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We study the dynamical states of a small-world network of recurrently coupled excitable neurons,

through both numerical and analytical methods. The dynamics of this system depend mostly on

both the number of long-range connections or “shortcuts”, and the delay associated with neuronal

interactions. We find that persistent activity emerges at low density of shortcuts, and that the system

undergoes a transition to failure as their density reaches a critical value. The state of persistent

activity below this transition consists of multiple stable periodic attractors, whose number increases

at least as fast as the number of neurons in the network. At large shortcut density and for long

enough delays the network dynamics exhibit exceedingly long chaotic transients, whose failure

times follow a stretched exponential distribution. We show that this functional form arises for the

ensemble-averaged activity if the failure time for each individual network realization is exponen-

tially distributed. © 2007 American Institute of Physics. �DOI: 10.1063/1.2743611�

Many systems in nature can be described as a network of

interconnected nodes. Networks in a growing list of sys-

tems, from social and ecological webs to the neural

anatomy of simple organisms, have been shown to exhibit

complex topological features that distinguish them from

both ordered lattices and purely random networks. Be-

yond the investigation of the structural and geometrical

properties of such networks, a new class of question

arises when dynamical degrees of freedom are placed at

their nodes. As the investigation of such dynamical com-

plex networks proceeds, it has become increasingly clear

that the network architecture can significantly influence

the dynamics of the system. An understanding of emer-

gent dynamics on complex networks requires investigat-

ing the interplay between the intrinsic dynamics of the

node elements and the connectivity of the network in

which they are embedded. In order to address some of

these questions in a specific scenario of relevance to the

dynamical states of neural ensembles, we study here the

collective behavior of excitable model neurons in a net-

work with small-world topology. The small-world net-

work has local lattice order, but includes a number of

randomly placed connections that may provide connec-

tivity shortcuts. This topology bears a schematic resem-

blance to the connectivity of the cerebral cortex, in which

neurons are most strongly coupled to nearby cells within

50−100 �m, but also make projections to cells millime-

ters away. We find that the dynamics of this small-world

network of excitable neurons depend mostly on both the

density of shortcuts and the delay associated with neu-

ronal projections. In the regime of low shortcut density,

the system exhibits persistent activity in the form of

propagating waves, which annihilate upon collision and

are spawned anew via the reinjection of activity through

shortcut connections. As the density of shortcuts reaches

a critical value, the system undergoes a transition to fail-

ure. The critical shortcut density results from matching

the time associated with a recurrent path through the

network to an intrinsic recovery time of the individual

neurons. Furthermore, if the delay associated with neu-

ronal interactions is sufficiently long, activity re-emerges

above the critical density of shortcuts. The activity in this

regime exhibits long, chaotic transients composed of

noisy, large-amplitude population bursts. A numerical in-

vestigation of the interplay between network topology

and interaction delays in this regime reveals a mechanism

that underlies the observed stretched-exponential distri-

bution of failure times for the chaotic network activity.

I. INTRODUCTION

It has been widely recognized that the connectivity of a

network of active elements has a profound impact on its

function. Substantial effort has therefore been devoted to the

characterization of network connectivity,
1,2

leading to the

identification of various measures that are significant in de-
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termining the geometrical properties of the system. Particu-

larly relevant among them are the average and maximal

length of the minimal paths that connect two arbitrary nodes

in the network, the clustering coefficient, which characterizes

the propensity of all neighbors of a given node to be con-

nected to each other, and the distribution for the degree, de-

fined as the number of links that emanate from a node.

