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ABSTRACT

Motivation: Multiple sequence alignment is a fundamental task in

bioinformatics. Current tools typically form an initial alignment by

merging subalignments, and then polish this alignment by repeated

splitting and merging of subalignments to obtain an improved final

alignment. In general this form-and-polish strategy consists of several

stages, and a profusion of methods have been tried at every stage.

We carefully investigate: (1) how to utilize a new algorithm for aligning

alignments that optimally solves the common subproblem of merging

subalignments, and (2) what is the best choice of method for each

stage to obtain the highest quality alignment.

Results: We study six stages in the form-and-polish strategy for

multiple alignment: parameter choice, distance estimation, merge-

tree construction, sequence-pair weighting, alignment merging, and

polishing. For each stage, we consider novel approaches as well as

standard ones. Interestingly, the greatest gains in alignment quality

come from (i) estimating distances by a new approach using

normalized alignment costs, and (ii) polishing by a new approach

using 3-cuts. Experiments with a parameter-value oracle suggest

large gains in quality may be possible through an input-dependent

choice of alignment parameters, and we present a promising

approach for building such an oracle. Combining the best

approaches to each stage yields a new tool we call Opal that on

benchmark alignments matches the quality of the top tools, without

employing alignment consistency or hydrophobic gap penalties.

Availability: Opal, a multiple alignment tool that implements

the best methods in our study, is freely available at http://

opal.cs.arizona.edu

Contact: twheeler@cs.arizona.edu

1 INTRODUCTION

Alignments of multiple biological sequences play an important
role in a wide array of bioinformatics applications, including

inference of phylogenetic trees and identification of conserved
and divergent regions of biomolecules. All widely used tools
for multiple sequence alignment at essence seek an alignment
that maximizes the sum-of-pairs score: the weighted sum

of the scores of all pairwise alignments induced by the
multiple alignment. Optimal multiple alignment with sum-of-
pairs scoring is NP-complete (Wang and Jiang, 1994), which

motivates, the search for good heuristics.
Most tools use a heuristic called progressive alignment (Feng

and Doolittle, 1987) which has two steps: (1) construct a binary

merge tree whose leaves are the input sequences and whose
internal nodes arrange the sequences into groups, and (2) merge

these groups bottom-up over the tree by combining the

alignments at the two children of a node into one alignment
at their parent. The alignments for two groups may be
combined by aligning profiles (Gotoh, 1994; Kececioglu and

Zhang, 1998) or aligning alignments (Gotoh, 1993; Kececioglu
and Starrett, 2004). When this merging process reaches the
root, it has formed an alignment of all the input sequences.

With this heuristic, the alignment between two sequences in a
group is not altered when new sequences are added to the
group. Consequently, errors made in early merges remain in the

final alignment, and may lead to further misalignment in
later merges. One approach to correcting such errors is to
apply a second phase we call polishing (Berger and Munson,
1991; Hirosawa et al., 1995), which refines the alignment by

repeatedly splitting its sequences into subsets and realigning
their induced subalignments. Another strategy is to reduce early
errors using an approach called consistency (Notredame et al.,

2000; Do et al., 2005). Consistency approaches assign position-
specific substitution scores for a pair of sequences A and B and
a pair of positions i and j that depend on the support for the

substitution between i and j from the pairwise alignments of
sequences A and B to all other sequences C.

1.1 Related work

The most widely-used multiple alignment tool, ClustalW
(Thompson et al., 1994) relies on a complex scoring scheme in

which substitution scores and gap penalties are adjusted
according to features of the aligned sequences, including
divergence, length, hydrophobicity of amino acids and proxi-
mity of neighboring gaps.

T-Coffee (Notredame et al., 2000) and its predecessor
Coffee (Notredame et al., 1998) introduced alignment
consistency. T-Coffee assigns position-specific substitution

scores based on a mixture of information from global and local
alignments.
Early versions of MAFFT (Katoh et al., 2002) substantially

increased alignment speed without sacrificing accuracy through
a host of ideas including scoring system modifications, use of
the fast Fourier transform to speed up profile alignment, and a

fast two-stage method for building an initial alignment based
on k-mer frequencies. Recent versions of MAFFT (Katoh et al.,
2005) incorporate T-Coffee-like consistency, resulting in a
substantial improvement in accuracy.

Muscle (Edgar, 2004) further improved speed and accuracy,
using reduced terminal gap costs and a measure called log-
expectation to score alignments of profiles.

ProbCons (Do et al., 2005) introduced probabilistic
consistency, which assigns position-specific substitution scores
based on a measure of expected accuracy derived from a hidden*To whom correspondence should be addressed.
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Markov model. It also offers a column reliability score that
estimates the likelihood that each column represents a correct
alignment of residues.
To summarize general techniques: MAFFT, Muscle and

ProbCons employ polishing; ClustalW, T-Coffee and
Muscle use hydrophobic gap penalties; T-Coffee, MAFFT
and ProbCons use consistency.

1.2 Contributions

While these tools use diverse techniques, they can all be viewed
as following a common series of stages in what we call the form-
and-polish strategy for multiple alignment: parameter choice,

distance estimation, merge-tree construction, sequence-pair
weighting, alignment merging, and polishing. Current tools
use a profusion of methods for each stage, and it can be difficult

to determine which methods are contributing to their accuracy,
and should be in a best-of-breed tool.
We carefully study the impact of the standard methods for

each stage, and offer several new methods that substantially
improve accuracy. Surprisingly, the greatest gains in accuracy
come from two simple and new ideas: (i) estimating distances

between sequences for merge tree construction by normalized
alignment costs, and (ii) polishing the final alignment using
3-partitions of the input sequences induced by cutting pairs of
edges in the merge tree.

