
??, ??, 1{20 (??)
c ?? Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Multiple Adaptive Agents for Tactical Driving

RAHUL SUKTHANKAR, SHUMEET BALUJA

rahuls@jprc.com, baluja@jprc.com

Justsystem Pittsburgh Research Center, 4616 Henry St., Pittsburgh PA 15213

and

The Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213-3891

JOHN HANCOCK

jhancock@ri.cmu.edu

The Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213-3891

Received ??; Revised ??

Editors: ??

Abstract. Recent research in automated highway systems has ranged from low-level vision-based con-
trollers to high-level route-guidance software. However, there is currently no system for tactical-level
reasoning. Such a system should address tasks such as passing cars, making exits on time, and merging
into a tra�c stream. Many previous approaches have attempted to hand construct large rule-based sys-
tems which capture the interactions between multiple input sensors, dynamic and potentially conicting
sub-goals, and changing roadway conditions. However, these systems are extremely di�cult to design
due to the large number of rules, the manual tuning of parameters within the rules, and the complex in-
teractions between the rules. Our approach to this intermediate-level planning is a system which consists
of a collection of autonomous agents, each of which specializes in a particular aspect of tactical driving.
Each agent examines a subset of the intelligent vehicle's sensors and independently recommends driving
decisions based on their local assessment of the tactical situation. This distributed framework allows
di�erent reasoning agents to be implemented using di�erent algorithms.
When using a collection of agents to solve a single task, it is vital to carefully consider the interac-

tions between the agents. Since each reasoning object contains several internal parameters, manually
�nding values for these parameters while accounting for the agents' possible interactions is a tedious
and error-prone task. In our system, these parameters, and the system's overall dependence on each
agent, is automatically tuned using a novel evolutionary optimization strategy, termed Population-Based
Incremental Learning (PBIL).
Our system, which employs multiple automatically trained agents, can competently drive a vehicle,

both in terms of the user-de�ned evaluation metric, and as measured by their behavior on several driving
situations culled from real-life experience. In this article, we describe a method for multiple agent inte-
gration which is applied to the automated highway system domain. However, it also generalizes to many
complex robotics tasks where multiple interacting modules must simultaneously be con�gured without
individual module feedback.

Keywords: intelligent vehicles, evolutionary algorithms, simulation, distributed AI

2 Sukthankar, Baluja, Hancock

1. Introduction

The task of driving can be characterized as con-
sisting of three levels: strategic, tactical and op-
erational [13]. At the highest (strategic) level,
a route is planned and goals are determined; at
the intermediate (tactical) level, maneuvers are se-
lected to achieve short-term objectives | such as
deciding whether to pass a blocking vehicle; and
at the lowest (operational) level, these maneuvers
are translated into control operations.

Mobile robot research has successfully ad-
dressed the three levels to di�erent degrees.
Strategic-level planners [18, 24] have advanced
from research projects to commercial products.
The operational level has been investigated for
many decades, resulting in systems that range
from semi-autonomous vehicle control [7, 11] to
autonomous driving in a variety of situations [4,
15]. Substantial progress in autonomous naviga-
tion in simulated domains has also been reported
in recent years [17, 3, 16]. However, the decisions
required at the tactical level are di�cult and a
general solution remains elusive.

Consider the situation depicted in Figure 1.
Car A, under computer control, is approaching
its desired exit when it comes upon a slow mov-
ing blocker (Car B), in its lane. Car A's tactical
reasoning system must determine whether to pass
Car B and risk missing the exit. Obviously, the
correct decision depends on a number of factors
such as the distance to the exit, Car A's desired
velocity, and the density and speed of surrounding
tra�c.

Such scenarios are of particular relevance to
intelligent vehicles operating in mixed-tra�c en-

vironments. In these environments, computer-
and human-controlled cars share the roadway, and
tactical decisions must be made without relying
on communication-based protocols. This short-
term planning problem is challenging because real-
time decisions must be made based on incomplete,
noisy information about the state of the world.
Furthermore, the penalty for bad decisions is se-
vere since errors in judgment may result in high-
speed collisions.

SAPIENT, described in Section 3, is a tactical
reasoning system designed to drive intelligent ve-
hicles, such as the Carnegie Mellon Navlab [23],
in mixed-tra�c environments. In SAPIENT, de-
cisions are made by a collection of independent
agents, termed reasoning agents, each of which
specializes in a particular aspect of the tactical
driving task. This article focuses on how these
agents automatically con�gure themselves to op-
timize a user- speci�ed evaluation function using
a novel evolutionary algorithm termed Population
Based Incremental Learning (PBIL).

This article is organized as follows. Section 2
presents the simulated highway environment used
to train the SAPIENT agents. Section 3 details
the SAPIENT architecture, describing the reason-
ing agents and their voting language. Section 4 in-
troduces PBIL, and explains the encoding scheme
used to represent agent parameters. Subsequent
sections present our results, both on small-scale
tactical scenarios (such as the one shown in Figure
1), and on larger highway con�gurations. Finally,
Section 8 summarizes the research and outlines
areas for further research.

BA

GOAL

Fig. 1. An example of tactical-level reasoning. Car A is approaching its desired exit behind a slow vehicle B. Should Car
A attempt to pass?

Agents for Tactical Driving 3

Fig. 2. SHIVA: A design and simulation tool for developing intelligent vehicle algorithms.

2. The SHIVA Simulator

Simulation is essential in developing intelligent
vehicle systems because testing new algorithms
in real tra�c is expensive, risky and potentially
disastrous. SHIVA1 (Simulated Highways for
Intelligent Vehicle Algorithms) [22, 21] is a kine-
matic micro-simulation of vehicles moving and in-
teracting on a user-de�ned stretch of roadway that
models the elements of the tactical driving domain
most useful to intelligent vehicle designers. The
vehicles can be equipped with simulated human
drivers as well as sensors and algorithms for auto-
mated control. These algorithms direct the vehi-
cles' motion through simulated commands to the
accelerator, brake, and steering wheel. SHIVA's
user interface provides facilities for visualizing and
specifying the interactions between vehicles (see
Figure 2). The internal structure of the simulator
is comprehensively covered in [22], and details of
the design tools may be found in [21].

All simulated vehicles are composed of three
subsystems: perception, cognition, and control.

