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Abstract

Complex disease such as cancer results from interactions of multiple genetic and environmental factors. Studying these
factors singularly cannot explain the underlying pathogenetic mechanism of the disease. Multi-analytical approach,
including logistic regression (LR), classification and regression tree (CART) and multifactor dimensionality reduction (MDR),
was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing
genes and environmental risk factors. Smoking was identified as the predominant risk factor by all three analytical
approaches. Individually, CYP1A1*2A polymorphism was significantly associated with increased lung cancer risk
(OR = 1.69;95%CI = 1.11–2.59,p = 0.01), whereas EPHX1 Tyr113His and SULT1A1 Arg213His conferred reduced risk
(OR = 0.40;95%CI = 0.25–0.65,p,0.001 and OR = 0.51;95%CI = 0.33–0.78,p = 0.002 respectively). In smokers, EPHX1 Tyr113His
and SULT1A1 Arg213His polymorphisms reduced the risk of lung cancer, whereas CYP1A1*2A, CYP1A1*2C and GSTP1
Ile105Val imparted increased risk in non-smokers only. While exploring non-linear interactions through CART analysis,
smokers carrying the combination of EPHX1 113TC (Tyr/His), SULT1A1 213GG (Arg/Arg) or AA (His/His) and GSTM1 null
genotypes showed the highest risk for lung cancer (OR = 3.73;95%CI = 1.33–10.55,p = 0.006), whereas combined effect of
CYP1A1*2A 6235CC or TC, SULT1A1 213GG (Arg/Arg) and betel quid chewing showed maximum risk in non-smokers
(OR = 2.93;95%CI = 1.15–7.51,p = 0.01). MDR analysis identified two distinct predictor models for the risk of lung cancer in
smokers (tobacco chewing, EPHX1 Tyr113His, and SULT1A1 Arg213His) and non-smokers (CYP1A1*2A, GSTP1 Ile105Val and
SULT1A1 Arg213His) with testing balance accuracy (TBA) of 0.6436 and 0.6677 respectively. Interaction entropy
interpretations of MDR results showed non-additive interactions of tobacco chewing with SULT1A1 Arg213His and EPHX1
Tyr113His in smokers and SULT1A1 Arg213His with GSTP1 Ile105Val and CYP1A1*2C in nonsmokers. These results identified
distinct gene-gene and gene environment interactions in smokers and non-smokers, which confirms the importance of
multifactorial interaction in risk assessment of lung cancer.
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Introduction

Lung cancer is the most commonly diagnosed cancer and the

leading cause of cancer death globally [1]. In India it constitutes

6.2% of all cancers with approximately 58,000 incident cases

reported in 2008 and is the most frequent cancer in males [2].

North eastern (NE) part of India is showing a steady rise in cancer

incidences and lung cancer is among the ten leading sites, with the

highest age-adjusted incidence rate (AAR) in Mizoram state (24.5

in males and 26.3 in females). Aizwal district alone shows an AAR

of 36.0 in males and 38.7 in females which is almost three to ten

times higher than Delhi [3]. Incidence of lung cancer is also high

among males in Silchar and Imphal districts. High incidence rates

suggest role of both genetic as well as environmental factors such

as smoking, tobacco use and dietary carcinogen consumption.

Individuals possessing modified ability to metabolize carcino-

gens such as polycyclic aromatic hydrocarbons (PAH), which are

ubiquitous environmental, dietary, and tobacco carcinogens are at

increased risk of developing cancer. Thus genetic variants in

xenobiotic metabolizing genes can influence their clearance from

circulation and determine response to such carcinogens. The

phase I xenobiotic metabolizing enzymes like cytochrome P-450s

(CYPs), alcohol dehydrogenase (ALDH) and epoxide hydroxylase

(EPHX) usually activate the procarcinogens through oxidation and

dehydrogenation thereby converting them into reactive metabo-

lites. Phase II metabolic enzymes such as glutathione S-

transferases (GST), sulfotransferase (SULT) and N-acetyltransferase

(NAT) generally result in inactivation or detoxification of these

reactive metabolites. Equilibrium between expression and activity

levels of these xenobiotic-metabolizing enzymes of both phase I
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and II determine the relative level of detoxification of carcinogens.

However, these pathways are also known to activate toxic and

carcinogenic chemicals to electrophilic forms that react irreversibly

with macromolecules such as proteins and nucleic acids leading to

carcinogenesis.

Single nucleotide polymorphisms (SNPs) in xenobiotic metab-

olizing genes have been studied extensively with risk of lung

cancer. A majority of these molecular epidemiological studies

consider only the main effects of these SNPs and their observed

strength of associations could be challenged by penetrance of the

genetic variant. Furthermore, a single locus cannot account for

genetic susceptibility in a complex disease such as cancer which

involves multiple genetic variations and gene-environment inter-

actions. Current evidences suggest that high order interactions in

multigenic approach allow more precise delineation of risk groups

[4,5].

In the present study, two data mining approaches, CART and

MDR were applied along with LR to detect high order gene-gene

and gene environment interactions. Both CART and MDR

assume model free and non-parametric methods of estimating

non-linear interactions with low false-positives even on relatively

small sample sizes. Model validation through permutation testing

and false positive report probabilities were also done to overcome

inaccurate estimation. Interaction entropy graphs were construct-

ed to interpret combination effects identified by MDR. To further

analyze possible effects of the EPHX1 and CYP1A1 SNPs, we

estimated their haplotype frequencies and risk imparted towards

lung cancer.