By combining the best methods for each stage of the form-
and-polish strategy, we obtain a new tool we call Opal
whose accuracy matches the state-of-the-art, without employ-

ing elaborate approaches like hydrophobicity or consistency.
In a sense, this shows that some of the more involved ideas
these tools have contributed are not required to attain their

accuracy. This does not imply, however, that ideas such as
hydrophobicity and consistency are not valuable for multiple
alignment. Indeed, adding them to Opal may boost its

accuracy further.

1.3 Methodology

The standard practice for evaluating multiple alignment tools
is to use benchmark datasets of reference alignments that
are usually based on structural alignment of proteins. When
comparing methods for a stage, and comparing alignment

tools, we evaluate accuracy by measuring the recovery of
reference alignments from three standard suites of protein
alignment benchmarks: BAliBASE 3.0 (Thompson et al., 1999;

Bahr et al., 2001), SABmark 1.65 (Van Walle et al., 2004) and
PALI 2.5 (Balaji et al., 2001). These suites, which have been
used by many comparative studies, of course represent only a

sample of the types of inputs biologists face.
BAliBASE is a collection of 218 reference alignments based

on structural alignments with manually-arranged gaps, exhibit-

ing a variety of phylogenetic and structural characteristics.
We limited our tests to the 163 alignments with no more than
40 sequences, as our focus is measuring accuracy and not speed.
SABmark contains 627 benchmarks with at most 25

sequences that cover the space of folds in the SCOP classifica-
tion (Murzin et al., 1995) of protein families. Each benchmark
is a collection of pairwise structural alignments that are not

necessarily consistent with one multiple alignment.

PALI contains 1655 alignments of all SCOP families
constructed by structural multiple alignment without hand
curation. We used a subset of 102 alignments consisting of
all reference alignments with at least 7 sequences that have

non-trivial gap structure.
In our experiments, the measure of accuracy is mainly the

so-called SPS score (Bahr et al., 2001): the percentage of pairs

of aligned positions from the reference alignment that were
correctly recovered. In some cases, we also report the so-called
TC score (Bahr et al., 2001): the percentage of columns from the

reference alignment that were completely recovered; this score
is appropriate for BAliBASE and PALI, but not SABmark.
For BAliBASE and PALI, both scores are measured on their

core blocks: those columns in the reference alignment that are
deemed reliable by the benchmark (typically through strong
support from a structural alignment). Experiments were run on
a 3.0 GHz Pentium IV with 2 GB of RAM.

We use the above suites of benchmarks in experiments
to determine the best method for each of the six stages of
the form-and-polish strategy for multiple alignment. While our

presentation may appear to ignore interactions between
methods for different stages, results omitted due to page
limits show the best method for a given stage is independent of

the choices at other stages. The best method is also generally
independent of which suite of benchmarks is considered.

1.4 Overview

The sections of the paper are organized roughly according to
the stages of the form-and-polish strategy. In the next section
we study methods for constructing the merge tree. Section 3
considers methods for merging alignments. Section 4 assesses

the effect of weighted sum-of-pairs. Section 5 explores methods
for polishing alignments. Section 6 examines the impact of
parameter choice. Finally Section 7 compares the combined

approach to current tools.

2 CONSTRUCTING THE MERGE TREE

Constructing a merge tree involves (i) grouping sequences

hierarchically, based on (ii) a measure of distance between
sequences. We study these two aspects in turn.

2.1 Grouping sequences

Common approaches to constructing a merge tree maintain a
partition of the input sequences into groups. Initially every

sequence is in its own group, which forms a leaf of the tree. The
general step merges the pair of groups that are closest based on
a measure of distance between groups, which defines an internal

node of a binary tree. Merging continues until one group
remains, which is the root of the tree. The tree may be rerooted
at a different node, for instance to balance root-to-leaf path

lengths, but in our experiments (not shown) this gives no
improvement.
We study five grouping methods, the last of which is new.

2.1.1 NJ Neighbor joining (Saitou and Nei, 1987), or NJ, is
the method used by ClustalW and T-Coffee. NJ merges the
groups that are closest according to an estimate of evolutionary
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distance, and is generally regarded as the best of the distance-

based methods at producing the true evolutionary tree for the

sequences.
Let G be the current set of groups during the merging

process, and dajb be the current distance between a pair a, b of

groups. NJ merges the groups a and b that minimize

dajb �
1��G�fa, bg

��
X

c2G�fa, bg

�
dajc þ dbjc

�
:

The new distance dabjc between the merged group ab and all

other groups c is

dabjc :¼
1

2

�
dajc þ dbjc � dajb

�
:

Neighbor joining takes Oðk3Þ time for k sequences.

2.1.2 UPGMA and MST The unweighted-pair group method
with arithmetic mean (Sneath and Sokal, 1973), or UPGMA, and
minimum spanning tree, or MST, are simpler approaches that

run in Oðk2Þ time. Both merge the pair a, b of groups with

minimum distance dajb, but differ in how they define the

distance dabjc from the merged group ab to all other groups c.

