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Abstract

We consider a network model where individuals exert efforts in two types of activities that

are interdependent. These activities can be either substitutes or complements. We provide a

full characterization of the Nash equilibrium of this game for any network structure. We show,

in particular, that quadratic games with linear best-reply functions aggregate nicely to multiple

activities because equilibrium efforts obey similar formulas to that of the one-activity case. We

then derive some comparative statics results showing how own productivity affects equilibrium

efforts and how network density impacts equilibrium outcomes.
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1 Introduction

Peer decisions have been shown to be important in predicting different outcomes of individuals,

ranging from education1, alcohol consumption2, drug use and cigarette smoking3, and crime4 to

labor-market outcomes.5 Most of this literature has, however, considered the effect of peers on

one specific choice. In reality, individuals make a multitude of choices, many of which of are

interdependent. As a result, peers can have multiple and sometimes opposing influences on their

friends.

In the current paper, we study a game where individuals, embedded in a social network,6

engage in two kinds of activities that are interdependent. Within each activity, there are local

network externalities amongst the players: a player pays more attention to her friends’ decisions

than to others’ choices. Importantly, we allow for substitution or complementarity across activities.

There is an important literature in applied mathematics on quadratic games that provides

existence and uniqueness results, as well as compact closed-form solutions, for arbitrary determin-

istic games with n players, multiple (real-valued) actions for each player, and arbitrary quadratic

payoff functions. The only conditions this literature imposes are concavity of the payoff function

in own actions as well as a nonsingularity condition on a certain matrix. In this literature, the

existence and uniqueness of solutions to general linear-quadratic games are very well understood.7

The essential idea is that the first-order conditions form a linear system, and then one can apply

standard linear algebra results on the existence and uniqueness of its solution. With one activity

per agent, Ballester et al. (2006) (BCZ hereafter) offered an interpretation of the solution by view-

ing the best-response parameters (the slope of an agent’s optimal action in every other’s action) as

a network. It turned out that the actions taken in equilibrium correspond to individuals’ central-

ities in this network, in the sense of the Katz-Bonacich centrality.8 However, the assumption of a

one-dimensional choice for each agent in that paper is restrictive. One might wonder whether one

can usefully interpret actions in terms of network position in the more general and realistic setting

where agents take multiple actions. In the present paper, we answer this affirmatively by showing

1Zimmerman (2003); Calvó-Armengol et al. (2009); Sacerdote (2001, 2011, 2014)
2Gaviria and Raphael (2001); Kawaguchi (2004); Lundborg (2006); Norton et al. (1998); Fletcher (2010).
3Gaviria and Raphael (2001); Kawaguchi (2004); Clark and Loheac (2007); Keng and Huffman (2010).
4Ludwig et al. (2001); Kling et al. (2005); Bayer et al. (2009); Patacchini and Zenou (2012); Damm and Dustmann

(2014); Lindquist and Zenou (2014).
5Ioannides and Loury (2004).
6The economics of networks is a growing field. See, in particular, the overviews by Jackson (2008); Jackson (2011);

Ioannides (2012); Jackson (2014); Jackson and Zenou (2015); Jackson et al. (2017).
7 A particularly concise and clear exposition of this literature is provided by Başar (2000) (Section 10.1, pp.

58-59).
8 This centrality measure has been proposed by Katz (1953) and Bonacich (1987). The Katz-Bonacich centrality

counts the number of all paths (not just shortest paths) emanating from a given node, weighted by a decay factor
that decreases with the length of these paths. It was originally interpreted as an index of influence or power of the
actors in a social network.
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that the Nash-Bonacich connection discovered in BCZ aggregates nicely to multiple actions, and

one can have a clean characterization of equilibria in the multiple-action framework.

We then derive some comparative statics results. Contrary to BCZ, we show that increasing

network synergy (or the social multiplier) does not always increase effort in each activity and that

denser networks do not always increase the efforts of the players. While with one activity, BCZ

show that the influences are monotone, in this paper, both results strongly depend on whether the

two activities are substitutes or complements.

In the spirit of BCZ, we also investigate the key player problem in this multiple-activity setting.

Suppose that the government intends to remove one player to maximally reduce the total activity

in the network. Which player should the government target? In the single-activity model, BCZ

show that the key player is the one with the highest inter-centrality index. This index is a measure

that takes into account both the direct reduction of activity, following the removal of the key

player, and the indirect impact on the activities of the players directly connected to the key player.

Compared to BCZ, with two activities, there are more possible ways of defining the key player. For

example, the planner’s objective can be to minimize one activity without paying attention to the

other, minimize the sum of both activities, or any weighted combination of these two activities. In

particular, if the planner wants to minimize one activity (for example crime), we show that the key

player selection with two activities can be substantially different from the one in a single-activity

case.

We then extend our model in different directions. First, we consider a model where players

choose more than two activities; in fact, any finite number of activities. Second, we incorporate

cross-network effects so that there are spillover effects within but also between activities. Third,

we include heterogeneous substitution effects so that the degree of substitution or complementarity

between activities is player-specific. We also look at heterogeneous network effects where spillover

effects are heterogeneous and differ between activities. We also consider different networks for each

activity. For example, there can be a criminal network which is different to the one for individuals

studying together. Finally, we investigate a distinct but related model, the so-called local-average

model, where agents lose utility by deviating from the social norms of their friends.

To the best of our knowledge, there are only two papers that have tackled the issue of multiple

activities in an explicit social network analysis. From a theoretical perspective, we are only aware

of the paper by Belhaj and Deröıan (2014), who characterize the equilibrium in a network game in

which each player has only a fixed amount of resources to allocate between two activities. Similar

to our model, there are peer effects within each activity but the total effort in both activities in

their model is fixed and equal to one. In other words, the authors assume that the two activities

are perfect substitutes. This implicitly means that they are dealing with only one choice of effort,

since effort in one activity is equal to one minus the effort in the other activity. Because of this
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restriction, they focus on very different issues such as specialization and polarization of agents

and multiple equilibria. In this regard, we allow activities to be substitutes or complements, and

one activity needs not be tied perfectly to the other. Belhaj and Deröıan (2014) also discuss the

impact of heterogeneous costs and large social multiplier effects on outcomes. These features are

not captured in our paper since our focus is different. The second paper is that of Cohen-Cole

et al. (2017). It is mainly an empirical paper where the authors study the identification of social

interactions with multivariate activities.

The remainder of this paper is organized as follows. Section 2 introduces the model. Section

3 characterizes the equilibrium outcomes and discusses some interesting special cases. Section 4

presents some comparative statics analyses. Section 5 deals with the key player policy when players

can choose more than one activity. Section 6 extends our model in different directions. Section

7 discusses the implications of our model. Finally, Section 8 concludes. Appendix A provides

some results on matrices and defines the Katz-Bonacich centrality. Appendix B provides some

conditions that guarantee that the Nash equilibrium efforts are strictly positive. Appendix C

derives some preliminary comparative-statics results. Appendix D derives the equilibrium utility

of each agent while Appendix E provides some examples with specific networks to illustrate our

main results. Appendix F characterizes the Nash equilibrium with two activities when the utility

function incorporates both local-aggregate and local-average effects. Appendix G provides all the

detailed derivations and proofs of the paper.

2 Model

Consider a social network G with n players, indexed by i = 1, 2, · · · , n. Denote by G = (gij) the

adjacency matrix of the network. We assume gii = 0 – there is no self loop – and gij = gji, i.e., G

is symmetric. Let N = {1, 2, · · · , n} denote the set of players. Each player intends to engage in

two kinds of activities, A and B, which are interdependent.

Utilities and decisions. Each player i chooses the levels of two activities, xAi for activity

A and xBi for activity B, where xAi and xBi are real numbers. Let xi = (xAi , x
B
i ). For ease of

exposition, we define x−i := (xA1 , x
B
1 , ..., x

A
i−1, x

B
i−1, x

A
i+1, x

B
i+1, ..., x

A
n , x

B
n ) as the decisions selected

by players other than i. To explicitly model the interdependence between activities, player i’s

utility function is expressed as follows:

ui(xi,x−i) = aAi x
A
i + aBi x

B
i −

{
1

2
(xAi )2 +

1

2
(xBi )2 + βxAi x

B
i

}
(1)

+δ
n∑
j=1

gijx
A
i x

A
j + δ

n∑
j=1

gijx
B
i x

B
j .

4



This utility function (1) consists of two parts. The first part, aAi x
A
i +aBi x

B
i −
{

1
2(xAi )2 + 1

2(xBi )2 + βxAi x
B
i

}
,

corresponds to the utility of providing efforts in the two activities, independently of the efforts of the

other individuals in the network. Parameter ali measures the intrinsic marginal utility (or ability)

of activity l = A,B for player i. The quadratic terms capture the decreasing marginal returns from

each activity, and the cross-activity term βxAi x
B
i depicts the interconnection between the efforts

in the two activities. The parameter β, which is assumed to take values in (−1, 1),9 measures the

substitutability or complementarity between the two activities. Observe that ∂2ui/∂x
A
i ∂x

B
i = −β.

Therefore, when β is positive, the two activities are substitutes. When β = 0, the two activities are

independent. When β is negative, the activities are complements.

The second part of (1), δ
∑n

j=1 gijx
A
i x

A
j + δ

∑n
j=1 gijx

B
i x

B
j , captures the network externalities.

The parameter δ ≥ 0 describes the intensity of the network effects or network spillovers. Indeed,

when δ = 0, each player’s utility depends entirely on her own effort decisions. A higher δ indicates

a higher dependence of a player’s utility on others’ decisions. We assume δ ≥ 0 to capture strategic

complementarities in each activity, i.e.,

∂2ui

∂xAi ∂x
A
j

= δgij ≥ 0,
∂2ui

∂xBi ∂x
B
j

= δgij ≥ 0.

We will often offer illustrations of our results using the following examples. Activity A cor-

responds to crime as in the standard single-activity setup. If the two activities are substitutes,

activity B corresponds to education; in contrast, if the two activities are complements, activity B

corresponds to drug consumption.10 This means that our utility function can be interpreted as:

ui(xi,x−i) = aAi x
A
i −

1

2
(xAi )2 + δ

n∑
j=1

gijx
A
i x

A
j︸ ︷︷ ︸

net proceeds from crime

+aBi x
B
i −

1

2
(xBi )2 + δ

n∑
j=1

gijx
B
i x

B
j︸ ︷︷ ︸

net benefits from the other activity

− βxAi x
B
i︸ ︷︷ ︸ .

degree of interdependence

The first part captures the benefits and costs from committing crime. In this context, aAi measures

the individual crime productivity or ability of each player i while δ measures the degree of social

interactions in crime, i.e. the intensity of peer effects in crime. It is indeed well-established that

9We take this interval because we need β to be, in absolute value, less than 1 (see Assumption 1). Otherwise, ui

would not be concave in xi.
10According to Goldstein (1985), drug use can positively affect criminal activity through three channels. The first

is the “pharmacological” effect: drug use may increase aggression and therefore violent crime. The second is the
“economic” effect: some users turn to crime to finance expenditures on drugs. The third is the “systemic” effect:
violence occurs in the drug market because the participants cannot rely on contracts and courts to resolve disputes.
There is a lot of empirical research that shows that a significant proportion of those apprehended for a range of
criminal offences are frequent illicit drug users. In particular, research has shown a strong correlation between the
level of drug use and level of criminal involvement—at both an aggregate and individual level (see e.g. Anglin and
Speckart (1988); Nurco (1998); Makkai (2002); Bean (2014)). For example, Corman and Mocan (2000) find a positive
relationship between drug use and robberies and burglaries.
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delinquency is, to some extent, a group phenomenon, and that the sources of crime and delinquency

are located in the intimate social networks of individuals (see e.g. Sutherland (1947); Sarnecki

(2001); Warr (2002); Haynie (2001); Patacchini and Zenou (2008, 2012); Lindquist and Zenou

(2014); Liu et al. (2012)) and peer effects are very strong in criminal decisions (Ludwig et al.

(2001); Kling et al. (2005); Bayer et al. (2009); Damm and Dustmann (2014)).11

The second part captures the net benefits from the other activity. When β ≥ 0, the two

activities are substitutes, for example crime (activity A) and education (activity B). When β ≤ 0,

the two activities are complements, for example, crime and drug consumption. As a result, the

second part captures the net benefits from either education or drug consumption. In particular,

aBi measures either the individual ability in education (β ≥ 0) or the individual marginal utility

of consuming drugs (β ≤ 0). In the empirical literature, aAi or aBi are usually measured by the

observable characteristics of player i related to the activity. Finally, the last part indicates the

degree of interaction between the two activities. If they are substitutes (resp. complements), then

increasing effort in crime decreases (increases) the marginal utility of the other activity by β.

Two benchmark models. It is worthwhile discussing two special cases that correspond to

well-known models, which are widely studied in the literature. In the first benchmark model, we

consider the scenario when δ = 0 so that the network plays no role. In this case, individual i’s

utility function reduces to:

ui = aAi x
A
i + aBi x

B
i −

{
1

2
(xAi )2 +

1

2
(xBi )2 + βxAi x

B
i

}
.

This is, for example, a model that is commonly used in the industrial organization literature to

study production differentiation (Dixit (1979); Singh and Vives (1984)). In that case, the utility

function is reduced to the case with n independent players, i.e., the utility is separable across

different players.