Materials and Methods

Study subjects
This study consisted of 188 histopathologically diagnosed lung

cancer cases registered at Dr. Bhubaneswar Borooah Cancer

Institute, Guwahati, Civil Hospital, Aizawl, and Sir Thutob

Namgyal Memorial Hospital, Gangtok, the collaborating centers

in north east India. Incident cases during the period of December

2006 to 2009 and willing to participate in the study were included.

290 voluntary, age (65 years) and sex matched individuals were

selected from the unrelated attendants who accompanied cancer

patients. This provided a readily available and cooperative source

of controls from the same socio-economic background as the cases

reducing confounding biases. As our collaborating centers were

public hospitals a large majority of subjects belonged to lower to

middle socio-economic background. Demographic data and

characteristics such as age, sex, smoking habit, usage of tobacco,

betel quid and alcohol, were obtained from subjects in a standard

questionnaire used for all the centers, in an in-person interview by

a trained data collector. A majority of cases and controls were

literate with full primary schooling and some upto the college level.

The occupational history of the study participants revealed that

most of them were farm laborers or engaged in petty jobs and the

nature of such jobs did not exposed them to any occupational

hazards. Any history of past or present illness was enquired or if

undergoing any medication at the time of enrolment. Patients with

only lung as their primary site of cancer were included. Any

subject with history of familial malignancy or pulmonary infectious

disease was excluded both from case and control. Final selected

controls were included on the basis of no history of any obvious

disease and those not taking any medication at the time of

recruitment. All subjects provided written informed consent for

participation in this research which was done under a protocol

approved by the institutional ethics committee of Regional

Medical Research Centre, North East Region (Indian Council of

Medical Research). Smokers, chewers and drinkers were classified

into two categories ever and never. For smoking, an individual

who had never smoked or smoked less than 100 cigarettes in their

lifetime and were not smoking at the time of reporting was

considered never smoker or non-smokers. Ever smokers or

smokers category included current smokers, and those who had

quit within ,1 year of reporting [6]. 5 ml of blood was collected in

EDTA vials and stored under -70uC until processed.

Genotyping
Genomic DNA was isolated using Qiagen Blood DNA Isolation

kit (Qiagen GmbH, Germany) and stored at 230uC till further

analysis. Details for SNPs selected for the study are summarized in

Table S1. The deletion variants in GSTM1 and GSTT1 were

determined by multiplex polymerase chain reaction protocol and

SNPs in CYP1A1, EPHX1, GSTP1, SULT1A1 were determined by

polymerase chain reaction–restriction fragment length polymor-

phism assays as previously described [7–12]. 10% of the randomly

selected cases and controls were genotyped twice for each SNP,

however no discrepancies were observed.

Statistical Analysis
Cases were individually matched with controls on the basis of

age (65 years), sex and ethnicity, in a ratio of approximately 1:1.5.

Difference in the distribution of demographic characteristics and

genotype frequencies between cases and controls were evaluated

using the Chi Square (x2) and Fisher’s Exact test wherever

appropriate. Hardy–Weinberg equilibrium (HWE) was assessed by

using the x2-test. Estimates of risk to cancer, imparted by

genotypes and other covariates as tobacco smoking, tobacco

chewing, betel quid chewing and alcohol consumption were

determined by deriving the odds ratio (OR) and its corresponding

95% confidence interval (95% CIs) using multivariable conditional

logistic regression. For all the tests a two sided p,0.05 was

considered statistically significant. The data analysis was per-

formed on the Intercooled Stata 8.0 statistical software package

(Stata Co., College Station, TX).

Haplotype Analysis
Haplotypes were constructed from the unphased diploid

genotype data using the Expectation Maximization-based algo-

rithm. Individual haplotypes and their estimated population

frequencies were inferred and estimates of linkage disequilibrium

(D’) between SNPs were calculated using Haploview software

ver.4.1.

Identification of High Order Interactions
High order interactions were determined using CART, MDR

and interaction entropy graphs.

CART. A binary recursive partitioning method was used to

produce a decision tree that identified specific combinations of

contributing factors associated with lung cancer risk using the

commercially available CART software (version 6.6, Salford

Systems) [13]. Tree splitting was done till terminal nodes

reached a pre- specified minimum size of 10 subjects. Optimal

tree was selected using one standard error (1-SE) rule and 10 fold

cross validation. Subgroups of individuals with differential risk

patterns were identified in the different order of nodes, indicating

the presence of gene-gene and gene-environment interactions.

Fischer’s Exact test was used to calculate relative risk in each

terminal node of the tree.

MDR. The MDR software was developed by Ritchie et. al.

in 2001 [4] and reviewed by Moore et al [14]. Genotype and

Gene-Environment Interactions in Lung Cancer
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environmental factors were pooled into high and low risk group,

effectively reducing the multifactor prediction from n dimension

to one dimension using MDR software (version 2.0 beta)

(http://www.epistasis.org). We applied Tuned ReliefF (TuRF)

filter algorithm to remove noisy SNPs and avoid overfitting of

data. Best models for each locus were selected by repeating the

analysis for up to 10 seeds and applying 10 folds cross validation

each time. Statistical significance of the best models selected for

each locus was determined using 1000 fold permutation testing.

p-values hence obtained for TBA and cross validation

consistency (CVC), were considered statistically significant at

0.05 levels.

False Positive Report Probability (FPRP)
Reports of gene-environment interaction studies are often

challenged by false positive discoveries especially when results

are generated by multiple comparisons. To estimate the FPRP

and to evaluate robustness of the findings from MDR analysis we

used the Bayesian approach described by Wacholder et. al. [15].