UPGMA sets dabjc to the average 1
2 ðdajc þ dbjcÞ, while MST

uses minfdajc, dbjcg. The multiple alignment literature (Edgar,

2004; Do et al., 2005) suggests that using a merge tree that is

similar to the correct evolutionary tree is less important than

using a tree that groups similar sequences first, which may

explain the superiority (confirmed below) of these simpler

methods over NJ.
We also considered the mixture UPGMA þ MST used

by MAFFT, which for 0���1, sets dabjc to the convex

combination

� min
�
dajc, dbjc

�
þ ð1��Þ

1

2

�
dajc þ dbjc

�
:

2.1.3 DAD A shortcoming of the above methods is that

distances are derived from sequences only at initialization.

When group ab is formed, the new distances dabjc are calculated

from original sequence distances, which ignores the constraints

on sequence pairs across groups ab and c imposed by the

alignments for these groups.
We evaluated several new methods that take such constraints

into account. The best of these, which we call dynamic

alignment distance, or DAD, computes dabjc by aligning the

current alignments for ab and c to obtain an alignment A for

group abc, and then taking for dabjc the minimum of the

distances measured on the pairwise alignments in A induced by

sequence pairs across groups ab and c (analogous to MST). The
distance measure on pairwise alignments can be any of those

from Section 2.2.
We also considered variants that use the average of the

distances of the induced pairwise alignments between ab and c

(analogous to UPGMA), and variants that add in the average

distances between abc and all other groups d (similar to

consistency), but the above method performed the best.

DAD does not perform as well as the seemingly less-informed

methods NJ, UPGMA and MST. While there is more information

in the aligned sequences, alignments against large groups are

more constrained than those against small groups, so larger
groups tend to have higher distances. This causes smaller
groups to be merged first, which leads to a balanced merge tree
even when this is undesirable.

2.1.4 Comparison Below, we compare the accuracy of these
methods on three suites of benchmarks in terms of their
SPS score. As our baseline for the other stages, we measure

sequence distances using percent identity over a compressed
alphabet (Section 2.2), merge alignments using pessimistic gap
counts (Section 3), use unweighted sum-of-pairs (Section 4), no

polishing (Section 5), and default parameters (Section 6).
For UPGMA þ MST, we use �¼0:9 as in MAFFT. The best
accuracies are in bold.

Tree method BAliBASE SABmark PALI Average

MST 79.4 44.1 79.8 67.8

UPGMA þ MST 79.2 44.0 80.2 67.8

UPGMA 78.0 42.7 80.5 67.1

NJ 77.4 42.1 77.2 65.6

DAD 78.2 43.5 73.0 64.9

Generally, the methods based on minimum spanning trees

outperform the others. For the merge tree method in the rest of
the paper, we chose the simpler method MST.

2.2 Measuring distances

The standard measure of distance between two sequences is

based on percent identity: the percentage of matched positions
in an optimal pairwise alignment that are identities. (The actual
distance used is the complement of percent identity.) Many

tools modify percent identity by the Kimura correction for
multiple substitutions at a locus (Kimura, 1983), and measure
it over a compressed alphabet that groups amino acids with

similar characteristics into equivalence classes (Dayhoff et al.,
1978), which we call compressed identity.
Percent identity is a coarse measure of similarity, while

alignment cost is a more refined measure that can be obtained
with no overhead. We also tested a new distance measure,
which we call normalized alignment cost, that simply normalizes
the cost of an optimal pairwise alignment by dividing by its

number of columns (where alignment cost uses affine gap
penalties, as discussed in Section 3). In a sense, this generalizes
percent identity and compressed identity to the full spectrum of

substitutions while also taking into account gaps.

2.2.1 Comparison Below, we compare the accuracy of these
three distance methods. We use an MST merge tree, pessimistic

gap counts, no weighting, no polishing, and default parameters.
Identity measures have Kimura correction.

Distance method BAliBASE SABmark PALI Average

Normalized cost 81.6 48.2 83.0 70.9

Compressed identity 79.4 44.1 79.8 67.8

Percent identity 78.5 43.5 79.9 67.3
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Normalized cost gives a striking boost in accuracy, which
persists even after polishing (not shown due to page limits).

The rest of the paper measures distances by normalized costs.

3 MERGING ALIGNMENTS

Merging two multiple alignments of disjoint groups of
sequences into one alignment of all the sequences is central to

both forming an initial multiple alignment and polishing a final
alignment. During the initial alignment phase, subalignments A
and B at the children of a merge tree node are combined into

one alignment C of all the sequences in the subtree. During the
polishing phase, the final alignment is repeatedly split into
subalignments A and B that are recombined into an updated

alignment C. Clearly, the quality of the final alignment strongly
depends on how subalignments are merged in both phases.
When merging alignments A and B to form C, we take as

our objective to optimize the sum-of-pairs score (Carillo and

Lipman, 1988) of alignment C, which is the sum of the scores of
all induced pairwise alignments in C. The sum-of-pairs score
may be weighted, as discussed in Section 4. When merging A

and B to form C, subalignments A and B are preserved within C.
Computing an optimal C given A and B using sum-of-pairs

scoring has been called the problem of aligning

alignments (Kececioglu and Zhang, 1998), and was first
considered by Gotoh (1993). Scores of the alignments are
usually evaluated using affine gap penalties, where a gap of

length ‘ in a pairwise alignment has cost � þ �‘, for constants �
and �. (A gap of length ‘ is a run of either ‘ insertions or
deletions.) The constants � and � are called the gap open and
extension penalties, and may have different values for terminal

or internal gaps. When computing an optimal merge C by
dynamic programming, the essential difficulty is in correctly
counting the total number of gaps incurred in the induced

pairwise alignments of C.
We study two basic ways of computing the merge C by

aligning alignments: using exact gap counts, which yields

a merge that has optimal sum-of-pairs score; and using
pessimistic gap counts, which is a fast heuristic that may yield
a suboptimal merge. There are also a variety of ways of
merging by aligning profiles (Gotoh, 1994; Kececioglu and

Zhang, 1998; Edgar, 2004).

