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Abstract

In this paper, we consider two different models of partial channel state information (CSI) at the

basestation for multiple antenna broadcast channels: i.) the shape feedback model where the normalized

channel vector of each user is available at the basestation and ii.) the limited feedback model where

each user quantizes its channel vector according to a rotated codebook which is optimal in the sense of

mean square error and feeds back the codeword index. The paper is focused on characterizing the sum

rate performance of both zero-forcing dirty paper coding (ZFDPC) systems and channel inversion (CI)

systems under the given two partial basestion CSI models. Intuitively speaking, a system with shape

feedback loses the sum rate gain of adaptive power allocation. However, shape feedback still provides

enough channel knowledge for ZFDPC and CI to approach their own optimal throughput in the high

SNR regime. As for limited feedback, we derive sum rate bounds for both signaling schemes and link

their throughput performance to some basic properties of the quantization codebook. Interestingly, we

find that limited feedback employing a fixed codebook leads to a sum rate ceiling for both schemes for

asymptotically high SNR.

Index Terms

MIMO, Broadcast channel, Sum rate, Partial CSI, Shape feedback, Limited feedback.

Supported by the SBC Foundation and the NSF under grant CCF0513916.

February 3, 2006 DRAFT



2

I. I NTRODUCTION

Because of the need for high data rate multi-user systems, it is imperative to understand how to leverage

multiple antenna technology to increase the data rate and user capacity of wireless networks. Broadcast

channels model the situation where a basestation is sending information to a number of users (receivers)

[1]. Simple examples of broadcast channels include the downlink in a cellular network and the broadcast

scenario in a wireless local area network (LAN) where the access point is transmitting to multiple users.

In recent years, broadcast channels with multiple antennas installed at the basestation have received

significant research interest because of their spectral efficiency improvement and potential for commercial

application in wireless systems [2]. It was shown in [3]–[6] that the multiple antennas at the basestation

provide a sum rate capacity increase that grows linearly with the minimum of the number of transmit

antennas and users. The resulting sum rate advantage can be achieved through dirty paper coding [7] which

eliminates the cross user interference at the transmitter side assuming perfect channel state information

(CSI) is available at the basestation. Besides these information theoretic results, there has also been

some work recently in the area of practical signaling for the multiple antenna broadcast channel. For

example, [8] studied zero-forcing beamforming methods for the downlink of multi-user multiple-input

multiple-output (MIMO) channels. Peelet al. proposed the regularized channel inversion (CI) scheme

and combined this technique with vector perturbation [9], [10]. Another interesting research topic for

the multiple antenna broadcast channel is multi-user scheduling (selection). Recent progress on this topic

showed that by judiciously selecting the active user set, the optimal throughput scaling can be achieved

by even suboptimal signaling schemes, such as CI, when the number of users is very large [11]–[13].

For multiple antenna broadcast channels, when the basestation does not have any channel knowledge,

the sum rate loss compared to the case that the basestation has perfect CSI is substantial. In fact, the

optimal transmission scheme for the basestation without any CSI is to transmit to a randomly selected

user during each time slot. In this case, the sum rate does not even grow either as the number of

antennas increases or as the number of users increases (no multi-user diversity gain). While the perfect

CSI assumption for the basestation can be argued in the case of a time division duplexing (TDD) system,
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the assumption is highly unrealistic for frequency division duplexing (FDD). Some recent multi-user

scheduling algorithms only require partial CSI at the basestation to maintain full sum rate growth when

the number of users is large [11], [14], [15]. However, it is still not clear what kind of partial channel

knowledge is essential for multiple antenna broadcast systems to obtain the sum rate advantage.

The benefits of designing a point-to-point multiple antenna signal using some form of partial CSI has

received much interest over the past few years. Several different models for partial channel knowledge have

been proposed and analyzed, including the statistical partial CSI model [16]–[19], the channel subspace

model [20], and the limited feedback model [21]–[30]. However, for multiple antenna broadcast channels,

the partial CSI problem is not as well addressed as in the single user MIMO case. Recent progress on

this topic can be found in [14], [15], [31]–[34].

In this paper, we consider two different kinds of partial CSI at the basestation for multiple antenna

broadcast channels and focus on the setting where the basestation has multiple antennas and each mobile

has a single antenna due to size and battery constraints. The first model considered is shape feedback.

In the shape feedback model, the basestation is able to obtain the normalized channel vector, i.e., the

shape1, of each user. Even though it is simple, the shape feedback model is especially helpful for us

to understand the throughput sensitivity on the channel gain knowledge for multiple antenna broadcast

channels. In many practical systems, the basestation can have unreliable or even unobtainable channel

gain values but reliable channel shape information of each user. For example, when analog feedback [35]–

[37] is used in an FDD system, the magnitude value at the basestation is usually outdated much faster

than the shape information. This is because the shape vector mainly captures the directional knowledge

of paths, which usually varies much more slowly than the amplitude of the channel, especially in the

outdoor scenario [38]. Also the channel gain in an analog feedback system might be unusable because

the system gains in the feedback channel are often not well calibrated. Furthermore, if blind channel

estimation is combined with channel reciprocity at the basestation of a TDD system, the channel gain

1Any nonzero vectora ∈ Rn can always be decomposed into a gain‖a‖ which is a scalar and a shapea/‖a‖ which is a

vector on the unit sphere ofRn.

February 3, 2006 DRAFT



4

knowledge is usually unobtainable due to the amplitude ambiguity nature of the blind methods [39].

The general limited feedback model is also considered. In this model, CSI is conveyed from each user

to the basestation over a feedback channel. The basestation and the users have access to a CSI codebook

which is designed offline. Each user sends the binary index of the best codevector from the codebook

through a zero-error, zero-delay feedback channel to the basestation. We note that this finite rate partial

CSI model was independently studied in [40] for the channel inversion scheme. Here a limited feedback

framework designed for multiple antenna broadcast systems is first proposed. The key differences between

our scheme and the limited feedback for single user MIMO channels are the following:

1) For multiple antenna broadcast channels, each receiver only knows its own channel instead of the

full (i.e. all users’) CSI and the users cannot cooperate. Each user is unable to obtain the optimal

precoding or beamforming structures which are computed from the full CSI. Therefore, in our

scheme, vector quantization is applied to the channel vector itself instead of to the beamforming

vector or precoding matrices, which is usually the case for single user MIMO systems where the

receiver has full CSI [41];

2) The codebook of each user should be different from others. Otherwise, there is a chance that two

or more users quantize their channel vectors to the same codevector which will cause a rank loss in

the quantized channel matrix composed by those codevectors. To avoid this situation, we let every

user rotate a general codebook by a random unitary matrix that is also known at the basestation

so that the CSI matrix at the basestation is full rank with probability one. Also under Rayleigh

fading, the randomly rotated codebooks used by different users are all equivalent in the sense of

average quantization error.