The method requires prior probabilities that the genetic variant

and disease association is real. As prior probability can be a

subjective measure and can be influenced by several factors,

usually a wide range is reported by studies. Considering poor

epidemiological data from the study population and inconsistent

association of the SNPs with lung cancer risk we set a fairly wider

range of prior probabilities (1026 to 1021) with an estimated

statistical power to detect an OR of 1.5 and 2.0 and a level equal

to the observed p-value. The FPRP cutoff point was stringently

kept to 0.2.

Interaction entropy graphs
Interaction graphs were built to visualize and interpret the

results obtained from MDR using Orange machine learning

software package [16]. Interaction graphs use entropy estimates as

described by Jakulin et al. [17] for determining the gain in

information about a class variable (e.g. case–control status) from

merging two variables together over that provided by the variables

independently. This measure of entropy is useful for building

interaction graphs that facilitate the interpretation of the

relationship between variables. Interaction graphs are comprised

of a node for each variable with pairwise connections between

them. The percentage of entropy removed (i.e. information gain)

by each variable is visualized for each node. The percentage of

entropy removed for each pairwise Cartesian product of variables

was visualized for each connection. Thus, the independent main

effects of each SNP can be compared to the interaction effect.

Positive entropy (plotted in green) indicates non-linear interaction

while negative entropy (plotted in red) indicates redundancy.

Entropy value equal to zero indicates independence or a mixture

of synergy and redundancy.

Results

Characteristics of study subjects
The distribution of gender and ethnicity was similar for cases

and controls. The frequency distribution of males and females

were 77.1% and 22.9% in cases and 76.2% and 23.85 in controls

respectively. Mean age of cases and controls was 60.41610.58

(range 30–82 yrs) and 57.19610.75 (range 32–85 yrs) respectively.

The distribution of all SNPs in control was in agreement with

HWE (p.0.05), however alleles of EPHX1 Tyr113His and

SULT1A1 Arg213His polymorphisms in cases did not follow

HWE (p,0.001 and p = 0.004 respectively).

Association of genetic and environmental factors with
lung cancer risk by LR analysis

The distribution and main effects of genetic and environmental

factors is summarized in Table 1. Risk habits such as smoking,

tobacco chewing and betel quid chewing were predominant

among cases. However only smoking and betel quid chewing were

significantly associated with increased risk for lung cancer

(OR = 3.06;95%CI = 1.9424.83;p,0.001 and OR = 1.86; 95%CI

= 1.2122.84;p = 0.004 respectively). Genotype distribution of

CYP1A1*2A, EPHX1 Tyr113His, SULT1A1 Arg213His and

GSTT1 null polymorphism were significantly different in cases

from controls (p = 0.014, p,0.001, p = 0.01 and p = 0.04 respec-

tively). Main effects of genotypes in lung cancer susceptibility were

evaluated using conditional multivariable logistic regression.

Heterozygous genotype in CYP1A1*2A was associated with

increased risk (OR = 1.69,95% CI = 1.1122.59; p = 0.01) whereas

heterozygous genotypes in EPHX1 Tyr113His and SULT1A1

Arg213His imparted reduced risk towards lung cancer (OR

= 0.40;95%C.I = 0.2520.65,p,0.001 and OR = 0.51;p = 0.33x2

0.78,p = 0.002 respectively). CYP1A1*2A and EPHX1 His139Arg

polymorphisms were associated with increased risk to lung cancer in

dominant genetic model, whereas EPHX1 Tyr113His and SULT1A1

Arg213His imparted reduced risk in recessive genetic model (Table

S2).

Haplotype analysis
Table 2 summarizes the associations between the frequency

distributions of the haplotypes in CYP1A1 and EPHX1 genes and

the risk of lung cancer. The odds ratios were calculated using the

most common haplotype as the reference group. In CYP1A1,

‘‘TA’’ haplotype was the most frequent among both cases and

controls and showed significant association. Only CYP1A1-CG

haplotype imparted increased risk to lung cancer (OR = 1.49;95%-

CI = 1.0022.21,p = 0.04). In EPHX1, the ‘‘TA’’ haplotype was the

most common with frequencies of 44.79% and 45.04% in cases

and controls respectively. No haplotype was found to be

significantly associated with lung cancer risk.

Risk associated with SNPs stratified by smoking
Since smoking is a well established risk factor to lung cancer and

was the strongest independent risk factor in LR, we further

stratified the data by smoking status. Distribution and risk

associated with genetic factors after stratification is shown in

Table 3. Heterozygous and homozygous variant genotypes of

CYP1A1*2A polymorphism imparted significant risk in non-

smokers (OR = 2.88;95%CI = 1.2226.81,p = 0.016 and OR =

4.35;95%CI = 1.47212.84,p = 0.008). Also, CYP1A1*2C variant

genotype and GSTP1 Ile105Val heterozygous genotype were

significantly associated with increased risk in non-smokers

(OR = 11.81;95%CI = 1.242111.98,p = 0.03 and OR = 2.40;95%

CI = 1.1525.03,p = 0.01). Heterozygous genotypes in EPHX1

Tyr113His and SULT1A1 Arg213His were associated with 66%

and 55% reduced risk in smokers (OR = 0.34;95%CI = 0.18

20.63,p = 0.001 and OR = 0.45;95%CI = 0.2520.80,p = 0.007

respectively). However heterozygous genotype in EPHX1 Hi-

s139Arg conferred significant risk in smokers (OR = 1.92;95%-

CI = 1.0723.45,p = 0.02).

