponding to the variable blocks are
approximated as convex problems in each inner loop and we
can easily provide the solution.

After the problem transformation in the previous subsection,
we obtain the problem in (20) and can avoid the fractional
form, binary variables, and the equality constraints. However,
there are still some nonconvex constraints, such as (14c)
and (15), that complicate the problem. By rewriting the non-
convex constraints into the difference-of-convex (DC) forms
and then linearizing the subtracted convex terms, we can
approximate them as convex constraints. For example, by
applying first-order Taylor expansion in linearization, (15) can
be transformed to the convex constraint in (21), where πi

k(n)
and θik(n) denote the current values of the variables πk(n)
and θk(n) in the i-th inner loop, respectively. The detailed
derivation can be found in Appendix C. We can further rewrite
the convex constraint in (21) as the second-order cone (SOC)
form, which is shown in (22). The derivation of (22) is
presented in Appendix D. Similarly, we can use the same

4The original searching range of αk(n) is the whole real number field.
Since αk(n) will finally converge to the binary solution, we can reduce
the searching range to [0, 1] without affecting the optimality, which can
significantly accelerate the convergence.

method to approximate (14c) to the SOC constraint in (23)
Besides, following the same procedure in Appendix D, the
convex constraint in (16) can also be rewritten as the following
SOC form

∥∥∥∥[(q(n)−wk)
T ,

πk(n)

2σ2
− d2h

2
− 1

2

]∥∥∥∥ ≤ πk(n)

2σ2
− d2h

2
+

1

2
.

(24)

From all the discussion above, the AL problem in (20) can be
approximated to

max
Z̃OMA

t̃− 1

2ϱ

N∑
n=1

K∑
k=1

(
|αk(n)− α̃k(n) + ϱλ1,k(n)|2

+ |αk(n)(1− α̃k(n)) + ϱλ2,k(n)|2
)

(25a)
s.t. (14b), (14d), (22) − (24), (25b)

(11b) − (11d), (20c), ∀n, k, (25c)

in the i-th inner loop according to the CCCP concept.

To solve the AL problem in (25), for each inner loop, we
divide the variables Z̃OMA into two blocks and update each
block successively. The first block contains variables {α̃k(n)},
which only exist in the objective function. Therefore, we can
easily obtain optimal {α̃k(n)} by closed-form solutions. We
can use the convex programming toolbox CVX [42] to find
the solution for the rest variables in the second block. Hence,
the i-th inner loop of the proposed algorithm can be expressed
as the following two steps:

Step 1: By fixing the variables in the second block, we can
obtain the closed-form solutions for {α̃k(n)} expressed as

α̃k(n) =
αk(n) + α2

k(n) + ϱλ1,k(n) + ϱλ2,k(n)αk(n)

1 + α2
k(n)

,∀n, k.
(26)

Step 2: In order to update the variables in the second
block Z̄OMA ≜ Z̃OMA \ {α̃k(n)}, we fix {α̃k(n)} and utilize
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(πk(n) + θk(n))
2

4
− ρ0P −

(
(πi

k(n)− θik(n))(πk(n)− θk(n))

2
− (πi

k(n)− θik(n))
2

4

)
≤ 0, (21)

∥∥∥∥[ (πk(n) + θk(n))

2
,
(πi

k(n)− θik(n))(πk(n)− θk(n))

4
− (πi

k(n)− θik(n))
2

8
+

ρ0P

2
− 1

2

]∥∥∥∥
≤ (πi

k(n)− θik(n))(πk(n)− θk(n))

4
− (πi

k(n)− θik(n))
2

8
+

ρ0P

2
+

1

2
.

(22)

∥∥∥∥[ (αk(n)− θ̃k(n))

2
,
(αi

k(n) + θ̃ik(n))(αk(n) + θ̃k(n))

4
− (αi

k(n) + θ̃ik(n))
2

8
− tk(n)

2
− 1

2

]∥∥∥∥
≤ (αi

k(n) + θ̃ik(n))(αk(n) + θ̃k(n))

4
− (αi

k(n) + θ̃ik(n))
2

8
− tk(n)

2
+

1

2
.

