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1 Introduction
Throughout this paper, let N, Z and R denote the sets of all nature numbers, integers and real numbers,
respectively. We consider the following second-order nonlinear di�erence equation with Robin boundary
value problem (BVP for short)

⎧⎪⎪⎨⎪⎪⎩

− ∆2x(k − 1) = αf(k, x(k)), k ∈ [1, T],
x(0) = ∆x(T) = 0,

(1)

where T ≥ 2 is a given integer, [1, T] =∶ {1, 2,⋯, T}, parameter α > 0, f ∶ [1, T] × R → R is continuous in
the second variable, ∆ denotes the forward di�erence operator de�ned by ∆x(k) = x(k + 1)− x(k), ∆2x(k) =
∆(∆x(k)).

Discrete nonlinear equations with parameter dependence play an important role in describing many
physical problems, such as nonlinear elasticity theory or mechanics and engineering topics [1, 2]. In recent
years, some authors also contributed to the study of (1) and obtained some interesting results. For example,
when α = 1, Jiang and Zhou [3] employed strongly monotone operator and critical point theory to establish
the existence of nontrivial positive solutions. By virtue of variational methods and critical point theory,
Guo and Song [4] investigated the existence of positive solutions. Zhang and Xu [5] obtained the existence
and uniqueness theorems of nontrivial solutions. For results on nonlinear di�erence equations with other
boundary value problems, we can see [6, 7] and references therein. With reference to the sign-changing
solution, many scholars studied it for di�erential equations by a variety of methods and techniques, such
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as Leray-Schauder degree theory [8], �xed point index theory [9], topological degree theory [10], critical
point theory and invariant sets of descending �ow [11 − 13] etc. However, to the author,s knowledge, there
were few papers [14] that considered the sign-changing solutions for discrete boundary problems. One of
the reasons is the fact that the traditional pasting techniques of di�erential equations are not applicable in
the world of di�erence equations. The corresponding anchoring techniques are rather complicated, see the
detailed discussion in [15].

View from above reasons and motivated by [14], the purpose of this paper is to apply invariant sets
of descending �ow and variational techniques to get some su�cient conditions for the existence of sign-
changing solutions, negative solutions and positive solutions to (1).

In the following, we �rst consider the linear eigenvalue problem corresponding to (1)
⎧⎪⎪⎨⎪⎪⎩

−∆2x(k − 1) = λx(k), k ∈ [1, T],
x(0) = ∆x(T) = 0,

(2)

Let λk be eigenvalues of (2) and {zk}Tk=1 be the corresponding eigenvectors of {λk}Tk=1, then

λk = 4 sin2(
2k − 1
2T + 1 ⋅

π
2
), zk(j) = sin

(2k − 1)πj
2T + 1 , k, j = 1, 2, . . . , T .

Obviously, λ1 = 4 sin2
π

2(2T + 1) > 0 and z1(j) = sin
jπ

2T + 1 > 0 for j ∈ [1, T].
In this paper, we focus on the following assumptions:

(J1)f0 = max
k∈[1,T]

lim sup
u→0

∣ f(k, u)
u

∣ < λ1.

(J2) lim
∣u∣→∞

f(k, u)
u

= r for k ∈ [1, T], where r ∈ (0,+∞) is a constant, or r = +∞, ν > 2 and C > 0 satisfy

∣f(k, u)∣ ≤ C(1 + ∣u∣ν−1), k ∈ [1, T], u ∈ R.
(J3)Either (i) lim

∣u∣→∞
[uf(k, u) − 2F(k, u)] = −∞, uniformly for k ∈ [1, T],

or (ii) lim
∣u∣→∞

[uf(k, u) − 2F(k, u)] = +∞, uniformly for k ∈ [1, T],

where F(k, u) = ∫ u0 f(k, s)ds.
Our results read as follows:

Theorem 1.1. Suppose (J1), (J2) hold and r > λ2
α
. If α ∈ (1

2
,+∞) and r is not an eigenvalue of (2), then (1)

has at least three nontrivial solutions, one sign-changing, one positive and one negative.

Theorem 1.2. Suppose (J1) − (J3) hold and r > λ2
α
. If r is an eigenvalue of (2), then (1) has at least three

nontrivial solutions, one sign-changing, one positive and one negative.

The remainder of this paper is organized as follows. After introducing some notations and preliminary results
in Section 2, we complete the proof of Theorem 1.1 and give an example to illustrate our result in Section 3.

