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Multiple-Antenna Interference Cancellation and

Detection for Two Users Using Quantized

Feedback
Feng Li, Student Member, IEEE and Hamid Jafarkhani, Fellow, IEEE

Abstract

When two users transmit signals to a common receiver, one can design precoders to cancel the

interference for each user, if each user knows all the channel information perfectly. Also the diversity

for each user is full. However, in practice, perfect channel information is not available. In this paper, we

design precoders for two users with two transmit antennas and one receiver with two receive antennas

using quantized feedback. We propose to construct codebook using Grassmannian line packing. By

choosing precoders from the codebook properly, our proposed scheme can cancel the interference for

each user. Also we analytically prove that our system can achieve full diversity for each user. Then

we extend our scheme to any number of transmit and receive antennas. Simulation results confirm our

analytical proof and show that our scheme can serve as a bridge between a system with no feedback

and a system with perfect feedback.

Index Terms

Multi-user detection, multiple antennas, interference cancellation, precoder, quantized feedback, Grass-

mannian line packing

I. INTRODUCTION

In multiple access channels, when different users with multiple antennas transmit signals to a common

receiver at the same time using the same frequency band, users cause interference to each other. In

this paper, we investigate how to cancel the co-channel interference for users with multiple antennas

The authors are with the Center for Pervasive Communications and Computing at the University of California, Irvine; e-mail:
fengl@uci.edu, hamidj@uci.edu. This work was supported in part by Boeing Company.
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in multiple access channels without any frequency division or spread spectrum technology. We utilize

multiple antennas and channel information feedback to cancel the interference for each user.

The topic of canceling interference using multiple antennas is not new. Different schemes have been

proposed with different assumptions about the channel information available at transmitters. If no channel

information is available at transmitters, [1] shows how to cancel the interference using NJ receive

antennas for J users equipped with N transmit antennas. In order to reduce the number of required

receive antennas to J , i.e., as many as the number of users, [2] proposes a scheme for users with two

transmit antennas based on the properties of orthogonal space-time block codes (OSTBCs) [3]. The work

was extended to a higher number of transmit antennas but only for J = 2 users in [4]. Unfortunately,

because of the limitations of OSTBCs, these methods cannot be used for a general case of complex

constellations, N > 2 transmit antennas, and J > 2 users [5]. To solve this problem, [5] suggests a

method based on quasi-orthogonal space-time block codes (QOSTBCs) [6]. The diversity of each user

in such a system with M ≥ J receive antennas is equal to NM using maximum-likelihood detection

and N(M − J + 1) using low-complexity array-processing schemes [7]. However, in general, we cannot

achieve full diversity if we cancel the interference using low-complexity array-processing schemes. In

order to cancel the interference with low-complexity and achieve full diversity, we proposed a scheme

to design precoders using the channel information feedback at transmitters [8]. As a result, interference

can be canceled while achieving full diversity for each user.

Although the performance of the scheme in [8] is better than that of the previously proposed schemes,

perfect channel information is needed at transmitters. It is not practical in reality. In this paper, we

investigate the use of limited feedback to achieve interference cancellation as well as full diversity. Limited

feedback has been used extensively in the case of the single-user MIMO systems. It has been shown that

the capacity and performance of the point-to-point MIMO systems can be increased significantly using

limited feedback [9]–[15]. There are few examples of multi-antenna multi-user systems with limited

feedback in the literature. In [16], post-processing SNR is maximized for a given linear receiver by

selecting the QOSTBC with the minimum quaternionic angle as well as realizing interference cancellation.

In [17], limited feedback is utilized to adapt the phase of a transmitted signal and improve the performance

of the system. However, to the best of our knowledge, there is no result showing how to achieve full

diversity and interference cancellation for each user using limited feedback. A naive way is to quantize

the result in [8] directly. But this will not work because the scheme in [8] relies on the perfect channel

information and thus perfect orthogonality between the signal vectors of the two users. Simply quantizing

the results will destroy the perfect orthogonality and thus cannot achieve full diversity. In this paper we
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investigate how to use quantized feedback to achieve full diversity as well as interference cancellation. Our

results show that even with quantized feedback, full diversity and interference cancellation are possible

by using our proposed scheme. Also our decoding complexity is the lowest to our best knowledge.

By increasing the number of feedback bits, the performance of our proposed scheme will approach the

performance of the scheme with perfect feedback in [8]. So our proposed scheme can serve as a bridge

between the schemes with no feedback and perfect feedback.

The outline of the paper follows next. In Section II, we introduce our system model and the motivation

of this work. In Section III, we present our precoding and decoding method. We show that our scheme

can achieve interference cancellation for each user as long as our codebooks satisfy some conditions.

In Section IV, we propose our feedback scheme and prove that each user can achieve full diversity if

our codebooks can satisfy some further conditions. In Section V, we finalize our codebook design by

maximizing the coding gain. In Section VI, we compare the performance of our system with two existing

schemes. We show that our scheme can be extended to 2 users each with any number of transmit antennas

and one receiver with any number of receive antennas in Section VII. Section VIII provides simulation

results to validate our theoretical analysis and Section IX concludes the paper.

Notation: We use boldface letters to denote matrices and vectors, super-scripts (·)T , (·)∗, (·)† to denote

transpose, conjugate and transpose conjugate, respectively. ||Z||F represents the Frobenius norm of matrix

Z. We denote the element in the ith row and the jth column of matrix Z by Z(i, j). Also, we denote the

jth column of a matrix Z by Z(j). The real and imaginary parts of a matrix Z are denoted by Real{Z}

and Imag{Z}, respectively.

II. CHANNEL MODEL

In this paper, we assume a quasi-static flat Rayleigh fading channel. The path gains are independent

complex Gaussian random variables and fixed during the transmission of one block. There are two users

each with two transmit antennas and one receiver with two receive antennas.

We assume that the receiver knows the channel information perfectly but only quantized feedback

is available at the transmitter. We want to design a scheme to achieve the following two goals using

quantized feedback: (i) Canceling the interference at the receiver, i.e., obtaining the interference-free

signals for each user at the receiver, (ii) providing full diversity for each user.