(23)

CVX to solve the following problem

max
Z̄OMA

t̃− 1

2ϱ

N∑
n=1

K∑
k=1

(
|αk(n)− α̃k(n) + ϱλ1,k(n)|2

+ |αk(n)(1− α̃k(n)) + ϱλ2,k(n)|2
)

(27a)
s.t. (14b), (14d), (22) − (24), (27b)

(11b) − (11d), (20c), ∀n, k. (27c)

The proposed iterative algorithm to solve the AL problem
in (20), i.e., the algorithm for each inner loop of the PDD
method is summarized in Algorithm 1, where LOMA,i(Z̃OMA)
denotes the objective function of the AL problem in (20) in
the i-th inner loop. Moreover, the overall PDD based algo-
rithm is summarized in Algorithm 2, where gOMA,r(Z̃OMA)
denotes the vector that combines all functions in the equality
constraints of the problem in (19) and ηr denotes the constraint
violation parameter. From the discussion in Appendix A, we
can see that the proposed algorithm converges to a stationary
solution of the problem in (19)5. It is worth noting that there
is no approximation or relaxation during the transformation
from the original problem in (11) to the problem in (19).
Hence, they share the same solutions. Moreover, since the
obtained stationary solution meets the necessary conditions for
the optimal solution of the problem in (19), it also meets the
necessary conditions for the optimal solution of the original
problem in (11).

IV. OPTIMIZATION FOR NOMA MODE

In this section, we first transform the original problem for
the NOMA mode, i.e., (13), into an equivalent and more
tractable one. Then we develop a PDD based algorithm to
solve it.

5In the absence of better alternative, it is readily seen that this proposed
algorithm is the best choice for solving this optimization problem under study.
The problem is NP-hard and it seems not possible to obtain the optimal
solution based on the current optimization techniques. At the present time, the
best we can do is to ensure the convergence to a stationary point for this kind
of constrained optimization problem. The characterization of the performance
gap between the optimal and iterative solutions remains an open problem for
the future research.

Algorithm 1 Proposed iterative algorithm for problem (20)

1. Define the tolerance of accuracy δ and the maximum
number of iterations Nmax. Initialize the algorithm with
a feasible point Z̃OMA. Set the iteration number i = 0.

2. Repeat
– Update {α̃k(n)} based on (26).
– Update the variables in the second block based on

solving the problem in (27).
– Update the iteration number : i = i+ 1.

3. Until |LOMA,i+1(Z̃OMA)−LOMA,i(Z̃OMA)|
|LOMA,i(Z̃OMA)|

≤ δ, or the maximum
number of iterations is reached, i.e., i > Nmax.

Algorithm 2 Proposed PDD based algorithm for problem (11)

1. Define the tolerance of accuracy δO. Initialize the al-
gorithm with a feasible point. Set the iteration number
r = 0. Set c < 1 and ϱ0 > 0.

2. Repeat
– Apply the proposed algorithm in Algorithm 1 to

update the optimization variables iteratively.
– if ∥gOMA,r(Z̃OMA)∥∞ ≤ ηr
– λr+1 = λr +

1
ϱr
gOMA,r(Z̃OMA)

– ϱr+1 = ϱr
– else
– λr+1 = λr

– ϱr+1 = cϱr
– end
– Update the iteration number : r = r + 1.

3. Until ∥gOMA,r(Z̃OMA)∥∞ ≤ δO.

A. Problem transformation

Similar to Section III, we first handle the highly cou-
pled objective function by introducing the auxiliary variables
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{t̃, tk(n), θk(n)} and transforming the problem in (13) as

max
ZNOMA

t̃ (28a)

s.t.
N∑

n=1

tk(n) ≥ t̃, ∀k, (28b)

log(1 + θk(n)) ≥ tk(n), ∀n, k, (28c)
γNOMA,k(n) ≥ θk(n), ∀n, k, (28d)
(13b) − (13g), (28e)

where ZNOMA ≜ {t̃, tk(n),q(n), Pk(n), θk(n)}. The proof of
equivalence between (13) and (28) is same as that between (11)
and (14) for OMA problem and can be referred in Appendix B.