For these two partial CSI models, two widely accepted transmission schemes are considered: i.) the

asymptotically optimal zero-forcing dirty paper coding (ZFDPC) scheme and ii.) the channel inversion

(CI) method that is suboptimal but more practical. By characterizing the sum rate performance of the

two partial CSI models for the given signaling schemes, we find that these two kinds of partial CSI

result in quite different throughput performance. It is shown that for the high SNR regime, ZFDPC with
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shape feedback is asymptotically optimal in the sum rate sense. When the CI scheme is used with shape

feedback, we give a simple but effective power allocation strategy that provides sum rate performance

better than perfect CSI channel inversion with equal power allocation. Simulation results further show

that it is very close to the maximum achievable sum rate for CI which requires perfect CSI and adaptive

power allocation.

For the limited feedback case, the mismatch between the quantized channel vectors available at the

basestation and the exact channel vectors results in additional cross-user interference for both ZFDPC

and channel inversion. We derive bounds for the sum rate performance of limited feedback under these

two transmission schemes. These bounds link the throughput performance with some basic properties of

the codebook and provide important insights into the impact of the use of limited feedback. From these

bounds, we find that both signaling schemes experience sum rate ceilings for a fixed size codebook as

the SNR increases.

Throughout this paper, we use(·)T to denote the transpose,(·)H the conjugate transpose,E{·} the

expectation and(·)∗ the complex conjugate.tr (A) means the trace of matrixA, anddiag (a) denotes

the diagonal matrix whose diagonal line is composed by the elements of vectora. (A)T
i represents the

ith row vector ofA .

II. SYSTEM OVERVIEW

A. Channel Model

Consider a broadcast channel consisting of anN -antenna basestation andK single-antenna users.

Assuming that the channel is flat-fading, the discrete-time complex baseband signal received by useri

at a given time slot is

yi = hT
i x + vi

where hT
i = [hi,1, . . . , hi,N ] is the channel fading vector between the basestation and theith user,

x = [x1, . . . , xN ]T is the transmitted signal, andvi is the zero mean complex white noise with variance

one. We assume independent and identically distributed (i.i.d.) Rayleigh fading,hi ∼ CN(0, IN ) where
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IN is anN ×N identity matrix andE{hih
H
j } = 0 if i 6= j. By stacking the received signals of allK

users intoy = [y1, y2, . . . , yK ]T , we have

y = Hx + v (1)

where H = [h1, . . . ,hK ]T and v = [v1, . . . , vK ]T . The model (1) looks the same as a single user

MIMO channel, but the key difference is that the receive antennas cannot cooperate with each other in

the broadcast scenario. Useri only sees its own received signalyi. As a consequence, useri can only

obtain the state information of its own channel which ishi in this case.

Generally the number of the usersK is greater than the number of the transmit antennasN , that is2

K > N . As we have mentioned, how to select the appropriate users for transmission under some sort

of CSI knowledge is an important subject and deserves its own treatment. We leave this topic for future

work and focus on the system setting whereK = N . This can be understood as the scenario where

N users are chosen randomly according to a uniform distribution ifK > N. The channel matrixH is

assumed to be full rank in the following part of the paper (this happens with probability one given i.i.d.

Rayleigh fading). We also omit the user ordering issue which does not affect the performance of channel

inversion and the asymptotic sum rate for ZFDPC [3].

The system sum rate is defined as

R =
K∑

i=1

Ri

whereRi is the transmission rate between the basestation and theith user. It is measured in bits per

channel use (or bits/s/Hz) in this paper. We focus on the ergodic sum rate for time-varying channels,

which means the sum rate is averaged over all the channel states according to the channel distribution.

This ergodic sum rate can be approached by a fixed rate scheme which codes across a long time period

during which the channel experiences the ergodic states according the distribution. In this case, the

channel fading is fast enough so that the channel state changes ergodically during the transmission of

one codeword.

2WhenK < N , there is a loss in the transmission degree of freedom [9].
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The following power constraint is applied to the transmitted signal

E
{‖x‖2

}
= P (2)

where‖ · ‖ is the Euclidean norm andP is the maximum total transmit power over one time slot. Since

the noise power is normalized to one,P also represents the SNR.

B. Zero-Forcing Dirty Paper Coding

The sum rate capacity of multiple antenna broadcast channels is achieved through dirty paper coding

at the basestation. The optimal dirty paper coding capacity involves a joint optimization over a set

of covariance matrices under a chosen power constraint, which is too complex for implementation. In

[3], a relatively simple ZFDPC scheme is proposed and is shown to provide an optimal throughput for

asymptotically large SNR.

In the ZFDPC scheme, the basestation collects the perfect channel knowledgeH and then decomposes

it into

H = GQ

whereG is a K ×N lower triangular matrix andQ is anN ×N unitary matrix under the assumption

that H is full rank. ApplyingQH to the original source signals = [s1, . . . , sN ]T as a precoding matrix

gives a transmitted signal

x = QHs

and the input-output relationship for theith user

yi = giisi +
∑

j<i

gijsj + vi, (3)

wheregij is the (i, j) element inG. By treating
∑

j<i gijsj as the known interference and judiciously

generatingsi according to dirty paper coding, theseN cross interfering subchannels have the same

capacity asN parallel Gaussian channels with fading gainsgii, i = 1, . . . , N . The resulting sum rate is

Rdpc =
N∑

i=1

E
{
log2

(
1 + |gii|2Pi

)}
(4)
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wherePi is the power allocated to useri and satisfies
∑N

i=1 Pi = P .

The maximum sum rate is achieved through waterfilling power allocation with a sum rate of

Rdpc∗ =
N∑

i=1

E
[
log2

(
µ|gii|2

)]
+

whereµ is the solution of the waterfilling equation
∑N

i=1[µ− |gii|−2]+ = P . The sum rate under equal

power allocation is also of interest to us

Rdpc−eq =
N∑

i=1

E
{
log2

(
1 + |gii|2P/N

)}
.

C. Channel Inversion Scheme

Channel inversion, which is also called zero-forcing beamforming, is suboptimal but easy to implement

compared to dirty paper coding based schemes. It decouples the channel into orthogonal subchannels

with linear precoding. Since we assumeK = N , the channel matrixH has full rank with probability

one under i.i.d. Rayleigh fading. The precoding matrix is the direct inverse of the channel3 which gives

x = H−1s.