In the second benchmark model, we consider the scenario when β = 0. In that case, player i’s

utility reduces to:

ui =

aAi xAi − 1

2
(xAi )2 + δ

n∑
j=1

gijx
A
i x

A
j

+

aBi xBi − 1

2
(xBi )2 + δ

n∑
j=1

gijx
B
i x

B
j

 ,

which is just the sum of the payoffs from exerting efforts in activities A and B. Notice that the two

terms in the big brackets are totally separable. This model has been widely used in the literature

11For example, Bayer et al. (2009)) consider the influence that juvenile offenders serving time in the same correc-
tional facility have on each other’s subsequent criminal behavior. They find strong evidence of learning effects in
criminal activities since exposure to peers with a history of committing a particular crime increases the probability
that an individual who has already committed the same type of crime recidivates that crime.

6



on games on networks (Jackson and Zenou (2015)).

Let us now study the general case when δ ≥ 0, and −1 < β < 1. Let λ1(G) be the spectral

radius of matrix G.12

Assumption 1. 1− |β| − δλ1(G) > 0.

Assumption 1 guarantees the existence and uniqueness of the equilibrium. When β = 0, this

condition is equivalent to δ < 1/λ1(G), which is commonly assumed in the network literature with

a single activity (see Ballester et al. (2006) and Zhou and Chen (2015)).

3 Nash equilibrium

3.1 Equilibrium characterization

Let

xA =


xA1
...

xAn

 , xB =


xB1
...

xBn

 and X =

[
xA

xB

]

Define aA,aB and A =

[
aA

aB

]
in a similar way. Also define In to be the n× n identity matrix and

M+ := [(1 + β)In− δG]−1 =
∞∑
k=0

(δG)k

(1 + β)1+k
and M− := [(1− β)In− δG]−1 =

∞∑
k=0

(δG)k

(1− β)1+k
(2)

Theorem 1. Suppose that Assumption 1 holds. Then, for any aA and aB, there exists a unique

Nash equilibrium given by:[
xA

xB

]
=

[
M++M−

2
M+−M−

2
M+−M−

2
M++M−

2

][
aA

aB

]
=

1

2

[
M+(aA + aB) + M−(aA − aB)

M+(aA + aB)−M−(aA − aB)

]
.

Let us first comment on the conditions for the existence and uniqueness of the equilibrium

derived in Theorem 1. Assumption 1 requires that the network effect is not too strong. A similar

condition is commonly assumed in social network games with only one activity (see Ballester et al.

(2006) and Zhou and Chen (2015)). In this paper, we generalize this condition when players choose

two activities. Another technical issue is the possibility of corner solutions for the equilibrium

efforts. In Proposition 5 in Appendix B, we give the conditions on parameters for which the

12It is also equal to its largest eigenvalue by the Perrron-Frobenius Theorem since G is a nonnegative symmetric
matrix.
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equilibrium efforts are always strictly positive. It turns out that, when β ≤ 0 (activities are

complements, or independent), Assumption 1 guarantees that xA � 0 and xB � 0. When β > 0

(activities are substitutes), we show that if either condition (14) (which imposes some restriction on

the degree of substitution between two activities) or condition (15) (which limits the heterogeneity

between two activities) holds, then xA � 0 and xB � 0.

From Theorem 1, we can determine the equilibrium utility of each agent. We perform such an

analysis in Appendix D, Proposition 9. We obtain:

u∗i =
1

2
(xA∗i )2 +

1

2
(xB∗i )2 + βxA∗i xB∗i (3)

=
1

1 + β

[
bi

(
G,

δ

1 + β
,a

)]2

+
1

1− β

[
bi

(
G,

δ

1− β
, â

)]2

,

where a :=
(
aA + aB

)
/2 is the average ability and â :=

(
aA − aB

)
/2 is half of the difference in

abilities. This shows that the equilibrium utilities can be expressed as the sum of the squares of

two Katz-Bonacich centralities (which are formaly defined in Appendix A.2) as in the case with

one action.

Theorem 1 provides a clean characterization of the equilibrium outcomes and has some intuitive

interpretations. It characterizes the equilibrium of a quadratic game with two activities where the

social network is explicitly modeled. We show that the average action across the two activities taken

by each player is determined by a social interaction matrix multiplied by the average ability across

the two activities while (half of) the difference between the actions is determined by another social-

interaction matrix times (half of) the difference in abilities between the two actions. Moreover,

Theorem 1 leads to the following equations:

x = M+a and x̂ = M−â (4)

where x :=
(
xA + xB

)
/2 is the average effort and x̂ :=

(
xA − xB

)
/2 corresponds to half of the

difference in efforts. Let us show how we obtain these two equations. Each individual i chooses xAi
and xBi that maximizes (1). The first-order conditions are given by:{

xAi + βxBi = aAi + δ
∑n

j=1 gijx
A
j

xBi + βxAi = aBi + δ
∑n

j=1 gijx
B
j

Taking the sum of these two first-order conditions leads to:

(1 + β)

(
xAi + xBi

)
2

=
(aAi + aBi )

2
+ δ

n∑
j=1

gij

(
xAj + xBj

)
2

,
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while taking the difference yields:

(1− β)

(
xAi − xBi

)
2

=
(aAi − aBi )

2
+ δ

n∑
j=1

gij

(
xAj − xBj

)
2

.

In matrix form, these two equations can be written as:

xA + xB

2
= [(1 + β)In − δG]−1 (aA + aB)

2
,

and
xA − xB

2
= [(1− β)In − δG]−1 (aA − aB)

2
,

which leads to (4) by using (2).

Corollary 1. Suppose that Assumption 1 holds. Then the unique Nash equilibrium can be written

as:

xA =
1

1 + β
b

(
G,

δ

(1 + β)
,a

)
+

1

1− β
b

(
G,

δ

(1− β)
, â

)
,

xB =
1

1 + β
b

(
G,

δ

(1 + β)
,a

)
− 1

1− β
b

(
G,

δ

(1− β)
, â

)
.

This corollary shows that, in addition to the expressions in Theorem 1, the equilibrium efforts

can also be expressed as the sum of two Katz-Bonacich centralities, where the decay factors are

δ/(1 + β) and δ/(1 − β) while the weights are a and â, the average and (half of) the difference

in abilities, respectively. When β > 0, the two activities are substitutes, and δ
(1+β) < δ

(1−β)

while, when β < 0, they are complements and we have the opposite. Indeed, when activities are

complements (such as crime and drug consumption), they reinforce each other so that exerting

more effort in crime induces individuals to consume more drugs and both activities generate more

spillovers to other individuals in the network. On the contrary, when activities are substitutes

(crime and education), they oppose each other so that when individuals commit more crime, they

influence other criminals to commit more crimes, which induce them and their friends to study less.

This means, in particular, that it is not necessary the most active individuals who are the

most central in the network (as in Ballester et al. (2006)). Indeed, we have seen that, in the two-

activity case, x = M+a and x̂ = M−â, which is similar to the quadratic game with one action

where x = M a and M := [In − δG]−1. However, this also shows that one of the key result in

quadratic games with one activity, namely the fact that the more central an agent is (in terms of

Katz-Bonacich centrality), the higher is her effort level (see Ballester et al. (2006)), is only true

in the case of complementary actions (β < 0) but not always true when actions are substitutes

(β > 0), especially if β is large enough. In other words, if activities are substitutes (i.e. crime and

education), then the most central player will have the highest effort in the network in one activity
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(say crime) but can have the lowest one in the other activity (education).

Let us illustrate this result by considering a star-shaped network where agent 1 is in the center

and agents 2 and 3 are in the periphery so that the adjacency matrix is given by:

G =

 0 1 1

1 0 0

1 0 0


In the one activity model (say crime), agent 1 will always exert the highest effort. Assume, for

example, that δ = 0.1 and that all agents have the same level of ex ante ability given by a =

 3

3

3

.

The largest eigenvalue of G is
√

2, i.e. λ1(G) =
√

2. Then, since 1−δλ1(G) > 0, in the one-activity

model, the equilibrium efforts are given by:

x = M a =

 3.67

3.37

3.37


Not surprisingly, agent 1 exerts the highest effort.

Consider now the two-activity model. Assume still that δ = 0.1 and β = ±0.4 so that

1−|β|−δλ1(G) > 0. Assume that aAi = 4 and aBi = 2 for all i so that a =

 3

3

3

 and â =

 1

1

1

.

Consider first the case when the activities are substitutes, i.e. β = 0.4. We obtain:

x = M+a =

 2.47

2.32

2.32

 and x̂ = M−â =

 2.35

2.06

2.06


and thus

xA = x + x̂ =

 4.82

4.38

4.38

 and xB= x− x̂ =

 0.12

0.26

0.26


We see that, in a star-shaped network, the central agent (agent 1) exerts the highest effort in activity

A but the lowest effort in activity B, even though her average effort as well as her difference in

efforts are the highest. This is true because β is high enough. For example, it is easily verified that
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for β = 0.2, the central agent exerts the highest effort in both activities. Indeed, we have:

xA =

 4.57

4.20

4.20

 and xB =

 1.34

1.29

1.29


When the two activities are complements, i.e. β = −0.4, it is easily verified that:

xA =

 6.56

5.88

5.88

 and xB =

 4.92

4.34

4.34


so that the central agent exerts the highest effort in both activities.

Using (4), let us explain these results. We assume that all agents have a higher productivity

in exerting activity A than activity B. As a result, because of her position, the most central agent

exerts the highest effort in activity A as in the single activity case. She generates a lot of synergies

in activity A to her neighbors, who, in turn, have a strong impact on her. This is the network

spillover effect. Then, when β is positive and large enough, the two activities are strong substitutes

and, as a result, the most central agent, who exerts the highest effort in activity A, will sharply

reduce her effort in activity B. When β is not too large, then the reduction in effort in activity B is

not large enough to compensate her high effort in activity A due to her position in the network that

generates strong network spillovers. When β is negative such that both activities are complements,

then clearly being central leads to more effort in one activity, which, because of complementarity,

leads to more effort in the other activity. This model thus highlights the fact that the position

in the network (network spillover effects), the relative productivity of one activity over the other

one and the degree of substitutability or complementarity between the two activities are crucial

to understand the behavior of agents in a network. For example, if one wants to have an effective

policy that reduces juvenile crime, then one needs not only to look at how central delinquents are

in criminal networks but also at their involvement in other activities than crime.

More generally, we believe that the result obtained in (4) is a clean way to characterize the

Nash equilibrium with multiple activities. In particular, it shows that quadratic games with linear-

best reply functions aggregate nicely to multiple activities since it explains why the average effort

and the difference in efforts obey similar formulas to the one-activity case.13 It should be, however,

clear that the quadratic games are actually the only ones that aggregate nicely to multiple activities.

In Section 6, we show that this nice equilibrium characterization is usually true where we consider

different extensions of the model. However, when the spillover parameter δ is different between

the two activities (i.e. δA 6= δB) and/or the network itself is different between the two activities

13This is also true for the equilibrium utility (see (3)).
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(i.e. GA 6= GB), we show in Section 6.4 that our model with linear-best reply functions does

not aggregate nicely to multiple activities since efforts are not anymore equal to Katz-Bonacich

centralities.

We also believe that the characterization result obtained in (4) could be very useful for potential

econometric applications of this analysis. Indeed, if one would like to empirically test our theoretical

model, then using (4), one would only need to simultaneously estimate the following system of

equations for each i = 1, ...n: {
xi = β1 ai + δ1

∑n
j=1 gijxj

x̂i = β2 âi + δ2
∑n

j=1 gij x̂j

where β1 := 1/ (1 + β), β2 := 1/ (1− β), δ1 := δ/ (1 + β), δ2 := δ/ (1− β). These equations are

relatively simple to test since, in terms of data, they only involve the average and difference of both

outcome efforts and abilities.

In terms of data, one may wonder what is the economic rationale behind caring about the

total effort level (and also the difference) across the two activities. In particular, in terms of units

what does it mean to add up two different activities? Interestingly, Cohen-Cole et al. (2017) have

tested the two-activity model with the National Longitudinal Survey of Adolescent Health (Add

Health), which collects national representative information on 7th-12th graders in both public

and private schools in the United States. They consider two subtituable activities, namely screen

activities (TV, video games, etc.) and education. The latter (academic performance) is the average

grade (converted to a four point scale, with A = 4, B = 3, etc.) in English (or language arts),

mathematics, history (or social studies) and science while the former is the logarithm of the total

number of hours spent on watching TV/videos and playing video/computer games in a week. The

authors use the logarithm to alleviate the problem of measurement errors when a student reports

spending a lot of time on watching TV/videos and playing video/computer games. After taking

the logarithm, the authors show that both variables (education and screen activities) have similar

mean (2.87 and 2.84) and standard deviation (0.73 and 0.82) and thus comparable values. In that

case, summing or differencing these two variables does not pose any problem.

3.2 Some interesting special cases

Ex ante homogeneous individuals. Let us study a special case when the only hetero-

geneity of the players only stems from their network position.

Corollary 2. Suppose that Assumption 1 holds. Then, when aA = aB = a, the unique Nash

equilibrium is symmetric and given by:

xA = xB = M+a =
1

1 + β
b

(
G,

δ

1 + β
,a

)
.
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Indeed, when aA = aB = a, the game becomes symmetric with respect to both activities and

thus has a unique symmetric equilibrium where both efforts are strictly positive. In that case,

although each player chooses the same amount of activities for A and B, this amount still differs

across players depending on their network position, which is captured in Corollary 2 by the Katz-

Bonacich centrality. Notice that, in equilibrium, the marginal utility vector and network parameter

are both modulated by 1/(1 + β), which reflects the interdependence between both activities.