Similar to the OMA case, we introduce the auxiliary
variables {πk(n)} as the upper bound of the expression∑

l∈K,l ̸=k ρ0βk,l(n)Pl(n)+σ2(d2h+∥q(n)−wk∥2)), and then
equivalently transform (28d) as the following two constraints

πk(n)θk(n) ≤ ρ0Pk(n), ∀n, k, (29)

and ∑
l∈K,l ̸=k

ρ0βk,l(n)Pl(n) + σ2(d2h + ∥q(n)−wk∥2))

≤ πk(n), ∀n, k.
(30)

To deal with the complicated constraint in (13f), we re-
gard {βk,l(n)} as auxiliary variables. Then, by introducing
the auxiliary variables {π̃k(n)} as the upper bound of d2h +
∥q(n) − wk∥2, we can equivalently transform (13f) as the
following constraints

βk,l(n) ∈ {0, 1}, ∀n, k, (31)

d2h + ∥q(n)−wk∥2 ≤ π̃k(n), ∀n, k, l, (32)

and

βk,l(n)π̃l(n) ≤ d2h + ∥q(n)−wk∥2, ∀n, k, l ̸= k. (33)

The process of the transformation can be found in Appendix E.
In order to handle the binary variables {βk,l(n)}, we in-
troduce the auxiliary variables {β̃k,l(n)} and equivalently
transform (31) as the following constraints

βk,l(n)(1− β̃k,l(n)) = 0, ∀n, k, l, (34)

and
βk,l(n) = β̃k,l(n), ∀n, k, l. (35)

From the discussion above, we can finally transform the
problem in (13) to the following equivalent problem

max
Z̃NOMA

t̃ (36a)

s.t. (28b), (28c), (29), (30), (36b)
(32) − (35), (13b) − (13e), (13g), (36c)

where Z̃NOMA ≜ {t̃, tk(n),q(n), Pk(n), θk(n), πk(n), βk,l(n),
π̃k(n), β̃k,l(n)}. Similar to the problem in (19), the problem
in (36) also satisfies the general framework for the PDD
method, which is shown in (45) in Appendix A.

B. Algorithm

Similar to Section III-B, we first incorporate the correspond-
ing AL terms into the objective function to tackle the equality
constraints. Then, by applying linearization, we approximate
the nonconvex constraints of the AL problem as convex ones
and propose an algorithm to solve the problem in each inner
loop. Finally, the overall PDD based double-loop iterative
algorithm is summarized.

1) AL problem: In order to address the equality constraints,
we incorporate the corresponding AL terms into the objective
function and obtain the AL problem in (37), where (37c) has
no influence on the optimality and is introduced to improve
the convergence speed. In the inner loops of the PDD method,
we iteratively solve the AL problem in (37) to find the optimal
solution of the current outer loop.

2) Proposed iterative algorithm for solving (37): After the
problem transformation in the previous subsection, we obtain
the problem in (37) and avoid the fractional form, binary
variables, and equality constraints. Moreover, by following the
same procedure in Appendices C and D, we can approximate
the nonconvex constraints of the problem in (37) as convex
ones and then convert them into the SOC forms. As a
result, (29), (30), and (33) can be approximated as the SOC
constraints in (38)-(40), respectively. Besides, according to
Appendix D, the convex constraint in (32) can also be rewritten
as the following SOC form

∥∥∥∥[(q(n)−wk)
T ,

π̃k(n)

2
− d2h

2
− 1

2

]∥∥∥∥ ≤ π̃k(n)

2
− d2h

2
+

1

2
.

(41)

From the transformation above, the AL problem in (37) can
be approximated to

max
Z̃NOMA

t̃− 1

2ϱ

N∑
n=1

K∑
k=1

( K∑
l=1

|βk,l(n)− β̃k,l(n) + ϱλ1,k,l(n)|2

+
K∑
l=1

|βk,l(n)(1− β̃k,l(n)) + ϱλ2,k,l(n)|2

−
k−1∑
l=1

(
|βk,l(n) + βl,k(n)− 1 + ϱλ3,k,l(n)|2

)
(42a)

s.t. (28b), (28c), (38) − (41), (42b)
(13b) − (13e), (37c), ∀n, k, l, (42c)

in the i-th inner loop.
To solve the AL problem in (42) for each inner loop,

we divide variables Z̃NOMA into two blocks and update each
successively. The first block only contains variables {β̃k,l(n)}
that can be easily optimized by closed-form solutions. We
can utilize CVX to find the solution for the rest variables in
the second block. Hence, the i-th inner loop of the proposed
algorithm can be expressed as the following two steps:
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max
Z̃NOMA