CART analysis
Figure 1 shows the selected CART model constructed on all

investigated genetic variants and environmental risk factors. The

final tree contained eight terminal nodes. The first split of the root

node was on smoking habit, indicating that smoking is the

Gene-Environment Interactions in Lung Cancer
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strongest risk factor for lung cancer. Among smokers, the

subsequent splits showed interactions between EPHX1 Tyr113His,

SULT1A1 Arg213His and GSTM1. In non-smokers first split was

on CYP1A1*2A status, which was in concordance with the LR

analysis where CYP1A1*2A showed strong association to risk only

in nonsmokers. Further interactions were predicted by SULT1A1

Arg213His polymorphism and betel quid status. Terminal node 7,

which comprised of least percentage of cases in non-smokers, was

taken as reference to calculate OR for other terminal nodes.

Among smokers maximum risk was observed for terminal node1

consisting of EPHX1 113TT (Tyr/Tyr) or -113CC (His/His)

genotypes (OR = 4.38;95%CI = 2.1229.15) and for terminal node

2 with combination of EPHX1 113TC (Tyr/His), SULT1A1

213GG (Arg/Arg) or AA (His/His) and GSTM1 null genotypes

(OR = 3.73;95%CI = 1.33210.55, p = 0.006). In non-smokers

high risk was seen for terminal node 5 comprising of CYP1A1*2A

6235CC or TC, SULT1A1 213GG (Arg/Arg) and betel quid

chewing (OR = 2.93;95%CI = 1.1527.51, p = 0.01). Parallel to

the above, CART analysis on separate data sets of smokers and

non-smokers was also performed. However, we did not detect any

high-order interaction in these analyses (data not shown).

MDR Analysis
MDR analysis was applied to further explore gene-gene and

gene-environment interactions. Best predictive models up to 4

orders of interaction, along with their CVC and TBA are

summarized in Table 4. The analysis was run separately for total

data set and data sets stratified on smoking status. For total data

Table 1. Association of genotypes of xenobiotic metabolizing genes and environmental risk factors with lung cancer
susceptibility.

FACTORS CATEGORIES GENOTYPE CASES CONTROLS OR (95% C.I.) p value

Genetic Factors# n % n %

CYP1A1*2Aa TT T6235T 55 29.3 122 42.1 1..0

TC T6235C 103 54.8 124 42.8 1.69 (1.11–2.59) 0.01

CC C6235C 30 16.0 44 15.2 1.53 (0.84–2.78) 0.15

CYP1A1*2C AA Ile462Ile 122 64.9 206 71.0 1..0

AG Ile462Val 56 29.8 77 26.6 1.16 (0.75–1.80) 0.48

GG Val462Val 10 5.3 7 2.4 2.18 (0.78–6.09) 0.13

EPHX1 Tyr113His a TT Tyr113Tyr 82 43.6 94 32.4 1.0

TC Tyr113His 51 27.1 133 45.9 0.40 (0.25–0.65) ,0.001

CC His113His 55 29.3 63 21.7 1.00 (0.60–1.67) 0.98

EPHX1 His139Arg AA His139His 121 64.4 212 73.1 1.0

AG His139Arg 59 31.4 70 24.1 1.45 (0.92–2.27) 0.10

GG Arg139Arg 8 4.3 8 2.8 2.41 (0.79–7.36) 0.12

GSTM1 Wild Type Present 122 64.9 177 61.0 1.0

Null Null Genotype 66 35.1 113 39.0 0.95 (0.63–1.41) 0.80

GSTT1a Wild Type Present 155 82.4 217 74.8 1.0

Null Null Genotype 33 17.6 73 25.2 0.62 (0.38–1.02) 0.06

GSTP1 AA Ile105Ile 102 54.3 179 61.7 1.0

AG Ile105Val 77 41.0 96 33.1 1.46 (0.95–2.23) 0.07

GG Val105Val 9 4.8 15 5.2 1.09 (0.43–2.77) 0.84

SULT1A1a GG Arg213Arg 123 65.4 153 52.8 1.0

GA Arg213His 50 26.6 116 40.0 0.51 (0.33–0.78) 0.002

AA His213His 15 8.0 21 7.2 0.87 (0.42–1.82) 0.72

Environmental Factors##

Smoking statusa Non-smokers 56 29.8 151 52.1 1.0

Smokers 132 70.2 139 47.9 3.06 (1.94–4.83) ,0.001*

Tobacco chewinga Non-chewers 92 48.9 172 59.3 1.0

Chewers 96 51.1 118 40.7 1.24 (0.82–1.85) 0.293

Betel quid chewinga Non chewers 52 27.7 131 45.2 1.0

Chewers 136 72.3 159 54.8 1.86 (1.21–2.84) 0.004*

Alcohol consumption Non-alcoholic 135 71.8 207 71.4 1.0

Alcoholic 53 28.2 83 28.6 0.87 (0.56–1.37) 0.57

ax2 significant; p,0.05.
#ORs adjusted for all environmental factors.
##ORs adjusted for all genetic factors.
*Significant after p-value adjustment for multiple comparision (Sidak correction).
doi:10.1371/journal.pone.0029431.t001
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set, smoking was the best one locus model with highest CVC (10/

10) and testing accuracy of 0.6114 which was statistically

significant (p,0.001) determined by 1000 fold permutation

testing. For a 2-locus interaction, combination of smoking and

EPHX1 Tyr113His was most significant with CVC of 10/10 and

TBA of 0.6407 (p,0.001). The 3 locus model consisted of

smoking, EPHX1 Tyr113His and EPHX1 His139Arg with TBA of

0.6497 (p,0.001) and CVC of 10/10. The 4 loci interaction

model of smoking, EPHX1 Tyr113His, EPHX1 His139Arg and

SULT1A1 Arg213His, was the best model identified, with

maximum CVC (10/10) and TBA (0.6503, p,0.001). This model

had a chi-square value of 66.31 (p,0.0001) and an OR of 4.93

(95%CI = 3.3227.33). In smokers the best interaction model was

the three loci model consisting of tobacco chewing, EPHX1

Tyr113His and SULT1A1 Arg213His having maximum CVC (10/

10) and TBA (0.6436, p,0.001) among all models identified. The

Table 2. Distribution of CYP1A1 and EPHX1 haplotype frequency among lung cancer cases and controls.