In order to achieve these two goals, we propose the following scheme in time slot 1 as shown in Figure

1: First, we assume that Users 1 and 2 transmit codewords C and S, respectively. And each user can

receive K bits of feedback from the receiver. Second, we design a codebook Υ 1 which contains L1 = 2K
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different precoding matrices for User 1 and a codebook Υ2 which contains L2 = 2K different precoding

matrices for User 2. Each codebook is shared by its transmitter and the receiver. Also we let Υ i[j] denote

the jth matrix in Codebook Υi. Third, the receiver sends back an index !1 to User 1 using K bits of

feedback and an index !2 to User 2 using another K bits of feedback. Finally, User 1 chooses Υ1[!1]

as its precoder A1 and transmits the pre-coded signals to the receiver. Also User 2 chooses Υ 2[!2] as its

precoder B1 and transmits the pre-coded signals to the receiver. After receiving the signals from Users

1 and 2, the receiver decodes the signals for each user separately using an array processing method.

In time slot 2, the scheme will be exactly the same as that at time slot 1. But the designed codebooks

Υ′

1 for User 1 and Υ′

2 for User 2 in time slot 2 may be different from the codebooks Υ1 and Υ2 in time

slot 1. Also the feedback indices !
′

1 and !
′

2 in time slot 2 may be different from !1 and !2 in time slot

1. As a result, the precoders A2 for User 1 and B2 for User 2 in time slot 2 may be different from A1

and B1 in time slot 1.

Now, we demonstrate the input-output relationship of our system. At the first two time slots, the

channel matrices for Users 1 and 2 are

H =
(

h11 h12
h21 h22

)
, G = ( g11 g12

g21 g22 ) (1)

respectively, where hij and gij are i.i.d. CN(0, 1). For backward compatibility with the case of no

feedback in [5], Users 1 and 2 transmit Alamouti codes

C =
(

c1 −c∗2
c2 c∗1

)
, S =

(
s1 −s∗

2
s2 s∗

1

)
(2)

respectively. In order to maximize the diversity and coding gain, we add unitary rotations R1 and R2 for

codewords of User 1 and User 2, respectively, such that

R1 ( c1
c2 ) =

(
c̃1
c̃2

)
, R2 ( s1

s2 ) =
(

s̃1
s̃2

)
. (3)

So the codewords in (2) become

C̃ =
(

c̃1 −c̃∗2
c̃2 c̃∗1

)
, S̃ =

(
s̃1 −s̃∗

2
s̃2 s̃∗

1

)
. (4)

Let

A1 =
(

a1
11 a1

12
a1
21 a1

22

)
, A2 =

(
a2
11 a2

12
a2
21 a2

22

)
(5)
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denote the precoders of User 1 in time slots 1 and 2, respectively. Also,

B1 =
(

b1
11 b1

12
b1
21 b1

22

)
, B2 =

(
b2
11 b2

12
b2
21 b2

22

)
(6)

denote the precoders of User 2 in time slots 1 and 2, respectively. Here ||A i||2F = ||Bi||2F = 1, i = 1, 2,

in order to satisfy the normalization conditions [11].

In time slots 1 and 2, the received signals are respectively denoted by

y1 =
(

y1
1

y1
2

)
, y2 =

(
y2
1

y2
2

)
. (7)

Then, in time slot 1, the signal model can be written as

y1 =
√

EsHA1
(

c̃1
c̃2

)
+

√
EsGB1

(
s̃1
s̃2

)
+W1. (8)

In time slot 2, we have

y2 =
√

EsHA2
(

−c̃∗2
c̃∗1

)
+

√
EsGB2

(
−s̃∗

2
s̃∗
1

)
+W2 (9)

where Es denotes the total transmit energy of each user and W1 =
(

n1
1

n1
2

)
, W2 =

(
n2

1
n2

2

)
denote the

noise at the receiver in time slots 1 and 2, respectively. We assume that n1
1, n1

2, n
2
1, n2

2 are i.i.d complex

Gaussian noises with mean 0 and variance 1. In order to simplify the notation, we let

Ĥi
= HAi, i.e.,

(
ĥi

11 ĥi
12

ĥi
21 ĥi

22

)
=

(
h11ai

11+h12ai
21 h11ai

12+h12ai
22

h21ai
11+h22ai

21 h21ai
12+h22ai

22

)
, i = 1, 2, (10)

Ĝ
i
= GBi, i.e.,

(
ĝi
11 ĝi

12
ĝi
21 ĝi

22

)
=

(
g11bi

11+g12bi
21 g11bi

12+g12bi
22

g21bi
11+g22bi

21 g21bi
12+g22bi

22

)
, i = 1, 2. (11)

With these new notations, after applying some simple algebra to Equations (8) and (9), we have

(
y1
1

y1
2

)
=

√
Es

(
ĥ1

11 ĥ1
12 ĝ1

11 ĝ1
12

ĥ1
21 ĥ1

22 ĝ1
21 ĝ1

22

)(
c̃1
c̃2
s̃1
s̃2

)
+

(
n1

1
n1

2

)
, (12)

(
(y2

1)∗

(y2
2)∗

)
=

√
Es

(
(ĥ2

12)
∗ −(ĥ2

11)
∗ (ĝ2

12)
∗ −(ĝ2

11)
∗

(ĥ2
22)

∗ −(ĥ2
21)

∗ (ĝ2
22)

∗ −(ĝ2
21)

∗

)(
c̃1
c̃2
s̃1
s̃2

)
+

(
(n2

1)
∗

(n2
2)

∗

)
. (13)

Equations (12) and (13) are the input-output relationship of our system at the first two time slots.

III. INTERFERENCE CANCELLATION PRECODING AND DECODING

In this section, we will show the property that our codebooks should possess in order to achieve our

first goal, i.e., interference cancellation.
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A. Precoding

First, in time slot 1, by Equation (12), c̃1, c̃2, s̃1, s̃2 are transmitted along four equivalent channel

vectors Ĥ1
(1), Ĥ1

(2), Ĝ
1
(1), Ĝ

1
(2), respectively. Suppose that we want to remove the signals of User 2,

we can find a 2-by-1 complex vector g satisfying g†Ĝ
1
(1) = g†Ĝ

1
(2) = 0. Then by simply multiplying

both sides of Equation (12) by g†, we can remove the signals of User 2. This is our basic idea to achieve

the interference cancellation.