t̃− 1

2ϱ

N∑
n=1

K∑
k=1

K∑
l=1

(
|βk,l(n)− β̃k,l(n) + ϱλ1,k,l(n)|2 + |βk,l(n)(1− β̃k,l(n)) + ϱλ2,k,l(n)|2

)
− 1

2ϱ

N∑
n=1

K∑
k=1

k−1∑
l=1

(
|βk,l(n) + βl,k(n)− 1 + ϱλ3,k,l(n)|2

)
(37a)

s.t. (28b), (28c), (29), (30), (32), (33), (13b) − (13e), (37b)
0 ≤ βk,l(n) ≤ 1, ∀n, k, l, (37c)

∥∥∥∥[ (πk(n) + θk(n))

2
,
(πi

k(n)− θik(n))(πk(n)− θk(n))

4
− (πi

k(n)− θik(n))
2

8
+

ρ0Pk(n)

2
− 1

2

]∥∥∥∥
≤ (πi

k(n)− θik(n))(πk(n)− θk(n))

4
− (πi

k(n)− θik(n))
2

8
+

ρ0Pk(n)

2
+

1

2
.

(38)

∥∥∥∥[ ∑
l∈K,l ̸=k

(
(βi

k,l(n)− P i
l (n))(βk,l(n)− Pl(n))

4
−

(βi
k,l(n)− P i

l (n))
2

8

)
+

πk(n)− σ2d2h
2ρ0

− 1

2
,

σ
√
ρ0

(q(n)−wk)
T ,

(βk,1(n) + P1(n))

2
, . . . ,

(βk,k−1(n) + Pk−1(n))

2
,
(βk,k+1(n) + Pk+1(n))

2
, . . . ,

(βk,K(n) + PK(n))

2

]∥∥∥∥ ≤ 1

2

+
πk(n)− σ2d2h

2ρ0
+

∑
l∈K,l ̸=k

(
(βi

k,l(n)− P i
l (n))(βk,l(n)− Pl(n))

4
−

(βi
k,l(n)− P i

l (n))
2

8

)
,

(39)

∥∥∥∥[βk,l(n) + π̃l(n)

2
,
(βi

k,l(n)− π̃i
l(n))(βk,l(n)− π̃l(n))

4
−

(βi
k,l(n)− π̃i

l(n))
2

8
+ (qi(n)−wk)

T (q(n)− qi(n))

+
∥qi(n)−wk∥2

2
+

d2h
2

− 1

2

]∥∥∥∥ ≤
(βi

k,l(n)− π̃i
l(n))(βk,l(n)− π̃l(n))

4
−

(βi
k,l(n)− π̃i

l(n))
2

8

+(qi(n)−wk)
T (q(n)− qi(n)) +

∥qi(n)−wk∥2

2
+

d2h
2

+
1

2
.

(40)

Step 1: By fixing the variables in the second block, we can
obtain the closed-form solutions for {β̃k,l(n)} expressed as

β̃k,l(n) =
βk,l(n) + β2

k,l(n) + ϱλ1,k,l(n) + ϱλ2,k,l(n)βk,l(n)

1 + β2
k,l(n)

,

∀n, k, l.
(43)

Step 2: In order to update the variables in the second
block Z̄NOMA ≜ Z̃NOMA \ {β̃k,l(n)}, we fix {β̃k,l(n)} and
utilize CVX to solve the following problem

max
Z̄NOMA

t̃− 1

2ϱ

N∑
n=1

K∑
k=1

( K∑
l=1

|βk,l(n)− β̃k,l(n) + ϱλ1,k,l(n)|2

+
K∑
l=1

|βk,l(n)(1− β̃k,l(n)) + ϱλ2,k,l(n)|2

−
k−1∑
l=1

(
|βk,l(n) + βl,k(n)− 1 + ϱλ3,k,l(n)|2

)
(44a)

s.t. (28b), (28c), (38) − (41), (44b)
(13b) − (13e), (37c), ∀n, k, l. (44c)

