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We analyze problems confronted by computer 
agents that synthesize plans that take into account 
(and employ) the plans of other, similar, 
cooperative agents. From the point of view of each 
of these agents, the others are dynamic entities 
that possess information about the world, have 
goals, make plans to achieve these goals, and 
execute these plans. Thus, each agent must 
represent not only the usual information about 
objects in the world and the preconditions and 
effects of its own actions, but it must also 
represent and reason about what other agents 
believe and what they may do. We describe a 
planning system t??at address es these is 
show how it solves a sample problem . 

sues and 

INTRODUCTION 

Certain tasks can be more advantageously 
performed by a system composed of several "loosely 
coupled," cooperating artificial intelligence (AI) 
agents than by a single, tightly integrated system. 
These multiple agents might be distributed in space 
to match the distributed nature of the task. Such 
systems are often called distributed artificial 
intelligence (DAI) systems Ll]. We are interested 
here in systems where the component agents 
themselves are rather complex AI systems that can 
generate and execute plans, 
communicate with each other. 

make infe rences, and 

Among the poten tial advantages of such DA1 
systems are graceful (fail-soft) degradation 
characteristics (no single agent need be 
indispensable), upward extensibi lity (new agents 
can be added without requiring major system 
redesign), and communication efficiency (a message- 
sending agent can plan its "communication acts" 
carefully, taking into account the planning and 
inference abilities of the receiving agents). 

In planning its actions, each agent must 
consider the potential actions of the other agents. 
Previous AI research on systems for generating and 
executing plans of actions assumed a single 
planning agent operating in a world that was static 
except for the effects of the actions of the 
planning agent itself. Examples of such systems 
include STRIPS [2], NOAH [S], and NONLIN [4]. 
Several important extensions must be made to 

planning systems such as these if they are to 
function appropriately in an environment populated 
by other planning/execution systems. 

First, each agent must be able to represent 
certain features of the other agents as well as the 
usual information about static objects in the 
world. Each agent must have a representation for 
what the other agents "believe" about themselves, 
the world, and other agents. Each agent must have 
a representation for the planning, plan-execution, 
and reasoning abilities of the other agents. These 
requirements presuppose techniques for representing 
the "propositional attitudes" believe and want. 
Second, among the actions of each agent are 
~communication actions" that are used to inform 
other agents about beliefs and goals and to request 
information. Finally, each agent must be able to 
generate plans in a world where actions not planned 
by that agent spontaneously occur. We introduce 
here the notion of spontaneous operators to model 
such actions. 

In this paper, we give a brief summary of our 
approach toward building DA1 systems of this sort. 
It should be apparent that the work we are 
describing also has applications beyond DAI. For 
example, our multiple agents plan, execute, and 
understand communication acts in a manner that 
could illuminate fundamental processes in natural- 
language generation and understanding. (In fact, 
some excellent work has already been done on the 
subject of planning "speech acts" [5-61.) Work 
on models of active agents should also contribute 
to more sophisticated and helpful "user models" for 
interactive computer systems. The development of 
multiagent systems might also stimulate the 
development of more detailed and useful theories in 
social psychology--just as previous AI work has 
contributed to cognitive psychology. At this early 
stage of our research, we are not yet investigating 
the effects of differing "social organizations" of 
the multiple agents. Our work to date has been 
focussed on representational problems for such 
systems independent of how a society of agents is 
organized. 

A MULTIPLE-AGENT FORMALISM 

Each agent must be able to represent other 
agents' beliefs, plans, goals, and introspections 
about other agents. Several representational 
formalisms might be used. McCarthy's formalism for 
first-order theories of individual concepts and 
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propositions [7] is one possibility, although 
certain problems involving quantified expressions 
in that formalism have not yet been fully worked 
out. Another candidate is Moore's first-order 
axiomatization of the possible world semantics for 
the modal logic of knowledge and action [8-g]. 
Appelt [lo] h as implemented a system called KAMP 
that uses Moore's approach for generating and 
reasoning about plans involving two agents. We 
find Moore's technique somewhat unintuitive, and it 
seems needlessly complex when used in reasoning 
about ordinary (nonattitudinal) propositions. Here 
we develop a representation for each agent based on 
Weyhrauch's notion of multiple first-order theories 
and metatheories [ll]. 