2 Variational structure and preliminary results
Given m ≥ 0, let G = {x ∶ [0, T + 1] → R∣x(0) = ∆x(T) = 0} be a T-dimensional Hilbert space which is
equipped with the inner product

⟨x, y⟩m =
T
∑
k=1

[∆x(k − 1)∆y(k − 1) +mx(k)y(k)], for all x, y ∈ G,

then the induced norm ∥ ⋅ ∥m is

∥x∥m = (
T
∑
k=1

[∣∆x(k − 1)∣2 +m∣x(k)∣2])
1
2 , for all x ∈ G.
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Let H be the T-dimensional Hilbert space equippedwith the usual inner product (⋅, ⋅) and norm ∥ ⋅∥. It is easy
to see that G is isomorphic to H, ∥ ⋅ ∥m and ∥ ⋅ ∥ are equivalent. Denote x+ = max{x, 0}, x− = min{x, 0}. Then
for any x ∈ H, ⟨⋅, ⋅⟩m ≥ 0.

De�ne functional I ∶ H → R as

I(x) = 1
2

T
∑
k=1

∣∆x(k − 1)∣2 − α
T
∑
k=1
F(k, x(k)). (3)

For any x = (x(1), x(2),⋯, x(T))⊺ ∈ H, I(x) can be rewritten as

I(x) = 1
2
(Ax, x) − α

T
∑
k=1
F(k, x(k)), (4)

here ατ is the transpose of the vector α on H, A is T × T matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 ⋅ ⋅ ⋅ 0 0
−1 2 −1 ⋅ ⋅ ⋅ 0 0
0 −1 2 ⋅ ⋅ ⋅ 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅ 2 −1
0 0 0 ⋅ ⋅ ⋅ −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Remark 2.1. In fact, many existing results are applicable. Namely, one can apply numerous results for the
variational formulation (4), see [16 − 18].

For m ≥ 0, consider BVP
⎧⎪⎪⎨⎪⎪⎩

− ∆2x(k − 1) +mx(k) = h(k), k ∈ [1, T],
x(0) = ∆x(T) = 0,

(5)

where h ∶ [1, T] → R. It is not hard to see that (5) and the system of linear algebra equations (A + mI)x = h
are equivalent, then the unique solution of (5) can be expressed by

x = (A +mI)−1h. (6)

On the other side, we have

Lemma 2.2. The unique solution of (5) is

x(k) =
T
∑
s=1
Gm(k, s)h(s), k ∈ [0, T + 1],

here Gm(k, s) can be written as

Gm(k, s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(pT−s − ps−T − pT+1−s + ps−T−1)(pk − p−k)
W

, 0 ≤ k ≤ s ≤ T + 1,
(pT−k − pk−T − pT+1−k + pk−T−1)(ps − p−s)

W
, 0 ≤ s ≤ k ≤ T + 1,

W = (pT+1 − p−T−1 − pT + p−T)(p−1 − p), p = 2 +m +
√
4m +m2

2
.

Proof. First study the homogeneous equation of (5)
⎧⎪⎪⎨⎪⎪⎩

− ∆2x(k − 1) +mx(k) = 0, k ∈ [1, T],
x(0) = ∆x(T) = 0,

(7)

then the corresponding characteristic equation of (7) is p2−(2+m)p+1 = 0. Considerm > 0 (m = 0 is trivial),
then (2 +m)2 − 4 > 0, which means we have

p1 =
2 +m +

√
4m +m2

2
, p2 =

2 +m −
√
4m +m2

2
.
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Then two independent solutions of (7) can be expressed by x1(k) = pk1 and x2(k) = pk2. Therefore, the general
solution of (5) is x(k) = a1(k)pk1 + a2(k)pk2.

The next step is to determine coe�cients a1(k) and a2(k). Using themethod of variation of constant, we
get the general solution of (5) as

x(k) = [a1(0) +
k
∑
s=1

ps2h(s)
p2 − p1

] pk1 + [a2(0) −
k
∑
s=1

ps1h(s)
p2 − p1

] pk2.

From initial conditions, we �nd a1(0) = −a2(0) and

a1(0) =
T
∑
s=1

(pT1ps2 − ps1pT2 − ps2pT+11 + ps1pT+12 )
(pT+11 − pT+12 − pT1 + pT2)(p2 − p1)

h(s).