No network effects. Let us return to the first benchmark model introduced above where

δ = 0. We have the following result:

Corollary 3. Assume that δ = 0 and that for all i, aAi > βaBi and aBi > βaAi . Then, the unique

Nash equilibrium is given by:

xA =
aA − βaB

1− β2
and xB =

aB − βaA

1− β2
.

Independent activities. Assume that β = 0 so that the two activities are independent.

We have:

Corollary 4. Assume that β = 0 and δ < 1/λ1(G). Then, the unique Nash equilibrium is given

by:

xA = b(G, δ,aA) and xB = b(G, δ,aB).

Furthermore, the equilibrium payoff of player i is equal to:

ui(x
A,xB) =

1

2
(xA∗i )2 +

1

2
(xB∗i )2 =

1

2

[
bi(G, δ,aA)

]2
+

1

2

[
bi(G, δ,aB)

]2
.

Indeed, when β = 0, the equilibrium activity for A and for B is just given by the Katz-Bonacich

centrality measure. This is the same formula as in the single-activity case (Ballester et al. 2006).

4 Comparative Statics

The clean characterization result derived in (4) helps us determine different comparative statics

results. Indeed, in Theorem 1 or in equation (4), we showed that the equilibrium efforts are mainly

determined by M+ and M−. In Appendix C, we derive some preliminary comparative-statics

results on the matrices M+ and M−. In particular, in Propositions 6 and 8, we show how we can

rank these different matrices, in particular, with respect to M, depending on the values of β and

G while, in Proposition 7, we show how δ and β affect these matrices. It is then relatively easy to
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derive the comparative statics results of the effect of productivities, network synergies, degree of

interdependence between activities and network density on the equilibrium effort in each activity.

4.1 Effects of the intrinsic productivities aA and aB

First, we study the impact of increasing the marginal utility (or productivity) for activity A. Let

M := (M+ + M−) /2 and M̂ := (M+ −M−) /2.

Proposition 1. Suppose that Assumption 1 holds. Then, for any network G, we have:

∂xA

∂aA
= M � 0,

∂xB

∂aA
= M̂



� 0 if β > 0

= 0 if β = 0

� 0 if β < 0
.

Indeed, when a player i’s marginal benefit of activity A, say crime (i.e. her intrinsic produc-

tivity in crime), goes up, all other players in the network increase their effort in crime (activity

A) because of spillover effects. This is due to strategic complementarities in efforts for all path-

connected players in the network. On the other hand, because the players are also interconnected

via the other activity B, their effort levels in activity B will also be affected. When the two ac-

tivities are substitutes (β > 0) so that activity B is education, every individual chooses to study

less (lower level of activity B). By contrast, when the two activities are complements (β < 0), say

crime and drug consumption, the effort increase in crime leads to a boost in drug consumption for

all individuals in the network.

4.2 Connection to supermodular games

The network game described above with two activities can easily be viewed as a supermodular

game.

First, let us consider the simpler case when β < 0, i.e. the two activities are complements. In

this case, we define the game Γ with strategy space Si := R2 for each player i and utility functions

given by (1). We can verify that the game Γ is a supermodular game for each fixed set of parameters

t := (aA,aB). Specifically, we can verify that for each i:

• The strategy space of player i Si is a lattice.14

14Technically, the lattice Si should be a complete lattice to guarantee existence of pure strategy Nash Equilibrium.
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• The payoff function ui is continuous and supermodular on Si for every x−i.

• ui satisfies increasing differences in (S−i,Si).

• ui is supermodular in (xi, t) for every x−i .

Therefore, the standard monotonicity results (Milgrom and Roberts (1990), Vives (1990) and

Milgrom and Shannon (1994)) in supermodular games give us the desired monotone results: Both

xA and xB are monotone in t, i.e., in aA and aB. This is what was obtained in Proposition 1, i.e.
∂xA

∂aA � 0, ∂xB

∂aA � 0 and ∂xA

∂aB � 0, ∂xB

∂aB � 0.

Second, when β > 0 (the two activities are substitutes), the game Γ is no longer supermodular.

This is because the inclusion of substitutable activities violates the second item above (the cross

sign ∂2ui
∂xAi ∂x

B
i

= −β is negative). However, we can change the variables by setting

x̃i = (xAi ,−xBi ), t̃ := (aA,−aB).

It is routine to check that the new game Γ̃, with the new strategy space and new parameters,

will satisfy the four conditions above. Therefore, the Nash equilibrium is monotone in the new

parameters. Returning to what we found in the second part of Proposition 1, we see that xA is

increasing in aA but decreasing in aB. In contrast, xB is increasing in aB but decreasing in aA.

This sign-change trick is standard for transforming a linear Cournot game with two firms into

a supermodular game (Vives 1990). In general, it will not work for arbitrary oligopoly models.

Moreover, the game we study here is more complicated than the one used in standard oligopoly

models. There are n players, each player has multi-dimensional strategy space, and the interactions

between inter-player actions and intra-player actions can have different signs. Yet, we are able to

establish the supermodularity using this kind of trick.

Observe that showing that our network game with two activities can be viewed as a super-

modular game helps us derive comparative statics results but does not help us in characterizing the

Nash equilibrium as in Theorem 1 or in equation (4). Observe also that the precise quantitative

calculations of the linear algebra help us understand the way the comparative statics results work.

The fact that our game is supermodular just tells us that, for example, increasing aA always in-

creases xA. The exact calculation of these comparative statics results given in Proposition 1 shows

the exact role of the social-interaction matrices M+ and M− in this derivation. For example, it

shows that ∂xA

∂aA = M, which means that when the vector of abilities aA increases by z percent,

then the vector of efforts in activity A increases by zM percent.

As we have shown the existence and uniqueness of the equilibrium in Theorem 1, all of the properties of supermodular
games apply to the unique equilibrium characterized in Theorem 1.
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4.3 Effects of the social multiplier δ

Next, we study the impact of increasing δ, the intensity of network effects or social multiplier, on

equilibrium efforts.

Proposition 2. Suppose that Assumption 1 holds. Then,

∂xA

∂δ
= G[(1 + β)In − δG]−2a + G[(1− β)In − δG]−2â,

∂xB

∂δ
= G[(1 + β)In − δG]−2a−G[(1− β)In − δG]−2â.

When activities are ex ante homogeneous, i.e. aA = aB = a, we obtain:

∂xA

∂δ
|aA=aB=a =

∂xB

∂δ
|aA=aB=a = G[(1 + β)In − δG]−2a � 0.

When δ increases, it affects the equilibrium efforts in activities A and B in two different ways

(see equation (4)), which is given by: x = M+a and x̂ = M−â. First, it impacts the mean activity

as M+ is increasing in δ. Second, it also affects the difference between two activities through M−,

which is increasing in δ. As the result, the net effect of δ on equilibrium efforts is ambiguous,

depending on which effect dominates the other one. However, when we shut down the second

channel by imposing that aA = aB = a, both efforts go up by Corollary 2. In Appendix D, we

will further investigate the general case when aA 6= aB using specific networks to illustrate the

non-monotone relationship between δ and equilibrium efforts.

4.4 Effects of the degree of interdependence between activities β

Let us now examine the influence of the interdependence between the two activities on equilibrium

efforts.

Proposition 3. Suppose that Assumption 1 holds. Then,

∂xA

∂β
= −[(1 + β)In − δG]−2a + [(1− β)In − δG]−2â,

∂xB

∂β
= −[(1 + β)In − δG]−2a− [(1− β)In − δG]−2â.

When aA = aB = a, we obtain:

∂xA

∂β
|aA=aB=a =

∂xB

∂β
|aA=aB=a = −[(1 + β)In − δG]−2a � 0.
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When β increases, we have again the same two opposite forces that make the impact of β

on xA and xB ambiguous. Indeed, when β > 0, increasing β makes the substitutable activities

more substitutable. The difference in the two efforts becomes larger, but the sum becomes lower.

The results clearly depend on whether the initial advantage in productivity is greater or lower in

activity A compared to activity B. Interestingly, when aA = aB = a, so that there is no ability

difference between the agents and thus the efforts in both actions are the same, the effect of β on

equilibrium efforts is negative.

If we now consider the complementary case when β < 0, then a higher β makes the activities

more complementary. Similar comparative statics can be obtained. In particular, when aA = aB =

a, increasing β makes the activities even more complementary. In this case, ∂xA

∂|β| |aA=aB=a � 0, i.e.,

efforts are enhanced by a higher degree of complementarity.

4.5 Effect of network density G

Finally, we can consider the situation in which the network gets denser, for example, by increasing

or adding links while keeping the number of individuals n constant. This is captured by G′ � G,

where network G′ is denser that network G.

Proposition 4. Suppose that Assumption 1 holds for both G and G′ and that G′ � G. Then,

xA(G′) + xB(G′) � xA(G) + xB(G).

• If, in addition, aA ≥ aB,

xA(G′)− xB(G′) � xA(G)− xB(G).

• When aA = aB = a, then,

xA(G′) = xB(G′) � xA(G) = xB(G).

If aA ≥ aB (productivity advantage for activity A), then in equilibrium both the average and

difference in activities increase. As a result, we always have xA(G′) � xA(G). This is because

there are more spillovers in network G′, which favors activity A because of its initial productivity

advantage. In other words, if individuals are “better” in committing crime than in studying, they

will exert relatively more crime effort than education effort in a denser network. For crime and

drug consumption, the same logic applies. If an individual has a productivity advantage in crime,

then she will commit relatively more crime than consuming drugs in denser networks. However,

it is not always true that xB(G′) � xB(G) (see Table 3 in Appendix E). Furthermore, if the

17



two activities are ex ante symmetric, then we obtain the monotonicity result that both activities

increase in denser networks.

In Appendix E, we illustrate these different comparative-statics results with the help of some

specific networks. In particular, contrary to Ballester et al. (2006), we give some intuition on the

result that, with two activities, denser networks do not necessarily lead to higher aggregate activity.

5 Key player policy

In this section, we investigate the key-player policy (Lindquist and Zenou (2014), Liu et al. (2012)).

Suppose that the planner wants to remove the individual who maximally reduces total criminal

activities. Then, which player should the planner target? The individual to be removed has been

called the key player (Zenou (2016)) and an explicit formula has been given by Ballester et al.

(2006) in a model where criminals can only choose one activity: effort in crime. We would like

now to see if the key player will be the same if individuals exert efforts in two activities: crime

and education (for substitutable activities) or crime and consuming drugs (for complementary

activities). In other words, we would like to examine if our framework of multiple activities affects

the key player selection.

5.1 Characterization

Mathematically, in the single-activity setting, the key player program is formulated as follows:

max
i


n∑
k=1

bi(G, δ,a)−
∑
k 6=i

bk(G−i, δ,a−i)

 . (5)

Here G−i is the resulting network when player i is removed. The first term
∑n

k=1 bi(G, δ,a) is the

sum of total efforts in the original network G, while the second term
∑

k 6=i bk(G−i, δ,a−i) is the

resulting equilibrium total effort when i is removed. Observe that in the single-activity case, the

equilibrium effort of each player i is equal to her Katz-Bonacich centrality in the network and that

is why total activities are equal to the sum of the Katz-Bonacich centralities in (5). The solution

to this problem is characterized by the following lemma.

Lemma 1. (Ballester et al. (2006)) Assume that δ < 1/λ1(G). In the single-activity framework,

the following identity holds:
n∑
k=1

bk(G, δ,a)−
∑
k 6=i

bk(G−i, δ,a−i)

 =
bi(G, δ,1n)bi(G, δ,a)

mii(G, δ)
:= c̄i(G, δ,a),
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so that the key player is the individual who has the highest inter-centrality measure c̄i(G, δ,a) in

the network.

With two activities, there are multiple ways of defining the key player, depending on the

objective function. First, suppose that the social planner cares about the reduction of the sum of

both activities. Recall that

xA + xB = M+(aA + aB) = b(G,
δ

1 + β
,
(aA + aB)

1 + β
)

by Theorem 1, where M+ = [(1 +β)I− δG]−1 = 1
1+β [I− δ

(1+β)G]−1. In this case, by directly using

Lemma 1, the key player is determined by:

c1,1
i (G, δ,aA,aB) :=

1

1 + β
c̄i

(
G,

δ

(1 + β)
, (aA + aB)

)
.

Here the superscripts (1, 1) indicate that the objective function puts equal weights on both activities.

Alternatively, the social planner may only be concerned about activity A. Recall that

xA(G) = M+ (aA + aB)

2
+ M− (aA − aB)

2
.

With this alternative objective (minimizing total crime), the key player index in this scenario,

again following directly from Lemma 1, is:

c1,0
i (G, δ,aA,aB) :=

1

1 + β
c̄i

(
G,

δ

(1 + β)
,a

)
+

1

1− β
c̄i

(
G,

δ

(1− β)
, â

)
. (6)

Equation (6) shows that the inter-centrality measure of player i with two actions is a combination

of the intercentralities of player 1 with one action with different weights and decay factors.

In general, the social planner may care about the weighted sum λ
∑n

i=1 x
A
i + µ

∑n
i=1 x

B
i for

any parameter pair (λ, µ). This induces a new key player index.