3.1 Exact counts

Surprisingly, computing an optimal merge C of two
alignments A and B with affine gap penalties is NP-complete
(Ma et al., 2003). While this shows there is likely no algorithm
that computes an optimal merge and is fast in the worst case,

Kececioglu and Starrett (2004) developed an exact algorithm
that computes an optimal merge and is remarkably fast in
practice. To optimally align two alignments, each having

k sequences and n columns, their algorithm takes worst-case
time Oð5kn2Þ. Extensive experiments, however, show empiri-
cally that it runs in Oðk2n2Þ time on biological data (Kececioglu

and Starrett, 2004).
In this study, we compute an optimal merge C with exact

gap counts using the tool AlignAlign (Starrett et al.,

2005), which implements the algorithm of Kececioglu and
Starrett (2004).

3.2 Pessimistic counts

Another approach to computing the merge C is to avoid the

difficulty of determining exact gap counts by instead using an
approximation introduced by Altschul (1989a) called pessimis-
tic gap counts (Kececioglu and Zhang, 1998). This approxima-
tion overestimates the true number of gaps by assuming, in

cases where the number of gaps started by a multiple alignment
column is not determined by the preceding column, that
the number of gaps started attains its largest possible value.

The benefit of pessimistic gap counts is that the merge of
two alignments that is best under this estimate can always be
found efficiently. Computing the best pessimistic merge of

two alignments over a constant-size alphabet, where each
alignment has k sequences and n columns, takes worst-case
time Oðkn þ n2Þ. AlignAlign also implements pessimistic

counts.
Most multiple alignment tools use some version of profile

alignment to merge alignments, which in general counts gaps
less accurately than the pessimistic approach. It is entirely

possible that the pessimistic heuristic is outperforming such
profile methods, though we do not study that here.

3.3 Comparison

Below, we compare the accuracy of exact and pessimistic gap
counts when merging alignments. We use an MST merge tree
with normalized costs, no weighting, no polishing, and default
parameters.

Merge method BAliBASE SABmark PALI Average

Exact 82.4 48.4 84.0 71.6

Pessimistic 81.6 48.2 83.0 70.9

Exact gap counts are consistently superior to pessimistic gap

counts, though only slightly, and this persists even after
polishing (results omitted due to page limits). We use exact
counts in the rest of the paper.

4 WEIGHTING SEQUENCE PAIRS

Sum-of-pairs scoring of multiple alignments is a potentially
biased scoring measure. If the input sequences are not

independent but instead over-sample some groups compared
to others, the higher number of pairwise alignments to an over-
sampled group can dominate the alignment score. This greater
contribution of an over-sampled group to the score will tend to

drive the multiple alignment toward improving the pairwise
alignments to such groups at the price of worsening the
pairwise alignments to under-sampled groups, thus degrading

the overall quality of the alignment.
Several schemes have been proposed to correct for this bias

by non-uniformly weighting the pairwise alignment scores in

the sum-of-pairs measure. We study three such schemes. The
first is new, and the other two are the schemes often used by
current alignment software.
All these schemes assign weights to pairs of input sequences

on the basis of a tree T whose leaves correspond to the
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sequences, and that has edge lengths ‘e for all edges e 2 T. Each
scheme assigns a weight wij to a pair i, j of leaves in T. Suppose
that in a multiple alignment A of the sequences, the score of the
induced pairwise alignment of the sequences associated with

leaves i and j is sij. The weighted sum-of-pairs score of
alignment A using these weights is

X
i, j

wij sij:

4.1 Influence weights

One way to assign a weight wij to a pair i, j of leaves is to

quantify the influence of one leaf on another on the basis of
the shape of T and its edge lengths. Suppose we have a
measure !ði, jÞ of the influence of leaf j on leaf i in T where

function ! is not necessarily symmetric. Then we can define a
symmetric weight on a pair of leaves by the geometric mean of
their influences:

wij :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!ði, jÞ !ðj, iÞ

p
:

We call the wij obtained in this way, influence weights.

Our influence function ! is nonnegative, and for every leaf i
it satisfies

X
j : j 6¼i

!ði, jÞ ¼ 1:

As a consequence, the resulting weights satisfy 0 � wij � 1.
To determine the influence !ði, jÞ of leaf j on leaf i, we carry

out the following recursive process. Imagine taking leaf i,

making i the new root of T and letting T hang from root i.
We denote this rerooted tree with root i by Ti. Starting from
root i, we process Ti top-down, splitting the total mass of
weight 1 in the above equation among the descendants of i.