HAPLOTYPE CASE ( 376) CONTROL ( 580) x2 P value OR (95%CI) P value D’

% n % n

CYP1A12A*2C TA 53.34 201 60.80 352 5.00 0.02 1.00 0.72

TG 3.31 12 2.65 16 0.21 0.64 1.31 (0.57–3.00) 0.50

CA 26.45 99 23.51 137 0.95 0.32 1.26 (0.91–1.74) 0.15

CG 16.90 64 13.04 75 2.94 0.08 1.49 (1.00–2.21) 0.04

EPHX1 Tyr113His * His139Arg TA 44.79 168 45.04 262 0.05 0.81 1.00 0.21

TG 12.39 47 10.31 59 1.57 0.20 1.23(0.78–1.94) 0.30

CA 35.26 133 40.13 233 1.82 0.17 0.88 (0.65–1.19) 0.42

CG 7.56 28 4.52 26 2.64 0.10 1.67 (0.91–3.06) 0.07

D’ Linkage Disequilibrium.
doi:10.1371/journal.pone.0029431.t002

Table 3. Main effects of genotypes on lung cancer risk stratified by smoking.

Polymorphism Genotype Smoker Non Smoker

Case/Control (n,%) OR (95% C.I.),p value* Case/Control (n,%) OR (95% C.I.),p value*

CYP1A1*2A TT 44(33.3)/57(41.0) 1.0 11(19.6)/65(28.6) 1.0

TC 74(56.1)/61(43.9) 1.45(0.84–2.50),0.17 29(51.8)/63(41.7) 2.88(1.22–6.81),0.016

CC 14(10.6)/21(15.1) 0.83(0.36–1.91),0.66 16(28.6)/23(15.2) 4.35(1.47–12.84),0.008#

CYP1A1*2C AA 86(65.2)/93(66.9) 1.0 36(64.3)/113(74.8) 1.0

AG 40(30.3)/40(28.8) 1.14(0.65–2.02),0.63 16(28.6)/37(24.5) 1.53(0.67–3.48),0.30

GG 6(4.5)/6(4.3) 1.71(0.43–6.74),0.43 4(7.1)/1(0.7) 11.81(1.24–111.98),0.03

EPHX1 Tyr113His TT 60(45.5)/41(29.5) 1.0 22(39.3)/53(35.1) 1.0

TC 35(26.5)/71(51.1) 0.34(0.18–0.63),0.001# 16(28.6)/62(41.1) 0.62(0.25–1.54),0.30

CC 37(28.0)/27(19.4) 1.14(0.57–2.29),0.69 18(32.1)/36(23.8) 1.03(0.41–2.56),0.94

EPHX1 His139Arg AA 80(60.6)/103(74.1) 1.0 41(73.2)/109(72.2) 1.0

AG 48(36.4)/32(23.0) 1.92(1.07–3.45),0.02 11(19.6)/38(25.2) 0.98(0.41–2.36),0.98

GG 4(3.0)/4(2.9) 1.39(0.31–6.25),0.66 4(7.1)/4(2.6) 4.25(0.54–33.15),0.16

GSTM1 WildType 91(68.9)/86(61.9) 1.0 31(55.4)/91(60.3) 1.0

Null 41(31.1)/53(38.1) 0.87(0.51–1.48),0.62 25(44.6)/60(39.7) 1.25(0.61–2.54),0.53

GSTT1 WildType 106(80.3)/104(74.8) 1.0 49(87.5)/113(74.8) 1.0

Null 26(19.7)/35(25.2) 0.75(0.40–1.41),0.37 7(12.5)/38(25.2) 0.48(0.19–1.20),0.11

GSTP1 AA 69(52.3)/77(55.4) 1.0 33(58.9)/102(67.5) 1.0

AG 54(40.9)/55(39.6) 1.35(0.77–2.36),0.29 23(41.1)/41(27.2) 2.40(1.15–5.03),0.01#

GG 9(6.8)/7(5.0) 1.49(0.49–4.56),0.47 0/8(5.3) NA

SULT1A1 GG 84 (63.6)/69 (49.6) 1.0 39(69.6)/84(55.6) 1.0

GA 35 (26.5)/58 (41.7) 0.45(0.25–0.80),0.007# 15(26.8)/58(38.4) 0.54(0.24–1.19),0.13

AA 13 (9.8)/12 (8.6) 1.11(0.45–2.74),0.81 2(3.6)/9(6.0) 0.48(0.09–2.54),0.39

*p values adjusted for tobacco chewing, betel quid chewing and alcohol consumption.
#Significant after p-value adjustment for multiple comparision (Sidak correction).
doi:10.1371/journal.pone.0029431.t003
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model imparted 3.5 fold increased risk for lung cancer

(95%CI = 2.6927.69). In non-smokers the best model was the

three loci model comprising of CYP1A1*2A, GSTP1 Ile105Val and

SULT1A1 Arg213His with CVC of 10/10 and TBA of 0.6677

(p,0.005) and an OR of 7.32 (95%CI = 3.24216.53).