Theorem 2. Suppose that Assumption 1 holds and that the social planner cares about the maximal

reduction of the weighted sum of λ
∑
xAi + µ

∑
xBi for (λ, µ) ∈ R2. The solution to the key

player problem is characterized by the following generalized inter-centrality measure with multiple

activities:

cλ,µi (G, δ,aA,aB) = µ c1,1
i (G, δ,aA,aB) + (λ− µ)c1,0

i (G, δ,aA,aB).

When players are ex ante homogeneous, i.e., aA = aB = a, then

cλ,µi (G, δ,a,a) =
(λ+ µ)

1 + β
c̄i(G,

δ

(1 + β)
,a).
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Theorem 2 shows that a key-player policy based on one activity (crime) can be misleading. If

the objective of the planner is to reduce total crime, then the person who, once removed, reduces

total crime the most, can differ between the one-activity and the two-activity case. This could be

a problem since the planner could target the wrong person in the network.

Indeed, consider, first, crime and education and assume that the planner wants to reduce

crime. When she removes a criminal from the network, there are now two effects. On the one hand,

there are less spillovers in terms of crime so that the neighbors of the removed person exert less

crime, which, in turn, leads to the fact that their neighbors reduce crime, and so on. On the other

hand, by reducing crime, the planner induces the remaining criminals to increase their education

effort, which, because of spillovers in education, induces their neighbors to also study more, and so

forth. As a result, there is a virtuous effect of removing a criminal since it induces the remaining

criminals to commit less crimes and to focus more on education.

Consider now crime and drug consumption. When a criminal is removed from the network, the

remaining criminals reduce their crime effort and, because of complementarity between activities,

also reduce their drug consumption. There is again a virtuous effect of removing a criminal in a

network, which is not taken into account in the single activity case. This is why the key player in

the single activity case can be different from the one in the two-activity case, as we show now by

means of examples.

5.2 Examples

5.2.1 Determining the key player when the planner believes that players exert effort

in only one activity (crime)

Theorem 2 characterizes the key player policy with multiple activities. Notably, even if the social

planner cares about only one activity, the very existence of the other activity can substantially

affect the key player policy. We now provide a concrete example to illustrate this point. Consider

the network G in Figure 1 with n = 11 players. This is the network that was considered by Ballester

et al. (2006) to illustrate their formula of the key player.

In this network, player 1 bridges together two fully intra-connected groups with five players

each. Removing player 1 disrupts the network, whereby removing 2 decreases maximally the total

number of network links. In the case of a single activity, the highest value of δ that is compatible

with the intercentrality measure is

δ <
1

λ1(G)
=

1

4.404
= 0.227.

Assume that players are ex ante identical (i.e. a1 = ... = a11 = 1). The intercentrality measure is
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Figure 1: A bridge network.

then given by:

c̄i(G, δ,1n) =
[bi(G, δ,1n)]2

mii(G, δ)
,

where mii(G, δ) is the diagonal element of matrix M(G, δ) (defined in (12) in Appendix A.2). Note

that we have only considered one activity so far. Table 1 gives the Bonacich and inter-centrality

measures for two values of δ. A star identifies the highest value in each column.

δ 0.18 0.2

Player Type bi c̄i bi c̄i
1 4.77 17.03 8.33 41.67∗

2 5.23∗ 17.62∗ 9.17∗ 40.33
3 4.51 14.07 7.78 32.67

Table 1: Centrality measures for the key player policy.

Player 2 has the highest number of direct links and a wide span of indirect links through her

link with player 1. As a result, player 2 has the highest Katz-Bonacich centrality and thus commits

the highest level of crime. When δ is low (δ = 0.18), player 2 is also the key player. When δ is

higher (δ = 0.20), player 1 becomes the key player. Now, indirect effects matter more and removing

player 1 has the highest joint direct and indirect effects on aggregate outcomes.

Consider now our model with two activities and ex ante identical players (aA1 = ... = aA11 = 1

and aB1 = ... = aB11 = 1). The condition of existence and uniqueness of equilibrium (Assumption 1)

is given by:

δ <
1− |β|
λ1(G)

= 0.227 (1− |β|) .

We have seen in (6) that, if the planner wants to determine the key player considering only one

activity (say activity A), then the intercentrality is given by

1

1 + β
c̄i

(
G,

δ

1 + β
,1n

)
=

1

1 + β

[bi(G, δ/ (1 + β) ,1n)]2

mii(G, δ/ (1 + β))
.

21



5.2.2 Determining the key player when the planner believes that players exert effort

in two substitutable activities (crime and education)

Let us take β = 1/9 > 0 so that activities A and B are substitutes (crime and education). As

in Table 1, assume that δ = 0.2.15 In that case, if the planner wants to minimize crime (activity

A), the key player is the one with the higher intercentrality c̄i

(
G, δ

1+β ,1n

)
. Since β = 1/9 and

δ = 0.2, intercentrality is c̄i

(
G, δ

1+β ,1n

)
= c̄i (G, 0.18,1n). We see from Table 1 that the key player

is now player 2! In other words, if the planner ignores the fact that individuals exert efforts in two

substitutable activities, she will wrongly think that the key player is player 1 while player 2 is in

fact the key player. Indeed, when δ is relatively high, in the single activity case, the planner wants

to remove player 1 because she is the one that generates the most crime spillovers (which intensity

is measured by δ) due to her bridge position in the network, even though player 1 has less direct

links than 2. When we consider both crime and education, player 2 becomes the key player because

not only she generates crime spillovers but also generates important education spillovers due to

her position in the network. Indeed, the intensity of the spillovers of both crime and education is

now measured by δ/(1 + β) < δ when β > 0, so that the bridge position of player 1 becomes less

important while the higher direct impact on neighbors of player 2 becomes more important.

5.2.3 Determining the key player when the planner believes that players exert effort

in two complementary activities (crime and drug consumption)

Let us now take: β = −0.1 < 0 so that activities A and B are complements (crime and drug

consumption). As in Table 1, assume that δ = 0.18.16 In that case, if the planner wants to minimize

crime (activity A), then the key player is the one with the highest intercentrality c̄i

(
G, δ

1+β ,1n

)
.

Since β = −0.1 and δ = 0.18, this intercentrality is equal to:

c̄i

(
G,

δ

1 + β
,1n

)
= c̄i (G, 0.2,1n) .

We see from Table 1 that, in this case, the key player is now player 1! In other words, if the planner

ignores the fact that the individuals in the network exert efforts in two complementary activities,

15The condition of existence and uniqueness of equilibrium is satisfied since

δ <
1− |β|
λ1(G)

= 0.227 (1− |β|)⇔ 0.2 < 0.227 (0.89) = 0.202.

16The condition of existence and uniqueness of equilibrium is satisfied since

δ <
1− |β|
λ1(G)

= 0.227 (1− |β|)⇔ 0.18 < 0.227 (0.9) = 0.204.
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she will wrongly think that the key player is player 2 while it is player 1. The explanation of this

result is similar to the one above. Indeed, when we consider both crime and drug consumption,

player 1 becomes the key player because the intensity of the spillovers of both crime and education

is now measured by δ/(1 + β) > δ since β < 0. As a result, the bridge position of player 1 becomes

more important while the higher number of direct links of player 2 becomes less crucial.

The above examples make a sharp argument that multiple activities matter for the criminal

policies aiming at reducing crime.

6 Extensions

In this section, we consider different extensions of the model. In particular, we would like to inves-

tigate whether the neat characterization results obtained in Theorem 1 and in equation (4), which

show that quadratic games with linear-best-response functions aggregate nicely to two activities,

are still true when the model is extended.

6.1 More than two activities

So far, we only have considered two activities. In the real world, players exert efforts in more than

two activities. Let us thus consider the case when there are more than two (l ≥ 2) activities. As a

result, the utility function (1) should be modified and written as:

ui(xi,x−i) =
l∑

t=1

atix
t
i −

1

2

l∑
t=1

(xti)
2 − 1

2
β

l∑
t=1

∑
s 6=t

xsix
t
i + δ

l∑
t=1

 n∑
j=1

gijx
t
ix
t
j

 . (7)

where subscripts i, j refer to the players while superscripts s and t refer to activities. As in the two

activity cases, in (7), each player can choose among l different activities and network externalities

only affect players within the same activity. In this framework, the parameter β lies in the interval

(−1/(l− 1), 1).17 In this new setup, we need a condition that generalizes assumption 1 for the case

of l activities. We have:18

Assumption 2. (1 + (l − 1)β)− δλ1(G) > 0 and 1− β − δλ1(G) > 0.

17The payoff ui in equation (7) is concave in xi only if β lies in that interval.
18When β is positive, (1− β)− δλ1(G) > 0 implies that (1 + (l − 1)β)− δλ1(G) > 0 and so the constraint in this

case reduces to β + δλ1(G) < 1. When β is negative, (1 + (l − 1)β) − δλ1(G) > 0 implies (1 − β) − δλ1(G) > 0.
Thus, the constraint in this case reduces to (1− l)β + δλ1(G) < 1.
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Let

Ψ =


1 β · · · β

β 1 · · · β
...

. . .
. . .

...

β · · · β 1

 , (8)

xt =


xt1
...

xtn

 , at =


at1
...

atn

 , X =


x1

...

xl

 , A =


a1

...

al

 .
We have the following result.

Theorem 3. Suppose that Assumption 2 holds. When players exert l activities, there exists a

unique Nash equilibrium given by

X = [Ψ⊗ In − δIl ⊗G]−1A =


W Φ · · · Φ

Φ W · · · Φ
...

. . .
. . .

...

Φ · · · Φ W




a1

...

al

 ,

where

W =
[(1 + (l − 1)β)In − δG]−1 + (l − 1)[(1− β)In − δG]−1

l
,

Φ =
[(1 + (l − 1)β)In − δG]−1 − [(1− β)In − δG]−1

l
.

The equilibrium profile for activity t can be written as:

xt =
1

(1 + (l − 1)β)
b

(
G,

δ

(1 + (l − 1)β)
,

∑l
k=1 ak

l

)
+

1

1− β
b

(
G,

δ

(1− β)
,at −

∑l
k=1 ak

l

)
.

Theorem 3 generalizes Theorem 1 and Corollary 1, which show that quadratic games with

linear-best-response functions aggregate nicely to multiple activities.

Given the characterization of the Nash Equilibrium, we can easily derive the key player analysis

in a similar way as in Section 5. For example, if the social planner only cares about activity t (crime)

and thus wants to minimize total crime, the corresponding key player intercentrality measure is
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given by:

c
(0,··· ,0,1,0,··· ,0)
i (G, δ,A) =

1

(1 + (l − 1)β)
c̄i

(
G,

δ

((1 + (l − 1)β))
,

∑l
k=1 ak

l

)

+
1

1− β
c̄i

(
G,

δ

(1− β)
,at −

∑l
k=1 ak

l

)
.

As in Section 5, we can also consider other alternative objectives (such as a weighted sum of these

aggregate activities).

6.2 Cross-network effects

So far we have not allowed for cross network effects, i.e., network externalities between different

activities. Indeed, it is possible that the crime effort exerted by a person affects the best response

of her direct friends in terms of education or drug consumption. If we go back to the two activities

case, then the utility function (1) should now be written as:

ui(xi,x−i) = aAi x
A
i + aBi x

B
i −

{
1

2
(xAi )2 +

1

2
(xBi )2 + βxAi x

B
i

}
(9)

+δ
n∑
j=1

gijx
A
i x

A
j + δ

n∑
j=1

gijx
B
i x

B
j + µ

n∑
j=1

gijx
A
i x

B
j + µ

n∑
j=1

gijx
B
i x

A
j .

where we have added two cross-externality terms: µ
∑n

j=1 gijx
A
i x

B
j + µ

∑n
j=1 gijx

B
i x

A
j , where µ

captures the intensity of the between-activity network effects. Observe that, as before, δ ≥ 0

captures the intensity of the within-activity network effects. We need the following condition:

Assumption 3. max( |δ+µ|1+β ,
|δ−µ|
1−β )λ1(G) < 1.

We have the following result:

Theorem 4. Suppose that Assumption 3 holds. Then, there exists a unique equilibrium character-

ized by [
xA

xB

]
=

[
M̃++M̃−

2
M̃+−M̃−

2
M̃+−M̃−

2
M̃++M̃−

2

][
aA

aB

]
=

1

2

[
M̃+(aA + aB) + M̃−(aA − aB)

M̃+(aA + aB)− M̃−(aA − aB)

]

where matrices M̃+ and M̃− are givem by:

M̃+ = [(1 + β)In − (δ + µ)G]−1 =
∑
k≥0

(δ + µ)kGk

(1 + β)1+k
,

M̃− = [(1− β)In − (δ − µ)G]−1 =
∑
k≥0

(δ − µ)kGk

(1− β)1+k
.
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Even when there are cross-network effects, we can still characterize the Nash equilibrium with

two activities in a neat way and show results that are similar to that of Theorem 1 and Corollary

1.