The new root i has exactly one child (which was originally the
parent of i in T), and this child receives the entire mass of
weight 1 passed down from its parent i. In general, if a

descendant x receives mass wx from its parent, this mass is split
among its two children y and z (possibly unequally) so that

wx ¼ wy þ wz:

After completing this top-down splitting process, we take as the
influence of leaf j on root i, the amount of the original mass 1 at

the root that ends up at leaf j:

!ði, jÞ :¼ wj:

The key is determining how to split the mass at a parent

among its two children on the basis of the edge lengths of T.
We do such a split as follows.
For nodes v and w of T, denote the path in T between v and w

by Pvw. For a node v, let Tu(v) be the subtree of Tu rooted at

node v together with the path Puv. The total size of Tu(v) is

SuðvÞ :¼
X

e2TuðvÞ

‘e:

Denote the length of path Pxy by ‘xy, and the set of leaves
in Tu(v) by Lu(v). The average height of Tu(v) is

HuðvÞ :¼
1��LuðvÞ

��
X

x2LuðvÞ

‘ux:

We call the effective number of leaves in Tu(v),

NuðvÞ :¼

SuðvÞ

HuðvÞ
, HuðvÞ 6¼ 0;

1, otherwise:

8>>><
>>>:

The effective number of leaves satisfies 1 � NuðvÞ �
��LuðvÞ

��.
In tree Ti, we split weight wx ¼ wy þ wz between the two

children y and z of x according to the ratio,

wy

wz
¼

NxðyÞ

NxðzÞ

HiðzÞ

HiðyÞ

(where when HiðyÞ ¼ 0 and HiðzÞ 6¼ 0, we assign node y all the

weight). For example, with children that have identical average
heights and effective numbers of leaves NxðyÞ ¼ 1
and NxðzÞ ¼ 3, child y gets 1=4 of wx and child z gets 3=4.
Splitting the weight wi ¼ 1 top-down over Ti according to

these ratios fully specifies the leaf weights wj, and hence the
influence function !ði, jÞ and the weights wij.
Influence weights have several nice properties, such as being

independent of where the tree is rooted. For k sequences, the
weights wij can be computed in time Oðk2Þ, which is optimal.
We omit the details, due to page limits.

4.2 Covariance weights

Perhaps the best-known weights for sum-of-pairs multiple
alignment are those of Altschul et al. (1989). Of the two
weighting schemes they suggest, their second scheme, which

they call rationale-2 weights, has the more rigorous basis and is
the one that has been more widely adopted. We call their
second scheme, covariance weights.

We must refer the reader to the original paper (Altschul
et al., 1989) for the details of this scheme. For k sequences, the
formula for weights wij inverts a matrix of Oðk4Þ covariances.

Altschul (1989b) was able to show, by an involved algorithm
that avoids matrix inversion, that these weights can be
computed in Oðk2Þ time. This scheme is not directly used in
common software; instead Gotoh’s 3-way method (Gotoh,

1995) of approximating covariance weights is normally used.
Covariance weights can exhibit counterintuitive behavior.

For example, consider a tree with three leaves x, y, z, where x

and y are children of the same parent v. Suppose edge
lengths ‘vx and ‘vy are very small compared to path
length ‘vz. If ‘vx ¼ c ‘vy, then wyz�cwxz even for arbitrarily

long ‘vz. Influence weights do not exhibit this anomaly, but
converge to wyz � wxz as ‘vz grows.

4.3 Division weights

The program ClustalW introduced a weighting scheme that
has been incorporated into other alignment software as well,
such as MAFFT and Muscle. We call ClustalW’s scheme,

division weights.
In this scheme, each leaf i of T is first assigned a weight wi as

follows. The length ‘e of an edge from parent x to child y is

equally divided among the k leaves in the subtree rooted at y,
and the portion ‘e=k that leaf i gets is accumulated in wi.
Weight wi is the total of these portions from all edges on the
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path from leaf i to the root of T. The weight for pair i, j is
defined to be wij :¼ wi wj. The wij for k sequences can be
computed in time Oðk2Þ.
Division weights can also exhibit counterintuitive behavior.

Consider again a tree with three leaves x, y, z where x and y are
children of v and the root is u. Suppose lengths ‘vx and ‘vy are
very small compared to lengths ‘uv ¼ ‘uz. Then

wxz ¼ wyz � 2wxy. Influence weights avoid this anomaly, and
converge to wxz ¼ wyz � wxy=ð2 ‘vzÞ as ‘uv ¼ ‘uz grows.

4.4 Comparison

Below, we compare the accuracy of each weighting method. We
use an MST merge tree with normalized costs, exact gap counts,
no polishing, and default parameters. (Polishing yields the same

ranking of methods.) Covariance weights are computed exactly
using matrix inversion. The edge lengths ‘e for the weighting
methods are computed from normalized costs dij by fitting edge

lengths to T so as to minimize the L1 norm between path
lengths ‘ij and the distances dij. These optimally-fitted edge
lengths are efficiently computed by solving a linear program.

(We omit the details of the linear programming formulation
due to page limits.) On BAliBASE and PALI, we also report
the TC score as the second measure of quality, since it is less
distorted by overrepresentation of groups than the SPS score.