The perception subsystem consists of a suite of
simulated functional sensors (e.g., global position-
ing systems, range-sensors, lane-trackers), whose
outputs are similar to real perception modules
implemented on the Navlab vehicles. Simulated
vehicles use these sensors to obtain information
about the road geometry and surrounding tra�c.
Vehicles may control the sensors directly, scanning
and panning the sensors as needed, encouraging
active perception. Some sensors also model oc-
clusion and noise, forcing cognition routines to be
realistic in their input assumptions.
While a variety of cognition modules have been

developed in SHIVA, this article only discusses
two types: rule-based reasoning and SAPIENT.
The rule-based reasoning system, which was man-
ually designed, is implemented as a monolithic de-
cision tree. It consists of a collection of tactical
driving rules such as:

\Initiate a left lane change if the vehicle
ahead is moving slower than f(v) m/s, and
is closer than h(v), and if the lane to your
left is marked for legal travel, and if there are

4 Sukthankar, Baluja, Hancock

no vehicles in that lane within g(v) meters,
and if the desired right-exit is further than
e(x; y; v) meters."

where: f(v) is the desired car following velocity,
h(v) is the desired car following distance (head-
way), g(v) is the required gap size for entering an
adjacent lane, and e(x; y; v) is a distance thresh-
old to the exit based on current lane, distance to
exit and velocity. While this system performs well
on many scenarios, it su�ers from four disadvan-
tages: 1) as the example above illustrates, realistic
rules require the designer to account for many fac-
tors; 2) modi�cation of the rules is di�cult since a
small change in desired behavior can require many
non-local modi�cations; 3) hand-coded rules per-
form poorly in unanticipated situations; 4) imple-
menting new features requires one to consider an
exponential number of interactions with existing
rules. Similar problems were reported by Cremer
et al. [3] in their monolithic state-machine imple-
mentation for scenario control. The SAPIENT
distributed architecture, discussed in the next sec-
tion, was developed to address some of these prob-
lems.

The control subsystem is compatible with the
controller available on the Carnegie Mellon Navlab
II robot testbed vehicle. Commands to the con-
troller are issued by the cognition modules at a
rate of 10 Hz.

3. SAPIENT

SAPIENT (Situation Awareness Planner Imple-
menting E�ective Navigation in Tra�c) [20]
consists of a collection of independent modules
(termed reasoning agents), each of which is an ex-
pert on a speci�c aspect of the tactical driving
task. Each agent is assigned to monitor a relevant
physical entity in the environment and is respon-
sible for assessing the repercussions of that entity
on the intelligent vehicle's upcoming actions (see
Figure 3). For example, the reasoning agent asso-
ciated with a vehicle ahead monitors the motion of
that vehicle and determines whether to continue
car following, initiate a lane change, or begin brak-
ing. Similarly, a reasoning agent associated with
an upcoming exit is concerned with recommend-

ing the lane changes and speed changes needed
to successfully maneuver the intelligent vehicle to
the o�-ramp.

3.1. System Overview

The SAPIENT architecture is shown in Figure 4.
The perception modules (depicted as ellipses) are
connected to the intelligent vehicle's sensors, and
perform functions such as lane tracking or vehicle
detection. Wherever possible, they correspond to
existing systems available on the Carnegie Mel-
lon Navlab (e.g., the lane tracker is based on
ALVINN [15]). Each reasoning agent (shown as
a dark rectangle) obtains information about the
situation from one or two perception modules,
and independently calculates the utility of various
courses of action. This information is then sent to
the voting arbiter, which integrates these recom-
mendations and selects the appropriate response.
Finally, the tactical action is translated into steer-
ing and velocity commands and executed by the
operational-level controller.
As seen in Figure 4, reasoning agents can be

classi�ed into classes based on their area of spe-
cialization. SAPIENT's loosely-coupled architec-
ture allows new classes to be developed without
modifying the existing reasoning agents. Our cur-
rent implementation spans the following tactical-
level aspects:

� Road properties: local geometry, legal lanes,
speed limits, etc.

� Nearby vehicles: sizes, positions, and veloci-
ties

� Exits: distance, exit lane, speed constraints
� Self-state: current velocity, lateral position,

explicit goals

Each reasoning agent tracks the associated
physical entity's attributes by monitoring the ap-
propriate sensors. For example, a reasoning agent
associated with a nearby vehicle normally tracks
its longitudinal position and velocity, and its lat-
eral position (mapped into road coordinates). The
tracking has two important implications. First, it
allows the reasoning agent to obtain a better esti-
mate of the relevant attribute. Second, the reason-
ing agent can accumulate statistics that can help
inuence decisions. For instance, based on the ir-

Agents for Tactical Driving 5

A
Front vehicle tracker
 region of interest.

Exit Finder

Velocity Preference
 Reasoning Agent

Exit Reasoning Agent

Lane Reasoning
 Agent

Vehicle Reasoning
 Agent

Fig. 3. SAPIENT reasoning agents are associated with relevant physical entities in the environment. In this situation, the
intelligent vehicle (A) is following a car and approaching its desired exit.

regular lane-keeping performance of a nearby ve-
hicle (an indication of an inexperienced or intoxi-
cated driver), the reasoning agent associated with
that vehicle could favor actions that maintain a
greater distance from that vehicle. Thus, SAPI-
ENT is not a purely reactive system; the local
state associated with each reasoning agent allows
SAPIENT to make decisions based on past his-
tory. The relevant history is maintained by each
agent.

Externally, all reasoning agents share a simi-
lar structure | each agent accepts inputs from a
subset of the intelligent vehicle's perception mod-
ules and sends outputs to the voting arbiter as a
set of votes over the entire action space (See Sec-
tion 3.2). Internally, however, SAPIENT's rea-
soning agents are heterogenous, maintaining lo-
cal state and using those representations that are
most applicable to the assigned subtask. For ex-
ample, the reasoning agents responsible for exit
management are rule-based while the reasoning
agent monitoring other vehicles use generalized
potential �elds [9, 10]. The di�erent reasoning
agent types and their associated algorithms are
detailed in [20].