The proposed iterative algorithm to solve the AL problem in
(37), i.e., the algorithm for each inner loop of the PDD method,

can be referred in Algorithm 1. We only need to replace the
set of variables Z̃OMA by Z̃NOMA and employ (43) and (44)
in the iterations instead of (26) and (27). The overall PDD
based algorithm for the NOMA mode is similar to that for the
OMA mode, which can be referred in Algorithm 2. Besides
applying the above proposed algorithm for inner iterations, we
need to replace gOMA,r(Z̃OMA) by gNOMA,r(Z̃NOMA), which
denotes the vector that combines all functions in the equality
constraints of the problem in (36). From the discussion in
Appendix A, the proposed algorithm converges to a stationary
solution of the problem in (36). Since the problem in (36)
and the original one in (13) share the same optimal solution,
the obtained stationary solution also meets the necessary
conditions for the optimal solution of the original problem
shown in (13).

V. COMPUTATIONAL COMPLEXITY

In this section, we analyze the complexity for the proposed
PDD based algorithms. Here, we apply the basic elements of
complexity analysis as in [43].

The complexity of the proposed PDD based algorithm for
the OMA mode is dominated by solving the problem in (27),
which contains 3KN SOC constraints, including KN SOC
constraints of dimension 4 and 2KN SOC constraints of
dimension 3. The number of variables n1 is on the order
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of O(KN + N). Therefore, the complexity is on the order
of I1I2O

(
n1

√
6KN(34KN + n2

1)
)

, where I1 and I2 denote
the numbers of the inner and the outer iterations, respectively.

The complexity of the proposed PDD based algorithm
for the NOMA mode is dominated by solving the problem
in (44), which contains (K2 + 2K)N SOC constraints,
including KN SOC constraints of dimension K + 3, KN
SOC constraints of dimension 4, and K2N SOC constraints
of dimension 3. The number of variables n2 is on the
order of O(K2N + KN + N). Therefore, the complexity
of the algorithm for the NOMA mode is on the order of
I3I4O

(
n2

√
2(K2 + 2K)N((K3 + 15K2 + 25K)N + n2

2)
)

,
where I3 and I4 denote the numbers of the inner and the
outer iterations, respectively.

The complexities for the proposed algorithms are summa-
rized in Table I. It can be seen that the complexity order of
NOMA is larger than OMA mainly because the dimensions
of variables {βk,l(n)} are O(K2N) while the dimensions of
others are at most O(KN).

VI. SIMULATION RESULTS

In this section, we utilize computer simulation to evaluate
the performance of the proposed PDD based optimization
algorithms for the OMA and NOMA modes. We consider a
mobile-UAV communication system with K = 3 users ran-
domly and uniformly distributed within an area of 1× 1 km2.
The UAV flies from the initial location, q0 = [0, 500]T , to the
final location, qT = [0,−500]T , with the altitude dh = 100 m.
Moreover, the maximum UAV speed and the time slot length
are set as Vmax = 50 m/sec and δt = 0.5 sec, respectively. The
channel gain is ρ0 = −70 dB at the reference distance 1 m and
the noise level is σ2 = −110 dBm. The tolerance parameters
are set as δ = δO = 10−6, the maximum number of the inner
iterations, Nmax = 10, the initial penalty parameter, ϱ0 = 104,
the decrease parameter, c = 0.3, and the equality constraint
violation tolerance parameter is set as ηr = 0.3r in the r-th
outer iteration.

First, we consider the convergence of the proposed algo-
rithms for the OMA and NOMA modes. The flight time is
assumed to be T = 25 sec and the transmit power is set
as P = 20 dBm. Fig. 3 shows the max-min rate versus
the number of iterations. From the figure, both algorithms
converge within 10 iterations. Fig. 4 shows the penalty value
versus the number of iterations. From the figure, the penalty
values of both algorithms decrease below 10−6 within 25
iterations. Therefore, the proposed PDD based optimization
algorithms can effectively handle the complicated constraints
in the OMA and NOMA problems, respectively.