Weighting method BAliBASE SABmark PALI Average

Uniform 82.4 / 53.6 48.4 84.0 / 57.3 71.6 / 55.5

Influence 82.2 / 53.3 48.4 84.1 / 57.7 71.6 / 55.5

Division 82.2 / 53.4 48.2 84.3 / 57.3 71.6 / 55.4

Covariance 82.1 / 53.2 48.4 83.5 / 57.5 71.3 / 55.4

Surprisingly, and in contrast to what has generally been
suggested in the literature (Gotoh, 1995; Edgar, 2004)
unweighted sum-of-pairs (the uniform row of the table)

performs as well as all three weighting schemes. Even for
inputs with the largest numbers of sequences, where over-
representation is more likely, weighting continues to give no

benefit under both measures of quality.
While this behavior might be due to most benchmark

alignments not containing strongly overrepresented groups,

BAliBASE references 2 and 3 do provide a set of inputs that
are likely to suffer from overrepresentation. On the 28 inputs
from these two references, the ranking of schemes is influence,

uniform, division, covariance, with corresponding SPS scores
of 83.3, 82.8, 82.5, 81.5. Though these results are encouraging,
the sample size is small. Accordingly, we use uniform weighting
in the rest of the paper.

5 POLISHING THE ALIGNMENT

When forming an alignment with a merge tree, errors in early
merges can accumulate in later merges and degrade the
resulting alignment. The two basic approaches to correcting

such errors are to try to (1) avoid them in the first place using
consistency (Notredame et al., 2000; Do et al., 2005) and (2) fix
them afterwards by polishing (Berger and Munson, 1991;

Hirosawa et al., 1995).

With polishing, the sequences are partitioned into two groups
and the subalignments A and B induced on these groups are
realigned, usually without altering A or B. Realignment of A
and B is done as when merging alignments in Section 3 by

aligning profiles or aligning alignments. The resulting align-
ment is retained if its score improves. This process is a form of
local search, and is repeated for a fixed number of iterations or

until there is no improvement.
Tools in wide use that employ polishing partition the

sequences into two groups either randomly (Do et al., 2005)

or based on the merge tree. Tree-based approaches partition the
leaves by repeatedly cutting edges of the merge tree, either
cycling over all edges (Edgar, 2004) or randomly choosing

edges (Katoh et al., 2005). Tools using random choices tend to
do many iterations: ProbCons by default does 100 iterations,
and MAFFT does 1000.
We considered many new polishing methods. Below, we

report results for the best three and their combinations.

5.1 Exhaustive 2-cut

We implemented a tree-based method we call exhaustive 2-cut
that cuts tree edges and realigns until there is no improvement.

Since a tree with k leaves has O(k) edges, if there is an edge
whose cut gives improvement this finds it within a linear
number of realignments.

Rather than scanning tree edges in a fixed order (Edgar,
2004) we dynamically order the edges e by a measure �(e) of
their potential for improvement. For edge e, let P(e) be the set

of pairs of sequences that are on opposite sides of the partition
given by cutting e, let cij be the cost of the pairwise alignment
induced on sequences i and j in the current multiple alignment,
and let dij be the cost of their optimal pairwise alignment. We

use the potential

�ðeÞ :¼
1��PðeÞ��

X
ði, jÞ 2PðeÞ

�
cij � dij

�
:

These potentials are updated after several cuts alter the
alignment (typically five). This approach yields a slight speedup
in convergence over the method used by Edgar (2004) while

attaining the same accuracy.

5.2 Random 3-cut

Consider the situation where two sequences in a large alignment
are misaligned. The 2-cut method cannot separate these two

sequences from the rest of the input and realign them without
interference from all other sequences. This can be easily
accomplished, however, by instead partitioning into three
groups. We examined a variety of methods for three-way

partitioning, both tree-based and not. We report the best one
here, which we call random 3-cut.
This method partitions the sequences by cutting two tree

edges selected at random that are not on the same path from
the root. (A tree with k leaves has Oðk2Þ such cuts, so an
exhaustive approach would be slow.) The resulting groups a, b,

and c are merged in two steps by realigning a and b to
form group ab (or alternately keeping the alignment of a and b),
and then realigning c with ab. We consider the three merge
orders abjc, acjb; and bcja, and retain the best of the three if it
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gives improvement in score. This process is repeated until a
time or iteration limit is reached. Most edges are near the
leaves, so this method tends to split off two relatively small
groups of sequences, enabling repair of errors between small

groups followed by integration into the rest of the alignment.
In contrast to 2-cut, this method in essence alters the merge

tree. We also considered more complicated 3-cut variants that

reattach tree edges to reflect the merges of the three groups, or
that rebuild the tree on the affected paths up to the root, but
surprisingly none gave better quality than the above method

that does not change the tree.

5.3 On-the-fly

An attractive idea is to polish subalignments as they are
formed (Subbiah and Harrison, 1989), rather than waiting for a

complete alignment. This allows errors to be fixed before
causing further misalignment. We implemented a version we
call on-the-fly polishing: when an internal node v is created
during merge tree construction, cut one edge to a grandchild or

child of v, realign, and repeat until no improvement. This is
similar to exhaustive 2-cut, but scans a limited set of edges and
operates while forming the initial alignment.

5.4 Combined

We also considered combining these methods by following
on-the-fly polishing with either exhaustive 2-cut or random
3-cut polishing, which in general we call k-cut þ on-the-fly.