SAPIENT reasoning agents are myopic in their
outlook. For example, the Exit Reasoning Ob-
ject's votes are not inuenced by the presence
of the blocking vehicle; conversely, the reasoning
agent associated with the blocking vehicle is obliv-

ious to the exit. Finally, the arbiter is completely
ignorant of the driving task. Yet the combination
of these local reasoning schemes leads to a dis-
tributed awareness of the tactical-level situation.
Before discussing how a knowledge-free arbiter can
combine these local views of the tactical driving
task, a closer look at the action space is warranted.

3.2. Actions

Tactical maneuvers (such as lane changing) are
composed by concatenating several basic actions.
Reasoning agents indicate their preference for a
basic action by assigning a vote to that action.
The magnitude of the vote corresponds to the
intensity of the preference and its sign indicates
approval or disapproval. Each reasoning agent
must assign some vote to every action in the ac-
tion space. All actions have velocity (longitudinal)
and lane-o�set (lateral) components; for exam-
ple, \brake hard while changing left" or \increase
speed and maintain your current lane position".

Since di�erent reasoning agents can return dif-
ferent recommendations for the next action, con-
icts must be resolved. SAPIENT uses a voting
arbiter to perform this integration. At each time-
step, the reasoning agents synchronously submit
votes or vetoes for each action in the action space
(see Table 1). During arbitration, all of the votes
for a given action are summed together (after

6 Sukthankar, Baluja, Hancock

Operational
 Controller

 Lane
Tracker

 Exit
Finder

Selfstate

Car Detection
 Modules

Perception Cognition Control

Voting
Arbiter

Velocity
 Agent

 Lane
Agent

 Exit
Agent

Front Left
Car Agent

Front Right
 Car Agent

Back Right
Car Agent

 Back Left
Car Agent

Hysteresis
 Agent

 Front
Car Agent

Fig. 4. SAPIENT consists of a collection of reasoning agents which recommend actions based upon local considerations.
Each reasoning agent monitors a subset of the vehicle's sensors and votes upon a set of possible actions. The hysteresis
reasoning agent is responsible for maintaining consistency over time (especially in cases where multiple actions are equally
advantageous); this is done by voting in favor of the action selected in the previous time step. Action fusion is performed
by a domain-independent, voting arbiter.

Table 1. The action space is a 3 � 3 discretization of the lateral/longitudinal space. The labels are translated at the
operational level into speci�c numbers. Thus, \left" and \right" map to lateral positions (e.g., move left/right by 0.1 lane
widths) while \accelerate" and \decelerate" map to changes in velocity (e.g., speed up/slow down by 0.1 m/s).

accelerate/shift-left accelerate/straight accelerate/shift-right
coast/shift-left coast/straight coast/shift-right

decelerate/shift-left decelerate/straight decelerate/shift-right

being scaled by the reasoning agent's inuence

weight), and the action with the most accumu-
lated votes (which has not been vetoed by any
agent) is executed. The actions used in the imple-
mentation described in this article are summarized
in Table 1. Finer discretizations and alternate ac-

tion spaces are discussed in [20]. Although the
action space restricts reasoning objects to voting
on their adjacent lanes, the reasoning agents can
internally plan longer-range courses of action. For
example, the exit agent can vote for lane changes
towards the exit, even when the exit is several
lanes away.

Agents for Tactical Driving 7

car following
 (external)
 = 2 = 64

exit weight
 (external)
= 2 = 16

 60 bits
(20 parameters * 3 bits)

{ {

desire to exit
 (internal)
 = 2

{ {

21car following
 (internal)
 = 5

011 . . . 010100101110 . . . 101

4 6

Fig. 5. The three-bit encoding scheme used to represent parameters in the search space: internal parameters are linearly
scaled while external ones are exponentially scaled.

3.3. Parameters

Di�erent reasoning agents use di�erent internal al-
gorithms. Each reasoning agent's output depends
on a variety of internal parameters (e.g., thresh-
olds, gains, etc.). Before going to the arbiter, each
agent's outputs are scaled by its inuence weight
(external parameters).

When a new reasoning agent is being imple-
mented, it is di�cult to determine whether a ve-
hicle's poor performance should be attributed to
a bad choice of parameters in the new agent, a
bug in the logic of the new reasoning agent or,
more seriously, to a poor representation scheme
(inadequate con�guration of reasoning agents).
To overcome this di�culty, we have implemented
a method for automatically con�guring the pa-
rameter space. A total of twenty parameters,
both internal and external, were selected for the
tests described here, and each parameter was dis-
cretized into eight values (represented as a three-
bit string). For internal parameters, whose val-
ues are expected to remain within a certain small
range, we selected a linear mapping (where the
three bit string represented integers from 0 to 7);
for the external parameters, we used an exponen-
tial representation (with the three-bit string map-
ping to eight values in the range 0 to 128). The
latter representation increases the range of pos-
sible weights at the cost of sacri�cing resolution
at the higher magnitudes. A representation with
more bits per parameter would allow �ner tuning
but increase the training time. The encoding is
illustrated in Figure 5. In the next section, we
describe the evolutionary algorithm used for the
learning task.

4. Population-Based Incremental

Learning

Population-Based Incremental Learning (PBIL) is
a combination of genetic algorithms (GAs) [8] and
competitive learning [1, 2]. The PBIL algorithm
attempts to explicitly maintain statistics about
the search space and uses them to direct its ex-
ploration. The object of the algorithm is to cre-
ate a real valued probability vector which, when
sampled, reveals high quality solution vectors with
high probability. The full algorithm is presented
in Figure 6.

Initially, each element of the PBIL probability
vector is initialized to 0.5. Sampling from this
vector yields random solution vectors because ze-
ros and ones are generated with equal probability
in each bit position. As training progresses, the
values in the probability vector gradually shift to
represent high evaluation solution vectors through
the following process. A number of solution vec-
tors are generated based upon the probabilities
speci�ed in the probability vector. The probabil-
ity vector is pushed towards the generated solu-
tion vector with the highest evaluation. After the
probability vector is updated, a new set of solution
vectors is produced by sampling from the updated
probability vector, and the cycle is continued. As
the search progresses, the entries in the probabil-
ity vector move away from their initial settings
of 0.5 towards either 0.0 or 1.0. The best solu-

tion ever generated in the run is returned as the

�nal solution. Note that because the algorithm
only returns the best solution generated during
the run, convergence of the probability vector is
not a prerequisite for the success of the algorithm.