More generally, this analysis is interesting since it allows for cross-network effects, which means

that agents receive network spillovers from both activities. To better understand this result, let

us go back to Section 3.1 where we characterize the equilibrium and show, in particular, that the

most central agents in a network do not always exert the highest effort in both activities. As an

example, we considered a star-shaped network where agent 1 is the star and agents 2 and 3 are

in the periphery. We showed that, when δ = 0.1, β = 0.4 (the two activities are substitutes),

a =

 3

3

3

 and â =

 1

1

1

, then

xA =

 4.82

4.38

4.38

 and xB =

 0.12

0.26

0.26


which means that the star (agent 1) exerts the highest effort in activity A but the lowest effort

in activity B. Let us now allow for cross-network effects. Assume the same parameter values and

µ = 0.05. Using Theorem 4, we obtain:

xA =

 4.64

4.26

4.26

 and xB =

 0.69

0.60

0.60


We now obtain the opposite result, which shows that agent 1, who is the most central agent in

the network, exerts the highest effort in both activities A and B. This is because her position in

the network generates now a lot of network spillovers both in activities A and B, which means

that we put more weight on the network position and less weight on the degree of substitution

between the two activities. As a result, even if both activities are substitutes and β is quite high,

more central agents tend to exert high efforts in both activities because of network spillovers in

both activities. Consider, for example, crime and education. When agent 1’s neighbors exert high

effort in education, it directly positively affects agent 1’s effort in education but now also in crime

(cross-network effects). Similarly, when agent 1’s neighbors exert high effort in crime, it positively

affects agent 1’s effort in crime but also in education. Because these effects reinforce each other,

agent 1 ends up exerting high efforts in both activities.

26



6.3 Heterogeneous substitutions

So far, we have assumed that β, which captures the degree of interdependence between activities,

was the same for all players in the network. In this section, we relax this assumption by assuming

that it is player-specific. For that, we write the utility function (1) as follows:

ui(xi,x−i) = aAi x
A
i + aBi x

B
i −

{
1

2
(xAi )2 +

1

2
(xBi )2 + βix

A
i x

B
i

}
+ δ

n∑
j=1

gijx
A
i x

A
j + δ

n∑
j=1

gijx
B
i x

B
j .

We need again to have the new following condition:

Assumption 4. maxi

{
1

1−|βi|

}
δλ1(G) < 1.

Let Λβ = diag(β1, · · · , βn), which is diagonal matrix with βi on its (i, i) entry.

Theorem 5. Suppose that Assumption 4 holds. Then, there exists a unique equilibrium character-

ized by: [
xA

xB

]
=

[
M̂++M̂−

2
M̂+−M̂−

2
M̂+−M̂−

2
M̂++M̂−

2

][
aA

aB

]
,

where matrices M̂+ and M̂− are given by:

M̂+ = [In + Λβ − δG]−1, M̂− = [In −Λβ − δG]−1.

We show here again that quadratic games with linear-best-response functions aggregate nicely

to two activities, even where there are heterogenous substitutions between the two activities.

6.4 Heterogeneous network effects

Finally, we consider a last extension where we assume that the intensity of the network externalities

is heterogeneous and differs between activities. This means that the intensity of social interactions

in crime (activity A) between players is different to ones in, for example, education (activity B).

We also assume that each activity corresponds to a different network so that players who are

direct friends in a criminal network (activity A) may not be direct friends in the education network

(activity B). As a result, we need to have two network matrices to describe the network interactions

between the players. Specifically, let GA = (gAij) be the adjacency matrix for activity A and

GB = (gBij ) be the adjacency matrix for activity B. Assume that both matrices GA and GB are
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symmetric, i.e. the two networks are undirected. The utility function (1) can now be written as:

ui(xi,x−i) = aAi x
A
i + aBi x

B
i −

{
1

2
(xAi )2 +

1

2
(xBi )2 + βxAi x

B
i

}
+ δA

n∑
j=1

gAijx
A
i x

A
j + δB

n∑
j=1

gBijx
B
i x

B
j .

We have the following condition:

Assumption 5. max(δAλ1(GA), δBλ1(GB)) < 1− |β|.

In this setting, we can still characterize the unique equilibrium as follows.

Theorem 6. Suppose that Assumption 5 holds. Then, with heterogeneous network effects, there

exists a unique Nash equilibrium such that

X =

[
xA

xB

]
=

[
In − δAGA βIn

βIn In − δBGB

]−1 [
aA

aB

]
=

[
Z1 Z2

Z3 Z4

][
aA

aB

]
,

where, by using the block matrix inverse formula,

Z1 = [In − δAGA − β2[In − δBGB]−1]−1,

Z2 = −β[In − δAGA]−1[In − δBGB − β2[In − δAGA]−1]−1,

Z3 = −β[In − δBGB]−1[In − δAGA − β2[In − δBGB]−1]−1,

Z4 = [In − δBGB − β2[In − δAGA]−1]−1.

It is interesting to observe here that the clean characterization results obtained in Theorem 1

and in (4) are not anymore true. In other words, quadratic games with linear best-reply functions

do not aggregate nicely to two activities when the spillover parameter δ is different between the

two activities (i.e. δA 6= δB) and/or the network itself is different between the two activities (i.e.

GA 6= GB).

The result obtained in Theorem 6 is, however, important because it characterizes the Nash

equilibrium in efforts in two activities when agents are embedded in two different networks cor-

responding to the two activities and where spillovers are different between networks. The fact

that individuals belong to different networks corresponding to different activities is relatively well

documented. For example, using data from 75 rural villages in Karnataka, India, Banerjee et al.

(2013) gathered social network data on thirteen dimensions, including which friends or relatives

visit one’s home, which friends or relatives the individual visits, with whom the individual goes to

pray (at a temple, church, or mosque), from whom the individual would borrow money, to whom

the individual would lend money, from whom they obtain advice, and to whom they give advice,

etc. For each of these activities, Banerjee et al. (2013) define a network and show that they are

28



quite different. For example, the networks of individuals who go together to pray and the one in

which individuals obtain advice from are quite different, the latter being sparser than the latter.

Using Theorem 6, we could easily use these network data to estimate the network spillover effects

δA and δB and the degree of substitution β between these activities in each of these networks.

6.5 Alternative model

So far, we have developed a model where the utility function was given by (1). This has been referred

to as the local aggregate model in the literature (Liu et al. (2014); Topa and Zenou (2015)) since

what affects the utility of each player i is the sum of efforts (in each activity) of players connected

to i in the network. For the one-activity case, there is an alternative model, first introduced by

Patacchini and Zenou (2012), which is referred to as the local average model, and where players

bear a cost from deviating to the social norm of the reference group (i.e., the average effort of the

peers). Let G∗ =
(
g∗ij

)
denote the row-normalized adjacency matrix of G, where g∗ij = gij/gi and

gi =
∑n

j=1 gij is the degree of player i. By construction, we have 0 ≤ g∗ij ≤ 1 and
∑n

j=1 g
∗
ij = 1. In

the case of two activities, the utility function in the local average model can be written as:

ui(xi,x−i) = aAi x
A
i + aBi x

B
i −

{
1

2
(xAi )2 +

1

2
(xBi )2 + βxAi x

B
i

}
(10)

−γ
2

xAi − n∑
j=1

g∗ijx
A
j

2

− γ

2

xBi − n∑
j=1

g∗ijx
B
j

2

.

where γ is the social-conformity parameter. The condition is now given by:19

Assumption 6. 1− |β| > 0.

Define

M+∗ := [(1 + γ + β) In − γG∗]−1 and M−∗ := [(1 + γ − β) In − γG∗]−1.

We have the following theorem which proof is omitted since it is very similar to that of Theorem 1.

Theorem 7. Suppose that Assumption 6 holds and the utility function of each player i is given by

(10). Then, for any aA and aB, there exists a unique Nash equilibrium given by:[
xA

xB

]
=

[
M+∗+M−∗

2
M+∗−M−∗

2
M+∗−M−∗

2
M+∗+M−∗

2

][
aA

aB

]
=

1

2

[
M+∗(aA + aB) + M−∗(aA − aB)

M+∗(aA + aB)−M−∗(aA − aB)

]
.

19Observe that the largest eigenvalue of G∗ is 1, i.e. λ1(G) = 1.
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We see that Theorems 1 and 7 are very similar but still work differently. The main difference

is in the definition of the matrices M+∗ and M−∗ as compared to M+ and M−. First, the term in

brackets in front of In incorporates an additional term γ, which captures the taste for conformity

of agents. Second, and more importantly, in the local-aggregate model, the network is described

by the adjacency matrix G whereas, in the local-average model, it is the row-normalized adjacency

matrix G∗ that accounts for the network. This implies that the position in the network is crucial for

determining the individual equilibrium efforts in each activity in the local-aggregate model while

it is not important in the local-average model. In fact, if there is not heterogeneity ex ante (i.e.

aAi = aBi = a, ∀i), the position in the network does not matter at all in the local-average model

since all agents will exert the same effort in both activities while it is the main determinant of effort

in the local-aggregate model. Indeed, with ex ante identical ability, in the local-aggregate model,

xA = xB = M+a while, in the local-average model, xA = xB = M+∗a.

To illustrate this point, consider a star-shaped network where agent 1 is in the center and

agents 2 and 3 are in the periphery. As in Section 3.1, assume that δ = 0.1, β = ±0.4 and that

all agents have the same level of ex ante ability, given by aT =
(

3 3 3
)

. Consider the local-

aggregate model. When the activities are substitutes (β = 0.4) and when they are complements

(β = −0.4), the equilibrium efforts are respectively equal to:

xA(sub) = xB(sub) =

 2.475

2.321

2.321

 and xA(comp) = xB(comp) =

 7.059

6.177

6.177


Not surprisingly, agent 1 located in the center of the network, exerts the highest effort in both

activities.

Consider now the local-average model and assume that γ = 0.1. When the activities are

substitutes (β = 0.4) and when they are complements (β = −0.4), the equilibrium efforts are

respectively given by:

xA(sub) = xB(sub) =

 2.143

2.143

2.143

 and xA(comp) = xB(comp) =

 5

5

5


Here, the position in the network does not matter since all agents exert the same effort in both

activities because they all conform to the same norm, which is the average effort in the network.

Finally, following Liu et al. (2014), we can incorporate both local-aggregate and local-average

effects in the same utility function. This is referred to as the hybrid model. Appendix F characterizes

the Nash equilibrium for the hybrid model and shows that, again, the linear best-reply functions

aggregate nicely to multiple activities since the average activity x and the difference in activities x̂
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can be expressed as direct functions of the average productivity a and the difference in productivities

â multiplied by some M matrix, which captures the network structure.

We believe that the main interesting aspect of the local-average model with two activities

is that, in case of substitutable activities, there is a conflict between conforming to two different

opposite norms. Consider crime and education. The utility function (7) then assumes that, for

individual i, it is costly to deviate both from her friends’ average criminal effort and her friends’

average education effort. Theorem 7 gives the solution to this problem when activities can be

either substitutes or complements. This solution again depends on the difference and the sum of

the productivities in different activities. If agent i has some initial advantage in crime (higher

ability), then she will be induced to follow more the social norm imposed by her friends in crime

than in education because the former has higher returns than the latter. This will imply that

conformity in crime will be higher than in education.

7 Policy implications

We have seen in Section 5 that a key-player policy based on one activity (crime) can be misleading.

If the objective of the planner is to reduce total crime, then the person who, once removed, reduces

total crime the most, can differ between the one-activity and the two-activity case. This could be

a problem since the planner could target the wrong person in the network.

Furthermore, as stated above, if we consider the extension made in Section 6.4 with different

networks for different activities, then the key-player policy will be even more interesting in both

the local-aggregate and the local-average models. Indeed, if we consider policies that affect the

social norm of education, our model helps us understand how they could spill over into the criminal

network. In particular, consider the “No Excuses policy” implemented in the United States (Angrist

et al. (2010), Angrist et al. (2012)), which is a highly standardized and widely replicated charter

model that features a long school day, an extended school year, selective teacher hiring and strict

behavior norms, and emphasizes traditional reading and math skills. The main objective is to

change the social norms of disadvantaged kids by being very strict on discipline. This is a typical

policy that is in accordance with the local-average model since, in the latter, only a change in social

norms can affect the behavior of students.20 As a result, a policy whose aim is to change the social

norm of students in terms of education (for example, a norm that induce children to think that

working and studying is a cool thing) can be an effective way to change the educational behavior

of students. Angrist et al. (2012) focus on special needs students that may be underserved. Their

20In some inner cities in the United States, it has been shown that African Americans residing in poor areas may
be ambivalent about learning standard English and performing well at school because this may be regarded as ’acting
white’, a negative social norm for these students (Fordham and Ogbu (1986); Wilson (1987); Fryer and Torelli (2010);
Battu and Zenou (2010)).
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results show average achievement gains of 0.36 standard deviations in math and 0.12 standard

deviations in reading for each year spent at a charter school. Our model predicts even more impact

since it will not only change the social norm in education but also that in crime. As a result,

we believe that, by incorporating more than one activity into agents’ decisions, we can better

understand the larger impact of a policy on the two activities.

8 Conclusion

People interact on many dimensions: they commit crime, drink and smoke together, they also

study and work together, share information about jobs, receive suggestions from and give advice to

others, etc. In this paper, we theoretically investigate these issues by developing a network model

where players choose more than one activity. Activities can be substitutes or complements and

generate spillover effects to other players in the network.

Our key theoretical insights are as follows: (i) we provide a full characterization of the Nash

equilibrium of the game for any network structure and for any number of activities, (ii) we show

that the quadratic games with linear best-reply functions aggregate nicely to multiple activities,

(iii) we provide comparative statics results showing how own productivity affects equilibrium efforts

and how network density impacts on equilibrium outcomes, (iv) we determine who the key-player

is when individuals exert more than one activity.