The effective input-output relation is just a set ofN additive white Gaussian noise subchannels without

fading

y = Hx + v = s + v.

Just as receiver zero forcing leads to noise enhancement, the CI scheme usually causes signal power

reduction. Let the average power of theith substream beE{|si|2} = Pi, the total power constraint (2)

now has the form
N∑

i=1

Pi

[
(HHH)−1

]
i,i

= P

where[·]i,i denotes the(i, i) element in the matrix. The sum rate of CI is the summation of the data rate

of each substream

Rci =
N∑

i=1

E {log2 (1 + Pi)} . (5)

3WhenN < K, the precoding matrix should be the pseudoinverse of the channel,x = HH(HHH)−1s.
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Again, the optimal sum rate is achieved when the power is allocated according to the waterfilling solution

yielding

Rci∗ =
N∑

i=1

E
[
log2

(
µ/

[
(HHH)−1

]
i,i

)]
+

whereµ is the solution of
∑N

i=1

[
µ− 1/

[
(HHH)−1

]
i,i

]
+

= P [3]. When the power is equally allocated,

we have

Pi =
P∑N

i=1

[
(HHH)−1

]
i,i

=
P

‖H−1‖2
F

, for i = 1, . . . , N (6)

where‖ · ‖F denotes the Frobenius norm. Replacing thePi in (5) with (6), we get the resulting sum rate

Rci−eq = NE
{
log2

(
1 + P‖H−1‖−2

F

)}
. (7)

Both schemes usually assume perfect channel knowledge at the basestation which can be impractical

whenK andN become large. In the following sections, we will consider partial channel knowledge and

its effect on the sum rate performance.

III. SUM RATE OF SHAPE FEEDBACK

For the multiple antenna broadcast setting described in Section II, every user experiences a multiple-

input single-output (MISO) channelhi. If the system has only one user, that isK = 1, the transmitter

only needs to know the normalized channel vectorĥ1 = h1/‖h1‖ to achieve a sum rate arbitrarily

close to the channel capacity. In other words, the channel throughput is insensitive to the loss of‖h1‖

knowledge at the transmitter.

To study the sum rate sensitivity of the channel magnitude knowledge for the multiuser case, we

consider shape feedback. The normalized channel vectors for each user are available at the basestation

by reciprocity or user feedback. In this case, the CSI at the basestation is

Ĥ = [ĥ1, ĥ2, . . . , ĥN ]T

where ĥi = hi/‖hi‖, i = 1, . . . , N , are all unit norm vectors.̂H is linked with the perfect channel

knowledge according to

H = ΛĤ
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whereΛ = diag ([α1, . . . , αK ]) andαi = ‖hi‖ are the amplitudes of the channel vectors. Compared to

the perfect channel vectors, channel shape vectors are uniformly distributed on the complex unit sphere

in N -dimensions under i.i.d. Rayleigh fading [42].

A. Shape Feedback with ZFDPC

The first observation about shape feedback is that the basestation is still able to get the exact precoding

matrix for ZFDPC as in the full CSI case. Because the QR-type decomposition ofĤ has the form

Ĥ = ĜQ = (Λ−1G)Q

whereGQ is the QR-type decomposition of the perfect channel matrixH. After precoding, the trans-

mission relation for theith user is

yi = αi(ĝiisi +
∑

j<i

ĝijsj) + vi (8)

where the signal̂giisi and the known interference
∑

j<i ĝijsj experience the same multiplicative gain

αi = ‖hi‖.

The second observation is that without the channel magnitude knowledgeαi = ‖hi‖, the basestation

is unable to get the exact inflation factor

βi = α2
i |ĝii|2Pi/(α2

i |ĝii|2Pi + 1)

which is required to optimally implement dirty paper coding [7]. Fortunately, the ZFDPC scheme can

still be applied approximately optimally in the high SNR regime becauseβi ≈ 1 in this region and the

basestation can just fix the inflation factor to be1.

The third effect of shape feedback is that there is no meaning to adaptive power allocation for ZFDPC.

When the channels of different users are symmetric in distribution, equal power allocation (Pi = P/N

for i = 1, . . . , N ) is the optimal strategy.

Therefore, in the high SNR regime, shape feedback can be used with ZFDPC under equal power

loading and gives the following ergodic sum rate

Rdpc
sha,PÀ0 =

N∑

i=1

E
{

log2

(
1 +

|gii|2P
N

)}
= Rdpc−eq, for P À 0.
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Compared toRdpc∗, Rdpc
sha,PÀ0 loses the adaptive power loading gain. But it is easy to show thatRdpc

sha,PÀ0

is still optimal for asymptotically high SNR.

For a Rayleigh fading channel (i.e. the elements ofH are i.i.d. distributed asCN(0, 1)), each|gii|2 is

independently distributed asχ2
2(N−i+1) which denotes a central Chi-squared distributed random variable

with 2(N − i + 1) degrees of freedom [3], [43]. Thus the closed-form expression ofRdpc
sha,P>>0 for

Rayleigh fading can be easily derived by using the equality in [44] as

Rdpc
sha,PÀ0 = eN/P log2 e

N−1∑

i=0

(N − i)Ei+1

(
N

P

)
, for P À 0

whereEn(·) is the exponential integral function of ordern [45], [46].

B. Shape Feedback with Channel Inversion

When shape feedback is combined with channel inversion, we use the inversion ofĤ as the precoding

matrix. The received signal is

y = HĤ
−1

s + v = Λs + v. (9)

Compared to channel inversion with perfect channel knowledge, which results inN additive white

Gaussian noise channels, (9) representsN subchannels with different multiplicative channel gainsαi.

The power constraint changes into

E
{‖x‖2

}
=

N∑

i=1

Pi

[
(ĤĤ

H
)−1

]
i,i

= P (10)

It is of interest to see that for the channel inversion scheme, even without channel magnitude knowledge,

the basestation can still improve the throughput by adaptively allocating the transmit power. Consider the

power allocation scheme

Pi =
P

N [(ĤĤ
H

)−1]i,i
(11)

which results in the following sum rate

Rci
sha =

N∑

i=1

E

{
log2

(
1 +

α2
i P

N [(ĤĤ
H

)−1]i,i

)}

=
N∑

i=1

E
{

log2

(
1 +

P

N [(HHH)−1]i,i

)}
.

February 3, 2006 DRAFT



12

where the second equality comes from(ĤĤ
H

)−1 = ΛH(HHH)−1Λ.

Compared to the sum rate performance of perfect CSI with channel inversion, we have the following

result.