However, since Ĝ
1
(1), Ĝ

1
(2) are 2-by-1 complex vectors, a non-zero complex vector g2×1 that satisfies

g†Ĝ
1
(1) = g†Ĝ

1
(2) = 0 does not exist unless Ĝ

1
(1) = αĜ

1
(2), where α is a constant. Therefore, in

order to cancel the interference from User 2, we need Ĝ
1
(1) = αĜ

1
(2). To make Ĝ

1
(1) = αĜ

1
(2), our

precoders A1 and B1 should have the following properties:

A1(1) = A1(2), B1(1) = B1(2), (14)

i.e.,
(

a1
11

a1
21

)
=

(
a1
12

a1
22

)
,

(
b1
11

b1
21

)
=

(
b1
12

b1
22

)
. (15)

Since we choose a matrix in the codebook Υ1 as the precoder for User 1 and a matrix in the codebook

Υ2 as the precoder for User 2, Equation (14) results in:

Υ1[i](1) = Υ1[i](2), Υ2[j](1) = Υ2[j](2), (16)

i.e., the two columns of any matrix in codebooks Υ1 and Υ2 should be the same. From Equations (10)

and (15), it is easy to see that the resulted Ĝ
1
(1), Ĝ

1
(2) satisfy Ĝ

1
(1) = Ĝ

1
(2), i.e.,

(
ĥ1

11

ĥ1
21

)
=

(
ĥ1

12

ĥ1
22

)
,

(
ĝ1
11

ĝ1
21

)
=

(
ĝ1
12

ĝ1
22

)
. (17)

Then (12) can be written as

(
y1
1

y1
2

)
=

√
Es

(
ĥ1

11 ĥ1
11 ĝ1

11 ĝ1
11

ĥ1
21 ĥ1

21 ĝ1
21 ĝ1

21

)(
c̃1
c̃2
s̃1
s̃2

)
+

(
n1

1
n1

2

)
. (18)

Based on Equation (18), it is easy to find a complex vector g satisfying g†
(

ĝ1
11

ĝ1
21

)
= 0 to remove the

signals of User 2. Equation (16) represents the property that our codebooks need in order to achieve

interference cancellation.
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Similarly, in time slot 2, our precoders should satisfy

A2(1) = A2(2), B2(1) = B2(2). (19)

Then using the codebook Υ′

1 and Υ′

2, for Users 1 and 2, respectively, any matrix Υ′

1[i] in the codebook

Υ′

1 and any matrix Υ′

2[j] in the codebook Υ′

2 have the following properties:

Υ
′

1[i](1) = Υ
′

1[i](2), Υ
′

2[j](1) = Υ
′

2[j](2). (20)

Then (13) can be written as

(
(y2

1)∗

(y2
2)∗

)
=

√
Es

(
(ĥ2

12)
∗ −(ĥ2

12)
∗ (ĝ2

12)
∗ −(ĝ2

12)
∗

(ĥ2
22)

∗ −(ĥ2
22)

∗ (ĝ2
22)

∗ −(ĝ2
22)

∗

)(
c̃1
c̃2
s̃1
s̃2

)

+
(

(n2
1)

∗

(n2
2)

∗

)
. (21)

B. Decoding

In what follows, based on Equations (18) and (21), we illustrate how to cancel the interference of User

2 and decode in detail. First, we introduce some notation to simplify the presentation. In Equations (18)

and (21), we let

v1h =
(

ĥ1
11

ĥ1
21

)
, v1g =

(
ĝ1
11

ĝ1
21

)
, y1 =

(
y1
1

y1
2

)
, n1 =

(
n1

1
n1

2

)
, (22)

v2h =
(

(ĥ2
12)

∗

(ĥ2
22)

∗

)
, v2g =

(
(ĝ2

12)
∗

(ĝ2
22)

∗

)
, y2 =

(
(y2

1)∗

(y2
2)∗

)
, n2 =

(
(n2

1)
∗

(n2
2)

∗

)
. (23)

Then we introduce the following complex vectors

v1g =
(

−(ĝ1
21)

∗

(ĝ1
11)

∗

)
, v2g =

(
−ĝ2

22
ĝ2
12

)
. (24)

Note that v1g, v2g are orthogonal to v1
g, v2g in time slots 1 and 2, respectively. In order to cancel the signals

from User 2, we can multiply both sides of Equations (18) and (21) by (v1
g)† and (v2

g)†. Then we have

(v1g)†
(

y1
1

y1
2

)
=

√
Es(v1g)†

(
ĥ1

11 ĥ1
11

ĥ1
21 ĥ1

21

)(
c̃1
c̃2

)
+ (v1g)†

(
n1

1
n1

2

)
, (25)

(v2g)†
(

(y2
1)∗

(y2
2)∗

)
=

√
Es(v2g)†

(
(ĥ2

12)
∗ −(ĥ2

12)
∗

(ĥ2
22)

∗ −(ĥ2
22)

∗

)(
c̃1
c̃2

)
+ (v2g)†

(
(n2

1)
∗

(n2
2)

∗

)
. (26)

Now we have removed the signals from User 2. So there is no interference for User 1. The elements

of the noise vector (v1
g)†

(
n1

1
n1

2

)
are correlated with covariance |v1

g|2 and the elements of the noise vector

(v2g)†
(

(n2
1)

∗

(n2
2)

∗

)
are correlated with |v2g|2. In order to detect the signals of User 1, we need to whiten the
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noise by multiplying both sides of Equations (25) and (26) by |v1
g|−1 and |v2

g|−1, as follows

(v1g)†

|v1g|

(
y1
1

y1
2

)
=

√
Es

(v1g)†

|v1g|

(
ĥ1

11 ĥ1
11

ĥ1
21 ĥ1

21

)(
c̃1
c̃2

)
+

(v1g)†

|v1g|

(
n1

1
n1

2

)
, (27)

(v2g)†

|v2g|

(
(y2

1)∗

(y2
2)∗

)
=

√
Es

(v2g)†

|v2g|

(
(ĥ2

12)
∗ −(ĥ2

12)
∗

(ĥ2
22)