A large number of networks with complex topology fall

into the class of small-world networks, characterized by

short average path length and high clustering coefficient. A

simple realization of such a small-world network consists of

a regular lattice supplemented by a number of randomly

placed connections that tend to provide connectivity short-

cuts. This topology schematically resembles the connectivity

of the cerebral cortex, in which neurons are most strongly

coupled to nearby cells within 50−100 �m, but also project

to distant cells, which can be millimeters away. Small-world

properties of neuronal networks have been found in a com-

prehensive morphological characterization of in vitro two-

dimensional networks,
3

and in a 1:1 network model of the rat

dentate gyrus that incorporates known data about cell types,

cell-specific connectivity, and axonal branch length.
4

The dynamics of elements coupled through the connec-

tivity of a complex network has been studied in detail for the

case of oscillatory elements. The emphasis has been in de-

termining the role of network topology in the ability to

achieve synchronization in a system of coupled oscillators.

The existence of long-range connections, which reduce the

effective size of the network, has been found to substantially

enhance synchronizability.
5,6

At the same time, the heteroge-

neity of the degree distribution found in many complex net-

works limits the ability of the oscillators to synchronize.

Stable synchronization emerges from a balance between

these two competing aspects of complex network topology.
7

Excitable elements are the components of another impor-

tant class of dynamical systems, whose emergent behavior is

not characterized by synchronization. Locally coupled net-

works of excitable elements exhibit traveling waves �e.g.,

Refs. 8–10�. If these waves annihilate upon collision, as is

typically the case, persistent activity usually requires either

an external drive or spontaneous excitation by noise. In mod-

els for neural systems driven by noise,
11–13

networks with

nonlocal connections between their elements exhibit a ten-

dency towards relatively ordered oscillations in the popula-

tion activity. The spatial structure of such noise-induced

waves becomes less coherent with an increase in the fraction

of nonlocal connections.
14

The combination of local connec-

tivity with a small number of nonlocal connections allows a

time-periodic localized external input to entrain the whole

system much faster than in a purely local network; at the

same time, the oscillations are much more coherent than in a

truly random network.
15,16

Oscillatory activity at the popula-

tion level has also been observed in small-world networks of

binary McCulloch-Pitts neurons connected through both ex-

citatory and inhibitory synapses.
17

The dynamics of networks of excitable elements depend

very strongly on both the range of the coupling and on the

length of the refractory period relative to the time scales

associated with propagation. In Ref. 18, the authors consider

both scale free and random networks of three-state excitable

neurons, and find that short refractory periods enable the

propagation of sustained activity through the activation of

short loops. These short loops are frequently found in many

types of complex and random networks. In the noiseless

case, they can only be activated if the initial conditions cap-

ture the broken symmetry associated with a choice of direc-

tion for the propagation of activity.
18

A related model of

three-state excitable elements on a small-world network has

been proposed to study the propagation of infectious dis-

eases. In this model, the introduction of nonlocal connections

was found to induce a transition to a state with coherent

population oscillations.
19

Most studies of the dynamics of complex networks have

assumed that the interaction between node elements is bidi-

rectional. This is a very reasonable assumption in the context

of epidemic models,
19

and it would also apply to ensembles

of neurons connected via gap junctions.
12

In the absence of

noise, activity that is initiated through the excitation of indi-

vidual neurons in an otherwise quiescent state results in

wave fronts that propagate symmetrically in both available

directions; if both local and nonlocal connections are bidi-

rectional, all wave fronts are generated as symmetric pairs

that annihilate upon collision. In such a system, persistent

activity can only arise from initial conditions that suitably

break the symmetry between the two possible directions for

the propagation of activity.

In the cortical neural ensembles that motivate this work,

the coupling between neurons is predominantly not bidirec-

tional; most connections involve chemical synapses that

transmit information from the presynaptic axon to the

postsynaptic dendrite. In this scenario, it is more appropriate

to consider directed networks with unidirectional connec-

tions. In previous work,
20

we have investigated networks in

which the local connections are bidirectional, based on the

assumption that the probability for reciprocal axo-dendritic

connections is quite high for neurons in close proximity,

while the nonlocal connections that provide shortcuts are

unidirectional. This network is a modification of the by now

classical small-world network,
21

in that the added nonlocal

connections are directed. We found that just a few unidirec-

tional shortcuts suffice for sustaining persistent activity, even

when activity arises from localized excitations that do not

break the symmetry between the two possible directions of

propagation. However, as the density of shortcuts is in-

creased, an increasing number of network configurations

support only a brief burst of population activity after which

the activity dies out. When the speed associated with the

propagation of activity is low, this failure of network activity

was found to be delayed and to occur only after many cycles

of chaotic population bursts. The simplicity of this model

allowed for an analytic description of the failure transition

and for detailed numerical analysis.