8 Sukthankar, Baluja, Hancock

for i := 1 to LENGTH do P[i] = 0.5;

while (NOT termination condition)
 ****** Generate Samples ******
 for i := 1 to SAMPLES do
 sample_vectors[i] := generate_sample_vector_according_to_probabilities(P);
 evaluations[i] := Evaluate_Solution(sample_vectors[i];);
 best_vector := find_vector_with_best_evaluation(sample_vectors, evaluations);

 ****** Update Probability Vector towards best solution ******
 for i := 1 to LENGTH do
 P[i] := P[i] * (1.0 − LR) + best_vector[i] * (LR);

 ****** Mutate Probability Vector ******
 for i := 1 to LENGTH do
 if (random (0,1) < MUT_PROBABILITY) then
 if (random (0,1) > 0.5) then mutate_direction := 1;
 else mutate_direction := 0;
 P[i] := P[i] * (1.0 − MUT_SHIFT) + mutate_direction * (MUT_SHIFT);

return the best solution found in run;

USER DEFINED CONSTANTS (Values Used in this Study):
SAMPLES: the number of vectors generated before update of the probability vector (100)
LR: the learning rate, how fast to exploit the search performed (0.1).
LENGTH: the number of bits in a generated vector (3 * 20)
MUT_PROBABILITY: the probability of a mutation occuring in each position (0.02).
MUT_SHIFT: the amount a mutation alters the value in the bit position (0.05).

Fig. 6. The PBIL algorithm used to train SAPIENT reasoning agent parameters. Here, the explicit preservation of the
best solution from the previous generation (elitist selection) is not shown.

However, empirically, the probability vector has
converged in all of the runs conducted.

The probabilistic generation of solution vectors
does not guarantee the creation of a good solution
vector in every iteration. This problem is exac-
erbated by the small population sizes used in our
experiments. Therefore, in order to avoid moving
towards unproductive areas of the search space,
the best vector from the previous population is
included in the current population (by replacing
the worst member of the current population) | in
GA literature, this is termed elitist selection [8].

Since space limitations preclude a complete dis-
cussion about the relationship between GAs and
PBIL, we can only provide a brief intuition. Di-
versity in the population is crucial for GAs. By
maintaining a population of solutions, the GA is
able | in theory at least | to maintain samples
in many di�erent regions. In genetic algorithms,
crossover is used to merge these di�erent solu-

tions. However, when the population converges,
crossover is deprived of the diversity that it needs
to be an e�ective search operator. When this hap-
pens, crossover begins to behave like a mutation
operator that is sensitive to the convergence of the
value of each bit. If all individuals in the popula-
tion converge at some bit position, crossover leaves
those bits unaltered. At bit positions where in-
dividuals have not converged, crossover will e�ec-
tively mutate values in those positions. Therefore,
crossover creates new individuals that di�er from
the individuals it combines only at the bit posi-
tions where the mated individuals disagree. This
is analogous to PBIL which creates new trial so-
lutions that di�er mainly in bit positions where
prior good performers have disagreed. More de-
tails can be found in [1].

Our application challenges PBIL in a number of
ways. First, since a vehicle's decisions depend on
the behavior of other vehicles which are not under

Agents for Tactical Driving 9

its control, each simulation can produce a di�erent
evaluation for the same bit string. We evaluate
each set of vehicle parameters multiple times to
compensate for the stochastic nature of the envi-
ronment. Second, the PBIL algorithm is never ex-
posed to all possible tra�c situations (thus mak-
ing it impossible to estimate the \true" perfor-
mance of a PBIL string). Third, since each eval-
uation takes considerable time to simulate, mini-
mizing the total number of training evaluations is
important.

5. Training Speci�cs

All of the tests described below were performed on
the track shown in Figure 8, known as the SHIVA
cyclotron. While this con�guration does not re-
semble a real highway, it has several bene�ts as a
testbed: 1) It is topologically identical to a high-
way with equally spaced exits; 2) Taking the nth
exit is equivalent to traveling n laps of the course;
3) One can create challenging tra�c interactions
at the entry and exit merges with only a small
number of vehicles.

During training, each scenario was initialized
with one SAPIENT/PBIL vehicle, and eight rule-
based cars (with hand-crafted decision trees). The
SAPIENT car was directed to take the second exit
(1.5 revolutions) while the other cars had goals of
zero to �ve laps. Whenever the total number of
vehicles on the track dropped below nine, a new
vehicle was injected at the entry ramp to maintain
the desired tra�c density. Only one SAPIENT
vehicle was permitted on the course at a time.

At the start of the run, the PBIL algorithm sug-
gested a candidate bit-string which was converted
into SAPIENT parameters, and instantiated as a
simulated vehicle. Each evaluation of a PBIL pa-
rameter string required one run of a simulated ve-
hicle. At the end of the vehicle's run, the score
that it received was sent to PBIL as the evaluation
of that candidate bit-string. It should be noted
that the population size in PBIL a�ected the num-
ber of evaluations required in each generation of
the PBIL algorithm. The population size does not
correspond to the number of SAPIENT vehicles
present on the track since each candidate vehi-
cle was independently evaluated (as stated earlier,

only one SAPIENT vehicle was permitted on the
track at a time).

Whenever a SAPIENT vehicle left the scenario
(upon taking an exit, or crashing 10 times), its
evaluation was computed based on statistics col-
lected during its run. This score was used by the
PBIL algorithm to update the probability vector
| thus creating better SAPIENT agents in the
next generation.