This implies that, compared to the BCZ one-activity model, we have new empirical implications

that suggest the following empirical tests: (i) Does own productivity in one activity affect positively

(negatively) the effort of the other activity when the two activities are complements (substitutes)?

(ii) If there is an initial productivity advantage in one activity, then do both the average and the

difference of efforts between these activities increase when the network becomes denser? (iii) Does

the identity of the key player change when we switch from one to two activities?

We believe that these are important questions that should be empirically investigated. We

leave them for future research.
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Appendix

In this Appendix, we first provide some notations, derive some matrix operations, derive some

comparative-statics results, calculate the equilibrium utility of all agents, provide some examples

with specific networks and then give the proofs of our main results.

A Matrix analysis and Katz-Bonacich centrality

A.1 Matrix analysis

Let us now introduce some notations on matrices and vectors. Ik is the k × k identity matrix, Jpq

is the p× q matrix with only 1s, and 1n = Jn1 is a column vector with 1s, i.e.

Ik =


1 · · · 0

. . .

0 · · · 1


k×k

, Jpq =


1 · · · 1
...

. . .
...

1 · · · 1


p×q

, 1n =


1
...

1


n×1

.

In addition, 0 is the zero matrix with suitable dimensions. Given two matrices H and D, we say that

H � (�)D if component-wise hij ≤ (≥)dij for all i, j, where {h11, ..., hmn}’s are the components

of the matrix H and {d11, ..., dmn}’s are D’s components. We call a matrix H a positive matrix

if H � 0. A square symmetric matrix H is called positive definite if all of its eigenvalues (which

are real numbers) are strictly positive. The transpose of a matrix H is denoted by H′. For two

matrices H1 and H2, their Kronecker product is defined as follows:

H1 ⊗H2 =


h11H2 · · · h1tH2

...
. . .

...

hs1H2 · · · hstH2

 .
Moreover, ⊗ is a bi-linear operator, and it satisfies the following properties. For any matrices

H1,H2,H3, and H4,

(H1⊗H2)(H3⊗H4) = (H1H3)⊗(H2H4), (H1⊗H2)−1 = H−1
1 ⊗H−1

2 , (H1⊗H2)′ = (H′1⊗H′2).

Let Mn denote all n × n square real matrices. Let ρ(H) be the spectral radius of the n × n
matrix H, i.e., ρ(H) := max{|λ|, λ is an eigenvalue of H}. For any fixed vector w ∈ Rn, the L2

vector norm on Rn is the defined as follows: ||w||2 :=
√∑

|wi|2. The L2 vector norm on Rn
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induces a norm on matrix Mn as follows:

|||H|||2→2 := max
||w||2=1

||Hw||2 = max
w 6=0

||Hw||2
||w||2

.

It is straightforward to show that:

• For any H ∈Mn, ρ(H) ≤ |||H|||2→2;

• Given H,Z in Mn, we have |||HZ|||2→2 ≤ |||H|||2→2|||Z|||2→2.

• |||H|||2→2 =
√
ρ(H′H). Moreover if H is symmetry, then |||H|||2→2 = ρ(H).

The proofs of these properties can be found in a standard matrix analysis textbook.

Lemma 2. If both H and Z are both symmetric n× n matrices, then ρ(HZ) ≤ ρ(H)ρ(Z).21

Proof of Lemma 2. ρ(HZ) ≤ |||HZ|||2→2 ≤ |||H|||2→2|||Z|||2→2 = ρ(H)ρ(Z). The first inequality

is because the spectral radius of a matrix is always no greater than any matrix norm. The second

inequality follows from the sub-multiplicativity of the matrix norm. The last step follows from the

fact that H is symmetric, and hence |||H|||2→2 = ρ(H). Similarly, we obtain |||Z|||2→2 = ρ(Z).

Next, we state the block matrix inversion formula, whose proof is standard and thus is omitted.

Lemma 3. For matrices H1,H2,H3, and H4,[
H1 H2

H3 H4

]−1

=

[
(H1 −H2H

−1
4 H3)−1 −H−1

1 H2(H4 −H3H
−1
1 H2)−1

−H−1
4 H3(H1 −H2H

−1
4 H3)−1 (H4 −H3H

−1
1 H2)−1

]
.

The following result is frequently used for proofs of the uniqueness and existence of Nash

Equilibrium in various scenario, for convenience we present it as a Lemma.

Lemma 4. Suppose z ∈ Rn is a vector and Q ∈ Mn is a square matrix. If the spectral radius of

Q is less than 1, i.e., ρ(Q) < 1, the following mapping:

Ξ(z) = z0 + Qz

has a unique fixed point z∗ = (In −Q)−1z0 = z0 + Q z0 + Q2 z0 + · · · .
21This inequality does not hold in general if we remove the symmetric matrix assumption. To see this, suppose

H =

[
0 0
1 0

]
, Z =

[
1 3
0 1

]
. Clearly ρ(H) = 0, ρ(Z) = 1. However, HZ =

[
0 0
1 3

]
and ρ(HZ) = 3 > 0 = ρ(H)ρ(Z).
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Proof of Lemma 4. Since ρ(Q) < 1, all the eigenvalues of Q (which could be complex numbers)

lie in the interior of the unit disk. Therefore, Det(In − Q) 6= 0, and so (In − Q) is invertible.

Moreover, the following holds

(In −Q)−1 = In + Q + Q2 + · · · .

The infinite series on the right hand side converges as we have assumed ρ(Q) < 1.

Suppose z∗ is a fixed point of Ξ. Then z∗ = Ξ(z)∗ = z0+Qz∗, and equivalently (In−Q)z∗ = z0.

Therefore,

z∗ = (In −Q)−1z0 = z0 + Q z0 + Q2 z0 + · · · .

The uniqueness also follows by the construction of of the z∗.

A.2 Katz-Bonacich centrality

Let us define the Katz-Bonacich centrality.

Definition 1. Assume 0 ≤ δ < 1/λ1(G). Then, for any vector a = (a1, · · · , an)′ ∈ Rn, the

Katz-Bonacich centrality vector with weight a is defined as:

b(G, δ,a) := M(G, δ)a, (11)

where

M(G, δ) = [I− δG]−1 = I +
∑
k≥1

δkGk. (12)

Let bi(G, δ,a) be the ith entry of b(G, δ,a). Let mij(G, δ) be the ij entry of M(G, δ). Then,

bi(G, δ,a) =
∑
j

mij(G, δ)aj .

B Conditions under which Nash equilibrium efforts are positive

In Theorem 1, we show that

xA =
M+ + M−

2
aA +

M+ −M−

2
aB and xB =

M+ + M−

2
aB +

M+ −M−

2
aA. (13)

Clearly, Assumption 1 guarantees that both M+ and M− are well-defined. Moreover, they are both

positive matrices. When β ≤ 0 (activities are complements, or independent), we have M+−M− �
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0. As a result, this automatically shows that xA � 0 and xB � 0.22

Let us now focus on the substitute case (β > 0). We need further conditions on the parameters

to guarantee the nonnegativity of effort levels. Intuitively, from equation (13), we observe that when

β is close to zero, M+−M−

2 is close to the zero matrix. Hence, the second term in xA, M+−M−

2 aB,

is dominated by the first term, M++M−

2 aA. Therefore, the summation of these two terms, xA, is

nonnegative. More precisely, we rewrite xA in equation (13) as follows:

xA =
M+ + M−

2
aA +

M+ −M−

2
aB

=
M+ + M−

2

{
aA +

(
M+ + M−

2

)−1
M+ −M−

2
aB

}

=
M+ + M−

2

{
aA − β[I− δG]−1aB

}
,

where the second equality follows from the identity:(
M+ + M−

2

)−1(
M+ −M−

2

)
= −β[I− δG]−1.

Given the positiveness of the matrix
(

M++M−

2

)
, xA � 0 as long as aA � β[I − δG]−1aB =

β b(G, δ,aB). The latter is true when β ≤ mini(a
A
i /bi(G, δ,aB)). By the same logic, xB � 0 when

β ≤ mini(a
B
i /bi(G, δ,aA)). In total, when

β ≤ min

{
min
i

(
aAi

bi(G, δ,aB)

)
,min

i

(
aBi

bi(G, δ,aA)

)}
,

then xA � 0 and xB � 0.

Alternatively, we could impose condition on the heterogeneity between aA and aB. Intuitively,

when aA = aB = a, we have xA = xB = M+a � 0. By continuity, when the difference between aA

and aB is small, both xA and xB are still nonnegative. More precisely, we rewrite xA in equation

22As the game is supermodular when β < 0 (see discussion in section 4.2), we could also obtain the non-negativity
of efforts from the perspective of the Best Response Tatonnement, which converges monotonically to the unique Nash
Equilibrium, starting from any initial strategy profile.
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(13) as follows:

xA = M+ aA + aB

2
+ M−aA − aB

2

= M+

{
aA + aB

2
+ (M+)−1M−aA − aB

2

}
= M+

{
aA + aB

2
+ (I + 2βM−)

aA − aB

2

}
= M+

{
aA + βM−1(aA − aB)

}
,

where the second step follows from the identity: (M+)−1M− = I + 2βM−. Since M+ is positive,

xA � 0 as long as

aA � −βM−1(aA − aB) =
β

1− β
b

(
G,

δ

1− β
, (aB − aA)

)
.

By the same logic, xB � 0 when aB � β
1−βb

(
G, δ

1−β , (a
A − aB)

)
. In total, when

aA � β

1− β
b

(
G,

δ

1− β
, (aB − aA)

)
� −aB,

we have xA � 0 and xB � 0.

The following proposition summarizes our results:

Proposition 5. Suppose that Assumption 1 holds.

(i) When β ≤ 0 (activities are complement or independent), then xA � 0 and xB � 0.

(ii) When β > 0 (activities are substitutes), if either

β ≤ min

{
min
i

(
aAi

bi(G, δ,aB)

)
,min

i

(
aBi

bi(G, δ,aA)

)}
(14)

or

aA � β

1− β
b

(
G,

δ

1− β
, (aB − aA)

)
� −aB (15)

holds, then xA � 0 and xB � 0.

As discussed above, observe that condition (14) imposes some restriction on the degree of

substitution between two activities, while condition (15) limits the heterogeneity between two ac-

tivities. Observe also that these two conditions are only sufficient but not necessary for equilibrium

efforts to be nonnegative.
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C Some comparative-statics results on the matrices M+ and M−

Before deriving the general comparative-statics results in Section 4, we need to obtain some results

on the matrices M+ and M−, which are more precisely defined in equation (23) in Appendix G

that we report here for the ease of exposition:

M+(G, δ, β) = [(1 + β)In − δG]−1 =
1

1 + β
M

(
G,

δ

(1 + β)

)
=

∞∑
k=0

(δG)k

(1 + β)1+k
.

M−(G, δ, β) = [(1− β)In − δG]−1 =
1

1− β
M

(
G,

δ

(1− β)

)
=
∞∑
k=0

(δG)k

(1− β)1+k
.

First, let us compare these two matrices with M(G, δ), which is defined in (12), i.e.

M(G, δ) = [I− δG]−1 = I +
∑
k≥1

δkGk.

Proposition 6. Suppose that Assumption 1 holds.

• When β ≥ 0, i.e. the activities A and B are substitutes, M−(G, δ, β) � M(G, δ) �
M+(G, δ, β);

• When β ≤ 0, i.e. the activities A and B are complements, M−(G, δ, β) � M(G, δ) �
M+(G, δ, β).

• When β = 0, i.e. the activities A and B are independent, M−(G, δ, 0) = M+(G, δ, 0) =

M(G, δ) =
∑∞

k=0 δ
kGk.

The results in Proposition 6 follow directly from the infinite series formula defined in each

of the matrices above. For example, when the two activities are substitutes, i.e. β ≥ 0, then

1 − β ≤ 1 ≤ 1 + β and we obtain the first result. Similar logic applies to other cases when β < 0

(complementary activities) and β = 0 (independent activities).

Proposition 7. Suppose that Assumption 1 holds. Then, M+ is increasing in δ and decreasing in

β while M− is increasing in δ and increasing in β. Mathematically,

∂M+(G, δ, β)

∂δ
= G[(1 + β)In − δG]−2 � 0,

∂M+(G, δ, β)

∂β
= −[(1 + β)In − δG]−2 � 0,

∂M−(G, δ, β)

∂δ
= G[(1− β)In − δG]−2 � 0,

∂M−(G, δ, β)

∂β
= [(1− β)In − δG]−2 � 0.
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Next, we examine the effect of increased network density. We say G′ � G if there are more

links in G′ than in G.

Proposition 8. Suppose that Assumption 1 holds for both G and G′ and that G′ � G, then

M+(G′, δ, β) �M+(G, δ, β) and M−(G′, δ, β) �M−(G, δ, β).

As the network grows (in terms of links), the network effects become stronger and this explains

the results of Proposition 8.

D Equilibrium utility

Using the equilibrium efforts given in Theorem 1, let us derive the equilibrium payoffs.

Proposition 9. Suppose that Assumption 1 holds. Then, the equilibrium payoff for player i is

given by:

u∗i =
1

2
(xA∗i )2 +

1

2
(xB∗i )2 + βxA∗i xB∗i

=
1

1 + β

[
bi

(
G,

δ

1 + β
,
aA + aB

2

)]2

+
1

1− β

[
bi

(
G,

δ

1− β
,
aA − aB

2

)]2

.