Lemma 1:The sum rate performance of shape feedback with channel inversion and the power allo-

cation defined in (11) is better than the sum rate of perfect CSI channel inversion with equal power

allocation, that isRci
sha ≥ Rci−eq.

Proof: Let γi = [(HHH)−1]i,i. We have

Rci
sha = N

N∑

i=1

1
N
E

{
log2

(
1 +

P

Nγi

)}

≥ NE
{

log2

(
1 +

P∑
i=1 γi

)}

= Rci−eq

where the inequality comes from Jensen’s inequality and the convexity oflog2(1 + 1
x).

In the simulation results presented in Section V, we can see that the performance ofRci
sha is in fact

very close toRci∗ which is the ergodic maximum achievable sum rate of channel inversion scheme.

Remarks:Under shape feedback, the basestation does not know the the supportive rates of the current

channel state. The ergodic sum rate can be approached by a fixed rate coding scheme whose codeword

duration is long enough such that it experiences the channel states ergodically.

IV. SUM RATE UNDER L IMITED FEEDBACK

The shape feedback model discussed in the previous section does not provide much flexibility on the

CSI overhead rate for system implementation. In this section, we consider a different kind of partial

CSI model, the limited feedback model, for the basestations of multiple antenna broadcast systems. The

limited feedback model has been successfully used in single user MIMO systems. Its feedback overhead

rate can be adjusted by changing the size of the quantization codebook. We first propose a limited

feedback scheme designed for multiple antenna broadcast channels. We derive an upper bound for its
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sum rate performance under both ZFDPC and CI. The sum rate ceiling effect of limited feedback is also

found.

A. Limited Feedback for Multiple Antenna Broadcast Channels

Limited feedback for single user multiple antenna systems has been studied under different settings. In

most of the cases, a codebook that is known at both the receiver and the transmitter is used to quantize the

channel information necessary to construct the adaptive transmitted signal. The channel information to

be quantized will not necessarily be the channel vector/matrix itself. For example, when limited feedback

beamforming and optimal receive combining are used, the vector codebook is constructed to quantize

the optimal beamforming vector which is the singular vector ofH corresponding to the largest singular

value [21], [22].

For a multiple antenna broadcast system, the key feature that distinguishes it from a single user MIMO

system is that the receive antennas of different users cannot cooperate. At the receiver side the total CSIH

is separated into{h1, h2, . . . ,hK} and distributed among theK users. We assume no user cooperation,

so useri only knowshi and is not able to obtain the information about the optimal transmission scheme

(for example, the precoding matrixQH in the ZFDPC scheme) which is based on the full knowledge

of H. Therefore in our limited feedback scheme, the codebook is constructed for each user to directly

quantize the channel vector itself.

Consider a codebookW that containsL codevectors

W = {w1, . . . ,wL}.

We useminimum distance selectionand mean square erroras the encoding function and distortion

measure, respectively. Therefore, useri encodes its channel vectorhi into

QW(hi) = wli

where li = argmin1≤j≤L ‖hi − wj‖. Every user sends its indexli back to the basestation, so that the
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channel knowledge at the basestation is

Hw = [wl1 ,wl2 , . . . ,wlK ]T .

The average distortion introduced by quantization according to codebookW is defined as

DW = Eh

{‖QW(h)− h‖2
}

. (12)

A locally optimal codebook in the sense of (12) for a given sizeL can be constructed by the generalized

Lloyd algorithm [47].

Notice that if a general codebook is used by all the users, the limited feedback may result in the

ill-conditioning of Hw. This could happen whenlj = lk for j 6= k, meaning that two or more users

select the same codevector in the codebook. In that case, the channel knowledge at the basestationHw

is not full rank. For multiple antenna broadcast channels, the rank loss in the CSI matrix can be seen

as reducing the number of transmit antennas which will cause a large sum rate degradation. To avoid

such degradation, we propose to use different codebooks at each user. LetW(i) = {w(i)
1 , . . . , w

(i)
L } be

the codebook used by useri. We want

w
(i)
l 6= w(j)

m for i 6= j; l, m = 1, . . . , L. (13)

We will also require that the codebooks provide the same average distortion, i.e.

DWi
= DWj

for i, j = 1, . . . , K. (14)

To achieve (13) and (14) with probability one, a general codebookW is first generated. Then every

user rotates the common codebook by a random unitary matrixT i, T H
i T i = IN . These rotation matrices

can be randomly generated either at the basestation side or at the user side in a distributed manner. In

both cases, the basestation should have full knowledge of all the rotation matrices while each user only

needs to know its own rotation matrix.

Thus, the codebook used at useri is

Wi = T iW = {T iw1, . . . ,T iwL }.
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Under i.i.d. Rayleigh fading, the channel vector is i.i.d. Gaussian distributed which is invariant with

respect to unitary rotation. This means these rotated codebooks have the same mean square quantization

errors

DW = DWi
, i = 1, . . . , K.

The channel knowledge at the basestation is then

Hw = [QW1(h1), . . . ,QWK
(hK)]T

with rank(Hw) = N with probability one. Furthermore, we will model the codebook’s conditional

behavior as

E
{

(hi −QWi
(hi)) (hi −QWi

(hi))
H | QWi

(hi)
}

=
D

N
IN (15)

and

E {hi −QWi
(hi) | QWi

(hi)} = 0. (16)

B. Limited Feedback with ZFDPC

Now we are ready to analyze the sum rate performance of the limited feedback ZFDPC scheme. The

basestation assumesHw to be the perfect CSI and applies the QR-type decompositionHw = GwQw

to get the precoding matrixQH
w . The resulting input-output relation is

y = HQH
w s + v

= (Hw + ∆)QH
w s + v

= Gws + ∆QH
w s + v

where∆ = H −Hw is the difference between the quantized channel matrix and the perfect channel

matrix. Its ith row vector(∆)T
i is just the quantization error at useri

(∆)i = hi −QWi
(hi).
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For theith user, we have

yi = gw
iisi +

∑

j<i

gw
ijsj + (∆)T

i QH
w s + vi (17)

where gw
ij is the (i, j) element inGw. The gaingw

ii is revealed to useri. We will assume thats is

generated using successive dirty paper coding with Gaussian codebooks such thatE
{
ssH

}
= P

N IN .

The basestation encoder is assumed to have perfect knowledge of the noise variance and the quantizer

distortion. The receiveri uses minimum distance decoding to recover the transmitted codeword assuming

a multiplicative channel value ofgw
ii . A discussion of decoding for dirty paper coding can be found in

[48].

