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Abstract

A simulated annealing method is described for train-
ing hidden Markov models and producing multiple se-
quence alignments from initially unaligned protein or
DNA sequences. Simulated annealing in turn uses a
dynamic programming algorithm for correctly sam-
pling suboptimal multiple alignments according to
their probability and a Boltzmann temperature fac-
tor. The quality of simulated annealing alignments
is evaluated on structural alignments of ten different
protein families, and compared to the performance
of other HMM training methods and the ClnstalW
program. Simulated annealing is better able to find
near-global optima in the multiple alignment proba-
bility landscape than the other tested HMM training
methods. Neither ClustalW nor simulated annealing
produce consistently better alignments compared to
each other. Examination of the specific cases in which
ClustalW outperforms simulated annealing, and vice
versa, provides insight into the strengths and weak-
nesses of current hidden Markov model approaches.

Introduction
Hidden Markov models (HMMs) are useful as a formal,
fully probabilistic form of profiles (Baldi et al. 1994;
Eddy, Mitchison, & Durbin 1995; Krogh et al. 1994;
Stultz, White, & Smith 1993). Profiles are statistical
models of protein structure consensus (Barton 1990;
Bashford, Chothia, & Lesk 1987; Bowie, Luthy, &
Eisenberg 1991; Gribskov, McLachlan, & Eisenberg
1987; Taylor 1986). They have been applied to the pro-
tein fold recognition problem with encouraging success
(Shortle 1995). Successful fold recognition could go 
long way towards a pragmatic solution of the protein
folding problem at low resolution, since about 80% of
new protein structures with no easily recognized se-
quence similarity to previous structures adopt an al-
ready known fold (Orengo, Jones, ~ Thornton 1994).

Profiles are complicated models involving thousands
of free parameters. An attraction of HMM-based ap-
proaches is the possibility of exploiting probability the-
ory in choosing optimal model parameters. HMMs, for

instance, wield a mathematically consistent description
of insertions and deletions, a traditionally problematic
area. HMMs also offer theoretical insight into the dif-
ficulties of combining disparate forms of information,
such as sequences and three-dimensional structures.

The prerequisite for building a sensitive profile of
a protein family is a multiple alignment of a large
number of evolutionarily divergent sequences, in which
all structurally homologous positions have been iden-
tiffed and aligned. However, accurate alignment is
only possible for proteins of known structure - at least
for an identifiable core of residues that comprises the
secondary structure elements and active site of the
molecule (Chothia & Lesk 1986) - and far more se-
quences than structures are known. It is therefore rou-
tinely necessary to infer accurate multiple alignments
from sequence information alone. Interestingly, one of
the features of HMMs is that it is possible to train mod-
els from initially unaligned sequences, thus producing
HMM-based multiple alignments (Baldi et al. 1994;
Krogh et al. 1994). Since accurate sequence-based
alignment is essentially a limited structure prediction
problem, there would seem to be some benefit in ap-
plying powerful fold recognition methods during the
multiple alignment process, as well as afterwards.

Existing algorithms for training hidden Markov
models from initially unaligned example sequences
are hill-climbing algorithms, such as gradient descent
(Baldi et al. 1994) or expectation maximization
(Krogh et al. 1994). These methods seek a local op-
timum in a probability landscape of possible multiple
alignments by iteratively refining an initial guess at the
alignment or the model parameters. Like most hill-
climbing algorithms, they are prone to getting stuck
in incorrect local optima far from the global optimum.
Early results with HMMs indicated that this was a
serious problem. Much better optima and much bet-
ter alignments could be found by starting training off
with a good (manual) alignment. A partly successful
attempt at avoiding unsatisfactory local optima was to
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slightly randomiTe model parameters at each iteration
("noise injection") (Krogh et ~. 1994). In this 
per, I have pursued this idea and developed it into a
fuller realization of simulated annealing (Kirkpatrick,
Gelatt, & Vecchi 1983).

Methods and algorithms
HMMs

An HMM is composed of a number of interconnected
states, each of which emits an observable output sym-
bol (such as a single amino acid). Each state has two
kinds of parameters. Symbol emission probabilities are
the probabilities of emitting each possible symbol from
a state. State transition probabilities are the probabil-
ities of moving from the current state to a new state.
A sequence is generated by starting at an initial state
and moving from state to state until a terminal state
is reached, emitting symbols from each state that is
passed through. The state sequence is a first-order
Markov chain. This state sequence is "hidden" and
only the symbol sequence it emits is observable - hence
the term hidden Markov model (Rabiner 1989).

