
ABSTRACT

MULTIPLE-AGENT PLANNING SYSTEMS

Kurt Konolige
Nils J. Nilsson

SRI International, Menlo Park, California

We analyze problems confronted by computer
agents that synthesize plans that take into account
(and employ) the plans of other, similar,
cooperative agents. From the point of view of each
of these agents, the others are dynamic entities
that possess information about the world, have
goals, make plans to achieve these goals, and
execute these plans. Thus, each agent must
represent not only the usual information about
objects in the world and the preconditions and
effects of its own actions, but it must also
represent and reason about what other agents
believe and what they may do. We describe a
planning system t??at address es these is
show how it solves a sample problem .

sues and

INTRODUCTION

Certain tasks can be more advantageously
performed by a system composed of several "loosely
coupled," cooperating artificial intelligence (AI)
agents than by a single, tightly integrated system.
These multiple agents might be distributed in space
to match the distributed nature of the task. Such
systems are often called distributed artificial
intelligence (DAI) systems Ll]. We are interested
here in systems where the component agents
themselves are rather complex AI systems that can
generate and execute plans,
communicate with each other.

make infe rences, and

Among the poten tial advantages of such DA1
systems are graceful (fail-soft) degradation
characteristics (no single agent need be
indispensable), upward extensibi lity (new agents
can be added without requiring major system
redesign), and communication efficiency (a message-
sending agent can plan its "communication acts"
carefully, taking into account the planning and
inference abilities of the receiving agents).

In planning its actions, each agent must
consider the potential actions of the other agents.
Previous AI research on systems for generating and
executing plans of actions assumed a single
planning agent operating in a world that was static
except for the effects of the actions of the
planning agent itself. Examples of such systems
include STRIPS [2], NOAH [S], and NONLIN [4].
Several important extensions must be made to

planning systems such as these if they are to
function appropriately in an environment populated
by other planning/execution systems.

First, each agent must be able to represent
certain features of the other agents as well as the
usual information about static objects in the
world. Each agent must have a representation for
what the other agents "believe" about themselves,
the world, and other agents. Each agent must have
a representation for the planning, plan-execution,
and reasoning abilities of the other agents. These
requirements presuppose techniques for representing
the "propositional attitudes" believe and want.
Second, among the actions of each agent are
~communication actions" that are used to inform
other agents about beliefs and goals and to request
information. Finally, each agent must be able to
generate plans in a world where actions not planned
by that agent spontaneously occur. We introduce
here the notion of spontaneous operators to model
such actions.

In this paper, we give a brief summary of our
approach toward building DA1 systems of this sort.
It should be apparent that the work we are
describing also has applications beyond DAI. For
example, our multiple agents plan, execute, and
understand communication acts in a manner that
could illuminate fundamental processes in natural-
language generation and understanding. (In fact,
some excellent work has already been done on the
subject of planning "speech acts" [5-61.) Work
on models of active agents should also contribute
to more sophisticated and helpful "user models" for
interactive computer systems. The development of
multiagent systems might also stimulate the
development of more detailed and useful theories in
social psychology--just as previous AI work has
contributed to cognitive psychology. At this early
stage of our research, we are not yet investigating
the effects of differing "social organizations" of
the multiple agents. Our work to date has been
focussed on representational problems for such
systems independent of how a society of agents is
organized.

A MULTIPLE-AGENT FORMALISM

Each agent must be able to represent other
agents' beliefs, plans, goals, and introspections
about other agents. Several representational
formalisms might be used. McCarthy's formalism for
first-order theories of individual concepts and

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

propositions [7] is one possibility, although
certain problems involving quantified expressions
in that formalism have not yet been fully worked
out. Another candidate is Moore's first-order
axiomatization of the possible world semantics for
the modal logic of knowledge and action [8-g].
Appelt [lo] h as implemented a system called KAMP
that uses Moore's approach for generating and
reasoning about plans involving two agents. We
find Moore's technique somewhat unintuitive, and it
seems needlessly complex when used in reasoning
about ordinary (nonattitudinal) propositions. Here
we develop a representation for each agent based on
Weyhrauch's notion of multiple first-order theories
and metatheories [ll].