False positive report probability (FPRP)
Table 5 shows the FPRPs for the 3 best models obtained from

MDR analysis. The 4-loci predictor model on total data set and 3-loci

model in smokers showed excellent reliability even when assuming

very low prior probabilities (from 1023 to 1026) for detecting ORs of

1.5 and 2.0. However the best model selected in non smoker category

showed true association only at high probability of 1021 for detecting

OR = 1.5 and till 1022 for detecting OR = 2.0.

Interaction entropy graphs
After identifying the high-risk combinations using MDR

approach, interaction entropy algorithm was applied to interpret

relationship between the variables. Graphs were constructed on

MDR results obtained from analysis on total data set (Figure S1)

and on data set stratified by smoking (Figure 2). In smokers,

EPHX1 Tyr113His had a large independent effect (4.64%) and a

non-additive interaction with tobacco chewing (entropy 1.79%).

Considerable entropy was associated with SULT1A1 Arg213His

(1.88%) and its interaction with tobacco chewing further removed

1.49% of entropy from case-control group. However we did not

detect any non-linear interaction between the two SNPs in the

model. We found small percentages of the entropy in case–control

status explained by alcohol consumption (0.56%) and tobacco

chewing (0.70%) independently, but a large percentage of entropy

explained by the interaction between these two environmental

factors (2.47%). In non-smokers, CYP1A1*2A showed strongest

main effect with entropy removal of 4.7%. GSTP1 Ile105Val too

had a strong independent effect (entropy removal = 3.28%) and its

interaction with SULT1A1 Arg213His further removed 3.02% of

entropy. A strong synergistic interaction was observed between

Figure 1. Classification and regression tree model for xenobiotic metabolizing gene polymorphisms and environmental risk
factors. Terminal nodes are thick bordered. *W: Wild type genotype; V: Variant genotype, TN: Terminal Node, #p value ,0.05.
doi:10.1371/journal.pone.0029431.g001
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SULT1A1 Arg213His and CYP1A1*2C as the combination

removed an additional 2.61% of the total entropy.

Discussion

The present study used multiple analytical methods to first

assess associations and then explore possible interactions of

xenobiotic metabolizing genes with environmental factors in risk

to lung cancer. The applied data mining approaches have the

ability to search and identify interactions regardless of the

significance of the main effects. The most significant finding of

this study is the consistently identified gene-gene and gene

environment interactions by all the three statistical approaches.

Smoking is the primary etiological factor in lung cancer. The

same was reflected in the present study as smoking showed strong

association in LR, best one factor model in MDR and formed first

split in CART. Interaction of EPHX1 Tyr113His and SULT1A1

Arg213His was consistently identified in smokers. Both EPHX1

Tyr113His and SULT1A1 Arg213His conferred reduced risk in

smoker subset in LR. The two polymorphisms along with EPHX1

His139Arg formed the best predictor model in MDR analysis in

smokers and also formed subsequent splits within smokers in

CART. EPHX1 enzyme catabolizes epoxides from PAH into

dihydrodiols, which involves generation of more reactive carcino-

genic metabolites. Substitution of a variant His allele at codon 113

(EPHX1 Tyr113His) decreases the activity of this enzyme [18]

thereby reduces the risk of cancer. Studies on lung cancer suggest

protective effect for His113 (slow type) as compared to Tyr113 (fast

type) which imparts increased lung caner risk [19–21]. The variant

allele has also been suggested to decrease the risk of ovarian cancer

[22]. We have earlier reported similar results from the same

population in esophageal cancer showing His113 allele to be

associated with a significantly reduced risk in smokers [23].

Reflecting the same, in CART analysis Terminal node 1 of

imparts over 4 fold high risk to smokers possibly due high

proportion of the wild Tyr113 homozygous genotype. Sulphona-

tion reaction of SULT1A1 is a detoxification reaction, however it

also involves bioactivation of certain procarcinogens, including

heterocyclic amines and PAHs to form carcinogen-DNA adduct

[24,25]. In vitro model studies suggest that substitution of histidine

at position 213 in the amino acid sequence is associated with

decreased substrate affinity and a lower level of protein [26] which

might protect against chemical carcinogenesis of PAHs in lung

cancer [27]. Results on association of SULT1A1 Arg213His and

risk of cancer are inconsistent, from null association with risk of

colorectal cancer [28] and prostate cancer [29] to increase in risk

of breast cancer associated with His213 allele [30]. Another study

on colorectal cancer showed a significantly reduced risk for

individuals carrying His213 allele [31]. A Meta-analysis by Kotnis

et al [32] showed a significant protective effect of the polymor-

phism in seven studies of genitourinary cancers.