While the de�nition of good driving is largely
subjective, the following characteristics are
strongly correlated with bad driving: 1) collisions;
2) taking the wrong exit; 3) deviating from the
desired speed; 4) weaving (poor lane tracking).
Many possible evaluation functions could be con-
structed from these characteristics. For our eval-
uation function, we combined them in a simple
weighted sum, to be maximized:

Eval = �(10000� all-veto)

�(1000� num-crashes)

�(500� if-wrong-exit)

�(0:02� speed-deviation)

�(0:02� lane-deviation)

+(dist-traveled)

where: all-veto indicates that the SAPIENT
vehicle objects to all actions (with good param-
eters, this should never happen); num-crashes

is the number of collisions involving the SAPI-
ENT vehicle; if-wrong-exit is a ag | true if
and only if the SAPIENT vehicle exited prema-
turely, or otherwise missed its designated exit;
speed-deviation is the di�erence between de-
sired and actual velocities, integrated over the en-
tire run; lane-deviation is the deviation from
the center of a lane, integrated over the entire
run; dist-traveled is the longitudinal distance
covered by the vehicle, in meters (an incremental
reward for partial completion)

While the evaluation function is a reasonable
measure of performance, it is important to note
that there can be cases when a \good" driver
becomes involved in unavoidable accidents; con-
versely, favorable circumstances may enable \bad"
vehicles to score well on an easy scenario. To min-
imize the e�ects of such cases, we tested each can-
didate string in the population on a set of four sce-
narios. In addition to tra�c, these test cases in-

10 Sukthankar, Baluja, Hancock

cluded some pathological situations with broken-
down vehicles obstructing one or more lanes.

6. Training Results

We performed a series of experiments using a vari-
ety of PBIL population sizes, evaluation functions
and initial conditions. More details about individ-
ual experiments are presented in the next section.
This section focuses on evaluation metrics for the
training algorithm.

Figure 7 shows the results of a training run
with the evaluation function described earlier, and
a PBIL population size of 100. These 3-D his-
tograms display the distribution of scores for each
generation. It is clear that as the parameters
evolve in successive generations, the average per-
formance of SAPIENT vehicles increases, and the
variance of evaluations within a generation de-
creases. In the experiments with population size
100, good performance of some vehicles in the pop-
ulation is achieved early (by the �fth generation)
although consistently good evaluations are not ob-
served until generation 15. The number of vehicles
scoring poor evaluations drops rapidly until gen-
eration 10, after which there are only occasional
low scores. The PBIL strings converge to a stable
set of SAPIENT parameters, and by the last gen-
eration, the majority of the vehicles are able to
take the proper exit, and avoid crashes in all sce-
narios. The results of experiments with di�erent
population sizes were similar.

Figure 8 shows a scenario on the cyclotron
track. This scenario is pathological, in that it con-
tains many broken-down vehicles, scattered over
the roadway. The trace shows a trained SAPI-
ENT vehicle successfully navigating the course by
avoiding the obstacles.

Above, we described the overall performance of
the SAPIENT vehicles in terms of a global eval-
uation function. Here, we examine how the indi-
vidual components of the scoring metric improve
over time. Three observable quantities play a sig-
ni�cant role in the SAPIENT training evaluation
function: �, the total number of near-collisions; �,
whether the vehicle made its exit; and, � , the dis-
tance traveled by the intelligent vehicle in the sce-
nario. Thus, for a given population of SAPIENT
vehicles, the quantities: K =

P
8v �, B =

P
8v �,

Z =
P
8v � (over all vehicles, v, in the popula-

tion), reect the \goodness" of the population.
The three graphs in Figure 9 show how K, B, and
Z change over successive generations. Each PBIL
population contains 40 vehicles, and each vehi-
cle is evaluated on four di�erent scenarios. The
graphs show that:

� The number of near-collisions, K, drops
steadily as PBIL tunes the SAPIENT reason-
ing agent parameters. In the �nal generation,
none of the vehicles in the population are in-
volved in any near-collisions over the entire
set of four scenarios.

� The fraction of vehicles in the population
which missed their exit also decreases steadily
over time as the SAPIENT vehicles learn.
This too is zero in the �nal generation.

� The third quantity, Z, reects the incremental
improvement in performance of the vehicles
during training. It can be seen that the early
vehicles are eliminated from the scenario (ei-
ther through timeout, taking the wrong exit,
or crashing) before they travel very far. Over
time, the vehicles are able to travel greater
distances. Note that Z has an upper bound
(since � cannot be greater than the distance
to the desired exit).

To investigate the robustness of this training
method, two additional sets of experiments were
performed, where the coe�cients in the evalua-
tion function were perturbed. In the �rst set, six
experiments were conducted, and in each experi-
ment, one coe�cient was multiplied by 10. Some
of these results are shown in Figures 10 and 11.
Somewhat surprisingly, the SAPIENT reasoning
agents generated from these perturbed evaluation
functions are still successful. We hypothesize two
reasons for this: 1) the tactical-level sub-tasks
are closely linked: it is quite likely that a vehi-
cle which makes the correct exit has also learned
to avoid collisions | otherwise it would have been
eliminated in a collision earlier on the track; 2) al-
though PBIL is responsible for setting the internal
and external parameters for each reasoning agent,
the underlying algorithms are prede�ned; thus, a
small perturbation in reasoning agent parameters
does not cause catastrophic failures in the system.

Agents for Tactical Driving 11

-10000

-5000

0 1000

Evaluation

0

10

20

30

40

Generation

0

20

40

60

80

Number of Cars

-10000

-5000

0 1000

Evaluation

Fig. 7. 3-D Histogram showing increase of high-scoring PBIL strings over successive generations. Population size is 100
cars in each generation.

Fig. 8. A pathological scenario on the cyclotron track with 15 obstacles. The trace shows a SAPIENT vehicle successfully
navigating the course by avoiding the obstacles

12 Sukthankar, Baluja, Hancock

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

of

 n
ea

r-
cr

as
he

s

Generations

K

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

of

 e
xi

ts
 m

is
se

d

Generations

B

40000

60000

80000

100000

120000

140000

160000

180000

0 10 20 30 40 50 60 70

D
is

ta
nc

e
co

ve
re

d
(m

)

Generations

Z

Fig. 9. This graph shows how the number of near-collisions (K), number of missed-exits (B), and distance traveled (Z)
in a population of learning SAPIENT vehicles varies with successive generations. In these tests, the population size was set
to 40, and each vehicle was evaluated on four scenarios. The graphs show the accumulated statistics for all of the vehicles
in the given generation, over all four scenarios. Note that both K and Z decrease to zero, while Z, the incremental reward,
rises.