Al:

Facts
--w-e

HOLDING(Al,A) HOLDING(Al,B)
CLEAR(B)

A
pickup(Al,B)

HANDEMPTY(A1) CLEAR(B)

/

putdown(A1,A)

HOLDIiG(Al,A)
Using Weyhrauch's termi nology, each computer

individual is defined by the combination of a
first-order language, - a simulation structure or
partial model for that language, a set of Facts
(expressed in the language), and a Goal Structure
that represents a goal for the agent and a plan for
achieving it. We assume that each agent has a
deductive system (a combination of a theorem-prover
and attached procedures defined by the simulation
structure) used for deriving new facts from the
initial set and for attempting to determine whether
goals and subgoals follow from the set of facts.
Each agent is also assumed to have a planning
system (such as STRIPS) for creating plans to
achieve goals.

Using a typical "blocks-world" example, we
diagram an agent's structure in the following way:

Al (agent's name):

Facts

Goal
--s-e

HOLDING(Al,A) HOLDING(Al,B)
CLEAR(B)

Viewed as a computational entity, an agent's
structure is typically not static. Its deductive
and sensory processes may expand its set of facts,
or its planning system may create a plan to achieve
a goal. Also, once a plan exists for achieving a
goal, the agent interacts with its environment by
executing its plan.

In this summary, we deal only with the
planning processes of agents. In the example
above, the occurrence of the goal HOLDING(Al,B) in
Al's goal structure triggers the computation of a
plan to achieve it. Once generated, this plan is
represented in the goal structure of agent Al as
follows:

Goal
m---w

Plans are represented by goal/subgoal trees
composed of planning operators and their
preconditions. We assume a depth-first ordering of
the operators in the plan.

Now let us introduce another agent, AO. Agent
A0 can have the same sort of structure as Al,
including its own first-order language, a
description of the world by wffs in that language
(facts), a simulation structure, a goal structure,
and a planner and deducer. Some of AO's facts are
descriptions of Al's structure and processes. By
making inferences from these facts, A0 can reason
about the planning and deductive activities of Al
and thus take Al into account in forming its own
plans. Also, a structure similar to Al's actual
structure, and procedures similar to Al's deducer
and planner, can be used as components of AO's
simulation structure. Procedural attachment to
these "models" of Al can often be employed as an
alternative method of reasoning about Al. (Of
course, A0 may have an incomplete or inaccurate
model of Al.)

Because Al's structure is a first-order
language (augmented by certain other structures),
A0 can use a formal metalanguage to describe it
along the lines suggested, for example, by Kleene
[12] and developed in FOL by Weyhrauch [Ill. A0
has terms for any sentence that can occur in Al's
language or for any of Al's goals or plans; the
predicates FACT and GOAL are used to assert that
some sentences are in Al's Facts list or goal
structure. Consider the following example: assume
A0 is holding block A, block B is clear, and A0
believes these facts and further believes that Al
believes A0 is holding A and that Al believes B is
not clear. A0 would have the following structure:

AO: Facts

HOLDING(AO,A)
CLEAR(B)
;;;;;;;,'HOLDING(AO,A)')

/-CLEAR(B) '>

We use quote marks to delimit strings, which
may have embedded string variables. The denotation
of a ground string is the string itself. Thus, the
intended interpretation of FACT(Al,'HOLDING(AO,A)')
is that the wff HOLDING(AO,A) is part of the facts

139

list of Al (that is, Al "believes" that A0 is
holding A). By using the FACT predicate and terms
denoting other agents and wffs, any facts list for
other agents can be described. (A0 can describe
its own beliefs in the same manner.)

We purposely use "believe" instead of "know"
because we are particularly interested in
situations where agents may be mistaken in their
representation of the world and other agents. In
the above example, AO's opinions about its own and
Al's belief about whether or not block B is clear
are inconsistent. We avoid formalizing "know" and
thus do not take a position about the relationship
between knowledge and belief (such as "knowledge is
justified true belief"). We can describe some of
the usual properties of belief by axioms like
FACT(x,p) => FACT(x,'FACT(x,p)'); i.e., if an agent
believes p, it believes that it believes p. We do
not, however, use an axiom to the effect that
agents believe the logical consequences of their
beliefs, because we want to admit the possibility
that different agents use different procedures for
making inferences. In particular, we want to
emphasize that the deductive capabilities of all
agents are limited.

While the static structure of Al is described,
for AO, by FACT and GOAL predicates, the action of
Al's deductive system and planner can also be
axiomatized (for AO) at the metalevel (see Kowalski
[13] for an example). This axiomatization allows
A0 to simulate Al's deducer or planner by purely
syntactic theorem-proving. Thus A0 might use
predicates such as ISPROOFfx,p) and ISPLAN(x,p) to
make assertions about whether certain proof or plan
structures are proofs or plans for other agents (or
for itself).