∗ −(ĥ2
22)

∗

)(
c̃1
c̃2

)
+

(v2g)†

|v2g|

(
(n2

1)
∗

(n2
2)

∗

)
. (28)

Using the notation in (22), (23) and combining Equations (27) and (28), we have
(

(v1g)†

|v1g | y
1

(v2g)†

|v2g | y
2

)

=
√

Es

(
(v1g)†

|v1g | v
1
h

(v1g)†

|v1g | v
1
h

(v2g)†

|v2g | v
2
h −

(v2g)†

|v2g | v
2
h

)(
c̃1
c̃2

)
+

(
(v1g)†

|v1g | n
1

(v2g)†

|v2g | n
2

)

. (29)

We let Ĥ denote the equivalent channel matrix in (29) to simplify the presentation as follows

Ĥ =
(

ĥ11 ĥ12

ĥ21 ĥ22

)
=

(
ĥ11 ĥ11

ĥ21 −ĥ21

)
=

(
(v1g)†

|v1g | v
1
h

(v1g)†

|v1g | v
1
h

(v2g)†

|v2g | v
2
h −

(v2g)†

|v2g | v
2
h

)

. (30)

Note that Ĥ has the following Single Value Decomposition [18]

Ĥ = UĤΣĤVĤ = UĤΣĤ

( √
2

2

√
2

2√
2

2 −
√

2
2

)
(31)

where UĤ is a complex matrix and ΣĤ, VĤ are all real matrices. Then we can multiply both sides of

Equation (29) by U†
Ĥ

as follows

U†
Ĥ

(
(v1g)†

|v1g | y
1

(v2g)†

|v2g | y
2

)
=

√
EsU†

Ĥ

(
(v1g)†

|v1g| v
1
h

(v1g)†

|v1g | v
1
h

(v2g)†

|v2g| v
2
h −

(v2g)†

|v2g| v
2
h

)(
c̃1
c̃2

)
+ U†

Ĥ

(
(v1g)†

|v1g | n
1

(v2g)†

|v2g | n
2

)
. (32)

In the above equation, U†
Ĥ

(
(v1g)†

|v1g | n
1

(v2g)†

|v2g | n
2

)
is still white noise and U†

Ĥ

(
(v1g)†

|v1g | v
1
h

(v1g)†

|v1g| v
1
h

(v2g)†

|v2g | v
2
h −

(v2g)†

|v2g | v
2
h

)
is real matrix. So if

QAM is used, then we have

Real

{

U†
Ĥ

(
(v1g)†

|v1g| y
1

(v2g)†

|v2g| y
2

)}

=
√

EsU†
Ĥ

(
(v1g)†

|v1g | v
1
h

(v1g)†

|v1g | v
1
h

(v2g)†

|v2g | v
2
h −

(v2g)†

|v2g | v
2
h

)

Real
{(

c̃1
c̃2

)}
+ Real

{

U†
Ĥ

(
(v1g)†

|v1g | n
1

(v2g)†

|v2g | n
2

)}

, (33)

Imag

{

U†
Ĥ

(
(v1g)†

|v1g| y
1

(v2g)†

|v2g| y
2

)}

=
√

EsU†
Ĥ

(
(v1g)†

|v1g| v
1
h

(v1g)†

|v1g | v
1
h

(v2g)†

|v2g| v
2
h −

(v2g)†

|v2g| v
2
h

)

Imag
{(

c̃1
c̃2

)}
+ Imag

{

U†
Ĥ

(
(v1g)†

|v1g | n
1

(v2g)†

|v2g | n
2

)}

. (34)

Therefore, we can use the Maximum-Likelihood method to decode the real parts and imaginary parts
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of c̃1, c̃2 separately. For example, when we detect the real parts of c̃1, c̃2, we have

Real{ĉ1, ĉ2} = arg min
Real{c1,c2}

∥∥∥∥∥Real

{
U†
Ĥ

(
(v1g)†

|v1g | y
1

(v2g)†

|v2g | y
2

)}
−

√
EsU†

Ĥ

(
(v1g)†

|v1g | v
1
h

(v1g)†

|v1g| v
1
h

(v2g)†

|v2g | v
2
h −

(v2g)†

|v2g | v
2
h

)
Real

{(
c̃1
c̃2

)}∥∥∥∥∥

2

F

.

(35)

Similarly, we can decode the imaginary parts of c̃1, c̃2, and the signals of User 2. Note that the decoding

complexity is symbol-by-symbol.

Till now, we have presented our precoding, decoding methods, and some necessary properties needed by

our codebooks to cancel interference for each user. Note that in order to achieve interference cancellation,

the only properties needed by our codebooks are (16) and (20). The remaining degrees of freedom will

be used to maximize diversity and coding gain as discussed in the next two sections.

IV. FEEDBACK DESIGN AND DIVERSITY ANALYSIS

In this section, we first propose our feedback scheme, i.e., how to choose an index l i and send it back

to User i. Then we prove that our feedback scheme can achieve full diversity when our codebooks satisfy

some conditions.

A. Feedback Design

First, as illustrated in Figure 2, we define

cos θ1
hg =< v1h, v1g >=

|(v1g)†v1h|
|v1g| · |v1h|

, cos θ2
hg =< v2h, v2g >=

|(v2g)†v2h|
|v2g| · |v2h|

. (36)

Note that the maximum value of cos θi
hg is 1 and the corresponding θ i

hg = 0, which means vi
h and vi

g

are orthogonal to each other.

Now we introduce our feedback scheme with the assumption that User 1 has already got a codebook

Υ1 in time slot 1 and a codebook Υ′

1 in time slot 2. Also User 2 has already got codebooks Υ2 and Υ′

2

in time slots 1 and 2, respectively. All these codebooks should possess the property given by (16) and

(20). In time slot 1, the receiver selects an index !1 within the range from 0 to L1−1 and sends it back to

User 1. The selection criterion is that with such an index !1, |v1h| is maximized, where |v1
h| = |HA1(1)|

as given by (22) and A1 = Υ1[!1]. Maximizing |v1h| is equivalent to maximizing the received SINR for

User 1. Therefore, full diversity is also achieved, as shown later. At the same time slot, the receiver also

picks an index !2 and sends it back to User 2. The selection criterion is that with such an index !2, θ1
hg is

minimized, where θ1
hg is given by (36) in which v1

g =
(

−g∗
21 −g∗

22
g∗
11 g∗

12

)
B1(1)∗ as given by (24), B1 = Υ2[!2].