The properties of this simple model
20

provide important

insight into the phenomena found in simulations of more

elaborate models motivated by specific biological systems.

In Ref. 22, the connection between the topology of a neural

network and its tendency towards epileptic seizures has been

studied and related to the degree of recurrent connectivity in
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different parts of the hippocampus. The origin of bursting

behavior was addressed in Ref. 23. The common view on

bursting behavior is that it arises when fast spiking drives a

slow process, typically associated with slow kinetics, that in

turn can shut off the spiking activity. However, no such slow

kinetics are needed if the network displays small-world

connectivity.
23

Both the seizing activity described in Ref. 22

and the bursting activity described in Ref. 23 find a common

interpretation in the mechanisms that underlie the failure

transition found in the simple model analyzed in our earlier

work.
20

A rapid spread of activity followed by persistent os-

cillations has also been observed in recent chemical experi-

ments based on the Belousov-Zhabotinsky reaction; in this

system, unidirectional shortcuts were implemented through

the photosensitive properties of the reaction.
24,25

Here we build on our previous results, and present a

detailed characterization of the persistent states and the de-

pendence of their properties on the density of shortcuts; we

also investigate the long chaotic transients and provide an

explanation for the stretched exponential that characterizes

their eventual failure. In Sec. II we define the model: a net-

work of excitable integrate-and-fire neurons coupled via ex-

citatory pulses in a small-world topology with unidirectional

shortcuts. In Sec. III we discuss the persistent states and the

crossover from persistent activity to failure for the case of

rapidly propagating waves. In Sec. IV we analyze the ex-

ceedingly long chaotic transients in the regime of slowly

propagating waves. In the concluding Sec. V we discuss our

results in light of other work on neural networks with small-

world topology.
4,22,23

II. NEURAL MODEL AND NETWORK CONNECTIVITY

We consider a one-dimensional network: a ring of N

identical integrate-and-fire neurons. The state of the ith neu-

ron is described by its membrane potential Vi, which is dy-

namically controlled by the spiking activity of the neurons

that project onto it,

�
dVi

dt
= − Vi + RIext + gsyn�

j=1

N

wij��t − t j − �D� . �1�

In order to fully specify the dynamics of integrate-and-fire

neurons, this set of N equations needs to be supplemented

with a condition for spiking whenever the membrane poten-

tial reaches a specified threshold, and with a reset condition

for the membrane potential after the emission of a spike,

V�t+� = Vres whenever V�t−� = Vth. �2�

In Eq. �1�, � is the membrane time constant, gsyn is the

synaptic strength measuring the change in membrane poten-

tial due to each incoming spike, wij =1 or 0 indicates the

presence or absence of a synaptic connection from neuron j

to neuron i, t j is the time at which neuron j fires a spike, Iext

is an external current, and R is the membrane resistance. The

effective delay �D in the neuronal interaction includes both

the time for the spike or action potential to propagate along

the axon and the time needed for initiating the triggered ac-

tion potential. When this latter time dominates over the ax-

onal delay, the dependence of �D on the physical distance

between the presynaptic and the postsynaptic neurons can be

neglected. Postsynaptic currents due to synaptic activation

are considered instantaneous and are therefore modeled as

delta functions. The process of spike emission is described in

Eq. �2�: whenever the membrane potential of a neuron

reaches the threshold value Vth, a spike is emitted and the

membrane potential is reset to the value Vres. Without loss of

generality, we write these two equations in terms of dimen-

sionless quantities by measuring Vi and gsyn with respect to

Vres, setting Vres=0 and Vth=1, and rescaling time by �. �In
Ref. 20, we used �=10.� Also, we replace RIext by the steady-