Al: 

Facts 
--w-e 

HOLDING(Al,A) HOLDING(Al,B) 
CLEAR(B) 

A 
pickup(Al,B) 

HANDEMPTY(A1) CLEAR(B) 

/ 

putdown(A1,A) 

HOLDIiG(Al,A) 
Using Weyhrauch's termi nology, each computer 

individual is defined by the combination of a 
first-order language, - a simulation structure or 
partial model for that language, a set of Facts 
(expressed in the language), and a Goal Structure 
that represents a goal for the agent and a plan for 
achieving it. We assume that each agent has a 
deductive system (a combination of a theorem-prover 
and attached procedures defined by the simulation 
structure) used for deriving new facts from the 
initial set and for attempting to determine whether 
goals and subgoals follow from the set of facts. 
Each agent is also assumed to have a planning 
system (such as STRIPS) for creating plans to 
achieve goals. 

Using a typical "blocks-world" example, we 
diagram an agent's structure in the following way: 

Al (agent's name): 

Facts 
----- 

Goal 
--s-e 

HOLDING(Al,A) HOLDING(Al,B) 
CLEAR(B) 

Viewed as a computational entity, an agent's 
structure is typically not static. Its deductive 
and sensory processes may expand its set of facts, 
or its planning system may create a plan to achieve 
a goal. Also, once a plan exists for achieving a 
goal, the agent interacts with its environment by 
executing its plan. 

In this summary, we deal only with the 
planning processes of agents. In the example 
above, the occurrence of the goal HOLDING(Al,B) in 
Al's goal structure triggers the computation of a 
plan to achieve it. Once generated, this plan is 
represented in the goal structure of agent Al as 
follows: 

Goal 
m---w 

Plans are represented by goal/subgoal trees 
composed of planning operators and their 
preconditions. We assume a depth-first ordering of 
the operators in the plan. 

Now let us introduce another agent, AO. Agent 
A0 can have the same sort of structure as Al, 
including its own first-order language, a 
description of the world by wffs in that language 
(facts), a simulation structure, a goal structure, 
and a planner and deducer. Some of AO's facts are 
descriptions of Al's structure and processes. By 
making inferences from these facts, A0 can reason 
about the planning and deductive activities of Al 
and thus take Al into account in forming its own 
plans. Also, a structure similar to Al's actual 
structure, and procedures similar to Al's deducer 
and planner, can be used as components of AO's 
simulation structure. Procedural attachment to 
these "models" of Al can often be employed as an 
alternative method of reasoning about Al. (Of 
course, A0 may have an incomplete or inaccurate 
model of Al.) 

Because Al's structure is a first-order 
language (augmented by certain other structures), 
A0 can use a formal metalanguage to describe it 
along the lines suggested, for example, by Kleene 
[12] and developed in FOL by Weyhrauch [Ill. A0 
has terms for any sentence that can occur in Al's 
language or for any of Al's goals or plans; the 
predicates FACT and GOAL are used to assert that 
some sentences are in Al's Facts list or goal 
structure. Consider the following example: assume 
A0 is holding block A, block B is clear, and A0 
believes these facts and further believes that Al 
believes A0 is holding A and that Al believes B is 
not clear. A0 would have the following structure: 

AO: Facts 
----- 
HOLDING(AO,A) 
CLEAR(B) 
;;;;;;;,'HOLDING(AO,A)') 

/-CLEAR(B) '> 

We use quote marks to delimit strings, which 
may have embedded string variables. The denotation 
of a ground string is the string itself. Thus, the 
intended interpretation of FACT(Al,'HOLDING(AO,A)') 
is that the wff HOLDING(AO,A) is part of the facts 
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list of Al (that is, Al "believes" that A0 is 
holding A). By using the FACT predicate and terms 
denoting other agents and wffs, any facts list for 
other agents can be described. (A0 can describe 
its own beliefs in the same manner.) 