We will show that by doing so, we can also maximize coding gain within our system framework.
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Similarly, in time slot 2, the receiver finds an index !
′

2 and sends it back to User 2. The selection

criterion is that with such an index !
′

2, |v2g| is maximized. The receiver also finds an index !
′

1 and sends

it back to User 1. The selection criterion is that with such an index !
′

1, θ2
hg is minimized.

B. Diversity Analysis

In what follows, we show that by the above proposed scheme, the diversity for each user is full as

long as our codebooks satisfy some conditions. The diversity is defined as

d = − lim
ρ→∞

log Pe

log ρ
(37)

where ρ denotes the SNR and Pe represents the probability of error. We first consider Equation (29)

to analyze the diversity for User 1. We know
(

c̃1
c̃2

)
= R1 ( c1

c2 ) and we define the error matrix ε =

( c1
c2 ) −

(
ĉ1
ĉ2

)
. By (29), the pairwise error probability (PEP) can be given by the Gaussian tail function

as [19]

P (d→ d|Ĥ) = Q





√
ρ||ĤR1ε||2F

4



 = Q





√
ρε†R†

1(Ĥ)†ĤR1ε

4



 ≤ exp

(
−ρε†R†

1(Ĥ)†ĤR1ε

8

)
(38)

where we have used the inequality Q(x) ≤ exp(− x2

2 ). Now we assume R1ε = ( γ1
γ2 ). Substituting R1ε

and Ĥ from Equation (30) in (38), we have

P (d→ d|Ĥ) ≤ exp

(
−ρ(|ĥ11|2|γ1 + γ2|2 + |ĥ21|2|γ1 − γ2|2)

8

)

= exp



−
ρ(
∣∣∣ (v

1
g)†

|v1g |
v1h

∣∣∣
2
|γ1 + γ2|2 +

∣∣∣ (v
2
g)†

|v2g |
v2h

∣∣∣
2
|γ1 − γ2|2)

8





≤ exp



−
ρ(
∣∣∣ (v

1
g)†

|v1g |
v1h

∣∣∣
2
|γ1 + γ2|2)

8



 . (39)

Let us define

∆ =

∣∣∣∣∣
(v1g)†

|v1g|
v1h

∣∣∣∣∣

2

=
|(v1g)†v1h|2

|v1g|2
. (40)

Using (36), we can rewrite ∆ as

∆ = | cos θ1
hg|2 · |v1h|2. (41)
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Substituting (41) in (39), we have

P (d→ d|Ĥ) ≤ exp

(
−

ρ(| cos θ1
hg|2 · |v1h|2|γ1 + γ2|2)

8

)
. (42)

Since we choose our precoder A1 from the codebook Υ1 such that |v1
h|2 is maximized, it is easy to see

|v1h|2 = |HA1(1)|2 ≥ |HΥ1|2

L
(43)

where Υ1 is a matrix satisfying Υ1(i) = Υ1[i](1), i = 1, . . . , L, i.e., the ith column of matrix Υ1 is

the same as the first column of the ith matrix in the codebook Υ1. We assume Υ1 has the following

Singular Value Decomposition

Υ1 = UΥ1
ΣΥ1

V†
Υ1

= UΥ1

(
λ
Υ1
1 0

0 λΥ1
2

)
V†

Υ1
. (44)

Then (43) becomes

|v1h|2 ≥
|HUΥ1

ΣΥ1
V†

Υ1
|2

L
=

|λΥ1

1 |2(|h′

11|2 + |h′

21|2) + |λΥ1

2 |2(|h′

12|2 + |h′

22|2)
L

(45)

where

HUΥ1
=

(
h
′
11 h

′
12

h
′
21 h

′
22

)
. (46)

Since the unitary matrix UΥ1
does not change the distribution of H, each element of HUΥ1

, i.e., h
′

ij , is

also a Gaussian distributed random variable with mean 0 and variance 1. As a result, (42) can be written

as

P (d→ d|Ĥ) ≤ exp



−
ρ(| cos θ1

hg|2 · (|λ
Υ1

1 |2(|h′

11|2 + |h′

21|2) + |λΥ1

2 |2(|h′

12|2 + |h′

22|2)) · |γ1 + γ2|2)
4L



 . (47)

Further, we have

P (d→ d) ≤ E



exp



−
ρ(| cos θ1

hg|2 · (|λ
Υ1

1 |2(|h′

11|2 + |h′

21|2) + |λΥ1

2 |2(|h′

12|2 + |h′

22|2)) · |γ1 + γ2|2)
4L









= E



E



exp



−
ρ(| cos θ1

hg|2 · (|λ
Υ1

1 |2(|h′

11|2 + |h′

21|2) + |λΥ1

2 |2(|h′

12|2 + |h′

22|2)) · |γ1 + γ2|2)
4L





∣∣∣∣∣∣
θ1
hg








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≤ E



 1
∏2

j=1[1 + (ρ| cos θ1
hg|2|λ

Υ1

j |2|γ1 + γ2|2/8L)]2



 . (48)

At high SNRs, one can neglect the one in the denominator and get

P (d→ d) ≤
( ρ

8L

)−4
2∏

j=1

(|λΥ1

j | · |γ1 + γ2|)−4E

[
1

| cos θ1
hg|8

]

. (49)

From (49), it is easy to see the diversity for User 1 is 4, full diversity, as long as λΥ1

j %= 0. Note that

matrix Υ1 is a 2-by-L matrix, where L is the number of matrices in codebook Υ1. So in order to make

λΥ1

j %= 0, we need

1) L ≥ 2, where L is the number of matrices in our codebook.

2) The rank of matrix Υ1 is 2.