state voltage V�; this is the asymptotic value that Vi would

reach in the absence of synaptic input. We restrict the model

to the case of excitable rather than spontaneously oscillating

neurons by setting V��Vth=1, and consider only initial con-

ditions such that at most a few neurons are triggered to spike

while the rest of the network is in a quiescent state. In the

absence of noise, this initial condition implies that neurons

can only fire at times that are integer multiples of �D. Since

the dynamical evolution of the membrane potentials can be

integrated exactly between subsequent spikes, the time step

for the numerical computations is taken to be �t=�D.

Cortical neurons often receive not only local input from

nearby neurons but also input from some distant neurons

through long-range projections. We mimic this heteroge-

neous connectivity through an extremely simplified network

architecture: each neuron is bidirectionally connected to its

2k nearest neighbors, i.e., wij =1 for �i− j � �k, j� i, and uni-

directionally connected to pN randomly chosen neurons. The

parameter p thus indicates the density of additional unidirec-

tional connections, as a fraction of the total number N of

neurons.

The dynamics that arise from Eqs. �1� and �2� in the case

of purely local connectivity �p=0� and in the absence of

noise depend only on the interplay between the strength gsyn

of the synapses, the number 2k of local connections per neu-

ron, and the delay �D. The dependence on gsyn and �D is most

easily illustrated for first-nearest-neighbor connectivity, k

=1. In this case, if the presynaptic input is weak enough to

satisfy gsyn+V��Vth=1, this presynaptic input is insufficient

to cause a spike and the activity is not propagated. In con-

trast, if the presynaptic input is strong enough to satisfy

gsyn+V��Vth=1, it results in a propagating wave of speed

1/�D. After spike emission, the voltage is reset to Vres=0,

and the neuron is only ready to fire again after it has recov-

ered to the extent that an input of magnitude gsyn is sufficient

to trigger another spike. This recovery time is given by

TR = ln� V�

V� + gsyn − 1
� . �3�

Note that TR is not the intrinsic refractory period of the neu-

ron, since this integrate-and-fire neuron can fire at arbitrarily

large frequencies for sufficiently strong input gsyn.

Due to the bidirectionality of the local connections, the

firing of each neuron not only triggers a spike in the neuron

ahead of it in the direction of wave propagation, but also

gives an input to the neuron behind it, which thus receives an

input at a time 2�D after its own firing. If TR�2�D, this input

is not sufficient to trigger a new spike, and the activity
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propagates away from the site of initiation as a wave to

which each neuron contributes exactly one spike, see Fig.

1�a�. However, if TR�2�D, the wave front entrains all the

neurons in its wake, eventually leading to synchronized ac-

tivity of the whole network. In the absence of autapses, i.e.,

for wii=0, the network breaks up into two synchronous

groups of neurons that fire out of phase with one another, see

Fig. 1�b�. In the general case, a neuron receives inputs from

k neighbors as the wave approaches; the input coming from a

neuron at a distance n is discounted by the factor e−�n−1��D. A

propagating wave can thus be sustained if gsyne
�D�n=1

k e−n�D

+V��Vth=1.

For simplicity, we will focus on the case of first-nearest-

neighbor coupling in the regime in which waves of excitation

propagate but do not entrain activity in their wake. This

choice implies k=1 and constrains the allowable values of

V� and gsyn; we use V�=0.85 and gsyn=0.2 unless otherwise

noted. In this regime, the collision of two waves leads to

their mutual annihilation and, after having fired in a propa-

gating wave, a neuron can be triggered to fire by a single

input of size gsyn after a time

TR
�1� = ln�V� − gsyne

2�D

V� + gsyn − 1
� . �4�

This calculation includes the input received from the neuron

ahead in the wave, at a time 2�D after spiking.