In Fig. 5, we present the trajectories and speeds of the UAV
optimized by the proposed algorithms for different modes and
the corresponding flight time T . The transmit power is set
as P = 20 dBm. Fig. 5a and Fig. 5c present the trajectories
and speeds for the OMA and NOMA modes when T = 25 sec.
From the figure, in the OMA mode, the UAV intends to fly
close to each user successively for fairness. Moreover, the
UAV always flies at the maximum speed, Vmax, to move close
to each user since the flight time, T , is not large enough.
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Fig. 3: The convergence performance of the proposed PDD based
algorithms for the OMA and NOMA modes: max-min rate versus
the number of iterations.
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Fig. 4: The convergence performance of the proposed PDD based
algorithms for the OMA and NOMA modes: penalty value versus the
number of iterations.

However, in the NOMA mode, when T is small so that the
UAV cannot reach the remote users, more power is allocated
to the remote users to increase the transmission rates to realize
fairness. As a result, the UAV stays close to the nearby users
for some time. Fig. 5b and Fig. 5d present the trajectories and
speeds for the OMA and NOMA modes when T = 50 sec.
Due to the longer flight time T , the UAV is able to reach
the remote users. Therefore, the UAV flies over each user
successively in both the OMA and NOMA modes. However,
the trajectories and speeds are different because of different
modes.

Fig. 6 illustrates the max-min rate performance versus
flight time T for different schemes, including the following
algorithms for comparison:
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TABLE I: Complexity analysis for proposed algorithms

Algorithms Complexity Order
OMA I1I2O

(
n1

√
6KN(34KN + n2

1)
)

, n1 = O(KN +N)

NOMA I3I4O
(
n2

√
2(K2 + 2K)N((K3 + 15K2 + 25K)N + n2

2)
)

, n2 = O(K2N +KN +N)
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Fig. 5: Optimized UAV trajectories for: (a) T = 25 sec and (b) T = 50 sec. (c) and (d) are the corresponding speeds of the UAV for
scenarios in (a) and (b), respectively. Each trajectory is sampled every 2.5 sec and the sampled points are marked with ‘△’ and ‘□’ for the
OMA and NOMA modes, respectively. The user locations are marked by ‘◦’.

• OMA traditional: the UAV flies in a straight line trajec-
tory with a constant speed. As for scheduling, the users
occupy the time slots one by one periodically.

• OMA straight traj: the UAV flies in a straight line
trajectory with a constant speed while the user scheduling
is optimized.

• OMA proposed: the trajectory and the user scheduling
are jointly optimized.

• OMA upper bound: the flight time is assumed to be
large enough so that the fraction of moving time between
users is negligible. Therefore, the UAV can be regarded
as hovering above each user sequentially and the upper
bound of the performance is achieved.

• NOMA straight traj: the UAV flies in a straight line tra-
jectory with a constant speed while the power allocation
is optimized.

• NOMA proposed: the trajectory and the power allocation
are jointly optimized.

“OMA proposed” and “NOMA proposed” are the algorithms
proposed in this paper. While the others are benchmarks to
show the effectiveness of our algorithms. The transmit power
is set as P = 20 dBm. From the figure, the proposed joint
optimization schemes achieve the best performance, followed
by the schemes that only optimize resource allocation and the
traditional OMA scheme without optimization. Moreover, the
performance of joint optimization schemes improves with T
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Fig. 6: Max-min rate performance versus flight time T (P =
20 dBm).

since the UAV spends smaller fraction of time in moving from
one user to another. When T is large enough, the UAV can
hover above each user sequentially so that the performance
converges.

Fig. 7 illustrates the max-min rate performance versus
the transmit power for different schemes. The flight time
is set as T = 25 sec. From the figure, all schemes have
improved performance with the transmit power. Among them,
the proposed joint optimization schemes achieve the best
performance, followed by the schemes that only optimize
resource allocation and the traditional OMA scheme without
optimization. Moreover, it is noted that the performance of
the proposed NOMA scheme is better than the OMA mode.
Besides, the gap between the NOMA mode and the OMA
mode increases with the transmit power. When P = 30 dBm,
the NOMA mode without trajectory optimization can achieve
better performance than the OMA mode that employs joint
optimization.

Fig. 8 shows the effectiveness of user scheduling optimiza-
tion in our proposed algorithms by comparing them with the
following benchmarks:

• OMA relaxed: the trajectory and the user scheduling
are jointly optimized, where the binary scheduling vari-
ables {αk(n)} are relaxed to continuous ones in [0, 1].

• NOMA relaxed: the trajectory and the power allo-
cation are jointly optimized, where the binary vari-
ables {βk,l(n)} are relaxed to continuous ones in [0, 1].