Comparing (17) with (3), we see there is an additional term(∆)T
i QH

w s in the received signal. Since

the receiveri only has knowledge of(∆)T
i and the basestation only has knowledge ofQH

w , (∆)T
i QH

w

is unknown at both the basestation and the receiver. Therefore,ui = (∆)T
i QH

w s appears as cross user

interference to theith receiver and is treated as noise during decoding. The interference termui has the

following property.

Lemma 2:For a Gaussian source signals with equal power allocationE{ssH} = P
N IN , the cross

user interferenceui has variance

E
{
uiu

H
i | Hw

}
= DP/N

whereD is the average distortion of the codebook defined in (12).

Proof: Due to the unitary property ofQH
w , QH

w s is also i.i.d. Gaussian distributed with zero mean

and varianceP
N IN . The source signals is independent of the quantization error(∆)T

i . Therefore, the

variance of the interference is

E{uiu
H
i | Hw} =

P

N
E

{
(∆)T

i (∆)∗i | Hw

}

=
P

N
E

{‖QWi
(hi)− hi‖2 | Hw

}

=
DP

N
.
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The third equality comes from

E
{‖QWi

(hi)− hi‖2 | Hw

}
= D, (18)

which is a direct result of (15). Here we take average over the quantization error by assuming each

codeword experiences the channel state ergodically.

Thus, under limited feedback, the ZFDPC precoding gives us a lower triangular channelGw with

conditional interference-plus-noise power equal to1+DP/N for each subchannel. By applying successive

dirty paper coding to the lower triangular channelGw, the supremum of all achievable sum rates using

limited feedback and Gaussian ZFDPC encoding,Rdpc
lim , is bounded as

Rdpc
lim ≤

N∑

i=1

E
{

log2

(
1 +

|gw
ii |2P/N

1 + DP/N

)}
(19)

where equal power allocation is assumed and the expectation is overHw. This follows from the

generalized mutual information work in [49]–[51] using i) the assumption of Gaussian codebooks, ii)

(15) and (16), iii) Lemma 2, and iv) the fact thatD andE{|vi|2} = 1 are known at the encoder. Note

that the bound in (19) is a necessary, rather than sufficient, condition for achievability.

ComparingRdpc
lim with Rdpc−eq, we see that not only is theSNR = P/N replaced by theSINR =

P/(N + DP ) but also the effective channel gain is nowgw
ii instead ofgii. Since it is hard to quantify

gw
ii , we derive the following upper bound.

Theorem 1:Rdpc
lim in (19) is upper bounded by

Rdpc
lim ≤ N log2

(
1 +

P (N −D)
N + PD

)
. (20)

Proof: Using Jensen’s inequality on (19), we have

Rdpc
lim ≤ NE

{
log2

(
1 +

P

N + DP

1
N

N∑

i=1

|gw
ii |2

)}
. (21)

For a QR-type decomposition, we have

|gw
ii |2 ≤

i∑

j=1

|gw
ij |2 = ‖(Hw)T

i ‖2 = ‖wli‖2 (22)
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where the equality
∑i

j=1 |gw
ij |2 = ‖(Hw)T

i ‖2 comes from the orthogonality of the columns of theQ in

the decomposition. By substituting (22) into (21), we have

Rdpc
lim ≤ NE

{
log2

(
1 +

P

N + DP

1
N

N∑

i=1

‖wli‖2

)}

≤ N log2

(
1 +

P

N + DP

1
N

N∑

i=1

E{‖wli‖2}
)

(23)

where the second inequality is from Jensen’s inequality. Since the channel vectors are i.i.d. distributed

we have

E{‖wli‖2} = E{‖wlj‖2} for i, j = 1, . . . , K.

Let η̄ = E{‖wli‖2}. It can be seen thatE{‖wli‖2} = N − D by taking expectation on both sides of

(18) overQWi
(hi) = wli . After replacing this into (23), we get the bound.

For the caseL →∞, i.e., the perfect feedback case, we haveD → 0 and η̄ → E
{‖hi‖2

}
= N . The

bound changes to

Rdpc ≤ N log2 (1 + P )

which can be seen as the result of applying the Jensen’s inequality to the throughput ofN non-interfering

MISO channels with i.i.d. Rayleigh fading and transmit powerP/N .

This bound circumvents the difficult problem of analytical evaluation ofgw
ii and provides important

insights into the effect of limited feedback on the sum rate performance of multiple antenna broadcast sys-

tem. First, it implies that a ceiling effect occurs on the sum rate under limited feedback for asymptotically

high SNR.

Corollary 1: For a given general codebookW, there exists a sum rate ceiling ofRdpc
lim as the SNR

increases asymptotically high,

lim
P→∞

Rdpc
lim = N log2

(
N

D

)
. (24)

Proof: Let the SNR increase in the upper bound in Theorem 1; we have

lim
P→∞

Rdpc
lim ≤ lim

P→∞
N log2

(
1 +

P (N −D)
N + DP

)

≤ N log2

(
N

D

)
.
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SinceN/D is fixed for a given codebook, the asymptotic bound does not increase as the SNR becomes

large. Therefore, it is a sum rate ceiling for ZFDPC scheme under limited feedback.

Intuitively speaking, the ceiling effect is because the power of the cross user interference caused by

the mismatch betweenH andHw is related to the signal power. For a system with a fixed codebook, as

the signal powerP increases, the power of the interference-plus-noise also increases linearly. To avoid

the ceiling effect, we should at least let the interference power keep constant asP increases. This also

enables us to roughly compute the feedback rate required for an applicable limited feedback system. For

the interference powerDP
N to be at least constant asP increases, we should haveD of orderO(N/P ).

From the rate-distortion theorem [47], we know that the number of bitsb necessary for each user to

represent itsN × 1 channel vectorhi with average distortionD is

b = N log2(N/D). (25)

By replacingD with O(N/P ) in the rate-distortion function (25), we have

b = O(N log2 P )

which is the approximate number of bits necessary for the system to avoid the sum rate ceiling. We see

that b has to increase logarithmically withP and should scale linearly as the number of transmit antenna

N grows. For example, whenP = 10 dB andN = K = 4, we haveb ≈ 13 bits for each user.

We can see that the sum rate ceiling is directly linked with themean square errorD of the codebook

used. This shows the validity of usingminimum distance selectionand mean square errordistortion in

quantization codebook design for multiple antenna broadcast channels. Intuitively speaking, the sum rate

ceiling is caused by the cross user interference term whose variance increases asE{‖QW(hi)− hi‖2}

increases. To minimize the cross user interference, we want to select the vector which is closest tohi in

the codebook. For codebooks that are optimal in the sense of average squared error, the average distortion

D decreases as the size of the codebookL increases. Thus it means the ceiling becomes higher asL

increases.
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C. Limited Feedback with Channel Inversion

When limited feedback is combined with the channel inversion scheme, the basestation usesH−1
w as

the beamforming matrix. The received signal is

y = HH−1
w s + v

= s + ∆H−1
w s + v.