We purposely use "believe" instead of "know" 
because we are particularly interested in 
situations where agents may be mistaken in their 
representation of the world and other agents. In 
the above example, AO's opinions about its own and 
Al's belief about whether or not block B is clear 
are inconsistent. We avoid formalizing "know" and 
thus do not take a position about the relationship 
between knowledge and belief (such as "knowledge is 
justified true belief"). We can describe some of 
the usual properties of belief by axioms like 
FACT(x,p) => FACT(x,'FACT(x,p)'); i.e., if an agent 
believes p, it believes that it believes p. We do 
not, however, use an axiom to the effect that 
agents believe the logical consequences of their 
beliefs, because we want to admit the possibility 
that different agents use different procedures for 
making inferences. In particular, we want to 
emphasize that the deductive capabilities of all 
agents are limited. 

While the static structure of Al is described, 
for AO, by FACT and GOAL predicates, the action of 
Al's deductive system and planner can also be 
axiomatized (for AO) at the metalevel (see Kowalski 
[13] for an example). This axiomatization allows 
A0 to simulate Al's deducer or planner by purely 
syntactic theorem-proving. Thus A0 might use 
predicates such as ISPROOFfx,p) and ISPLAN(x,p) to 
make assertions about whether certain proof or plan 
structures are proofs or plans for other agents (or 
for itself). 

In certain cases, A0 can find out if Al can 
deduce a particular theorem (or if Al can create a 
plan) by running its procedural model of Al's 
deducer (or planner) directly, rather than by 
reasoning with its own facts. This is accomplished 
by semantic attachments of models of Al's deducer 
and planner to the predicates ISPROOF and ISPLAN in 
AO's metalanguage. Semantic attachment thus allows 
A0 to "think like Al" by directly executing its 
model of Al's planner and deducer. (Here, we 
follow an approach pioneered by Weyhrauch [ll] in 
his FOL system of using semantic attachments to 
data structures and programs in partial models.) 
The same kind of attachment strategy can be used to 
enable A0 to reason about its own planning 
abilities. 

The usual problems associated with formalizing 
propositional attitudes [8,14] can be handled 
nicely using the FACT predicate. For example, the 
atomic formula FACT(Al,'CLEAR(A) v CLEAR(B)') 
asserts the proposition that Al believes that A is 
clear or B is clear, and is not confused with the 
formula [FACT(A~,'CLEAR(B)') v 
FACT(Al,'CLEAR(A)')], which asserts the different 
proposition that Al believes that A is clear or Al 
believes that B is clear. Furthermore, semantic 
attachment methods confer the advantages of the so- 
called "data base approach" [8] when appropriate. 

Of particular importance among statements 
concerning AO's beliefs about Al are those that 
involve "quantifying in," i.e., where a quantified 
variable appears inside the term of a FACT 
predicate. We follow the general approach of 
Kaplan [15] toward this topic. For example, the 
sentence (Ex)FAOT(A~,'H~LDING(A~,X)') occurring 
among AO's facts asserts that Al is holding an 
identified (for Al) block without identifying it 
(for AO). 

AN EXAMPLE 

We can illustrate some of the ideas we are 
exploring by a short example. Suppose that there 
are two agents, A0 and Al, each equipped with a 
hand for holding blocks. Initially Al is holding a 
block, A, and A0 wants to be holding A. Suppose 
that A0 believes these initial facts, but (to make 
our example more interesting) A0 has no information 
about whether or not Al itself believes it is 
holding A. Thus, the initial structure for A0 is: 

AO: Facts Goal 
------ me--- 
HANDEMPTY(A0) HOLDING(AO,A) 
HOLDING(Al,A) 

Let us assume the following planning operators 
(for both A0 and Al). We use standard STRIPS 
notation [16]. ('P&D' denotes the precondition and 
delete lists; 'A' denotes the add list.) 

putdown(x,b) agent x puts 
block b on the table 

P&D: HOLDING(x,b) 
A: ONTABLE & CLEAR(b) & HANDEMPTY 

pickup(x,b) agent x picks up block b 
P&D: CLEAR(b) & HANDEMPTY 
A: HOLDING(x,b) 

asktoachieve(x,y,g) agent x gives agent y the 
P: T goal denoted by string g 
A: GOAL(y,g) 

tell(x,y,s) agent x tells agent y the 
P: FACT(x,s) expression denoted by string s 
A: FACT(y,s) 

Agents take into account the possible actions 
of other agents by assuming that other agents 
generate and execute plans to achieve their goals. 
The action of another agent generating and 
executing a plan is modelled by a "spontaneous 
operator." A spontaneous operator is like an 
ordinary planning operator except that whenever its 
preconditions are satisfied, the action 
corresponding to it is presumed automatically 
executed. Thus, by planning to achieve the 
preconditions of a spontaneous operator, a planning 
agent can incorporate such an operator into its 
plan. 