Condition 1 requires that K ≥ 1, where K is the number of feedback bits available to each user. Condition

2 is a constraint we need to design our codebook Υ1. There is no other constraint on the codebook Υ1

in order to achieve full diversity. In time slot 1, there is no further requirement on Codebook Υ2 for

User 2 other than (16). In time slot 2, by a similar proof, the codebook Υ ′

2 for User 2 should satisfy the

above two conditions and the only requirement on Codebook Υ ′

1 for User 1 is (20). Similarly, we can

prove that the diversity for User 2 is also full.

V. CODING GAIN ANALYSIS AND CODEBOOK DESIGN

In the last two sections, we have presented some properties needed by our codebooks in order to

achieve interference cancellation and full diversity. However, there are still some degrees of freedom in

our codebook design. In this section, we use the remaining degrees of freedom to maximize the coding

gain.

By (42), in order to maximize coding gain, we need to maximize |v1
h| and | cos θ1

hg|. We first analyze

v1h. Note that

v1h = HA1(1). (50)

To maximize |v1
h|, the best choice for A1(1) is [20]

A1(1) =
1√
2
VH(1) (51)

where VH comes from the singular value decomposition

H = UHΣHV†
H = UH

(
λ1 0
0 λ2

)
V†
H. (52)
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VH(1) is the singular vector of H corresponding to the largest singular value and we assume λ 1 > λ2

without loss of generality. If we have perfect feedback, we can simply choose A1(1) = 1√
2
VH(1) and the

precoder A1 = 1√
2
[VH(1),VH(1)]. Since we only have access to quantized feedback, we should design

a codebook in which we can find a matrix whose column is the best approximation to 1√
2
VH(1).

It has been shown in [21] that VH(1) is an isotropically distributed unitary vector. The intuitive meaning

of an isotropically distributed complex unit vector is that it is equally likely to point in any direction

in complex space. Therefore, the problem to design a codebook to maximize |v 1
h| becomes how to pack

one-dimensional subspaces of a complex space known as Grassmannian line packing [22]. In other words,

it is the problem of finding a set of L1 one-dimensional subspaces in the complex space that maximize

the minimum distance between any pair of subspaces in the set.

The problem of finding optimal line packings using analytical or numerical methods is not new [22]–

[25]. We utilize the existing methodologies in the literature to design a codebook for User 1 in time slot

1.

Now we summarize the procedures to construct our codebook for User 1 in time slot 1:

1) For K bits of feedback, find L1 = 2K two-by-one unit norm complex vectors which can maximize

the minimum distance between any pair of vectors in the two-dimensional complex space. We

denote all these vectors as ψi, i = 1, . . . , L1.

2) Create a codebook Υ1 that contains L1 = 2K matrices satisfying Υ1[i] = 1√
2
[ψi, ψi].

It is easy to check that the created codebook satisfies all the conditions we need. Therefore, |v 1
h| can be

maximized if User 1 adopts the above codebook.

In what follows, we will show that if User 2 adopts the above codebook, | cos θ 1
hg| will also be

maximized. By (36), we know that once |v1
h| and | cos θ1

hg| are maximized at the same time, the coding

gain will be maximized. Therefore, the above codebook is the optimal codebook that both User 1 and

User 2 should adopt in time slot 1.

First, note that in order to maximize | cos θ1
hg|, by (36), we need v1

g = ηv1h, i.e.,

(
−(ĝ1

21)
∗

(ĝ1
11)

∗

)
= η

(
ĥ1

11

ĥ1
21

)
or η

(
(ĥ1

21)
∗

−(ĥ1
11)

∗

)
=

(
ĝ1
11

ĝ1
21

)
(53)

where η is a constant. Further, we have

η
(

(ĥ1
21)

∗

−(ĥ1
11)

∗

)
= ( g11 g12

g21 g22 )
(

b1
11

b1
21

)
or

(
b1
11

b1
21

)
= η ( g11 g12

g21 g22 )−1
(

(ĥ1
21)

∗

−(ĥ1
11)

∗

)
. (54)
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Since the norm of
(

b1
11

b1
21

)
is 1, we have

(
b1
11

b1
21

)
=

( g11 g12
g21 g22 )−1

(
(ĥ1

21)
∗

−(ĥ1
11)

∗

)

∣∣∣( g11 g12
g21 g22 )−1

(
(ĥ1

21)
∗

−(ĥ1
11)

∗

)∣∣∣
F

. (55)

So we know that in order to maximize | cos θ1
hg|, we can choose

(
b1
11

b1
21

)
as described by (55) if we have

perfect feedback. Since we only have quantized feedback, we should design a codebook in which we

can find a vector as close to the one described by (55) as possible. So, first, we need to determine the

distribution of the optimal
(

b1
11

b1
21

)
in (55). Note that Equation (55) can also be written as

(
b1
11

b1
21

)
= η′

( g22 −g12
−g21 g11

) ( (ĥ1
21)

∗

−(ĥ1
11)

∗

)
= η′

(
g22(ĥ1

21)
∗+g12(ĥ1

11)
∗

−g21(ĥ1
21)

∗−g11(ĥ1
11)

∗

)
= η′ ( α1

α2 ) (56)

where η′ =
∣∣∣( g11 g12

g21 g22 )−1
(

(ĥ1
21)

∗

−(ĥ1
11)

∗

)∣∣∣
−1

F
|g11g22 − g21g12|−1. Let us assume that the singular value decom-

position of ( α1
α2 ) is

( α1
α2 ) = UαΣαV†

α = Uα
(

λα
1
0

)
· 1 = λα

1 ·Uα(1). (57)

Since ĥ1
11 and ĥ1

21 are independent from G, conditioned on ĥ1
11 and ĥ1

21, elements of ( α1
α2 ) are all Guassian

distributed random variables with the same mean and variance, so any column of Uα and thus ( α1
α2 ) will

be an isotropically distributed unitary vector [21]. Further, we can conclude that ( α1
α2 ) and thus

(
b1
11

b1
21

)

are all isotropically distributed unitary vectors.

Therefore, in order to maximize | cos θ1
hg|, the codebook for User 2 should provide the best approxima-

tion to any isotropically distributed unitary vector and the problem becomes exactly the same as the one

we discussed before, i.e., to pack one-dimensional subspaces of a complex space known as Grassmannian

line packing. Therefore, the resulting codebook for User 2 will be the same as the codebook Υ 1 for User

1 at time slot 1.