In certain cases, A0 can find out if Al can
deduce a particular theorem (or if Al can create a
plan) by running its procedural model of Al's
deducer (or planner) directly, rather than by
reasoning with its own facts. This is accomplished
by semantic attachments of models of Al's deducer
and planner to the predicates ISPROOF and ISPLAN in
AO's metalanguage. Semantic attachment thus allows
A0 to "think like Al" by directly executing its
model of Al's planner and deducer. (Here, we
follow an approach pioneered by Weyhrauch [ll] in
his FOL system of using semantic attachments to
data structures and programs in partial models.)
The same kind of attachment strategy can be used to
enable A0 to reason about its own planning
abilities.

The usual problems associated with formalizing
propositional attitudes [8,14] can be handled
nicely using the FACT predicate. For example, the
atomic formula FACT(Al,'CLEAR(A) v CLEAR(B)')
asserts the proposition that Al believes that A is
clear or B is clear, and is not confused with the
formula [FACT(A~,'CLEAR(B)') v
FACT(Al,'CLEAR(A)')], which asserts the different
proposition that Al believes that A is clear or Al
believes that B is clear. Furthermore, semantic
attachment methods confer the advantages of the so-
called "data base approach" [8] when appropriate.

Of particular importance among statements
concerning AO's beliefs about Al are those that
involve "quantifying in," i.e., where a quantified
variable appears inside the term of a FACT
predicate. We follow the general approach of
Kaplan [15] toward this topic. For example, the
sentence (Ex)FAOT(A~,'H~LDING(A~,X)') occurring
among AO's facts asserts that Al is holding an
identified (for Al) block without identifying it
(for AO).

AN EXAMPLE

We can illustrate some of the ideas we are
exploring by a short example. Suppose that there
are two agents, A0 and Al, each equipped with a
hand for holding blocks. Initially Al is holding a
block, A, and A0 wants to be holding A. Suppose
that A0 believes these initial facts, but (to make
our example more interesting) A0 has no information
about whether or not Al itself believes it is
holding A. Thus, the initial structure for A0 is:

AO: Facts Goal
------ me---
HANDEMPTY(A0) HOLDING(AO,A)
HOLDING(Al,A)

Let us assume the following planning operators
(for both A0 and Al). We use standard STRIPS
notation [16]. ('P&D' denotes the precondition and
delete lists; 'A' denotes the add list.)

putdown(x,b) agent x puts
block b on the table

P&D: HOLDING(x,b)
A: ONTABLE & CLEAR(b) & HANDEMPTY

pickup(x,b) agent x picks up block b
P&D: CLEAR(b) & HANDEMPTY
A: HOLDING(x,b)

asktoachieve(x,y,g) agent x gives agent y the
P: T goal denoted by string g
A: GOAL(y,g)

tell(x,y,s) agent x tells agent y the
P: FACT(x,s) expression denoted by string s
A: FACT(y,s)

Agents take into account the possible actions
of other agents by assuming that other agents
generate and execute plans to achieve their goals.
The action of another agent generating and
executing a plan is modelled by a "spontaneous
operator." A spontaneous operator is like an
ordinary planning operator except that whenever its
preconditions are satisfied, the action
corresponding to it is presumed automatically
executed. Thus, by planning to achieve the
preconditions of a spontaneous operator, a planning
agent can incorporate such an operator into its
plan.

Let us assume that agent A0 can use the
operator "achieve" as a spontaneous operator that
models the action of another agent generating and
executing a plan:

achieve(x,g) agent x achieves goal g by creating
and executing a plan to achieve g.

PC: GOAL(x,g) & ISPLAN(x,p,g,x)
& ISPLAN(x,p,g,AO)

D: **the delete list is computed
from the plan, p**

A: FACT(x,g)
FACT(AO,g)

The expression ISPLAN(x,p,g,f) is intended to
mean that there is a plan p, to achieve goal g,
using agent x‘s planner, with facts belonging to
agent f. Our precondition for achieve ensures that
before A0 can assume that condition g will be
spontaneously achieved by agent x, A0 has to prove
both that agent x can generate a plan from its own
facts and that agent x could generate a plan from
AO's facts (to ensure that the plan is valid as far
as A0 is concerned).

Here are some axioms about ISPLAN that A0 will
need:

1) FACT(x,w) => ISPLAN(x,NIL,w,x)
(If x already believes w, then
x has a plan, namely NIL, for
achieving w.)

2) [ISPLAN(X,U,Y,d & PC(Z,Y) &
OP(x,z,g)] => ISPLAN(x,extend(u,z),g,x)
(If x has a plan, namely u, to achieve
the preconditions, y, of its operator,
z, with add list containing g, then x
has a plan, namely extend(u,z) for
achieving g. The functional expression,
extend(u,z), denotes that plan formed
by concatenating plan z after plan u.)