Figure 1 diagrams the structure of a hidden Markov
model for modeling primary sequence consensus infor-
mation derived from multiple sequence alignments, as
introduced by Krogh et al. (1994). One match state
is assigned to each consensus column of the multiple
alignment. Insert states insert extra symbols relative
to the consensus match states, and delete states al-
low skipping consensus positions. Standard dynamic
programming algorithms are used to align HMMs to
sequences and calculate a likelihood for the alignment.

Sampling suboptimal HMM alignments

Simulated annealing HMM training relies on sampling
suboptimal multiple alignments. The degree of sub-
optimality in the sampled multiple alignment is con-
trolled through a Boltzmann temperature factor, kT.
The higher kT is, the more random the alignment. At
the limit kT -- oo, all possible alignments are sampled
equlprobably. At the limit kT = O, only the most likely
alignment (Viterbi path) is sampled. An assumption 
made that all the example sequences are independent
emissions from the HMM. Then a suboptimal multiple
alignment is correctly sampled by picking a suboptimal
alignment for each individual sequence.

For notational simplicity, this sampling algorithm is
given in terms of a general HMM alignment case. A
sequence consensus HMM has a special case of non-
emitting delete states. Delete states create the possi-
bility of more than one state transition between two
symbols. With minor obvious rearrangements, the al-
gorithm also applies to sequence consensus HMMs.
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Figure 1: Comparison of consensus modeling methods,
from simple patterns to an HMM. At the top is a toy
multiple sequence alignment showing both conserved
columns and insertions. A consensus sequence derived
from this alignment is shown. A sequence profile ex-
tends a simple pattern by the use of variable amino
acid scores (and variable gap penalties) at each consen-
sus position. An HMM extends a profile by replacing
arbitrary scores with probabilities, yielding a full prob-
abilistic model of mismatches, insertions, and deletions
relative to a conseusus.

The model M consists of N states denoted S1...SN.
An initial probability distribution of occupying state
S~ is given by 7h; typically, this is 1.0 for a special
dummy begin state and zero elsewhere. An observable
sequence O consists of T symbols denoted 01...OT,
from an alphabet consisting of symbols x. The pa-
rameters of the model consist of an NxN matrix of
state transition probabilities alj for a transition from
Si to Sj, and an array of symbol emission probabili-
ties bj(x) for emission of a symbol x from each state
Sj. The state occupied at time t in an alignment is
denoted as qt. A complete alignment Q of a sequence
O is given by Q = ql, q2...qT.

Formally stated, the goal is to sample an alignment
Q from a Boltzmann distribution according to the ac-
tual likelihood of the alignment Q given the current
model, P(Q, O [ M), and the Boltzmann temperature
factor kT:

ProD(Q) P( Q,O[M)~
~aliqt P(Qt,O I M)~

By analogy to statistical mechanics, the summation
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over all possible alignments in the denominator is Z,
the partition ~nction. Z is calculated using the for-
ward algorithm (Rabiner 1989), using exponentiated
parameters ~i = ¢ri k-~r, 5~j = aij ~, and bj(x) 

bj (x) ~ in place of the unmodified probability param-
eters:

Initialization:

El(i)
Induction:

F~(i)

Termination:
Z

= ib (01)
for 2 < t < T, 1 <j < N

A suboptimal path Q is then selected from this dy-
namic programming lattice by a probabilistic trace-
back. The alignment consists of a series of states qe
which are recursively chosen such that:

InitialiT~tion:
Prob(qT) FT(~T)

z

Induction: for T > t > 2
F~-l (qt-1)aq~_l,qtProb(qt-1 [ q~) -Z~=v’N

F~-1 (i)a~,qt

Exponentiated parameters are pre-calculated for com-
putational efficiency. Machine precision difficulties
arise from the multiplication of small values. Scaling
parameters are employed to keep matrix values within
the dynamic range of the computer (Rabiner 1989). 
viable alternative would be to store the forward matrix
scores F as logarithms and compute sums in log space.