• OMA random: the user scheduling is randomly generated
while the trajectory is optimized.

• NOMA random: the SIC order is randomly generated
while the trajectory and the power allocation are jointly
optimized.

The flight time is set as T = 25 sec. From the figure, the
performance of the proposed algorithms are very close to
the relaxed benchmarks, which indicates that the bias caused
by equalities does not significantly block the optimization.
Moreover, the performance of “OMA random” and “NOMA
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Fig. 7: Max-min rate performance versus transmit power P (T =
25 sec).
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Fig. 8: Max-min rate performance versus transmit power P (T =
25 sec).

random” is seriously degraded compared to our proposed
algorithms and the relaxed benchmarks. Therefore, we can
conclude that our proposed algorithms can well optimize the
user scheduling.

VII. CONCLUSION

In this paper, we have investigated the joint trajectory design
and resource allocation for UAV-enabled multiple access sys-
tems. We have first formulated the problems to maximize the
minimum average rate among multiple users for both the OMA
and NOMA modes with the constraints of the UAV speed,
initial and final locations, transmit power, and flight time. In
order to handle the binary variables, highly coupled nonconvex
terms in the objective functions and nonconvex constraints, we
have introduced auxiliary variables and applied linearization
to transform the original problems into more tractable forms
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with equality constraints. Then, we have proposed PDD based
joint optimization algorithms to find local stationary solutions.
We have also discussed the complexities of the proposed PDD
based algorithms and used simulation results to show that the
proposed algorithms outperform the benchmarks.

APPENDIX A
PDD OPTIMIZATION FRAMEWORK

Here, we briefly review PDD method in a general frame-
work. Consider the following problem:

(P ) min
x∈X

f(x)

s.t. h(x) = 0,

g(x) ≤ 0.

(45)

where f(x) is a scalar continuously differentiable function
and X ⊆ Rn is a closed convex set. As for constraints,
h(x) ∈ Rp is a vector of p continuously differentiable
functions, and g(x) ∈ Rq is a vector of q differentiable while
possibly nonconvex functions. In order to handle the equality
constraints, we solve the following AL problem:

(Pϱ,λ) min
x∈X

L(x) ≜ f(x) + λTh(x) +
1

2ϱ
∥h(x)∥2

= f(x) +
1

2ϱ
∥h(x) + ϱλ∥2

s.t. g(x) ≤ 0,
(46)

where L(x) is the AL function with scalar penalty param-
eter ϱ and dual variable λ. In particular, when ϱ → 0,
solving the above problem yields an identical solution to prob-
lem (45) [44]. The PDD method is a double-loop algorithm,
where the inner loop solves the AL problem (46) via a block
coordinate descent method while the outer loop updates the
penalty parameter ϱ or the dual variable λ according to the
constraint violation. The PDD framework is summarized in
Algorithm 3. The detailed discussion about the convergence
can be found in [45], [46]. It demonstrates that the sequence
generated by the PDD method converges to a KKT (stationary)
point of problem (P ).

Algorithm 3 PDD algorithm for problem (45)

0. initialize x0 ∈ X , ϱ0 > 0, λ0, and set 0 < c < 1, r = 0

1. repeat
2. xr+1 = optimize(Pϱr,λr ,x

r)

3. if ∥h(xr)∥∞ ≤ ηr

4. λr+1 = λr +
1
ϱr
h(xr)

5. ϱr+1 = ϱr

6. else
7. λr+1 = λr

8. ϱr+1 = cϱr

9. end
10. r = r + 1

11. until some termination criterion is met

APPENDIX B
PROOF OF EQUIVALENCE BETWEEN (11) AND (14)

Let us first introduce variables {θ̃k(n)} as the lower bound
of log(1+γOMA,k(n)), ∀n, k. Therefore, the problem (11) can
be equivalently expressed as

max
{q(n),αk(n),θ̃k(n)}

min
∀k

N∑
n=1

αk(n)θ̃k(n) (47a)

s.t. log(1 + γOMA,k(n)) ≥ θ̃k(n), (47b)
(11b) − (11e), (47c)