Due to the power constraint, we have

E
{‖H−1

w s‖2 | Hw

}
=

K∑

i=1

Pi[(HwHH
w )−1]i,i = P.

We will assume thats is generated using Gaussian codebooks. For analytical simplicity, we assume equal

power allocation, that is,

E
{
ssH | Hw

}
=

PIN∑K
i=1[(HwHH

w )−1]i,i
= ‖H−1

w ‖−2
F PIN . (26)

As before, we assume the receiver uses minimum distance decoding (assuming a multiplicative channel

gain of one) to try to recover the transmitted codeword. Thus, the receiver performs decoding as if the

signal was transmitted over an additive white Gaussian noise channel.

Again, there is the cross user interferenceζi = (∆)T
i H−1

w s in the received signal of theith user.

Lemma 3:For a Gaussian source signals with equal power allocationE
{
ssH | Hw

}
= P

‖H−1
w ‖2F IN ,

the cross user interferenceζi has variance

E
{
ζiζ

H
i | Hw

}
= DP/N

whereD is the average distortion of the codebook defined in (12).

Proof: We have

E
{
ζiζ

H
i | Hw

}
= E

{
(∆)T

i H−1
w ssHH−H

w (∆)∗i | Hw

}

= E
{

P

‖H−1
w ‖2

F

(∆)T
i H−1

w H−H
w (∆)∗i | Hw

}

= E
{

P

‖H−1
w ‖2

F

tr
(
H−H

w (∆)∗i (∆)T
i H−1

w

) | Hw

}
. (27)

February 3, 2006 DRAFT



21

According to (15), we havetr
(
H−H

w E
{
(∆)∗i (∆)T

i | Hw

}
H−1

w

)
= ‖H−1

w ‖2
F

D
N . Replacing it into (27),

we get

E
{
ζiζ

H
i | Hw

}
= DP/N.

Since the conditional interference-plus-noise power of each user is1 + DP/N , we can obtain the

following ergodic sum rate bound. The supremum of all achievable sum rates using a limited feedback

codebook of distortionD and Gaussian codebooks, denotedRci
lim, is bounded as

Rci
lim ≤ NE

{
log2

(
1 +

P‖H−1
w ‖−2

F

1 + PD/N

)}
. (28)

Again, this result uses the generalized mutual information work in [49]–[51]. Also as before, the bound

in (28) is a necessary condition for achievability.

This bound (28) can be further bounded as follows.

Theorem 2:Rci
lim in (28) is upper bounded by

Rci
lim ≤ N log2

(
1 +

P (N −D)
N + PD

)
. (29)

Proof: Since Hw is nonsingular with probability1, we can express‖H−1
w ‖−2

F in terms of the

singular values ofHw, that is,

‖H−1
w ‖−2

F =
(‖H−1

w ‖2
F

)−1

=

(
N∑

i=1

1
|λw

i |2
)−1

(30)

whereλw
i is theith singular value ofHw. Because|λw

1 |2, . . . , |λw
N |2 are all positive, their harmonic mean

is less than their arithmetic mean, which gives

N

(
N∑

i=1

1
|λw

i |2
)−1

≤ 1
N

N∑

i=1

|λw
i |2. (31)

By combining (30) with (31) and replacing
∑N

i=1 |λw
i |2 with ‖Hw‖2

F , we get

‖H−1
w ‖−2

F ≤ 1
N2

‖Hw‖2
F (32)

=
1

N2

N∑

i=1

‖wli‖2.

February 3, 2006 DRAFT



22

Therefore, theRci
lim in (28) is bounded by

Rci
lim ≤ NE

{
log2

(
1 +

P

N2(1 + PD/N)

N∑

i=1

‖wli‖2

)}
. (33)

From Jensen’s inequality and the fact thatE{∑N
i=1 ‖wli‖2} = Nη̄ = N(N −D), we get

Rci
lim ≤ N log2

(
1 +

P (N −D)
N + PD

)

which is the same bound as in Theorem 1.

Due to the same reason, CI also experiences a sum rate ceiling for limited feedback under a fixed

codebook as in the ZFDPC case. To maintain the sum rate growth, we need approximatelyO(N log2 P )

feedback bits per user which makes the cross user interference keep constant as the signal power increases.

We should remark that the bound is looser forRci
lim than forRdpc

lim because‖H−1
w ‖−2

F has a much higher

probability of being near zero than1N2

∑N
i=1 ‖wli‖2. This is also the reason why CI has a lower throughput

than ZFDPC under limited feedback. Even though the power of interference-plus-noise is the same, the

effective channel gain of CI is more likely to be in a deep fade than the ZFDPC case.

V. SIMULATION RESULTS

In this section, we give some numerical results on the ergodic sum rate performance of these two partial

CSI models discussed in the previous sections. Throughout the simulations, the channel is assumed to

be independent Rayleigh fading, that is, each entry ofH is independentlyCN(0, 1) distributed. Since

the noise power is normalized, the plotted SNR in the figures isSNR = 10 log10 P . For a given setting,

the ergodic sum rate is obtained by averaging over at least 20000 channel realizations.

The ergodic ratio ofRdpc
sha,P>>0 to Rdpc∗ is plotted with respect to SNR in Fig. 1. The number of

transmit antennas isN = K = 8. We can see that theRdpc
sha,P>>0 is almost the same asRdpc∗ when

SNR ≥ 15 dB, which indicates the asymptotic optimality of ZFDPC with shape feedback in the sense

of sum rate for high SNR.

Fig. 2 plots the growth ofRdpc
sha,P>>0 with the number of transmit antennas forSNR = 20dB. It can

be observed that the sum rate of shape feedback has the same growth rate as that of perfect transmitter
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Fig. 1. The ergodic ratio ofRdpc
sha,P>>0 to Rdpc∗ with respect to SNR forN = 8 andK = 8.

channel knowledge. It shows that shape feedback captures most of the throughput advantage provided

by the multiple antennas through the ZFDPC encoding.

The sum rate performance of shape feedback with channel inversion is shown in Fig. 3 and Fig. 4. In

both figures, the ergodic performance ofRci
sha is superior toRci−eq and very close toRci∗. From Fig.

3, we see that theRci
sha has about1.5 dB gain overRci−eq for N = K = 8. WhenSNR > 15 dB, Rci

sha

andRci∗ have almost the same ergodic performance. Fig. 4 shows that the gain ofRci
sha overRci−eq also

increases as theN increases.