A similar procedure has been described by Allison
and Wallace (1993). Allison and Wallace exponenti-
ate by 1/kT during the traceback instead of during
the lattice fill stage. This is not strictly correct. Con-
sider the high temperature case where one wants to
choose between all possible paths equiprobably. The
Allison/Wallace algorithm chooses between all possi-
ble next states in a probabilistic traceback equiprob-
ably. The number of paths passing through a state
varies. For instance, many more paths pass through
the states in the center of the dynamic programming
lattice than through the states down its edges. Choos-
ing equiprobably among possible states during the
traceback greatly over-favors more unique paths down
the edges. An initial HMM simulated annealing im-
plementation using the Allison/Wallace algorithm had
a noticeable problem with alignments being biased to-
wards insert- and delete-rich (edge) paths.
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Simulated annealing

This suboptimal alignment algorithm is used as the
heart of an HMM training algorithm based on simu-
lated annealing, a common strategy for complex op-
timization problems (Kirkpatrick, Gelatt, & Vecchi
1983). The procedure is a variant of a standard
HMM training procedure, the Viterbi approximation
to Baum-Welch expectation maximization. Instead of
determining an optimal multiple alignment with re-
spect to the current model at the expectation step of
each iteration, a suboptimal multiple alignment is sam-
pled. Training is started at high kT with very random-
ized alignments and slowly cooled. Well-determined
motifs in the alignment ’~reeze" first, followed by finer
details. The procedure should be able to jump out of
obviously bad local optima. Note, however, that a new
alignment is chosen from the probability distribution
over alignments given the previous model, a la the ex-
pectation step of expectation maximization, not by the
probability of the alignment according to its optimal
model. The procedure is therefore not wholly faithful
to the formal statistical mechanical basis of simulated
annealing (Kirkpatrick, Gelatt, & Vecchi 1983).

In all experiments, a simple annealing schedule was
used. kT was started at 5 and reduced by 5% at each
iteration. Convergence was monitored by measuring
the relative overall change in parameter values between
a previous and a new model, and stopping below an
arbitrary threshold. If kT cooled below 0.1, training
was reverted to the standard Viterbi training proce-
dure (i.e. kT = 0) because serious numerical preci-
sion difficulties arise at very low temperature. I have
not systematically explored different annealing sched-
ules, and I suspect that more efficient schedules can
be devised. For instance, the rate of change of log Z
with respect to temperature might be used to monitor
"phase changes", adaptively slowing the temperature
ramp whenever the model begins to ’~freeze" (Kirk-
patrick, Gelatt, & Vecchi 1983).

Availability

Source code and documentation for HMMER, the
HMM package used here, is available by anony-
mous ftp from ftp://genome. ~ms’cl. edu/pub/eddy
or from h’ctp://genome, wustl, edu/eddy/hmm.html
on the World Wide Web. The code is ANSI C and
is portable among various UNIX platforms.

Results

The ability of HMM simulated annealing to produce
accurate multiple alignments was tested on ten protein
families. HMM simulated annealing performance was
compared to the performance of two other HMM train-



Family len ali %id homo %id
alpha amylase 516 3 36% 106 15%
(multi) EF hand 150 5 30% 228 26%
cytochrome C 109 9 42% 114 56%
EGF domain 48 4 31% 432 26%
globin 152 18 27% 656 39%
homeodomain 66 3 23% 302 42%
Iglight chain V 121 23 53% 738 24%
insulin 84 4 39% 125 37%
protease inhibitors 56 6 40% 140 41%
kringle modules 85 4 36% 108 51%

Table 1: Ten protein families selected as test cases.
For each family is given the consensus length of the
alignment (len), the number of structurally aligned se-
quences (ali), the percentage sequence identity aver-
aged over all sequence pairs in the structural align-
ment (first %id column), the number of homologues
identified in and extracted from SwissProt 30 by an
automated search (homo), and the average percentage
sequence identity in the set of homologues (second %id
column).

ing algorithms (Baum-Welch expectation maximiza-
tion, and the Viterbi approximation to Baum-Welch)
and to one of the best heuristic multiple alignment
programs, ClustalW (Thompson, Higgins, & Gibson
1994). These experiments address the following ques-
tions:

¯ Is there a problem with local optima in standard
HMM training?

¯ If so, can simulated annealing find better optima?

¯ Do mathematically better optima correlate with bet-
ter alignments?

¯ How do HMM methods compare to the current state
of the art in multiple alignment?