Let us assume that agent A0 can use the 
operator "achieve" as a spontaneous operator that 
models the action of another agent generating and 
executing a plan: 



achieve(x,g) agent x achieves goal g by creating 
and executing a plan to achieve g. 

PC: GOAL(x,g) & ISPLAN(x,p,g,x) 
& ISPLAN(x,p,g,AO) 

D: **the delete list is computed 
from the plan, p** 

A: FACT(x,g) 
FACT(AO,g) 

The expression ISPLAN(x,p,g,f) is intended to 
mean that there is a plan p, to achieve goal g, 
using agent x‘s planner, with facts belonging to 
agent f. Our precondition for achieve ensures that 
before A0 can assume that condition g will be 
spontaneously achieved by agent x, A0 has to prove 
both that agent x can generate a plan from its own 
facts and that agent x could generate a plan from 
AO's facts (to ensure that the plan is valid as far 
as A0 is concerned). 

Here are some axioms about ISPLAN that A0 will 
need: 

1) FACT(x,w) => ISPLAN(x,NIL,w,x) 
(If x already believes w, then 
x has a plan, namely NIL, for 
achieving w.) 

2) [ISPLAN( X,U,Y,d & PC(Z,Y) & 
OP(x,z,g)] => ISPLAN(x,extend(u,z),g,x) 
(If x has a plan, namely u, to achieve 
the preconditions, y, of its operator, 
z, with add list containing g, then x 
has a plan, namely extend(u,z) for 
achieving g. The functional expression, 
extend(u,z), denotes that plan formed 
by concatenating plan z after plan u.) 

The planning tree in Figure 1 shows a possible 
plan that A0 might generate using its facts 
(including axioms about ISPLAN) and operators. 

The sequence of operators in this plan is 
{tell(AO,Al,'HOLDING(Al,A)'), 
asktoachieve(AO,Al,'CLEAR(A)'), 
achieve(Al,'CLEAR(A)'), pickup(AO,A)j. Note that 
semantic attachment processes were used in several 
places in generating this plan. We leave to the 
control strategy of the system the decision about 
whether to attempt to prove a wff by semantic 
attachment or by ordinary syntactic methods. We 
are now in the process of designing a system for 
generating and executing plans of this sort. Space 
prohibits describing some additional features of 
our system, including its control strategy for 
generating plans. We plan to experiment with a,, 
complex of several agents, each incorporating 
planning systems like that briefly described here. 
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Al: 

HOLDING(AO,A) 

bkup(AO,A) 

HANDEMPTY(A0) 
(initial fact) 

achieve(Al,'CLEAR(A)') 

plan axiom 

{extend(u,z)/pj 

ISPLAN(Al,p,'CLEAR(Al)',AO) 
(verified by proc. attach. to a model 

of Al's planner using AO's facts 
after substituting for p) 

GOAL(Al,'C EAR(A)') 

[ISPLAN(Al,u,y,Al) & PC(z,y) & OP(Al,z,'CLEAR(A)')] asktoachieve(AO,Al, 

I 

'CLEAR(A)') 
proc. attach. to PC and OP x 

{'putdown(Al,A)'/z, 'HOLDING(AI,A)'/y~ T 

ISPLAN(Al,u,'HOLDING(Al,A)',Al) 

I 

plan axiom 
b'IL/uj 

FACT(Al,'HOLDING(Al,A)') 

I 

tell(AO,A1,'HOLDING(A1,A)') 

FACT(AO,'HOLDING(Al,A)') 
(verified by proc. attach. to 
AO's "fact finder".) 

Figure 1 ' 
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