So far, we have shown that by using our codebook, we can maximize |v 1
h| and | cos θ1

hg| at the same

time. From (42), it is easy to see that the coding gain is maximized.

Similarly, we can prove that in time slot 2, both User 1 and User 2 should adopt the above codebook.

VI. COMPARISON OF OUR SCHEME WITH TWO EXISTING SCHEMES

In this section, we compare our scheme with two other schemes proposed in the literature. The first

scheme is the interference cancellation scheme without feedback proposed in [5], [7]. With the same

system model, this scheme can provide a diversity of 2. The second scheme is the interference cancellation

scheme with perfect feedback proposed in [8]. With the same system model, this scheme can provide
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a diversity of 4, i.e., full diversity. We show that our scheme can also provide a diversity of 2 with no

feedback. With perfect feedback, our scheme provides the performance of the scheme in [8].

First, let us consider the case without feedback. When the number of feedback bits K = 0, we can

not choose the best precoders according to the feedback. So our precoders are fixed: in time slot 1, both

users use precoder ( 1
0 ) and in time slot 2, both users use precoder ( 0

1 ).

By (39), we know

P (d→ d) ≤ E



exp



−
ρ(
∣∣∣ (v

1
g)T

|v1g|
v1h

∣∣∣
2
|γ1 + γ2|2 +

∣∣∣ (v
2
g)T

|v2g|
v2h

∣∣∣
2
|γ1 − γ2|2)

4









= E



E



exp



−
ρ(
∣∣∣ (v

1
g)T

|v1g|
v1h

∣∣∣
2
|γ1 + γ2|2 +

∣∣∣ (v2g)T

|v2g |
v2h

∣∣∣
2
|γ1 − γ2|2)

4



 |v1g, v2g







 . (58)

Since v1h =
(

h11
h21

)
, v2h =

(
h12
h22

)
, if conditioned on v1

g, v2g, both (v1g)T

|v1g |
v1h and (v2g)T

|v2g |
v2h are linear combination

of independent Gaussian random variables with mean 0 and variance 1. In addition, if conditioned on

v1g, v2g, then (v1g)T

|v1g |
v1h and (v2g)T

|v2g |
v2h are independent. So we have

P (d→ d) ≤ 1
(1 + ρ|γ1 + γ2|2/8)(1 + ρ|γ1 − γ2|2/8)

. (59)

At high SNRs, one can neglect the one in the denominator and get

P (d→ d) ≤ (
ρ

8
)−2 1

|γ1 + γ2|2|γ1 − γ2|2
. (60)

It is easy to see that the achievable diversity is 2, which is exactly the same as that of the scheme

proposed in [5].

Now we consider the case with perfect feedback. Since the diversity for any K > 0 is always 4,

obviously, in the case of K = ∞, perfect feedback, the diversity of our scheme is the same as that of

the scheme proposed in [8].

When there are K bits of feedback, the performance of our system is given by (49). We know that as

long as the number of feedback bits K > 0, our scheme can provide full diversity. Also with the increase

of K, the interference term E
[

1
| cos θ1

hg|8

]
decreases to 1. Therefore, the coding gain and the performance

of our scheme will approach those of the system with perfect feedback.
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VII. EXTENSION TO ANY NUMBER OF ANTENNAS

In this section, we show that our scheme can also be extended for 2 users with any number of antennas

and one receiver with any number of antennas. We will consider two cases. The first one is the case in

which the number of transmit antennas N is greater than or equal to the number of receive antennas M .

The second one is the case in which M > N .

First, we assume N ≥ M . Similar to the case in Section III, User 1 and User 2 transmit Alamouti

codes C and S, respectively. The channels for Users 1 and 2 are

H = [hij ]M×N , G = [gij ]M×N . (61)

The precoders for Users 1 and 2 are

At = [at
ij ]N×2, Bt = [bt

ij ]N×2. (62)

Then we can use exactly the same method to design the codebook and precoders. However, when N ≥

M > 2, with K bits of feedback, the diversity is M ·min(N,L), where L = 2K is the number of vectors

in the codebook. To prove this, we note that in the case of N ≥ M > 2, (43) becomes

|v1h|2 ≥ |HΥ1|2

L
=

|HUΥ1ΣΥ1V
†
Υ1

|2

L
=

∑L′

j=1(|λ
Υ1

j |2
∑M

i=1 |h
′

ij |2)
L

(63)

where L′ = min(N,L). It is easy to see that the number of Gaussian random variables on the right side

of (63) is ML′. Therefore, when N ≥ M > 2, following the proof presented in Section IV, the diversity

of our scheme is M · min(N,L) or M · min(N, 2K). In order to achieve a diversity of MN , we need

1) L ≥ N , i.e., K ≥ log2 N .

2) The rank of matrix Υ1 to be N .

Now we consider the case that N < M . In this case, we assume the channel matrices and precoders for

Users 1 and 2 are given by (61) and (62). We can use the same method as discussed before to maximize

|v1h|. However, if we want to maximize | cos θ1
hg|2, like (53), we need to design precoders to make

H̃M×1 = η ·GM×N · B1(1)N×1 (64)

which means the equivalent signal vectors of the two users are orthogonal to each other. In the above

equation, we need to determine N unknown parameters by M equations. Since N < M , the number

of equations is greater than the number of unknown parameters. Therefore, even with prefect feedback,

we cannot find these unknown parameters to satisfy the equations. In other words, since we do not have
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enough dimensions for precoders, we cannot make v i
g orthogonal to vi

h.

In order to make our proposed scheme extendable to the case of M > N , we can choose N receive

antennas among all M receive antennas as follows:

In time slot 1, we can choose the N receive antennas such that ||H new||F is maximized, where Hnew is

the new channel matrix with N transmit antennas and the selected N receive antennas. Once the number

of receive antennas is equal to the number of transmit antennas, the same method used in Section IV

can be used to determine the codebook and precoders for Users 1 and 2. At time slot 2, we choose the

N receive antennas such that ||Gnew||F is maximized, where Gnew is the new channel matrix with N

transmit antennas and the selected N receive antennas. Then we design the codebook and precoders for

Users 1 and 2 using the same method in the case that M = N .