Agents for Tactical Driving 13

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

of

 n
ea

r-
cr

as
he

s

Generations

K

E = : : : � (10000� num-crashes) : : :

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

of

 n
ea

r-
cr

as
he

s

Generations

K

E = : : : + (10� dist-traveled)

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

of

 n
ea

r-
cr

as
he

s

Generations

K

E = : : : � (5000� if-wrong-exit) : : :

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

of

 n
ea

r-
cr

as
he

s

Generations

K

E = : : : � (0:2� speed-deviation) : : :

Fig. 10. This graph shows that the SAPIENT parameters learned by PBIL converge to competent vehicles despite varia-
tions in the evaluation function used. Each of these graphs shows the total number of near-collisions (K), in a population
of 40 cars, evaluated on four scenarios. In each experiment, a coe�cient weighting one observable was multiplied by 10.
The changes to the evaluation function are shown above.

14 Sukthankar, Baluja, Hancock

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

of

 e
xi

ts
 m

is
se

d

Generations

B

E = : : : � (10000� num-crashes) : : :

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

of

 e
xi

ts
 m

is
se

d

Generations

B

E = : : : + (10� dist-traveled)

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35

of

 e
xi

ts
 m

is
se

d

Generations

B

E = : : : � (5000� if-wrong-exit) : : :

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45

of

 e
xi

ts
 m

is
se

d

Generations

B

E = : : : � (0:2� speed-deviation) : : :

Fig. 11. This graph shows that the SAPIENT parameters learned by PBIL converge to competent vehicles despite varia-
tions in the evaluation function used. Each of these graphs shows the total number of missed exits (B), in a population of
40 cars, evaluated on four scenarios. In each experiment, a coe�cient weighting one observable was multiplied by 10. The
changes to the evaluation function are shown above.

Agents for Tactical Driving 15

BA

L0

L1
1.5

1.0

0.5

0.0

−0.5

Fig. 12. This scenario tests if the tactical reasoning system can overtake a slower-moving vehicle.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

L
at

er
al

 p
os

iti
on

 (
la

ne
 u

ni
ts

)

Time (0.1 sec intervals)

Mono
Poly

12

14

16

18

20

22

24

26

28

30

0 10 20 30 40 50 60 70 80

V
el

oc
ity

 (
m

/s
ec

)

Time (0.1 sec intervals)

Mono
Poly

Fig. 13. Lateral displacement (left) and velocity (right) as a function of time, for rule-based (denoted as Mono) and
SAPIENT (denoted as Poly) vehicles on the overtaking scenario (See Figure 12). See the text for a discussion of these
graphs.

generated competent vehicles. For example, in-
creasing the penalty of a collision from -1000 to
-1000000 does not a�ect vehicles since they learn
how to avoid all collisions. By contrast, radically
increasing the penalty for speed deviations in a
similar manner leads to vehicles that are willing
to collide with others in a desperate e�ort to avoid
the penalties incurred in dropping below the tar-
get velocity.

7. Scenario-Based Evaluation of Tactical

Driving

Scenarios are widely used in driving research to
evaluate the performance of human subjects [12,
14]. Similar techniques are also used to measure
situation awareness in other domains [6, 5, 19].
Here, we use micro-scenarios to examine the per-
formance of SAPIENT's reasoning agents in situa-
tions where tactical-level decisions are required. A

more comprehensive discussion of these scenarios
is available in [20].

In each of the following scenarios, we focus
on the vehicle marked A in the respective dia-
grams. SAPIENT's performance is compared to
the behavior of the default rule-based vehicle. In
the accompanying graphs, the monolithic, hand-
coded, rule-based vehicle is denoted as Mono,
while the multi-agent, adaptive, SAPIENT sys-
tem is marked Poly. It should be emphasized that
the SAPIENT vehicles have not been exposed to
any tactical scenarios | they were trained (us-
ing PBIL) exclusively on obstacle courses in the
cyclotron environment.

The �rst scenario (See Figure 12) involves a sim-
ple overtaking maneuver, and is a common occur-
rence on the highway. Initially, both vehicles are
moving at normal highway speeds, but the lead
vehicle begins braking (as it approaches its exit,
for example). There is no other tra�c, so Car A
should safely overtake. As seen in the lateral dis-
placement and velocity pro�les (See Figure 13),
both types of cognition module are able to solve

16 Sukthankar, Baluja, Hancock

AL2

L3

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fig. 14. Exit scenarios add complexity to the tactical driving domain because they introduce additional strategic-level
goals. The conicts between two strategic-level goals leads to interesting tactical behavior.

2

2.2

2.4

2.6

2.8

3

3.2

0 10 20 30 40 50 60 70

L
at

er
al

 p
os

iti
on

 (
la

ne
 u

ni
ts

)

Time (0.1 sec intervals)

Mono
Poly

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

V
el

oc
ity

 (
m

/s
ec

)

Time (0.1 sec intervals)

Mono
Poly

Fig. 15. Lateral displacement (left) and velocity (right) as a function of time, for rule-based and SAPIENT vehicles on
the exit scenario (See Figure 14). See the text for a discussion of these graphs.

this scenario successfully. However, note that the
SAPIENT vehicle is more aggressive, maintain-
ing a smaller headway during the maneuver than
the hand-tuned, rule-based vehicle. This is be-
cause the SAPIENT reasoning agent responsible
for car following has tuned its generalized poten-
tial �elds relative to the other vehicle based on
a time-to-impact metric, as opposed to using a
constant headway. The other notable feature is
the oscillation in the rule-based vehicle's velocity
pro�le. This is caused by a combination of two
factors: a discrete velocity controller and brittle
car-following rules. Note that the SAPIENT ve-
hicle is not perfectly centered in the passing lane
during the overtaking maneuver. This is because
the potential �eld surrounding the obstacle votes
for additional space, and since there is su�cient

space in the target lane, the SAPIENT vehicle is
able to drive o�-center. This behavior can also be
observed in the other scenarios.

The second scenario (See Figure 14) introduces
a second (possibly conicting) strategic goal: tak-
ing an exit; also, ambient tra�c is introduced. Ve-
hicle A must now change lanes to make its desired
exit without colliding with other cars. Figure 15
shows an interesting di�erence in driving behav-
ior. The rule-based car slows down until it can �nd
a gap in the exit lane, and then changes lanes. In
contrast, SAPIENT speeds up to overtake the ve-
hicle in the exit lane. This maneuver allows it to
maintain its desired speed while making the exit.