WriteW = (pT+11 − pT+12 − pT1 + pT2)(p2 − p1), p1 = p−12 = p, then

x(k) = 1
W

[
T
∑
s=1

(pT−s − ps−T − pT+1−s + ps−T−1)(pk − p−k)

+
k
∑
s=1

(Pk−s − Ps−k)(pT+1 − p−T−1 − pT + p−T)]h(s)

which means the proof of Lemma 2.2 is completed.

Remark 2.3. From Lemma 2.2, for k, s ∈ [1, T], there holds Gm(k, s) = Gm(s, k) > 0. For any x ∈ H, k ∈ [1, T],
de�ne Km, fm, Am ∶ H → H as follows

(Kmx)(k) =
T
∑
s=1
Gm(k, s)x(s), (fmx)(k) = f(k, x(k)) +mx(k),

Am = Km fm

where Am ∶ H → H is a completely continuous operator. Combining (6)with Lemma 2.2, we get Km = (A+mI)−1.

Remark 2.4. According to Lemma 2.2, it is not di�cult to see that {x(k)}T+1k=0 is a solution of (1) if and only if
x = {x(k)}Tk=1 ∈ H is a �xed point of Am.

Lemma 2.5. The functional I de�ned by (3) is Fréchet di�erentiable on H and I′(x) has the expression I′(x) =
x − Km fmx for x ∈ H.

Proof. For any x, y ∈ H, using the mean value theorem, it follows

I(x + y) − I(x) = 1
2

T
∑
k=1

∣∆y(k − 1)∣2 +
T
∑
k=1

[∆x(k − 1)∆y(k − 1) − αf(k, x(k) + θ(k)y(k))y(k)],

here θ(k) ∈ (0, 1), k ∈ [1, T]. As f is continuous in x, we �nd

I(x + y) − I(x) − ⟨x, y⟩m +
T
∑
k=1

(αf(k, x(k)) +mx(k))y(k) = ∥y∥mo(1)

which leads to

lim
∥y∥m→0

1
∥y∥m

(α
T
∑
k=1

[f(k, y(k) − f(k, x(k) + θ(k)y(k)))y(k)] + 1
2
∥y∥2m −

1
2
m∥y∥2) = 0,

thus I is Fréchet di�erentiable on H and

⟨I′(x), y⟩m = ⟨x, y⟩m −
T
∑
k=1

(αf(k, x(k)) +mx(k))y(k). (8)
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On the other side, for all x = {x(k)} ∈ H, z = {z(k)} ∈ H, there holds

T
∑
k=1
∆2x(k − 1)y(k) =

T
∑
k=1

[∆x(k)y(k) − ∆x(k − 1)y(k)] = −
T
∑
k=1
∆x(k − 1)∆y(k − 1).

Making use of the de�nition of inner product and Lemma 2.2, we get

⟨x − Km fmx, y⟩m = ⟨x, y⟩m −
T
∑
k=1

(αf(k, x(k)) +mx(k))y(k)

then ⟨I′(x), y⟩m = ⟨x − Km fmx, y⟩m for all x, y ∈ H, i.e., I′(x) = x−Km fmx. This completes the proof of Lemma
2.5.

Remark 2.6. According to Lemma 2.5 and Remark 2.4, we �nd out that critical points of I de�ned on H are
precisely solutions of (1).

De�nition 2.7 ([19]). Let I be a C1 functional de�ned on E. I is said to satisfy Palais-Smale condition
((PS)condition for short) if any sequence{un} ⊂ E forwhich I(un) is boundedand I′(un)→ 0(n →∞) possesses
a convergent subsequence in E.

De�nition 2.8 ([20]). Assume I be a C1 functional de�ned on E. If any sequence {un} such that I(un) is
bounded and (1 + ∥un∥m)∥I′(un)∥m → 0 as n → ∞ has a convergent subsequence in E, then we say that I
satis�es the Cerami condition ((C) condition for short).

Lemma 2.9 ([21]). Let H be aHilbert space, there are two open convex subsets B1 and B2 on H with Am(∂B1) ⊂
B1, Am(∂B2) ⊂ B2 and B1⋂B2 ≠ ∅. If I ∈ C1(H,R) satis�es the (PS) condition and I′(x) = x − Amx for all
x ∈ H. Assume there is a path g ∶ [0, 1]→ H such that

g(0) ∈ B1 ∖ B2, g(1) ∈ B2 ∖ B1,

and
inf

u∈B1⋂ B2
I(x) > sup

τ∈[0,1]
I(g(τ)),

then I has at least four critical points, one in H ∖ (B1⋃B2), one in B1 ∖ B2, one in B1⋂B2, and one in B2 ∖ B1.