Among non-smokers CYP1A1*2A and GSTP1 Ile105Val were

the most important polymorphisms identified for lung cancer

development. The variant allele of both the polymorphisms

conferred significant risk in the non smoking subgroup in LR

analysis. Similarly, MDR 3 loci model of CYP1A1*2A, GSTP1

Ile105Val and SULT1A1Arg213His polymorphisms was the best

predictor of risk in non-smokers. The CYP1A1 6235T.C MspI

(CYP1A1*2A) polymorphism, is associated with higher enzymatic

activity towards benzopyrene [33,34]. Investigations on associa-

tion between CYP1A1 polymorphisms and lung cancer have

yielded equivocal results [35,36]. Similar to our findings, a study

by Taioli et. al. [37] reported association of CYP1A1*2A variant

allele with lung cancer, however after stratification by smoking the

association remained confined to non-smokers only. Further, in a

pooled analysis of 11 studies on CYP1A1*2C polymorphism in lung

cancer, Le Marchand et al [38] found it to be associated with risk

in non-smokers, a finding which corroborates our results. Another

study by Jose et al [39] on lung cancer found no association of any

CYP1A1 polymorphism with smokers. Similar results were

reported in colorectal cancer where heterozygous and variant

genotypes of both CYP1A1*2A and CYP1A1*2C conferred risk in

Table 4. Results of MDR analysis.

No. of Locus Model p value (x2 test) TBA p-value* CVC p-value*

Total Data Set

1st order Smk p , 0.0001 0.6114 ,0.001 10 0.391

2nd order Smk Ex3 p , 0.0001 0.6407 ,0.001 10 0.391

3rd order Smk Ex3 Ex4 p , 0.0001 0.6497 ,0.001 10 0.391

4th order** Smk Ex3 Ex4 SULT p , 0.0001 0.6503 ,0.001 10 0.391

Smokers

1st order Ex3 p , 0.0001 0.6228 0.012 10 0.402

2nd order Tbc Ex3 p , 0.0001 0.6105 ,0.02 9 0.623

3rd order** Tbc Ex3 SULT p , 0.0001 0.6436 ,0.001 10 0.402

4th order Tbc Alc Ex3 SULT p , 0.0001 0.6268 ,0.008 7 0.846

Non Smokers

1st order 2A p = 0.0019 0.6170 0.09 10 0.372

2nd order 2A SULT p = 0.0004 0.5562 0.46 8 0.734

3rd order** 2A P1 SULT p , 0.0001 0.6677 ,0.005 10 0.372

4th order 2A 2C P1 SULT p , 0.0001 0.6439 ,0.021 10 0.372

*1,000-fold permutation test. **Best models selected with maximum cross-validation consistency (CVC) and maximum testing balance accuracy (TBA). Labels: Smk:
smoking, Ex3: EPHX1 Tyr113His, Ex4: EPHX1 His139Arg, SULT: SULT1A1 Arg213His, Tbc: tobacco chewing, Alc: alcohol consumption, 2A: CYP1A1*2A, P1: GSTP1 Ile105Val,
2C: CYP1A1*2C.
doi:10.1371/journal.pone.0029431.t004
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combinations with NAT2 only among non-smokers [40]. In vitro

cDNA expression study suggests that GSTP1 with 105Val variant

results in a protein with reduced enzyme activity [41], however it is

reported to play an unlikely role for smoking-related cancers [42].

Similar observation has been reported from breast cancer [10].

Probably the precise role of GSTP1 in carcinogenesis can be

determined by the kind of xenobiotic involved owing to its

substrate specificity and affinity [43].

Confirming to its exploratory nature, CART analysis identified

two more risk factors, GSTM1 null genotype in smokers and betel

quid chewing in non-smokers. The results are quite plausible

because both hold functional and biological significance. High risk

for smoking related lung cancer has been reported in individuals

deficient in GSTM1 [44–46]. Smokers with the GSTM1 enzyme

have approximately one-third of the risk for lung carcinoma than

smokers without the enzyme [47]. There are numerous reports of

association between GSTM1 null genotype and smoking in various

cancers including esophageal [48], bladder [49] colorectal [50]

and oral [51]. A recent study by Wen et. al. [52] showed betel quid

chewing increases lung cancer risk in non-smokers, with smoking

habit further enhancing the risk. Betel quid chewing is a unique

and widespread habit in the north-eastern (NE) region of India.

Betel quid is a chewing mixture of whole betel/areca nut wrapped

with betel leaves spread with white lime with frequent addition of

tobacco. It is known to contain phenolic compounds and alkaloids,

besides nitrosamines are formed from an in vivo reaction of betel

arecoline, nitrite and thiocynate, all of which act as carcinogens

[53]. Studies have reported association between betel quid

chewing and cancer risk. Significant association of betel quid

chewing with risk of oral, stomach [54] esophageal [23] and breast

cancer [55] has been reported from the study population. It would
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Figure 2. Interaction entropy graphs. The interaction model
describes the percentage of the entropy (information gain) removed
by each variable (main effect: represented by nodes) and by each
pairwise combination of attributes (interaction effect: represented by
connections). Attributes are selected on the basis of MDR results
obtained in case of (A) Smokers and (B) Non smokers. Labels: Ex3:
EPHX1 Tyr113His, Alc: alcohol consumption, Tbc: Tobacco chewing,
SULT: SULT1A1 Arg213His, 2A: CYP1A1*2A, 2C: CYP1A1*2C, P1: GSTP1
Ile105Val.
doi:10.1371/journal.pone.0029431.g002
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be reasonable to assume that the association of betel quid chewing

with lung cancer is a result of a complex combination of direct and

indirect action of tobacco carcinogens contained in it.

A post-hoc analysis through entropy graph was done to visualize

and interpret interaction models identified by MDR. The

previously documented main effects of EPHX1 Tyr113His and

SULT1A1 Arg213His in smokers and CYP1A1*2A and GSTP1

Ile105Val in non-smokers were evident. Further, synergistic

interactions of SULT1A1 Arg213His with GSTP1 Ile105Val and

with CYP1A1*2C were observed in non-smokers.