The �nal scenario, shown in Figure 16, is iden-
tical to the one discussed in the Introduction. Re-
call that Car A may take its desired exit by either
staying behind the slow blocker, or by passing.
Unlike the situation shown in Figure 14, chang-

Agents for Tactical Driving 17

BA

GOAL

L3

L2
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fig. 16. This exit scenario is di�cult because the lane changes are optional. To address the strategic-level goal of main-
taining speed, the intelligent vehicle must decide whether or not to attempt the overtaking maneuver at the risk of missing
the desired exit.

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 20 40 60 80 100 120 140

L
at

er
al

 p
os

iti
on

 (
la

ne
 u

ni
ts

)

Time (0.1 sec intervals)

Mono
Poly

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

V
el

oc
ity

 (
m

/s
ec

)

Time (0.1 sec intervals)

Mono
Poly

Fig. 17. Lateral displacement (left) and velocity (right) as a function of time, for rule-based and SAPIENT vehicles on
the more di�cult exit scenario (See Figure 16).

ing lanes is not mandatory; in fact, should Car A
decide to pass, it will have to complete two lane
changes before exiting. Once again, the two dif-
ferent vehicle types choose di�erently. The rule-
based vehicle opts to stay in its lane, based solely
on a rule which depends on the distance to the
exit. On the other hand, the SAPIENT vehicle
chooses to overtake the blocker.

7.1. Heterogeneous Tra�c Experiments

In the �nal set of experiments, vehicles were in-
jected into an initially empty cyclotron track from
the on-ramp at regular intervals, � . Each vehicle
was given two strategic-level goals: 1) make ex-
actly one circuit of the track before exiting; 2)
maintain the speed at which it was injected when-

ever possible. The aim of the experiment was to
see how the two tactical driving systems, rule-
based, and SAPIENT, would behave as the road-
way became more congested. Three sets of exper-
iments with di�erent tra�c con�gurations were
performed: all-rule-based cars, all-SAPIENT cars,
and a uniform mix of rule-based and SAPIENT
cars.

As expected, the number of vehicles on the
roadway increased until the rate of vehicles en-
tering the track was equal to the rate of vehicles
leaving (either because the vehicles had success-
fully completed their circuit, or because the vehi-
cles were unable to merge into the tra�c stream).
At low rates of tra�c ow (e.g., � > 6 seconds),
all of the three tra�c con�gurations safely negoti-
ated the scenario (with no missed exits). However,
once the tra�c ow was increased, the behavior of
the three tra�c con�gurations diverged.

18 Sukthankar, Baluja, Hancock

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

of

 c
ar

s
on

 tr
ac

k

Time (secs)

Mono
Poly

Fig. 18. This graph shows how the number of vehicles on the cyclotron varies as a function of time in heavy tra�c (tra�c
injection rate � = 3 secs between cars). Note that only six rule-based vehicles were able to merge onto the cyclotron loop;
by contrast, all of the SAPIENT vehicles were able to merge and complete the scenario.

The graph in Figure 18 shows how the number
of vehicles varies as a function of time when � = 3
seconds for the all-rule-based and all-SAPIENT
cases. Even in heavy tra�c, neither of the pure
tra�c types have any collisions. Although both
types of vehicles perform well initially (when the
roadway is clear), once the number of vehicles
on the track increases to about 6, the conserva-
tive rule-based drivers are unable to merge into
the tra�c stream (since they require a guaran-
teed headway of two seconds on both sides of the
gap). Thus they are unable to change lanes, and
exit the scenario prematurely. To make matters
worse, the rule-based vehicles that were already
on the roadway become trapped in the inner loops
of the cyclotron (due to the high rate of tra�c in
the entry/exit lane).

The all-SAPIENT tra�c, on the other hand,
is able to drive successfully. This can probably
be attributed to two factors: 1) the aggressive
driving style, relying on time-to-impact reasoning
agents, is willing to merge into smaller gaps; 2) the
distributed reasoning system is better at making
tradeo�s | the negative votes for merging into a
potentially unsafe gap are tolerated since the al-
ternative (missing the exit) is seen to be worse.

The brittle decision tree used in the rule-based
cars, on the other hand, rejects these gaps out-
right.
Interleaving rule-based and SAPIENT cars in

the heavy tra�c scenario leads to a stable het-
erogenous behavior with no collisions. While the
more aggressive SAPIENT vehicles still miss fewer
exits, even the rule-based vehicles perform better
than they did in the pure-rule-based case because
of the reduced congestion. This may have positive
implications for the deployment of automated ve-
hicles in mixed tra�c conditions.

8. Conclusion and Future Directions

Our experiments have demonstrated: 1) The po-
tential for intelligent behavior in the tactical driv-
ing domain using a set of distributed reason-
ing agents; 2) The ability of evolutionary algo-
rithms to automatically con�gure a collection of
these modules for addressing their combined task.
While the evaluation sections compared SAPI-
ENT's performance with a rule-based vehicle, the
results should not be taken out of context: clearly
it is possible to encode SAPIENT's current knowl-
edge in the form of rules to create a more com-
petent rule-based vehicle. The di�erence is that

Agents for Tactical Driving 19

creating a monolithic rule-based vehicle is a much
more di�cult task due to the interactions between
large number of rules, the manual tuning of pa-
rameters within the rules, and the complex inter-
actions between the rules.
In this study, we used a simple evaluation func-

tion. By introducing alternative objective func-
tions, we plan to extend this study in at least
two directions. First, for automated highways,
we would like the cars to exhibit altruistic be-
havior. In a collection of PBIL vehicles, optimiz-
ing a shared evaluation function (such as highway
throughput) may encourage cooperation. Second,
we are developing reasoning agents to address ad-
ditional complications which will arise when these
vehicles are deployed in the real world, such as
complex vehicle dynamics and noisy sensors.
Our system, which employs multiple automati-

cally trained agents, can competently drive a ve-
hicle, both in terms of the user-de�ned evaluation
metric, and as measured by their behavior on sev-
eral driving situations culled from real-life expe-
rience. In this article, we described a method for
multiple agent integration which is applied to the
automated highway system domain. However, it
also generalizes to many complex robotics tasks
where multiple interacting modules must simulta-
neously be con�gured without individual module
feedback.