Proof of Proposition 9. In equilibrium, player i chooses xi to maximize

max
xi

[
xAi xBi

] [aAi + δ
∑n

j=1 gijx
A
j

aBi + δ
∑n

j=1 gijx
B
j

]
− 1

2

[
xAi xBi

] [1 β

β 1

][
xAi
xBi

]
.

Plugging the first-order conditions (20) into the above equation yields:

u∗i =
[
xA∗i xB∗i

] [1 β

β 1

][
xA∗i
xB∗i

]
− 1

2

[
xA∗i xB∗i

] [1 β

β 1

][
xA∗i
xB∗i

]

=
1

2

[
xA∗i xB∗i

] [1 β

β 1

][
xA∗i
xB∗i

]
=

1

2
(xA∗i )2 +

1

2
(xB∗i )2 + βxA∗i xB∗i ,

where xA∗i and xB∗i are the equilibrium activities of player i.
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Using the characterizations in Theorem 1 and Corollary 1

xA∗i =
1

1 + β
bi(G,

δ

1 + β
,
aA + aB

2
) +

1

1− β
bi(G,

δ

1− β
,
aA − aB

2
),

xB∗i =
1

1 + β
bi(G,

δ

1 + β
,
aA + aB

2
)− 1

1− β
bi(G,

δ

1− β
,
aA − aB

2
),

we can further simplify the expression:

u∗i =
1

2
(xA∗i )2 +

1

2
(xB∗i )2 + βxA∗i xB∗i

= (1 + β)

(
xA∗i + xB∗i

2

)2

+ (1− β)

(
xA∗i − xB∗i

2

)2

=
1

1 + β
b2i (G,

δ

1 + β
,
aA + aB

2
) +

1

1− β
b2i (G,

δ

1− β
,
aA − aB

2
).

This completes the proof.

We see that, contrary to the single activity case (Corollary 4), the cross-activity term βxAi x
B
i in

the cost function directly affects the trade-off between the two activities. Note that the two activities

can be either substitutes or complements, and the interdependence between activities creates a

driving force beyond the network effects generated by other players’ activities. In equilibrium, a

player’s payoff incorporates both of these factors and can be therefore expressed as a sum of the

squared of two Katz-Bonacich centralities.

E Some examples

Let us illustrate our main results with some specific networks.

E.1 Regular networks

We first consider the family of regular graphs, which are networks for which players have the same

number of links. We say that G is regular with degree d, if each node has exactly d neighbors, i.e.,

G1n = d1n. Figure 2 provides an example of a regular graph with degree 2, which is symmetric.

It is a circle network and is denoted by O4.

For a regular network of degree d, when aA = aB = a1n, it is easily verified that the unique

Nash equilibrium is given by:

xA = xB =
a

1 + β − dδ
1n. (16)

44



1 2

34

Figure 2: A regular graph (circle) of degree 2

Assume that aA = aA1n, aB = aB1n, which means that everybody in the same activity has

the same ex ante productivity but productivities differ between activities. For a regular network

of degree d, it is easily verified that the equilibrium outcomes are given by:

xA =
1

2

{
aA + aB

1 + β − dδ
1n +

aA − aB

1− β − dδ
1n

}
,

xB =
1

2

{
aA + aB

1 + β − dδ
1n −

aA − aB

1− β − dδ
1n

}
.

We see here clearly how the equilibrium efforts exerted by the individuals strongly depend on

the sum and average of initial productivities aA and aB, on the network spillover intensity δ and

on the network structure, captured here by the degree d of each individual. For example, we see

the ambiguous effect of a denser network (captured here by a higher degree d) or more spillover

intensity (higher δ) in equilibrium efforts. If aA > aB, then a denser network or more spillover

intensity increases xA but has (generally) an ambiguous effect on xB.

Let us now illustrate Propositions 2 and 3, which showed that the impact of δ and β on the

equilibrium efforts were ambiguous.

Impact of network spillovers and degree of interdependence between activities.

Start with homogeneous players so that aA = ab = 3. When the parameters are set to:

δ = 0.2, β = 0.2 for the circle network of Figure 2 (d = 2), we have xAi = xBi = 3.75, When we

increase δ from 0.20 to 0.21, both activities increases from 3.75 to 3.85. Similarly if we increase

β from 0.20 to 0.25, both activities decrease from 3.75 to 3.53. Indeed, when δ > 0 and the two

activities are substitutes (β = 0.2 > 0), increasing δ always increases the effort in both activities

because network effects reinforce each other between the two activities. The effect of β is less

obvious. When β increases, the cost of substituting the two activities increases and efforts in both

activities decrease.

Consider now some inter-group heterogeneity so that aA = 4, aB = 2. Using the same param-
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eter values for the circle network (δ = 0.2, β = 0.2, d = 2), we obtain: xAi = 6.25 > xBi = 1.25.

This is because activity A has a higher marginal utility than activity B (productivity advantage).

When δ increases from 0.20 to 0.21, effort in activity A increases from 6.25 to 6.48, but effort in

activity B decreases from 1.25 to 1.21. This is because the two activities are substitutes (crime

and education). So, if individuals have higher returns from crime than from education, they will

exert more crime effort than education effort. Because of higher spillover effects (δ increases), their

friends will also increase their criminal activities, which will feed back to the initial individuals. As

a result, criminal activities will increase and education activities will be reduced. When we increase

β from 0.20 to 0.25, activity B drops from 1.25 to 0.57, but activity A increases from 6.25 to 6.39.

Indeed, when β increases, crime and education become more substitutable and thus, because of the

initial productivity advantage in crime, crime effort increases, which reduces even more education

effort. We summarize the results in the following Table 2.

(aa, ab) \ (δ, β) (0.2, 0.2) (0.21, 0.2) (0.2, 0.25)

(3, 3) (3.75, 3.75) (3.85, 3.85) (3.53, 3.53)
(4, 2) (6.25, 1.25) (6.48, 1.21) (6.39, 0.57)

Table 2: Values of (xAi , x
B
i ) for different parameter values in the circle network of Figure 2.

Impact of network intensity. We can also compare the circle network O4 in Figure 2 and

the corresponding complete network K4 where we add links 13 and 24 to network O4. Clearly, K4

is denser than O4. As above, we set δ = 0.2, β = 0.2.

Assume ex ante homogeneity aA = aB = 4. Given these parameter choices, the equilibrium

efforts in activities A and B are equal to (5, 5) for every node (player) in the circle network O4 and

(6.67, 6.67) for every node in the complete network K4. We observe that both activities increase in

the denser network under the symmetry assumption.

Suppose instead that aA = 5, aB = 3. The equilibrium efforts are now given by (7.50, 2.50) for

the circle network O4 and by (11.67, 1.67) for the complete network K4. The difference between

two activities in the denser network K4 is larger than in the circle network because, compared to

the symmetric case, activity A goes up and activity B goes down as 1.67 < 2.5. The fact that

activity B is lower in a denser network is a novel feature that arises only in games with multiple

activities. By contrast, in the single-activity framework, the equilibrium activity always increases

when network G becomes denser (Ballester et al. (2006)). The interdependence between multiple

activities is the main driving force behind this type of non-monotonicity results. When β = 0, it

never happens. All of these results are consistent with Proposition 4, and are summarized in Table

3.
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network O4 K4

(aA, ab) xAi xBi xAi xBi
(4, 4) 5.00 5.00 6.67 6.67
(5, 3) 7.50 2.50 11.67 1.67

Table 3: Equilibrium activities for two different networks.

E.2 Bipartite networks

Consider now bipartite graphs (denoted by Kpq). In a bipartite graph Kpq, there are two disjoint

groups P and Q such that any node in P is connected to any node in Q. Let p = |P |, q = |Q|.
Thus, the network size is equal to: n = p+ q. Figure 3 provides an example of a bipartite networks

for the cases of p = 2 and q = 3.

3 4 5

1 2

Figure 3: A bipartite graph for K2,3.

It can be shown that, when aA = aB = a, the unique Nash equilibrium is given by:

xA = xB =

[
1

1+β [Ip + δ2q
(1+β)2−δ2qpJpp]

δ
(1+β)2−δ2pqJpq

δ
(1+β)2−δ2pqJqp

1
1+β [Iq + δ2p

(1+β)2−δ2qpJqq]

]
a.

where Jpq is the p × q matrix of 1s. Furthermore, if we assume that aAi = aBi = a for all i, we

obtain:

xA = xB =

[
a(1+β+δq)

(1+β)2−pqδ2 1p
a(1+β+δp)

(1+β)2−pqδ2 1q

]
=

[
xp1p

xq1q

]
,

where

xp =
a(1 + β + δq)

(1 + β)2 − pqδ2
, and xq =

a(1 + β + δp)

(1 + β)2 − pqδ2
.

Here, xp and xq are the activity levels of the players in groups P and Q, respectively. It is
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easy to see that xp, xq are monotonically increasing in p, q, δ, and are decreasing in β. Moreover,

we find that

xp > xq if and only if q > p.

That is, the players in the smaller group put more effort than those in the larger group when players

are homogeneous ex ante.

F The hybrid model with multiple activities

Liu et al. (2014) have developed the hybrid model, which incorporates both the local-aggregate

model of Section 2 and the local-average model of Section 6.5. Let us extend the hybrid model

when agents exert two activities. The utility function can now be written as:

ui(xi,x−i) = aAi x
A
i + aBi x

B
i −

{
1

2
(xAi )2 +

1

2
(xBi )2 + βxAi x

B
i

}
(17)

+δ
n∑
j=1

gijx
A
i x

A
j + δ

n∑
j=1

gijx
B
i x

B
j −

γ

2

xAi − n∑
j=1

g∗ijx
A
j

2

− γ

2

xBi − n∑
j=1

g∗ijx
B
j

2

Assumption 7. 1− |β|+ γ − λ1(δG + γG∗) > 0.

Denote M++ := [(1 + γ + β) In − δG− γG∗]−1 and M−− := [(1 + γ + β) In − δG− γG∗]−1.

Theorem 8. Suppose that Assumption 7 holds and the utility function of each player i is given by

(17). Then, for any aA and aB, there exists a unique Nash equilibrium given by: x = M++a and

x̂ = M−−â or, equivalently, by: [
xA

xB

]
=

[
M++a + M−−â

M++a−M−−â

]

Proof of Theorem 8. The first-order conditions are given by:

(1 + γ)xAi = aAi − βxBi + δ
n∑
j=1

gijx
A
j + γ

n∑
j=1

g∗ijx
A
j

(1 + γ)xBi = aBi − βxAi + δ
n∑
j=1

gijx
B
j + γ

n∑
j=1

g∗ijx
B
j
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If we sum these two equations, we obtain:

(1 + γ + β)
(
xAi + xBi

)
= aAi + aBi + δ

n∑
j=1

gij
(
xAj + xBj

)
+ γ

n∑
j=1

g∗ij
(
xAj + xBj

)
or, in matrix form,

x = M++a (18)

where x :=
(
xA + xB

)
/2, a :=

(
aA + aB

)
/2 and M++ := [(1 + γ + β) In − δG− γG∗]−1. If we

now subtract these two equations, we obtain:

(1 + γ − β)
(
xAi − xBi

)
= aAi − aBi + δ

n∑
j=1

gij
(
xAj − xBj

)
+ γ

n∑
j=1

g∗ij
(
xAj − xBj

)
or, in matrix form,

x̂ = M−−â (19)

where x̂ :=
(
xA − xB

)
/2, â :=

(
aA − aB

)
/2 and M−− := [(1 + γ − β) In − δG− γG∗]−1.

Thus, using (18) and (19), we obtain:[
xA

xB

]
=

[
M++a + M−−â

M++a−M−−â

]

which is equivalent to

xA = [(1 + γ + β) In − δG− γG∗]−1

(
aA + aB

)
2

+ [(1 + γ − β) In − δG− γG∗]−1

(
aA − aB

)
2

xB = [(1 + γ + β) In − δG− γG∗]−1

(
aA + aB

)
2

− [(1 + γ − β) In − δG− γG∗]−1

(
aA − aB

)
2

We need to show that (1 + γ + β) In − δG− γG∗ and (1 + γ − β) In − δG− γG∗ are invertible. A

condition for this to be true is Assumption 7. �

G Proofs

Proof of Theorem 1: The first-order conditions are given by:[
1 β

β 1

][
xAi
xBi

]
=

[
aAi + δ

∑n
j=1 gijx

A
j

aBi + δ
∑n

j=1 gijx
B
j

]
. (20)
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Taking the sum of first-order conditions in (20) yields:

(1 + β)
xAi + xBi

2
=

(aAi + aBi )

2
+ δ

n∑
j=1

gij
xAj + xBj

2
,

which can be expressed in matrix form:

(1 + β)
xA + xB

2
=

(aA + aB)

2
+ δG

xA + xB

2
.

Therefore, we obtain
xA + xB

2
= [(1 + β)In − δG]−1 (aA + aB)

2
. (21)

On the other hand, taking the difference in (20) yields:

(1− β)
xAi − xBi

2
=

(aAi − aBi )

2
+ δ

n∑
j=1

gij
xAj − xBj

2

=⇒ (1− β)
xA − xB

2
=

(aA − aB)

2
+ δG

xA − xB

2
.