As haplotype are more efficient and informative than separate

markers, haplotype association analysis was carried out in CYP1A1

and EPHX1 genes. CG haplotype in CYP1A1 was significantly

associated with risk of lung cancer. Noteworthy were results in

EPHX1, where frequency of haplotypes among cases was strikingly

similar to report published in esophageal cancer from north India

[56].

Although both MDR and CART validated LR results, yet

they differed in identifying some unique interactions, reflecting

different methods followed by each program. Both approaches

provide a clear advantage over the traditional LR by identifying

non-linear interactions among discrete genetic and environmen-

tal attributes. Significant findings of the study are summarized in

Figure S2. It would be safe to assume a definite association of the

commonly recognized factors to lung cancer that might have

implications on future studies. Role of CYP1A1*2A polymor-

phism is evident only among non smokers in all the three

methods. LR and CART analyses even showed a gene-dosage

effect for the increased lung cancer risk with the increasing

number of variant allele in the CYP1A1*2A polymorphism. As

aforesaid, this finding provides support to previously published

reports [37–40]. MDR and CART analysis show epitasis

between EPHX1 Tyr113His and SULT1A1 Arg213His polymor-

phisms exclusively among smokers. Their combined models

confer risk to lung cancer however individually both act as

protective factors in smokers only. These factors hold their

importance as the SNPs are functionally and biologically

relevant and have been implicated in the carcinogenesis process

in previous studies on various cancers

Major challenge for the identification of true genetic and

interactive effects in a multi-factorial study is simultaneous testing

of several hypotheses. The three methods of analysis used in this

study address the same research hypotheses but differ in terms of

their statistical methodologies and analytical approaches. P-value

adjustment for multiple testing was performed through SIDAK

correction in LR model with the equality as (1-(1-a)1/n) where

n = 4 both in total and stratified analyses. Multiple testing in data

mining approaches such as CART and MDR sometimes

compromises upon the comparative power. When numerous null

hypotheses are being tested yielding higher order interacting

combinations the inference drawn from a single erroneous

rejection is not an appropriate strategy, rather the proportion of

erroneous rejection needs to be controlled. This is achieved by

estimation of FPRP. These approaches utilize internal cross-

validations and permutation testing of p-value reducing the

chances of making type I errors. Both MDR and CART apply

cross validation of data before selecting the best model however

MDR also uses 1000 fold-permutation testing, to validate its

results for minimizing the proportion of false-positives due to

multiple testing. The cross validation (5–10 fold) dividing the

whole data set into different sets of training and testing set prevents

over-fitting and artificial accuracy improvement. Permutation test

is considered the gold standard for accurate multiple testing

correction. Controlling for false discovery rate (FDR) is a more

realistic approach than as compared to concerns raised by the

multiple hypothesis testing. This is because FDR is the proportion

of incorrect rejection among all such rejections. Likewise, the best

models derived from MDR on total data set and smokers set in this

study showed good reliability as associations remained robust even

at low prior probabilities for FPRP testing. CART analysis was

able to define genetic associations with fairly good measures.

Correct classification of cases and controls in test data set was

approximately 63% for both.

There might be some limitations to this study. The sample size

of our study was relatively small, however based on the evidences

(OR) provided by our research group on association between GSTs

with lung cancer [57], the minimum sample size determined was

176 at 5% level of significance and 90% power. Polymorphisms of

EPHX1 Tyr113His and SULT1A1 Arg213His in cases showed

deviation from HWE. After ruling out false positive associations

and genotyping errors perhaps population stratification, could be a

reason for this deviation. However, the cases were incident, and

thus, the data do not show report or recall bias. Also case-control

matching was done in reference to age, gender, and ethnicity,

thereby controlling for any confounding effect accounted by these

variables.

In conclusion this study highlights that better predictors for lung

cancer risk can be obtained through polygenic approaches and

exploring gene-environment interactions. The study identified

distinct patterns of interaction in smoking and non smoking sub

groups. However, the results presented should be treated with

caution since this is the first epidemiological evidence identifying

the complex relationship between genetic polymorphisms and

cancer susceptibility in the studied population. Further studies with

large samples in independent populations are warranted to

validate the findings of this study.

Supporting Information

Figure S1 Interaction entropy graphs (for total data
set). The interaction model describes the percentage of the

entropy (information gain) removed by each variable (main effect:

represented by nodes) and by each pairwise combination of

attributes (interaction effect: represented by connections). Attri-

butes are selected on the basis of MDR results obtained in case of

total data set. Labels: Smk: smoking, SULT: SULT1A1

Arg213His, Ex3: EPHX1 Tyr113His (EH3), Ex4: EPHX1

His139Arg, SULT.

(TIFF)

Figure S2 Summarized results for LR, MDR and CART
analyses. Green boxes indicate OR,1. Red boxes indicate

OR.1. For MDR and CART significant interactions are shown.

LR results should be read individually. Alcohol was excluded as it

did not appear significant in any analysis.

(TIF)

Table S1 Detailed list of xenobiotic genes and polymor-
phisms analyzed in the study. *Chromosomal position is

based on NCBI Build 36.2 (National Center for Biotechnology

Information, Bethesda, MD). ** Base pair #mentioned in text as

CYP1A1*2A ##mentioned in text as CYP1A1*2C $Not Applicable
{internal control for GSTM1 and GSTT1 multiplex.

(DOC)

Table S2 Genotype representation and associations
under dominant and recessive model between cases
and controls. *crude odds ratio **odds ratio adjusted for

smoking, tobacco chewing, betel quid chewing and alcohol.

(DOC)
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