For the simulation of limited feedback, the locally optimal codebooks are obtained by training from

a large set of training vectors generated according to i.i.d. Rayleigh fading. The variance of the cross

user interference observed from Monte Carlo simulation is very close to the theoretical valueDP/N .

The solid curves in Fig. 5 show the ergodic performance ofRdpc
lim for N = K = 4 when the feedback
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Fig. 2. Ergodic performance ofRdpc
sha,P>>0 andRdpc∗ with respect toN for SNR = 20 dB.

rate of each user is5bits, 10bits and the perfect CSI case. The respective upper bounds are also plotted

in dashed lines for comparison. The ceiling effect can be clearly observed when the feedback rate is

finite. The sum rate curves increase linearly withSNR for low SNR and become flat for highSNR. The

upper bound curves given in Fig. 5 also indicate that a fixed overhead rate is not sufficient to obtain sum

rate growth forSNR ≥ 20 dB. These results match our discussion on the approximation of necessary

overhead rate.

The results for the ergodic sum rate of limited feedback with channel inversion are presented in Fig.

6 for N = K = 4 and feedback rate equals5bits and10bits of each user.Rci−eq is also plotted for

comparison reason. The sum rate ceiling can be observed, and their performance is worse than limited

feedback with ZFDPC with the same feedback rate.
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Fig. 3. Ergodic performance ofRci
sha, Rci−eq

sha , Rci∗, andRci−eq with respect to SNR forN = 8 andK = 8.

VI. CONCLUSION

In this paper, we considered two kinds of partial CSI models for the basestation in multiple antenna

broadcast systems. We showed that the shape feedback achieves the optimal sum rate for asymptotically

high SNR when combined with the ZFDPC scheme. When using CI, shape feedback can obtain a

sum rate larger than CI with perfect CSI under equal power allocation by using the proposed power

allocation strategy. For the limited feedback model, we proposed a limited feedback scheme that avoids

the ill-conditioning of basestation CSI by randomly rotating a general codebook known at each receiver.

We derived upper bounds for the ergodic sum rate of limited feedback under both ZFDPC and CI. The

bound gives critical insight about the sum rate performance of limited feedback. It shows that the systems

experience a ceiling effect on the sum rate for a fixed feedback rate.
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Fig. 4. Ergodic performance ofRci
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REFERENCES

[1] T. Cover, “Broadcast channels,”IEEE Trans. Inform. Theory, vol. 18, no. 1, pp. 2–14, Jan. 1972.

[2] Q. H. Spencer, C.B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,”IEEE

Comm. Magazine, vol. 42, no. 10, pp. 60–67, Oct. 2004.

[3] G. Caire and S. Shamai, “On the achievable throughput of a multi-antenna Gaussian broadcast channel,”IEEE Trans.

Inform. Theory, vol. 49, no. 7, pp. 1691–1706, July 2003.

[4] P. Viswanath and D. Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality,”IEEE

Trans. Inform. Theory, vol. 49, no. 8, pp. 1912–1921, August 2003.

[5] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates and sum capacity of Gaussian MIMO broadcast

channels,”IEEE Trans. Inform. Theory, vol. 43, no. 8, pp. 2658–2668, August 2003.

[6] W. Yu and J. Cioffi, “Sum capacity of Gaussian vector broadcast channels,”IEEE Trans. Inform. Theory, vol. 50, no. 9,

pp. 1875–1892, Sept. 2004.

[7] M. Costa, “Writing on dirty paper,”IEEE Trans. Inform. Theory, vol. 29, no. 5, pp. 439–441, May 1983.

February 3, 2006 DRAFT



27

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

SNR(dB)

E
rg

od
ic

 S
um

 R
at

e 
(b

its
/c

yc
le

)

5 bits feedback
10 bits feedback
perfect CSI

upper bounds 

Fig. 5. Ergodic sum rate of limited feedback with ZFDPC (in solid lines) and the upper bound (in dashed lines) forN = 4

andK = 4.

[8] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spatial multiplexing in multiuser

MIMO channels,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 461–471, Feb. 2004.

[9] C. Peel, B. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multi-antenna multi-user

communication – Part I: Channel inversion and regularization,”IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan.

2005.

[10] B. Hochwald, C. Peel, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multi-antenna multi-user

communication – Part II: Perturbation,”IEEE Trans. Commun., vol. 54, no. 2, Feb. 2005.

[11] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels with partial side information,”IEEE Trans.

Inform. Theory, vol. 51, no. 2, pp. 506–522, Feb. 2005.

[12] T. Yoo and A. J. Goldsmith, “On the optimality of multi-antenna broadcast scheduling using zero-forcing beamforming,”

To appear IEEE Journal of Selected Areas of Commun. Special Issue on 4G Wireless systems.

[13] C. Swannack, E. Uysal-Biyikoglu, and G. W. Wornell, “Low-complexity multi-user scheduling for maximizing throughput

February 3, 2006 DRAFT



28

0 5 10 15 20
0

5

10

15

SNR(dB)

E
rg

od
ic

 S
um

 R
at

e 
(b

its
/c

yc
le

)

5 bits feedback
10 bits feedback
Perfect CSI

Fig. 6. Ergodic sum rate of limited feedback with channel inversion forN = 4 andK = 4.

in the MIMO broadcast channel,” inProc. Allerton Conf. Commun., Control and Computing, Oct. 2004.

[14] M. Fakhereddin, M. Sharif, and B. Hassibi, “Throughput analysis in wideband MIMO broadcast channels with partial

feedback,” inProc. IEEE SPAWC, 2005, pp. 771–775.

[15] H. Lee, M. Shin, and C. Lee, “An eigen-based MIMO multiuser scheduler with partial feedback information,”IEEE

Commun. Letter, vol. 9, no. 4, pp. 328–330, Apr. 2005.

[16] U. Madhow and E. Visotsky, “Space-time transmit precoding with imperfect feedback,”IEEE Trans. Inform. Theory, vol.

47, no. 9, pp. 2632–2639, Sept. 2001.

[17] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel

mean feedback,”IEEE Trans. Signal Processing, vol. 50, no. 10, pp. 2599–2613, Oct. 2002.

[18] S. A. Jafar, S. Vishwanath, and A. Goldsmith, “Channel capacity and beamforming for multiple transmit and receive

antennas with covariance feedback,” inProc. IEEE ICC, 2001, vol. 7, pp. 2266–2270.

[19] S. Zhou and G. B. Giannakis, “Optimal transmitter eigen-beamforming and space-time block coding based on channel

correlations,” IEEE Trans. Inform. Theory, vol. 49, no. 7, pp. 1673–1690, July 2003.