The planning tree in Figure 1 shows a possible
plan that A0 might generate using its facts
(including axioms about ISPLAN) and operators.

The sequence of operators in this plan is
{tell(AO,Al,'HOLDING(Al,A)'),
asktoachieve(AO,Al,'CLEAR(A)'),
achieve(Al,'CLEAR(A)'), pickup(AO,A)j. Note that
semantic attachment processes were used in several
places in generating this plan. We leave to the
control strategy of the system the decision about
whether to attempt to prove a wff by semantic
attachment or by ordinary syntactic methods. We
are now in the process of designing a system for
generating and executing plans of this sort. Space
prohibits describing some additional features of
our system, including its control strategy for
generating plans. We plan to experiment with a,,
complex of several agents, each incorporating
planning systems like that briefly described here.

We gratefully acknowledge helpful discussions
with Doug Appelt, Bob Moore, Earl Sacerdoti,
Carolyn Talcott and Richard Weyhrauch. This
research is supported by the Office of Naval
Research under Contract No. N00014-80-C-0296.

1 .

2.

3.

4.

5.

6.

7.

8.

9.

10.

REFERENCES

Sacerdoti, E. D., "What Language Understanding
Research Suggests about Distributed Artificial
IntelligenceT,, in Distributed Sensor Nets,
ppm 8-11. Paper presented at the DARPA
Workshop, Carnegie-Mellon University,
Pittsburgh, Pennsylvania (December 7-8, 1978).

Fikes, R. E. and N. J. Nilsson, "STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving,,, Artificial Intelligence,
2(3/4), pp. 189-208 (1971).

Sacerdoti, E. D., A Structure for Plans and
Behavior, (New York: Elsevier, 197r

Tate, A., "Generating Project Networks,,, in
IJCAI-5, pp. 888-893 (1977).

Searle, J. R., "A Taxonomy of Illocutionary
Acts," in Language Mind and Knowledge,
K. Gundersm,(University of Minnesota
Press, 1976).

Cohen, P. R. and C. R. Perrault, "Elements of
a Plan-Based Theory of Speech Acts,,, Cognitive
Science, _ 3(3), pp. 177-212 (1979)e

McCarthy, J., "First Order Theories of
Individual Concepts and Propositions,,, in
Machine Intelligence 9, pp.-120-147,
-ayes and D. Michie (Eds.), (New York:
Halsted Press, 1979).

Moore, R. C., "Reasoning About Knowledge and
Action,,, in IJCAI-5, pp. 223-227 (1977)'

Moore, R. C., "Reasoning About Knowledge and
Action,,, Artificial Intelligence Center
Techincal Note 191, SRI International, Menlo
Park, California'(lY80).

141

13. Kowalski, R., Logic for Problem Solving, (New 15. Kaplan, D., "Quantifying In," in Reference and
York: North-Hom,T'79). Modality, L. Linsky (Ed.), pp. 112-144,

(London: Oxford University Press, 1971).

14. Quine, W. V. O., "Quantifiers and
Propositional Attitudes," in Reference and 16. Nilsson, N. J., Principles of Artificial
Modality, L. Linsky (Ed.), pp. 101-111, Intelligence, (Menlo Park: Eoga Publishing
(London: Oxford University Press, 1971). co., 1980).

Al:

HOLDING(AO,A)

bkup(AO,A)

HANDEMPTY(A0)
(initial fact)

achieve(Al,'CLEAR(A)')

plan axiom

{extend(u,z)/pj

ISPLAN(Al,p,'CLEAR(Al)',AO)
(verified by proc. attach. to a model

of Al's planner using AO's facts
after substituting for p)

GOAL(Al,'C EAR(A)')

[ISPLAN(Al,u,y,Al) & PC(z,y) & OP(Al,z,'CLEAR(A)')] asktoachieve(AO,Al,

I

'CLEAR(A)')
proc. attach. to PC and OP x

{'putdown(Al,A)'/z, 'HOLDING(AI,A)'/y~ T

ISPLAN(Al,u,'HOLDING(Al,A)',Al)

I

plan axiom
b'IL/uj

FACT(Al,'HOLDING(Al,A)')

I

tell(AO,A1,'HOLDING(A1,A)')

FACT(AO,'HOLDING(Al,A)')
(verified by proc. attach. to
AO's "fact finder".)

Figure 1 '

142