Remark 2.10. By Theorem 5.1 [20], we can replace (PS) condition by weaker (C) condition in Lemma 2.9.

In this paper,wewill analyse the properties of the �ow, pay close attention to the direction and thedestination
to which the �ow goes, and seek the limit along the �ow. We are interested in those points in H across which
the �ow does not go to in�nity and work for seeking such points in H. If we have such a point, then the �ow
curve crossing it goes ultimately to a critical point. It seems that one would obtain many critical points if he
or she is given many such points. However, even if there may be many such points, we cannot get more than
one critical point in general since the di�erent �ow curves may ultimately go to the same critical point. In
order to get more critical points, we will de�ne the concept of invariant set of descending �ow and then we
will divide the whole space H into several invariant subsets of descending �ow. In this way, we can get more
than one critical point.

3 Proof of main result
Let convex cones Λ = {x ∈ H ∶ x ≥ 0} and −Λ = {x ∈ H ∶ x ≤ 0}. The distance respecting to ∥ ⋅ ∥m in H is written
by distm. For arbitrary ε > 0, we denote

B+ε = {x ∈ H ∶ distm(x, Λ) < ε}, B−ε = {x ∈ H ∶ distm(x,−Λ) < ε}.
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Notice that B+ε and B−ε are open convex subsets on H with B+ε ⋂B−ε ≠ ∅ and H ∖ (B+ε ⋃B−ε ) contains only
sign-changing functions.

Lemma 3.1. Suppose one of the following condition holds.
(i) r = +∞ or
(ii) r < +∞ is not an eigenvalue of (2), here r is de�ned by (J2).
Then the functional I de�ned by (3) satis�es (PS) condition for all α ∈ (1

2
,+∞).

Proof. (i) Assume r = +∞. Let {xn} ⊂ H be a (PS) sequence. Since H is a �nite dimensional space, we only
need to show {xn} is bounded. If r = +∞, choosing a constant γ > 0, for all (k, u) ∈ [1, T] × R, we have
F(k, u) ≥ λTu2 − γ. Then

I(xn) =
1
2
(Axn , xn) − α

T
∑
k=1
F(k, xn(k)) ≤ (1

2
− α) λT∥xn∥2 + Tαγ, (9)

thus ∥xn∥2 ≤
2I(xn) − 2Tαγ
(1 − 2α)λT

is bounded for α > 1
2
.

(ii) suppose r < +∞ is not an eigenvalue of (2). We are now ready to prove that {xn} is bounded.
Arguing by contradiction, we suppose there is a subsequence of {xn} with ρn = ∥xn∥ → +∞ as n → ∞
and for each k ∈ [1, T], either {xn(k)} is bounded or xn(k) → +∞. Put yn = xn

ρn
. Clearly, ∥yn∥ = 1.

Then there have a subsequence of {yn} and y ∈ H satisfying that yn → y as n → ∞. Write dn =

( f(1, xn(1))
xn(1)

yn(1), ...,
f(T, xn(T))
xn(T)

yn(T))
⊺
.

Since lim
∣u∣→+∞

f(k, u)
u

= r for all k ∈ [1, T] and I′(xn) = xn − Km fmxn, we get

I′(xn)
ρn

= yn −
1
ρn
K0f0xn = yn − K0dn → y − K0ry.

For I
′(xn)
ρn

→ 0 as n → ∞, we have y − K0ry → 0. In view of Lemma 2.5, we �nd that r is an eigenvalue of

matrix A, which contradicts the assumption. So {xn} is bounded and the proof is �nished.

Lemma 3.2. I satis�es (C) condition under (J3).

Proof. First assume (J3)(i) is satis�ed. There exists a constant M1 > 0 such that {xn} ⊂ H with I(xn) ≤ M1

and (1 + ∥xn∥m)∥I′(xn)∥m ≤ M1, then

−3M1 ≤ α
T
∑
k=1

[xn(k)f(k, xn(k)) − 2F(k, xn(k))]. (10)

We claim {xn} is bounded. Actually, if {xn} is unbounded, it possesses a subsequence of {xn} and some
k0 ∈ [1, T] satisfying ∣xn(k0)∣→ +∞ as n →∞. According to (J3)(i), we get

xn(k0)f(k0, xn(k0)) − 2F(k0, xn(k0))→ −∞ as n →∞,

and there is a constant M2 > 0 such that uf(k, u) − 2F(k, u) ≤ M2 for any k ∈ [1, T] and u ∈ R. Therefore,
T
∑
k=1

[xn(k)f(k, xn(k)) − 2F(k, xn(k))]→ −∞

which contradicts (10). So our claim is proved and I satis�es the (C) condition.
Finally, assume (J3)(ii) hold. In a similar way as above, we �nd that I satis�es (C) condition. Then

Lemma 3.2 is veri�ed.