Therefore,
xA − xB

2
= [(1− β)In − δG]−1 (aA − aB)

2
. (22)

Combing equations (21) and (22), we obtain the theorem.

Proof of Corollary 1. We haveM+(G, δ, β) = [(1 + β)In − δG]−1 = 1
1+βM

(
G, δ

(1+β)

)
=
∑∞

k=0
(δG)k

(1+β)1+k .

M−(G, δ, β) = [(1− β)In − δG]−1 = 1
1−βM

(
G, δ

(1−β)

)
=
∑∞

k=0
(δG)k

(1−β)1+k .
(23)

Both series expansions in (23) converge as δλ1(G)
1±β < 1 by Assumption 1. As a result, we can

rewrite the equilibrium equations of Theorem 1 as follows:xA = 1
1+βb(G, δ

(1+β) ,
(aA+aB)

2 ) + 1
1−βb(G, δ

(1−β) ,
(aA−aB)

2 )

xB = 1
1+βb(G, δ

(1+β) ,
(aA+aB)

2 )− 1
1−βb(G, δ

(1−β) ,
(aA−aB)

2 )
.

Equivalently, we have, for each player i:xAi = 1
1+β bi(G, δ

(1+β) ,
(aA+aB)

2 ) + 1
1−β bi(G, δ

(1−β) ,
(aA−aB)

2 )

xBi = 1
1+β bi(G, δ

(1+β) ,
(aA+aB)

2 )− 1
1−β bi(G, δ

(1−β) ,
(aA−aB)

2 )
.
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This proves the result.

Proofs of Corollaries 2, 3 and 4. These are direct consequences of Theorem 1. Therefore, we

omit the details.

Proof of Proposition 6. From (23), we immediately see that if β ≥ 0,

∞∑
k=0

(δG)k

(1− β)1+k
�
∞∑
k=0

(δG)k

(1 + 0)1+k
�
∞∑
k=0

(δG)k

(1 + β)1+k
, as 1 + β ≥ 1 + 0 ≥ 1− β.

Therefore, M−(G, δ, β) �M(G, δ) �M+(G, δ, β). The other cases can be shown similarly.

Proof of Proposition 7. By definition,

M+(G, δ, β)[(1 + β)In − δG] = In.

Taking the derivative with respect to δ yields

∂M+(G, δ, β)

∂δ
[(1 + β)In − δG]−M+(G, δ, β)G = 0.

Therefore,

∂M+(G, δ, β)

∂δ
= M+(G, δ, β)G[(1 + β)In − δG]−1 = G[(1 + β)In − δG]−2.

The last equality uses the fact that the matrices G and M+(G, δ, β) = [(1 + β)In − δG]−1 are

commutative. Hence, the order of multiplication is irrelevant. The other results can be shown

similarly.

Proof of Proposition 8. Since G′ � G, for all k ≥ 1 (G′)k � (G)k. Therefore, we obtain

M+(G′, δ, β) =

∞∑
k=0

(δG′)k

(1 + β)1+k
�
∞∑
k=0

(δG)k

(1 + β)1+k
= M+(G, δ, β).

Similarly we can show M−(G′, δ, β) �M−(G, δ, β).

Proofs of Propositions 1 – 4. These follow directly from Theorem 1 and the comparative statics

results in Proposition 6, Proposition 7, and Proposition 8, therefore the detailed proofs are omitted.

Proof of Lemma 1. Please see the original proof in Ballester et al. (2006), or an alternative

derivation in Zhou and Chen (2015).
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Proof of Theorem 2. First we consider the case with λ = µ = 1. By Theorem 1, in equilibrium

xA + xB = M+(aA + aB) = b(G,
δ

1 + β
,
(aA + aB)

1 + β
).

Therefore, the sum of both activities is

n∑
k=1

bk(G,
δ

1 + β
,
(aA + aB)

1 + β
). (24)

When player i is removed from the network, the resulting network is just G−i, and marginal utilities

vectors are aA−i, and aB−i. Therefore, the sum of both activities in equilibrium, by analogy to (24),

is ∑
k 6=i

bk(G−i,
δ

1 + β
,
(aA + aB)−i

1 + β
). (25)

The difference between (24) and (25), by Lemma 1, is

1

1 + β
c̄i(G,

δ

(1 + β)
, (aA + aB)) := c1,1

i (G, δ,aA,aB).

Now we solve the case with λ = 1, µ = 0. By Theorem 1, we obtain

xA =
1

1 + β
b(G,

δ

(1 + β)
,
(aA + aB)

2
) +

1

1− β
b(G,

δ

(1− β)
,
(aA − aB)

2
).

Therefore, the sum of activity A is

1

1 + β

n∑
k=1

bk(G,
δ

(1 + β)
,
(aA + aB)

2
) +

1

1− β

n∑
k=1

bk(G,
δ

(1− β)
,
(aA − aB)

2
).

When i is removed from the network G, the sum of activity A now becomes

1

1 + β

∑
k 6=i

bk(G−i,
δ

(1 + β)
,
(aA + aB)−i

2
) +

1

1− β
∑
k 6=i

bk(G−i,
δ

(1− β)
,
(aA − aB)−i

2
).

Taking the difference yields

1

1 + β
c̄i(G,

δ

(1 + β)
,
(aA + aB)

2
) +

1

1− β
c̄i(G,

δ

(1− β)
,
(aA − aB)

2
) := c1,0

i (G, δ,aA,aB).

Since the equilibrium activities are linear in aA,aB, and the objective is also linear, the gen-
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eralized inter-centrality measure with multiple activities under weights (λ, µ) is

cλ,µi (G, δ,aA,aB) = µc1,1
i (G, δ,aA,aB) + (λ− µ)c1,0

i (G, δ,aA,aB).

This completes the proof.

Proof of Theorem 3. The first-order conditions are

ati − (xti + β
∑
j 6=i

xtj) + δ
∑

gijx
t
j = 0, t = 1, 2, · · · l; i = 1, 2, · · · , n.

In matrix form, we have

(Ψ⊗ In)X = A + δ(Il ⊗G)X,

and therefore

X = [Ψ⊗ In − δIl ⊗G]−1A.

More precisely, we can conjecture that

[Ψ⊗ In − δIl ⊗G]−1 =


In − δG βIn · · · βIn

βIn In − δG · · · βIn
...

. . .
. . .

...

βIn · · · βIn In − δG


−1

=


W Φ · · · Φ

Φ W · · · Φ
...

. . .
. . .

...

Φ · · · Φ W

 .

The matrices W and Φ must satisfy the following conditions:

(In − δG)W + β(l − 1)Φ = In, (In − δG)Φ + β(W + (l − 2)Φ) = 0.

Solving these equations together, we obtain

W =
[(1 + (l − 1)β)In − δG]−1 + (l − 1)[(1− β)In − δG]−1,

l

Φ =
[(1 + (l − 1)β)In − δG]−1 − [(1− β)In − δG]−1

l
.

This gives the equilibrium activities.

For uniqueness, we can write down the best response mapping, in multiple activities, as follows:

BR(X) := (Ψ⊗ In)−1A + δ(Ψ⊗ In)−1(Il ⊗G)X

= (Ψ−1 ⊗ In)A + δ(Ψ−1 ⊗G)X.

The spectral radius of δG is δλ1(G), and the spectral radius of Ψ−1 is max( 1
1−β ,

1
1+(l−1)β ) as Ψ−1
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has only two distinct eigenvalues, 1
1−β and 1

1+(l−1)β . Therefore the spectral radius of the Kronecker

product δ(Ψ−1⊗G) equals δλ1(G) max( 1
1−β ,

1
1+(l−1)β ), which is strictly less than 1 by Assumption

223. The uniqueness result follows from Lemma 4 in Appendix A.

Proof of Theorem 4. The first-order conditions from the players’ best responses can be written

as: [
In βIn

βIn In

][
xA

xB

]
=

[
aA

aB

]
+

[
δG µG

µG δG

][
xA

xB

]
.

Taking the sum yields

(1 + β)(xA + xB) = (aA + aB) + (δ + µ)G(xA + xB),

or equivalently

(xA + xB) = [(1 + β)In − (δ + µ)G]−1(aA + aB).

Similarly, the substraction leads to the variation component:

(xA − xB) = [(1− β)In − (δ − µ)G]−1(aA − aB).

Combining these two equations yields the equilibrium efforts xA and xB, thus the existence is

proved by construction. For uniqueness, we can write down the best response mapping as follows:

BR(X) :=

[
In βIn

βIn In

]−1 [
aA

aB

]
+

[
In βIn

βIn In

]−1 [
δG µG

µG δG

]
︸ ︷︷ ︸

:Ω

[
xA

xB

]
.

Note that

Ω =

{[
1 β

β 1

]
⊗ In

}−1{[
δ µ

µ δ

]
⊗G

}
=

{
1

1− β2

[
1 −β
−β 1

]
⊗ In

}{[
δ µ

µ δ

]
⊗G

}

=

{
1

1− β2

[
δ − βµ µ− βδ
µ− βδ δ − βµ

]
⊗G

}
.

The eigenvalues of 1
1−β2

[
δ − βµ µ− βδ
µ− βδ δ − βµ

]
are δ+µ

1+β and δ−µ
1−β . Thus, its spectral radius is max( |δ+µ|1+β ,

|δ−µ|
1−β ).

Moreover, the spectral radius of G is λ1(G). Therefore, the spectral radius of Ω is max( |δ+µ|1+β ,
|δ−µ|
1−β )λ1(G),

which is strictly less than 1 by Assumption 3. The rest just follows from Lemma 4 in Appendix A.

23The spectral radius of the Kronecker product of two matrices equals the product of the two spectral radius.
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Proof of Theorem 5. To characterize the equilibrium, the first-order conditions can be written

as: [
In Λβ

Λβ In

][
xA

xB

]
=

[
aA

aB

]
+

[
δG 0

0 δG

][
xA

xB

]
.

Here Λβ = diag(β1, · · · , βn) is a diagonal matrix with βi on its (i, i) entry. Taking the sum yields:

(In + Λβ)(xA + xB) = (aA + aB) + (δ + µ)G(xA + xB),

or equivalently

(xA + xB) = [In + Λβ − δG]−1(aA + aB).

Similarly, the variation term is

(xA − xB) = [In −Λβ − δG]−1(aA − aB).

The existence is thus proved by construction. For uniqueness, we can write down the best response

mapping as follows

BR(X) :=

[
In Λβ

Λβ In

]−1 [
aA

aB

]
+

[
In Λβ

Λβ In

]−1 [
δG 0

0 δG

]
︸ ︷︷ ︸

:Σ

[
xA

xB

]
.

Note that the eigenvalues of

[
In Λβ

Λβ In

]
are 1± βi, i = 1, 2, · · · , n. Therefore, its spectral radius of[

In Λβ

Λβ In

]−1

is maxi(
1

1±βi ) = maxi

{
1

1−|βi|

}
.

Recall that the spectral radius of

[
δG 0

0 δG

]
is δλ1(G). Thus, the spectral radius of Σ is

ρ(Σ) ≤ ρ

[ In Λβ

Λβ In

]−1
 ρ

([
δG 0

0 δG

])
= max

i

{
1

1− |βi|

}
δλ1(G) < 1,

where the first inequality follows from Lemma 2 as both

[
In Λβ

Λβ In

]−1

and

[
δG 0

0 δG

]
are symmetric

matrices, and the last inequality is by Assumption 4. The uniqueness result follows from Lemma 4

in Appendix A.

Proof of Theorem 6. Following similar steps, we obtain the first-order conditions in matrix form
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as follows: [
In βIn

βIn In

][
xA∗

xB∗

]
=

[
aA

aB

]
+

[
δAGA 0

0 δBGB

][
xA

xB

]
.

Therefore, we obtain

X∗ =

[
xA∗

xB∗

]
=

[
In − δAGA βIn

βIn In − δBGB

]−1 [
aA

aB

]
.

The inverse matrix above can be computed using Lemma 3 about Block Matrix Inversion Formula.

To show the uniqueness, we need to show the best response mapping defined below

BR(X) :=

[
In βIn

βIn In

]−1 [
aA

aB

]
+

[
In βIn

βIn In

]−1 [
δAGA 0

0 δBGB

]
︸ ︷︷ ︸

:Υ

[
xA

xB

]

has a unique fixed point. Notice that

[
In βIn

βIn In

]−1

has only two distinct eigenvalues, 1/(1 + β)

and 1/(1− β). Therefore, its spectral radius is 1/(1− |β|).

The eigenvalues of

[
δAGA 0

0 δBGB

]
are δAλi(G

A), i = 1, · · · , n, and δBλi(G
B), i = 1, · · · , n,

where {λi(Gt), i = 1, · · · , n} are the eigenvalues of Gt for t = A,B. By Perron-Frobenius Theorem,

the spectral radius of a nonnegative matrix equals its largest eigenvalue. As a consequence, its

spectral radius equals max(δAλ1(GA), δBλ1(GB)).

Moreover, both

[
In βIn

βIn In

]−1

and

[
δAGA 0

0 δBGB

]
are symmetric as GA and GB are sym-

metric. Applying Lemma 2 , we obtain that

ρ(Υ) ≤ ρ

[ In βIn

βIn In

]−1
 ρ

([
δAGA 0

0 δBGB

])
=

1

1− |β|
max(δAλ1(GA), δBλ1(GB)) < 1

by Assumption 5. The uniqueness just follows from Lemma 4 in Appendix A.
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