An objective operational definition of alignment accu-
racy was used in interpreting the results. An over-
all alignment identity between a test alignment and a
trusted alignment was calculated by counting the num-
ber of symbol pairs (or symbol/gap pairs) in the test
alignment which are aligned identically in the trusted
alignment, divided by the total number of aligned sym-
bol pairs in the trusted alignment. It must be empha-
sized that even structure-based alignments axe some-
what ambiguous, so any single measure of accuracy is
necessarily crude. The disadvantage of an overall mea-
sure is that, for distantly related proteins, only a spe-
cific core of residues is meaningfully alignable (Chothia
& Lesk 1986). For this reason, a second approach was

Family Vit B-W SA SA10 CW
aa 297.04 379.06 453.30 464.58 388.03

37% 42% 69% 70% 81%
¯ cbp 196.39 211.94 213.74 214.74 193.58

50% 80% 78% 81% 61%
cytc 261.65 260.28 264.36 265.07 262.58

85% 88% 88% 89% 87%
egf 53.07 54.96 55.46 57.17 47.36

83% 74% 80% 88% 75%
glob 203.98 237.33 250.82 255.93 253.31

38% 69% 81% 75% 93%
hom 132.74 131.71 133.58 134.31 133.91

68% 91% 50% 61% 96%
igvar-1 105.33 118.84 120.13 122.37 108.60

97% 96% 93% 94% 95%
ins 113.36 123.57 132.79 133.37 123.67

72% 72% 91% 90% 89%
kazal 94.61 110.28 109.69 110.56 107.37

34% 85% 81% 88% 92%
kringle 217.25 216.78 217.89 218.59 216.01

83% 80% 82% 80% 86%

Table 2: Alignment accuracy and HMM log likeli-
hood scores achieved by various alignment methods.
The log-odds score in bits (log base 2) is given for 
HMM built from the final alignment of 100 sequences.
Alignment accuracy is calculated relative to the trusted
Sali/Overington structural alignment for the subset of
sequences with known 3D structures. Methods used
are Viterbi (Vit) or Baum-Welch (B-W) expectation
maximization, a single simulated annealing run (SA),
the best-scoring run of ten simulated annealing runs
(SA10), or ClustalW (CW).

also used in which only those columns in the trusted
alignment that corresponded to consensus secondary
structure elements were counted towards the alignment
identity score. In these experiments, the key column
approach gave measures which were strongly correlated
with the overall measures. Because of this, and because
definition of key columns was somewhat arbitrary, only
the overall alignment identity measure is reported here.

A collection of protein sequence alignments based on
three-dimensional structural information was obtained
from John Overington (Sali & Overington 1994). A few
(globins and immunoglobulin fold subfamilies) were
checked against expert manual structural alignments
provided by Cyrus Chothia. These alignment identity
scores generally ranged from 90% to 98%. This gives
some idea of the inherent ambiguity between differ-
ent structural alignments. In one case, an alignment
of a pair of very distantly related immunoglobulin C2
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domains (14% sequence identity) was only 60% identi-
cal to the expert manual alignment, even in consensus
structure regions. Therefore there is danger in trusting
any one structural alignment absolutely. Nonetheless,
the Overington structural alignments were trusted as
correct for the purposes of comparison. Care was taken
to monitor alignments subjectively by eye as well.

Hidden Markov models are a statistical modeling
technique, and as such their performance increases as
the number of training sequences increases. The struc-
tural alignments in the collection each contain few se-
quences (2 to 23). Therefore, additional sequence ho-
mologues from the SwissProt 30 sequence database
(Bairoch & Boeckmann 1993) were isolated. Homo-
logues of the sequences in the Sali and Overington
alignments were identified with BLASTP(AItschul et
a/. 1990). The first ten families with three or more
aligned structures and 100 or more known homologues
were selected as test cases (Table 1).

For each family, a test set of unaligned sequences
of 100 sequences was created. Each set contained
all the sequences from the structural alignment and
enough randomly selected homolognes to bring the
total number to 100 sequences. These ten test sets
were aligned using HMM training by simulated anneal-
ing, Baum-Welch expectation maximization, and the
Viterbi approximation to Baum-Welch, and also us-
ing ClustalW. An additional experiment was done in
which ten different simulated annealing runs were done
and the highest-scoring run was saved. The homo-
lognes were filtered back out, and the resulting align-
ments of known structures were compared to the origi-
nal Sali/Overington structural alignments. These data
are summarized in Table 2.

Discussion

Simulated annealing HMM training is able to find
mathematically better optima than other HMM train-
ing methods tested here. It should be noted, though,
that gradient descent training was not tested (Baldi et
al. 1994), nor was full Baum-Welch with noise injec-
tion tested (Krogh et al. 1994). Table 2 indicates that
there are clearly local optimum problems, especially for
the Viterbi approximation of Baum-Welch expectation
maximization, as indicated by low-scoring solutions
with poor alignment qualities. (Multiple runs from
random start points partially alleviate such problems,
but not completely.) Full Baum-Welch is significantly
less prone to local optima problems, but ClustalW is
sometimes able to find higher-scoring alignments than
Baum-Welch training.