Lemma 3.3. If (J1) and (J2) hold, there exist m ≥ 0 and ε0 > 0 such that for 0 < ε < ε0, we have:
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(i) if x ∈ B−ε is a nontrivial critical point of I and Am(∂B−ε ) ⊂ B−ε , then x is a negative solution of (1);
(ii) if x ∈ B+ε is a nontrivial critical point of I and Am(∂B+ε ) ⊂ B+ε , then x is a positive solution of (1).

Proof. (i) According to (J1) and (J2), for all u ≠ 0 and k ∈ [1, T], there exists m ≥ 0 such that

u(αf(k, u) +mu) > 0. (11)

Let y = Am(x) and x+ = max{x, 0}, x− = min{x, 0} for x ∈ H. Since

∥x∥2m =
T
∑
k=1

[∣∆x(k − 1)∣2 +m∣x(k)∣2] = xτAx +m∥x∥2 = λ∥x∥2 +m∥x∥2 = (λ +m)∥x∥2,

it follows
√
λ1 +m∥x∥ ≤ ∥x∥m ≤

√
λT +m∥x∥ and

∥x+∥ = inf
z∈−Λ

∥x − z∥ ≤ 1√
m + λ1

inf
z∈−Λ

∥x − z∥m = 1√
m + λ1

distm(x,−Λ). (12)

By (J1) and (J2), there exist constants τ > 0, C > 0 and ν > 2 such that

∣αf(k, u) +mu∣ ≤ (m + λ1 − τ)∣u∣ + αC∣u∣ν−1, ∀(k, u) ∈ [1, T] × R. (13)

Choosing a constant D > 0, since x ∈ H, we have

∣x∣ν ∶= (
T
∑
k=1

∣x(k)∣ν)
1
ν ≤ Dmin{∥x∥, ∥x∥m}, ∀x ∈ H. (14)

It is obvious that ∣x∣2 = ∥x∥. Moreover, y+ = y − y− and y− ∈ −Λ imply distm(y,−Λ) ≤ ∥y − y−∥m = ∥y+∥m.
Making use of (12), (15) and (14), we get

distm(y,−Λ)∥y+∥m ≤ (m + λ1 − τ
m + λ1

distm(x,−Λ) + C1(distm(x,−Λ))ν−1)∥y+∥m ,

here C1 =
αCDν√

(m + λ1)ν−1
. Hence

distm(y,−Λ) ≤
m + λ1 − τ
m + λ1

distm(x,−Λ) + C1(distm(x,−Λ))ν−1.

Let C1(distm(x,−Λ))ν−2 =
τ

2(m + λ1)
, there holds

distm(Am(x),−Λ) ≤
2(m + λ1) − τ
2(m + λ1)

distm(x,−Λ). (15)

Since 2(m + λ1) − τ
2(m + λ1)

< 1, we obtain

Am(x) ∈ B−ε , ∀u ∈ B−ε .

If x ∈ B−ε is anontrivial critical point of I, it is clear that I′(x) = x−Amx = 0. It follows from (15) that x ∈ −Λ∖{0}.
Combining (11) and remark 2.3, we have x(k) < 0. Consequently, x is a negative solution of (1).

(ii) can be discussed similarly, we only need to change y+ to y− to prove (ii). For simplicity, we omit its
proof.

Lemma 3.4. Suppose z1, z2 be eigenvectors corresponding to eigenvalues λ1, λ2 of (2) and u ∈ H2 =
span{z1, z2}. If r >

λ2
α
, then I(x)→ −∞ as ∥x∥m → +∞.

Proof. (1) If r = +∞. From (9), for any x ∈ H, we have I(x)→ −∞ as ∥x∥m → +∞.

(2)Assume r ∈ ( λ2
α
,+∞). For u ∈ H2, x = ε1z1 + ε2z2. In general, we can suppose (z1, z2) = 0.