Then, we introduce auxiliary variables θk(n) and tk(n) as the
lower bounds of γOMA,k(n) and αk(n)θ̃k(n), respectively. As
a result, problem (47) can be further equivalently transformed
to the following form

max
Z

min
∀k

N∑
n=1

tk(n) (48a)

s.t. αk(n)θ̃k(n) ≥ tk(n), (48b)

log(1 + θk(n)) ≥ θ̃k(n), (48c)
γOMA,k(n) ≥ θk(n), ∀n, k, (48d)
(11b) − (11e), (48e)

where Z = {q(n), αk(n), θk(n), θ̃k(n), tk(n)}. Finally, by
introducing variable t̃ as the lower bound of

∑N
n=1 tk(n), ∀k,

the problem (48) can be converted to problem (14). The proof
of equivalence between (11) and (14) is completed.

APPENDIX C
LINEARIZATION OF (15)

Let us first transform (15) into the following DC form

f1(z)− f2(z) ≤ 0, (49)

where

f1(z) =
(πk(n) + θk(n))

2

4
− ρ0P, (50)

f2(z) =
(πk(n)− θk(n))

2

4
, (51)

and z ≜ [πk(n), θk(n)]
T . The convex function f2(z), which

is subtracted, can be approximated to a linear function by the
first-order Taylor expansion around the current point zi ≜
[πi

k(n), θ
i
k(n)]

T in the i-th inner loop. As a result, we can
obtain the approximated convex constraint as follows

f1(z)− f̃2(z
i, z) ≤ 0, (52)

where

f̃2(z
i, z) = f2(z

i) + 2ℜ{▽fH
2 (zi)(z− zi)}

=
(πi

k(n)− θik(n))(πk(n)− θk(n))

2

− (πi
k(n)− θik(n))

2

4
.

(53)

Substituting (50) and (53) into (52), we finally obtain the
convex constraint (21).
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APPENDIX D
DERIVATION OF (22)

Let us first rewrite (21) as

f3(z) ≤ f4(z), (54)

where

f3(z) =
(πk(n) + θk(n))

2

4
, (55)

and

f4(z) =
(πi

k(n)− θik(n))(πk(n)− θk(n))

2

− (πi
k(n)− θik(n))

2

4
+ ρ0P.

(56)

It can be easily seen that f3(z) and f4(z) contain the quadratic
terms and linear terms, respectively. We can equivalently
rewrite (54) as

f3(z) +
(f4(z)− 1)2

4
≤ (f4(z) + 1)2

4
. (57)

By taking the square root of both sides of (57), (21) can be
converted to∥∥∥∥[√f3(z),

f4(z)− 1

2

]∥∥∥∥ ≤ f4(z) + 1

2
. (58)

Substituting (55) and (56) into (58), we finally obtain the SOC
constraint (22).

APPENDIX E
TRANSFORMATION OF CONSTRAINT (13f)

By regarding {βk,l(n)} as auxiliary variables, we rewrite
(13f) as the following constraints

βk,l(n) ∈ {0, 1}, (59)

and

βk,l(n)(d
2
h+∥q(n)−wl∥2) ≤ d2h+∥q(n)−wk∥2, ∀n, k, l ̸= k.

(60)
The first constraint (59) ensures that {βk,l(n)} are binary.
Then, from (60) we can obtain βk,l(n) = 0 when d2h+∥q(n)−
wl∥2 > d2h + ∥q(n) − wk∥2, i.e., dk(n) < dl(n). However,
we cannot make sure that βk,l(n) = 1 when dk(n) > dl(n).
As a result, we take the constraint (13g) into account to
avoid the case where βk,l(n) = βl,k(n) = 0. Moreover,
when dk(n) = dl(n), constraint (13g) also avoids the case
where βk,l(n) = βl,k(n) = 1.

Furthermore, the multiplication between the linear term
and the quadratic term in constraint (60) is hard to handle.
Therefore, by introducing auxiliary variables {π̃k(n)} as the
upper bound of d2h + ∥q(n)−wk∥2, (60) can be equivalently
converted as

d2h + ∥q(n)−wk∥2 ≤ π̃k(n), (61)

and

βk,l(n)π̃l(n) ≤ d2h + ∥q(n)−wk∥2, ∀n, k, l ̸= k. (62)

Finally, the constraint (13f) is transformed to constraints (31)-
(33).
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