5.5 Comparison

Below, we compare the accuracy of polishing methods using
MST trees with normalized costs, exact gap counts, no weighting,
and default parameters. For 3-cut we did 60 iterations; 2-cut and

on-the-fly iterated until no improvement.

Polishing method BAliBASE SABmark PALI Average

3-cut þ on-the-fly 84.3 50.2 84.6 73.1

3-cut 84.2 49.7 84.8 72.9

2-cut 84.4 49.8 84.7 72.9

2-cut þ on-the-fly 83.6 50.0 84.5 72.7

On-the-fly 83.3 49.6 84.4 72.4

None 82.4 48.4 84.0 71.6

As can be seen, polishing helps. The k-cut methods converge
to roughly the same quality, but their rate of convergence
differs markedly: 3-cut achieves the same quality as 2-cut but is

an order of magnitude faster on larger inputs. Adding on-the-
fly to 2-cut hastens convergence (yet is still slower than 3-cut)
and slightly boosts 3-cut. In the rest of the paper, we use 3-cut
þ on-the-fly polishing.

6 CHOOSING ALIGNMENT PARAMETERS

Selecting gap penalties is fraught with difficulty (Vingron and
Waterman, 1994), and most practitioners simply use the default

values provided by modern software. Fortunately there are
now well-designed suites of alignment benchmarks, and the

sequences in these benchmarks presumably represent the kinds
of inputs a tool will see in the wild, which suggests parameters
optimized on those benchmarks should be reasonably good
choices.

We look at the effect of parameter choice on accuracy
from three perspectives: finding the best default values,
determining how well a perfect input-dependent choice given

by an oracle can perform, and designing an advisor that makes a
good choice.

6.1 Default

To select default parameters for aligning proteins, we trained
initially on BAliBASE. Based on results from doing inverse
parametric sequence alignment on BAliBASE using the

tool InverseAlign (Kececioglu and Kim, 2006; Kim and
Kececioglu, 2007), we fixed the substitution matrix
at BLOSUM62 (Henikoff and Henikoff, 1992), and identified a
reasonable seed value for the gap open and extension penalties.

We then enumerated a range of penalties around this seed,
including variants with reduced terminal gap costs. (In total,
we examined around 800 parameter choices.) From this set of

parameters we selected as our default the choice that had the
highest recovery over all three suites of benchmarks. With
BLOSUM62 transformed to a cost matrix in the range ½0,88�, our

default parameter choice has internal gap open and extension
penalties �I and �I, and terminal gap open and extension
penalties �T and �T, of

ð�I, �I, �T, �TÞ ¼ ð60, 38, 15, 36Þ:

A reduced terminal gap open penalty is common, typically half
the internal gap open penalty (Edgar, 2004), though a reduced

terminal gap extension penalty is not. This parameter choice
was used in all results described in prior sections.

6.2 Oracle

While the default choice performs well overall, it substantially

underperforms other choices on many benchmark alignments.
(In accuracy, the default is more than 10% worse than the
optimal choice on about 15% of the inputs.) This leads us to

ask what accuracy could be achieved if we had an oracle that
could identify the best parameter choice for each input. We
consider results with an oracle for purposes of comparison.

6.3 Advisor

Though a true oracle is unattainable, it is possible to design an
advisor that can choose an input-dependent parameter value
that improves alignment quality. We are aware of only one

other attempt at implementing a method to automatically
choose parameters, called MULTICLUSTAL (Yuan et al., 1999).
We considered a variety of advisor methods, and describe

two of them here. One approach is to select the parameter
choice p from among a small set P of choices such that the
alignment of the input using p has features most like those seen
in good alignments under p. (Here a good alignment under p is

one that was computed using p on a benchmark input I and
that has high recovery compared to the best parameter choice
for I .) We considered features such as percent identity and gap
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densities, and used a selection rule similar to a Bayes classifier,
but omit the details due to page limits.
Another approach works as follows. Define a core column to

be a column in a multiple alignment where at least a fraction �
of its rows have letters from the same character class in the
compressed alphabet. (In the experiments, we use �¼0:9.)
Given a set I of input sequences to align and a candidate

parameter choice x, let Ax be the alignment of I that results
from using parameter choice x, and let f ðAxÞ be the number of
core columns in Ax.

The parameter choice that this advisor selects based on core
columns is

p :¼ argmax
x2P

f ðAxÞ,

where ties are broken in favor of shorter alignments. In other
words, it selects the parameter choice that yields an alignment
with the most core columns. The output alignment using this
advisor is Ap.

Both of the above advisors perform similarly. We present
results for the core column approach.

6.4 Comparison

Below, we compare the hypothetical accuracy of the oracle to
that achieved using default parameters and the advisor. We
picked a set U of twelve parameter choices that performed well

on average and that cover the domain of reasonable gap open
and extension values, and applied the oracle to set U. A smaller
set P � U of four parameter choices was identified by selecting

the subset of size four that gave the best recovery under the
advisor. (An alignment Ax must be computed by the advisor for
each x 2 P, so a small set P is preferable.). The advisor chose

p ¼ ð�I, �I, �T, �TÞ from the set

P ¼

ð56, 38, 7, 36Þ,
ð58, 37, 7, 35Þ,
ð64, 37, 8, 37Þ,
ð64, 38, 32, 36Þ

8>><
>>:

9>>=
>>;
:

We also considered running the oracle on P.
Given a parameter choice, alignments were computed using

the best methods from prior stages: MST trees with normalized
costs, exact gap counts, no weighting, and on-the-fly þ 3-cut
polishing.