February 3, 2006 DRAFT



29

[20] J. C. Roh and B. D. Rao, “Multiple antenna channels with partial channel state information at the transmitter,”IEEE

Trans. Wireless Commun., vol. 3, no. 2, pp. 677–688, Mar. 2004.

[21] D. J. Love, R. W. Heath Jr., and T. Strohmer, “Grassmannian beamforming for multiple-input multiple-output wireless

systems,”IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.

[22] K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On beamforming with finite rate feedback in multiple antenna

systems,”IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2562–2579, Oct. 2003.

[23] M. Skoglund and G. Jongren, “Quantized feedback information in orthogonal space-time block coding,”IEEE Trans.

Inform. Theory, vol. 50, no. 10, pp. 2473–2486, Oct. 2004.

[24] D. J. Love and R. W. Heath Jr., “Limited feedback unitary precoding for orthogonal space-time block codes,”IEEE Trans.

Signal Processing, vol. 53, no. 1, pp. 64–73, Jan. 2005.

[25] J. Akhtar and D. Gesbert, “Extending orthogonal block codes with partial feedback,”IEEE Trans. Wireless Commun., vol.

3, no. 6, pp. 1959–1962, Nov. 2004.

[26] D. J. Love and R. W. Heath Jr., “Limited feedback unitary precoding for spatial multiplexing systems,”IEEE Trans.

Inform. Theory, vol. 51, no. 8, pp. 2967–2976, Aug. 2005.

[27] J. C. Roh and B. D. Rao, “Channel feedback quantization methods for MISO and MIMO systems,” inProc. IEEE Intl.

Symp. on Personal, Indoor and Mobile Radio Commun.(PIMRC), 2004, vol. 2, pp. 805–809.

[28] M. A. Sadrabadi, A. K. Khandani, and F. Lahouti, “A new method of channel feedback quantization for high data rate

MIMO systems,” inProc. IEEE GLOBECOM, 2004, vol. 1, pp. 91– 95.

[29] R. S. Blum, “MIMO with limited feedback of channel state information,” inProc. IEEE ICASSP, 2003, vol. 4, pp. 89–92.

[30] V. K. N. Lau, Y. Liu, and T.-A. Chen, “On the design of MIMO block-fading channels with feedback-link capacity

constraint,” Jan. 2004, vol. 52, pp. 62–70.

[31] J. S. Kim, H. Kim, and K. B. Lee, “Limited feedback precoding for wireless MIMO broadcast channels,” inProc. IST:

Mobile and Wireless Commun. Summit, 2005.

[32] J. Vicario and C. Anton-Haro, “Robust exploitation of spatial and multi-user diversity in limited feedback systems,” in

Proc. IEEE ICASSP, 2005, vol. 3, pp. 417–420.

[33] N. Jindal and A. Goldsmith, “DPC vs. TDMA for MIMO broadcast channels,”IEEE Trans. Inform. Theory, vol. 51, no.

5, pp. 1783–1794, May. 2005.

[34] A. P. Liavas, “Tomlinson-Harashima precoding with partial channel knowledge,”IEEE Trans. Commun., vol. 53, no. 1,

pp. 5–9, Jan. 2005.

[35] F. W. Vook, X. Zhuang, K. L. Baum, T. A. Thomas, and P. Sartori, “Improvements to the uplink channel sounding signaling

for OFDMA,” Contribution to IEEE 802.16 Broadband Wireless Access Working Group, Nov. 2004.

February 3, 2006 DRAFT



30

[36] T. L. Marzetta and B. M. Hochwald, “Fast transfer of channel state information in wireless systems,”submitted to IEEE

Trans. Comm., June 2004.

[37] T. A. Thomas, K. L. Baum, and P. Sartori, “Obtaining channel knowledge for closed-loop multi-stream broadband MIMO-

OFDM communications using direct channel feedback,” inProc. IEEE Globecom, Nov. 2005.

[38] O. Simeone and U. Spagnolini, “Lower bound on training-based channel estimation error for frequency-selective block-

fading Rayleigh MIMO channels,”IEEE Trans. Signal Processing, vol. 52, no. 11, pp. 3265–3277, Nov. 2004.

[39] L. Tong and S. Perreau, “Blind channel estimation: From subspace to maximum likelihood methods,”IEEE Proceedings,

vol. 86, no. 10, pp. 1951–1968, Oct. 1998.

[40] N. Jindal, “MIMO broadcast channels with finite rate feedback,” inProc. IEEE GLOBECOM, 2005, pp. 771–775.

[41] D. J. Love, R. W. Jr. Heath, W. Santipach, and M.L. Honig, “What is the value of limited feedback for MIMO channels?,”

IEEE Commun. Magazine, vol. 42, no. 10, pp. 54–59, Oct 2004.

[42] A.T. James, “Distributions of matrix variates and latent roots derived from normal samples,”Ann. Math. Statist., vol. 35,

pp. 475–501, 1964.

[43] A. Edelman,Eigenvalues and Condition Numbers of Random Matrices, Ph.D. thesis, Massachusetts Institute of Technology,

Cambridge, MA, May 1989.

[44] M. S. Alouini and A. J. Goldsmith, “Capacity of Rayleigh fading channels under different adaptive transmission and

diversity-combining techniques,”IEEE Trans. Vehicular Technology, vol. 48, no. 4, pp. 1165–1181, July 1999.

[45] H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and

keyhole,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2636–2647, Oct. 2003.

[46] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products, Academic Press, San Diego, CA, 1994.

[47] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression, Kluwer Academic Publishers, 1992.

[48] J. K. Su, J. J. Eggers, and B. Girod, “Illustration of the duality between channel coding and rate distortion with side

information,” in Proc. of the 34th Asilomar Conference on Signals, Systems and Computers, Oct.-Nov. 2000, vol. 2, pp.

1841–1845.

[49] A. Lapidoth and S. Shamai, “Fading channels: How perfect need “perfect side information” be?,”IEEE Trans. Inform.

Theory, vol. 48, no. 5, pp. 1118–1134, May. 2002.

[50] A. Lapidoth, “Nearest neighbor decoding for additive non-Gaussian noise channels,”IEEE Trans. Inform. Theory, vol. 42,

no. 5, pp. 1520–1529, Sept. 1996.

[51] H. Weingarten, Y. Steinberg, and S. Shamai, “Gaussian codes and weighted nearest neighbor decoding in fading multiple-

antenna channels,”IEEE Trans. Inform. Theory, vol. 50, no. 8, pp. 1665–1686, Aug. 2004.

February 3, 2006 DRAFT