9. Acknowledgments

The authors would like to acknowledge the valu-
able discussions with Dean Pomerleau and Chuck
Thorpe which helped to shape this work. Thanks
also to Gita Sukthankar for the data processing
scripts and graphs. This research was partially
supported by the Automated Highway System
project, under agreement DTFH61-94-X-00001,
and was started while Shumeet Baluja was sup-
ported by a graduate student fellowship from
NASA, administered by the Lyndon B. Johnson
Space Center. The views and conclusions con-
tained in this document are those of the authors
and should not be interpreted as representing the
o�cial policies, either expressed or implied, of the
AHS Consortium or NASA.

Notes

1. More information and an interactive demo are available
at: <http://www.cs.cmu.edu/rahuls/shiva.html>

References

1. S. Baluja. Population-based incremental learning:
A method for integrating genetic search based func-
tion optimization and competitive learning. Technical
Report CMU-CS-94-163, Carnegie Mellon University,
1994.

2. S. Baluja and R. Caruana. Removing the genetics
from the standard genetic algorithm. In Proceedings
of the International Conference on Machine Learning
(ML-95), 1995.

3. J. Cremer, J. Kearney, Y. Papelis, and R. Romano.
The software architecture for scenario control in the
Iowa driving simulator. In Proceedings of the 4th
Computer Generated Forces and Behavioral Repre-
sentation, 1994.

4. E. Dickmanns and A. Zapp. A curvature-based
scheme for improving road vehicle guidance by com-
puter vision. In Proceedings of the SPIE Conference
on Mobile Robots, 1986.

5. M. Endsley. Towards a theory of situation awareness.
Technical report, Texas Technical University, Depart-
ment of Industrial Engineering, 1993.

6. M. Fracker and S. Davis. Explicit, implicit, and sub-
jective rating measures of situation awareness in a
monitoring task. Technical report, Wright-Patterson
Air Force Base, 1991.

7. K. Gardels. Automatic car controls for electronic
highways. Technical Report GMR-276, General Mo-
tors Research Labs, June 1960.

8. D. Goldberg. Genetic Algorithms in Search, Opti-
mization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

9. B. Krogh. A generalized potential �eld approach to
obstacle avoidance control. In Proceedings of Robotics
Research: The Next Five Years and Beyond, 1984.

10. B. Krogh and C. Thorpe. Integrated path planning
and dynamic steering control for autonomous vehi-
cles. In Proceedings of IEEE Conference on Robotics
and Automation, 1986.

11. I. Masaki, editor. Vision-Based Vehicle Guidance.
Springer-Verlag, 1992.

12. J. McKnight and B. Adams. Driver education and
task analysis volume 1: Task descriptions. Techni-
cal report, Department of Transportation, National
Highway Safety Bureau, November 1970.

13. J. Michon. A critical view of driver behavior models:
What do we know, what should we do? In L. Evans
and R. Schwing, editors, Human Behavior and Tra�c
Safety. Plenum, 1985.

14. National Safety Council. Coaching the experienced
driver II, 1995. Defensive driving course training man-
uals.

15. D. Pomerleau. Neural Network Perception for Mo-
bile Robot Guidance. PhD thesis, Carnegie Mellon
University, February 1992.

20 Sukthankar, Baluja, Hancock

16. A. Ram, R. Arkin, G. Boone, and M. Pearce. Using
genetic algorithms to learn reactive control param-
eters for autonomous robotic navigation. Adaptive
Behavior, 2(3), 1994.

17. D. Reece. Selective Perception for Robot Driving.
PhD thesis, Carnegie Mellon University, May 1992.

18. J. Rillings and R. Betsold. Advanced driver informa-
tion systems. IEEE Transactions on Vehicular Tech-
nology, 40(1), 1991.

19. N. Sarter and D. Woods. How in the world did we
ever get into that mode? mode error and awareness
in supervisory control. Human Factors, 37(1), 1995.

20. R. Sukthankar. Situation Awareness for Tactical
Driving. PhD thesis, Carnegie Mellon University, Jan-
uary 1997. Also available as CMU Tech Report CMU-
RI-TR-97-08.

21. R. Sukthankar, J. Hancock, D. Pomerleau, and
C. Thorpe. A simulation and design system for tacti-
cal driving algorithms. In Proceedings of AI, Simula-
tion and Planning in High Autonomy Systems, 1996.

22. R. Sukthankar, D. Pomerleau, and C. Thorpe.
SHIVA: Simulated highways for intelligent vehicle al-
gorithms. In Proceedings of IEEE Intelligent Vehi-
cles, 1995.

23. C. Thorpe, M. Hebert, T. Kanade, and S. Shafer. Vi-
sion and navigation for the Carnegie Mellon Navlab.
IEEE Transactions on PAMI, 10(3), 1988.

24. R. von Tomkewitsch. Dynamic route guidance and
interactive transport management with ALI-Scout.
IEEE Transactions on Vehicular Technology, 40(1),
1991.

Rahul Sukthankar is currently a Research Scien-

tist at Justsystem Pittsburgh Research Center, and

an adjunct faculty member at The Robotics Institute,

Carnegie Mellon University. He completed his Ph.D.

in Robotics from Carnegie Mellon in 1996, and re-

ceived a B.S.E. summa cum laude in Computer Sci-

ence from Princeton in 1991.

His research interests include intelligent vehicles,

simulation, agents, and applications of machine learn-

ing.

Shumeet Baluja was born in New Delhi, India, on

February 17, 1971. He received a B.S. degree in com-

puter science from the University of Virginia, Char-

lottesville, Virginia, in 1992, and completed his Ph.D.

in computer science from Carnegie Mellon University,

Pittsburgh, Pennsylvania, in 1996. He is currently a

research scientist at Justsystem Pittsburgh Research

Center, and an adjunct faculty member in the Com-

puter Science Department and The Robotics Institute

at Carnegie Mellon University.

His research interests include the integration of

machine learning and computer vision, mechanisms

for selective attention in vision, arti�cial neural net-

works and their applications, and high-dimensional

optimization.

John Hancock is a Ph.D. student in Robotics at the

Robotics Institute, Carnegie Mellon University. He

earned his B.S. degree in 1993 in Electrical Engineer-

ing from Harvard University. His thesis work is on ob-

stacle detection for automated highway applications

using laser intensity and a predictive stereo system.

Other work at CMU includes improvements to ELVIS,

an eigenvector-based-learning road-following system,

and the development of a highway simulator, SHIVA,

for testing tactical driving algorithms.