Thus ∥x∥2 = ⟨x, x⟩ = ⟨ε1z1 + ε2z2, ε1z1 + ε2z2⟩ = ε21∥z1∥2 + ε22∥z2∥2 and there exists ε satisfying 0 < ε <
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min{r − λ1
α
, r − λ2

α
}. From lim

∣x∣→+∞

f(k, x)
x

= r, for any k ∈ [1, T] and x ∈ R, there exists a constant ζ > 0 such

that
F(k, x) ≥ r − ε

2
x2 − ζ .

Then for x ∈ H2, it follows

I(x) ≤ 1
2
(λ1 − αr + αε)ε21∥z1∥2 +

1
2
(λ2 − αr + αε)ε22∥z2∥2 + Tζα.

That is, I(x)→ −∞ as ∥x∥m → +∞ for λ1 − αr + αε < 0 and λ2 − αr + αε < 0.

Now we are in the position to prove Theorem 1.1 by using Lemma 2.9.

Proof of Theorem 1.1. From (15), we get αF(k, x) + m
2
∣x∣2 ≤ (m + λ1 − τ)

1
2
∣x∣2 + αC

ν
∣x∣ν, which together with

(14) gives that

I(x) ≥ τ
2(m + λ1)

∥x∥2m −
αCDν

ν
∥x∥νm .

It follows from (12) that ∥x±∥ ≤ 1√
m + λ1

distm(x,∓Λ) ≤
1√
m + λ1

ε0 for any x ∈ B+ε ⋂B−ε . Then there is c0 >

−∞ such that inf
x∈B+ε ⋂ B−ε

I(x) = c0.Moreover, in viewof Lemma3.4,we can choose R > 2ε0 such that I(x) < c0−1

for all x ∈ H2 and ∥x∥m = R. To apply Lemma 2.9, we de�ne a path g ∶ [0, 1]→ H2 as

g(s) = R z1 cos(πs) + z2 sin(πs)
∥z1 cos(πs) + z2 sin(πs)∥m

.

By direct computation, we get

g(0) = R z1
∥z1∥m

∈ B+ε ∖ B−ε , g(1) = −R z1
∥z1∥m

∈ B−ε ∖ B+ε ,

inf
x∈B+ε ⋂ B−ε

I(x) > sup
τ∈[0,1]

I(g(τ)).

Combining Lemmas 3.1, 3.3 and 2.9, we �nd there is a critical point in H ∖ (B+ε ⋃B−ε ) corresponding to a sign-
changing solution of (1). Moreover, we also have a critical point in B+ε ∖ B−ε (B−ε ∖ B+ε ) corresponding to a
positive solution(a negative solution) of (1). The proof is completed.

Remark 3.5. By Lemma 3.2 and Remark 2.10, we �nd the proof of Theorem 1.2 is analogous to the proof of
Theorem 1.1 and we therefore omit it.

Finally, we exhibit an example to illustrate Theorem 1.1.

Example 3.6. Consider (1) with α = 2 and f(k, x) = ∣x∣ − n
∣x∣ + 1mx. Here m > 2 sin2 3π

2(2T + 1) , 0 < n <

4 sin2 π
2(2T + 1)
m

. Then

F(k, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mx2

2
−m(n + 1)(x − ln(1 + x)), x ≥ 0,

mx2

2
+m(n + 1)(x + ln(1 − x)), x < 0.

By direct computation, we have lim
∣x∣→∞

[2F(k, x) − xf(k, x)] = −∞ uniformly for k ∈ [1, T] and λ1 =

4 sin2 π
2(2T + 1) , λ2 = 4 sin2 3π

2(2T + 1) . In addition, f0 = max
k∈[1,T]

lim sup
x→0

∣ f(k, x)
x

∣ = mn < λ1 and

lim
∣x∣→∞

f(k, x)
x

= r = m > λ2
2

. Then (1) satis�es conditions of Theorem 1.1, thus it has at least a positive solution,

a negative solution and a sign-changing solution.
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For the case T = 2, herem > 2 sin2 3π
10

≈ 1.28, 0 < n <
4 sin2 π

10
m

≈ 0.36
m

, thus we can choosem = 1.5 and
n = 0.1. After not very complicated calculation, we �nd (0, 0.161, 0.298, 0.298), (0, 8.73,−5.77,−5.77),
(0,−0.1616,−0.2975,−0.2975) and (0,−8.73, 5.77, 5.77) are nontrivial approximate solutions of (1).
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