In order to show that we can achieve full diversity for each user using the above proposed method,

we consider (43). By (43), we know

|v1h|2 ≥ |HΥ1|2

L
=

|HUΥ1ΣΥ1V
†
Υ1

|2

L
=

∑N
j=1(|λ

Υ1

j |2
∑N

i=1 |h
′

ij |2)
L

≥
|λΥ1

min|2
∑N

j=1

∑N
i=1 |h

′

ij |2

L
=

|λΥ1

min|2
∑N

j=1

∑N
i=1 |hij |2

L
=

|λΥ1

min|2||Hnew||2F
L

. (65)

Since we know ||Hnew||2F is maximized, the average of the norms of all columns in matrix Hnew will be

no less than the average of the norms of all columns in matrix H, i.e.,

||Hnew||2F
N

=
∑N

i=1 |Hnew(i)|2

N
≥ ||H||2F

M
=

∑M
i=1 |H(i)|2

M
. (66)

Substituting (66) to (65), we have

|v1h|2 ≥
|λΥ1

min|2||Hnew||2F
L

≥
N |λΥ1

min|2||H||2F
ML

=
N |λΥ1

min|2
∑N

j=1

∑M
i=1 |hij |2

ML
. (67)

Since there are MN Gaussian random variables on the right side of (67), it is easy to prove that User

1 can achieve a diversity of MN , i.e., full diversity. Similarly, it can be proved that User 2 can also

achieve full diversity. When there are more than two users, there will be more interference to be dealt

with. The precoding and decoding scheme will be more complex. Due to the limitation of the space, we

leave the extension of the scheme to more than two users as our future work.

VIII. SIMULATION RESULTS

In this section, we provide simulation results that confirm our analysis in the previous sections. We

assume a quasi-static Rayleigh fading channel. The performance of our proposed scheme is shown in
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Figures 3, 4 and 5. In each figure, the curves for Users 1 and 2 are identical. In Figure 3, we consider

2 users each equipped with 2 transmit antennas and a receiver with 2 receive antennas. We compare our

results using QPSK with the results in [5] for the same configuration without channel information at

the transmitter and the results in [8] for the same configuration with perfect feedback. Note that if the

feedback is zero in our system (no channel information), we can pick an identity matrix as our precoder

and our transmitter will be the same as the transmitter in [5]. In fact, this backward compatibility is the

main reason for using an Alamouti code. Otherwise, our scheme also works for other full rate space time

codes and all the above derivations are still valid.

In order to illustrate the effect of the number of bits, we provide the performance with 1, 3, 6, 8

bits feedback, respectively. It can be seen that with 2 receive antennas, the multi-user detection (MUD)

method proposed in [5] can cancel the interference but only provides a diversity of 2. The scheme

proposed in [8] with perfect feedback can achieve interference cancellation and provide a diversity of 4,

full diversity. In comparison, using the proposed scheme in this paper, we can also achieve interference

cancellation as well as full diversity only with quantized feedback, even with only 1 bit of feedback. But

the performance highly depends on the number of feedback bits. When the number of feedback bits is

small, the performance of our scheme is close to the performance of the scheme without feedback. When

the number of feedback bits increases, the performance will approach the performance of the system

with perfect feedback. Therefore, our proposed scheme provides a solution to fill the performance gap

between [5] and [8]. Finally, we also provide the simulation results for the time-division multiplexing

(TDM) case in which the two users transmit Alamouti codes in different time slots. In this case, there

will be no interference at all. In order to match the rate, each user adopts 16-QAM. From the simulation

results, we can see that although the TDM scheme can achieve full diversity and the decoding complexity

is low, it will lose coding gain.

In Figure 4, we provide the performance of our scheme with 8 bits of feedback for 2 users each with

4 transmit antennas and one receiver with 2 receive antennas. Also we compare the performance of our

scheme with the schemes in [5] and [8]. It is easy to see that our scheme with 8 bits of feedback has

achieved full diversity and has outperformed the scheme in [5]. Compared with the scheme with perfect

feedback, the performance difference is about 1 dB.

In Figure 5, we present the performance of our scheme with 8 bits of feedback for 2 users each with 2

transmit antennas and one receiver with 3 receive antennas. Once again, the performance of our scheme

outperforms the performance of the scheme in [5] and approaches the performance of the scheme in [8].

Simulation results show that by using only a few bits of feedback, one can approach the performance of

September 27, 2010 DRAFT



19

a system with perfect feedback.

IX. CONCLUSIONS

In this paper, we investigate how to cancel the interference and achieve full diversity for two users

with two transmit antennas and one receiver with two receive antennas in a multiple access channel

using quantized feedback. Using quantized feedback, we propose the precoding and decoding method,

the feedback scheme and the codebook design to cancel interference and achieve full diversity. Also

we show that the performance of our proposed scheme is determined by the number of feedback bits.

With the increase of the feedback bits, the performance of our scheme approaches that of the system

with perfect feedback. Finally we extend our scheme to two users with any number of transmit antennas

and one receiver with any number of receive antennas. Simulation results are provided to confirm our

analytical results.
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Fig. 3. Comparison of our scheme, Alamouti MUD in [5] and Precoding scheme in [8] for 2 users each with 2 transmit
antennas and 1 receiver with 2 receive antennas
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Fig. 4. Comparison of our scheme, Alamouti MUD in [5] and Precoding scheme in [8] for 2 users each with 4 transmit
antennas and 1 receiver with 2 receive antennas

September 27, 2010 DRAFT



23

12 14 16 18 20 22 24
10−6

10−5

10−4

10−3

10−2

Signal to Noise Ratio (dB)

Multi−User, 2 bits/sec/Hz

 

 

Bi
t E

rro
r R

at
e

Our scheme with 8 bits feedback
Alamouti MUD without feedback in [5]
Precoding Scheme with perfect feedback in [8]

Fig. 5. Comparison of our scheme, Alamouti MUD in [5] and Precoding scheme in [8] for 2 users each with 2 transmit
antennas and 1 receiver with 3 receive antennas
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