In many cases, better optima (in terms of log likeli-
hood) were found to correspond with improved align-

ments. However, this was not always the case. The
slight non-correlation of score with alignment quality
was previously obscured by the dominance of the lo-
cal optimum problem in HMM training. It seems from
these results that further research might focus on the
log likelihood objective function itself. One promis-
ing attack is to incorporate more information about
amino acids and protein structure in the form of more
sophisticated Bayesian priors (Brown et al. 1993). For
instance, the implementation of HMMs used here in-
cludes no knowledge about amino acid substitution
probabilities (e.g. PAM matrices).

Overall, simulated annealing HMM training appears
to compare favorably with the well-established mul-
tiple alignment program ClustalW (Thompson, Hig-
gins, & Gibson 1994). In particular, two fairly diffi-
cult alignments - EGF domains and EF-hands - seem
to have matched well with the strengths of HMMs,
and were significantly better aligned by HMM simu-
lated annealing than by ClustalW. As an example, the
EGF structural alignment is shown in Figure 2 along
with the ClustalW and the HMM simulated annealing
alignments. These alignments are probably the most
insertion and deletion prone families in the test. One
advantage of HMMs over other alignment methods is
a consistent theory for insertion and deletion penal-
ties. This could be the reason for the relative quality
of these two alignments.

On the other hand, the careful heuristics in
ClustalW seem to have given it an edge for three of
the ten families tested here - alpha amylases, globins,
and homeodomains. ClustalW works by progressive
alignment of most similar sequences first. In the al-
pha amylase test, the three test structures were 36%
identical, while the homologne set was only 15% iden-
tical on average. Because of the progressive alignment
strategy, ClustalW aligns the three similar alpha amy-
lase structures without confusion from the other rel-
atively dissimilar TIM-barrel relatives in the test set.
The rest of the alignment is in fact quite poor. Since
the score is calculated over all 100 test sequences, but
alignment identity is evaluated on the subset of known
structures, this is probably also the reason for the large
non-correlation between score and quality in the alpha
amylases. It is interesting that the other two fami-
lies where ClustalW had a significant edge also have
large disparities between the sequence identity of the
structures and the sequence identity of the homolognes.
For the globins and the homeodomains, the homologue
set is more similar on average than the structures are.
The reason for this is a strong bias in these sequence
families towards particular highly similar subfamilies,
such as the overwhelming dominant a and fl globins
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EGF dornaln structural alignment:

lixa
lapo
lepi
4tgf

CluatalW
lixa
lapo
lepi
4tgf

alignment:

HMM simulated annealing alignment:

lixa
lapo

lepi
4tgf

V DGD~E SNPIGISIKDD I N SBEHP FIF,EIKN~ L
K DGDQ~E OH P~Q~H~KDG I G D~-~T~AE~F E~KN~F STR

N SYPG~PSSYDGY~G~V~MHIESLDS~T~N~VI~YS~DR~QTRDLRWWEL R
VVSHFND~PDSHTQF~FH ~T~RFLVQEDKPA~V~HS~YV~AR~ HADLL A

Figure 2: Alignments of four epidermal growth factor (EGF) domain~ of known three-dimensional structure. The
Sali/Overington structure-based alignment is at the top, followed by the ClustalW and HMM simulated annealing
alignments (extracted from alignments of 100 total test sequences). Residues in columns with > 75% identity are
highlighted.

in the globin family. ClustalW weights the example
sequences to compensate for this, and HMM training
does not (yet). It seems promising to try to cast some
of the careful heuristics of programs like ClustalW into
the HMM framework.

Ultimately, the goal is to actually use these meth-
ods, not just to compare them against each other.
Large collections of protein structural alignments are
now available (Holm & Sander 1994; Sali & Overington
1994), and a complete hierarchical classification of pro-
tein structure folds, superfamilies, and families is main-
talned on the World Wide Web (Murzin et al. 1995).
The ability of HMMs to do sensitive fold recognition
is becoming apparent (Shortle 1995) and HMM meth-
ods are rapidly improving. The tools are essentially
now in hand to produce a library of HMMs for protein
fold recognition based on all the currently known fold
families and their SwissProt homologues. It will be in-
teresting to apply these methods and threading meth-
ods to the analysis of the thousands of new predicted
protein sequences that are coming out of large-scale
genome sequencing projects.
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