Parameter method BAliBASE SABmark PALI Average

Oracle on U 87.0 54.4 87.1 76.1

Oracle on P 86.2 52.9 86.2 75.1

Advisor on P 84.7 50.5 84.9 73.4

Default 84.3 50.2 84.6 73.1

The oracle clearly provides a large boost in recovery,
and offers an intriguing target for further research. The
improvement of the advisor over the default is modest, and

might conceivably be the result of fortuitous choices that
exploit the variation in accuracy within set P. A closer look,
however, reveals that the advisor’s performance is far better

than random. For a given subset S � U, we can compare the

accuracy (averaged over all benchmarks) of the advisor on S to

that of the single best choice from S. Our advisor outperforms

the best choice for 60% of all subsets S � U where jSj ¼ jPj.

It also outperforms the mean accuracy of the x 2 S for 94% of

all subsets.

In contrast, the method of Yuan et al. (1999) outperforms the

best choice from S for only 1% of the subsets, and outperforms

the mean of S for less than 3% of the subsets.
When comparing against other tools in the next section, we

consider performance both with and without an advisor.

7 COMPARING TO OTHER TOOLS

The prior sections have examined six stages in the form-and-

polish strategy, and identified the best method for each stage.

Below, we summarize for all stages the net improvement in

alignment quality gained by the best method over a standard

method.

The baseline methods in the table are a UPGMA merge tree,

percent identity for distances, pessimistic gap counts to merge

subalignments, unweighted sum-of-pairs, no polishing, and

default parameters. We omit the stage of choosing weights,

which gave no improvement.

Stage BAliBASE SABmark PALI Average

(Baseline) 78.0 42.7 80.5 67.1

Tree þ1.4 þ1.4 �0.7 þ0.7

Distance þ2.2 þ4.1 þ3.2 þ3.1

Merge þ0.8 þ0.2 þ1.0 þ0.7

Polish þ1.9 þ1.8 þ0.6 þ1.5

Parameters þ0.4 þ0.3 þ0.3 þ0.3

(Combined) 84.7 50.5 84.9 73.4

This best combination of methods yields a new tool we

call Opal. In brief, Opal uses an MST merge tree, normalized

costs for distances, exact gap counts to merge subalignments,

unweighted sum-of-pairs, and both on-the-fly and 3-cut

polishing. A slight boost in accuracy can be gained using the

parameter advisor.

In Table 1, we compare the accuracy of Opal to other

commonly-used tools: ProbCons (Do et al., 2005), MAFFT
(Katoh et al., 2005), Muscle (Edgar, 2004), T-Coffee
(Notredame et al., 2000) and ClustalW (Thompson et al.,

1994). All tools were run at their highest accuracy. (For MAFFT
this was their L-INS-i variant.) On BAliBASE and PALI,
the second quality measure we report is the percentage of

reference columns completely recovered, called the TC score

(Bahr et al., 2001).
As these results show, Opal is in the class of state-of-the-

art tools. Note that Opal achieves this without using

alignment consistency (Notredame et al., 2000; Do et al.,

2005; Katoh et al., 2005), which appears to be the main source

of accuracy in MAFFT and ProbCons.
Opal has not yet been optimized for speed. Its running time

is about two orders of magnitude slower than ClustalW and

Muscle, and about the same order of magnitude as the slowest
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tool, T-Coffee. Over all benchmarks, the median run time
for Opal was less than 10 seconds, which was on an input of
20 sequences of length about 250.

8 CONCLUSION

We have presented a careful study of methods for each stage of

the form-and-polish strategy for multiple alignment. This
includes new methods for estimating distances, merging
alignments, weighting pairs of sequences, polishing the align-

ment, and choosing parameters. Our new weighting method is
easy to implement, fast to evaluate, and avoids the anomalies of
current approaches, but under standard measures of bench-

mark recovery it has little effect on accuracy. A new merging
method that optimally aligns alignments yields only a small
improvement over an approximate merging heuristic. The
largest gains in quality come from new methods for estimating

distances by normalized alignment costs, and polishing by
3-cuts on the merge tree; together these two boost recovery by
more than 4%. The best method for a stage is generally the

same across all suites of benchmarks, suggesting that what we
have identified as best has not been overfitted to the data.
The outcome of this study is a new alignment tool, Opal.

By combining the best methods, Opal attains accuracy on par
with the state-of-the-art (namely ProbCons and MAFFT)
without altering the alignment scoring function by increasing

gap penalties near hydrophobic regions, or through position-
specific substitution scores based on alignment consistency.
Adding hydrophobicity and consistency should give even
greater accuracy.

8.1 Further research

Incorporating hydrophobic gap penalties, and alignment con-
sistency into the exact algorithm for aligning alignments might
boost the recovery substantially. For example, without hydro-
phobic penalties, the recovery of Muscle on BAliBASE

drops 4%. Similarly, the addition of consistency to MAFFT
results in an increase in recovery on both BAliBASE and
SABmark of more than 4%.
Properly assessing how weighted sum-of-pairs scoring

affects alignment quality by devising an unbiased recovery
measure that takes overrepresentation into account appears
challenging.

Finally, our experiments with an oracle for choosing
parameter values suggest large gains in recovery may be
possible by an input-dependent choice of parameters.
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