The model specified by these assumptions together with

Eqs. �1� and �2� is used here as a simple model for the gen-

eration and propagation of waves of activity in cortical tis-

sue. As discussed in the following sections, the incorporation

of random connections qualitatively alters the dynamics of

the network and sustains a rich variety of spatiotemporal

patterns.

III. THE ORDERED REGIME: ATTRACTORS
AND FAILURE

The dynamics of the model depend on several param-

eters. Once the input current V�=0.85 and the synaptic

strength gsyn=0.2 have been fixed, the dynamics arising from

Eqs. �1� and �2� are determined by the remaining two param-

eters: the fraction p of randomly placed shortcuts and the

delay �D associated with the neural interaction.

The dynamics for p�0 differ qualitatively from those

for p=0. The presence of shortcuts allows the waves of ex-

citation to be reinjected into portions of the network which

have been previously excited. This process of reinjection

may lead to persistent network activity, as shown in Fig. 2

for several values of the density p. As the waves spread

outward from the initial site of activation, they encounter

shortcut connections that inject activity elsewhere in the net-

work. As for the p=0 case shown in Fig. 1�a�, wave fronts

that meet annihilate. After some time, the activity settles into

a stable pattern in which the rates of wave generation and

annihilation are balanced.

When averaged over time and across network configura-

tions at a fixed value of the shortcut density p, the firing rate

of these persistent states increases rapidly with p, and satu-

rates around p	0.1 �Fig. 3�a��. This saturation is a conse-

FIG. 1. Dynamics in a regular network of 50 neurons with first-nearest-

neighbor coupling. Parameters are V�=0.85 and �D=0.1. �a� A weak synap-

tic coupling gsyn=0.2 results in a propagating wave. The two wave fronts

meet and annihilate at time 2.5. Top: Raster plot showing spike times for

each neuron. Middle: Population firing rate. Bottom: Membrane potential of

neuron number 20. �b� A strong synaptic coupling gsyn=1.0 results in a wave

that entrains all neurons in its path. The final state of the network consists of

two synchronous groups of neurons firing out of phase with each other. Top,

middle, and bottom panels as in �a�. Note that the maximum possible firing

rate is 1 /�D=10.

FIG. 2. Examples of network dynamics for �D=0.1 and for different values

of the density p of shortcuts. The values p=0.01, 0.05, 0.10, 0.15, 0.20, 0.25

correspond to panels �a�–�f�, respectively. Each panel shows both spiking

activity and population firing rate. Note different temporal scale on panel �f�.
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quence of the neuron’s finite recovery period T
R

�1�
of Eq. �4�;

its inverse is the maximal firing rate, indicated as a dashed

line in both panels of Fig. 3. As shown in this figure, the

firing rate comes very close to this maximal value. As the

system size is increased, saturation is reached at smaller val-

ues of p �Fig. 3�b��.
The firing rate is essentially the inverse of the time be-

tween successive waves passing through a specific node in

the ring of neurons. Thus, one may expect that decreasing the

wave speed by increasing �D would reduce the mean firing

rate. However, this is not the case. As shown in Fig. 3�a�, the

firing rate is quite insensitive to wave speed. The reason for

this effect is illustrated in Fig. 4. The two panels show the

spatiotemporal pattern of activity for the same network con-

figuration and the same initial activation, but for different

delay times �D. At the larger delay time, additional waves are

excited through the shortcuts. An example of the appearance

of such a new wave can be seen at t=380�D, a time indicated

by a circle in both panels of Fig. 4. At this time, a new wave

is spawned by neuron 1071 for �D=0.1 but not for �D

=0.05. These additional waves increase the firing rate in a

manner that may even overcompensate for the reduced wave

speed, as demonstrated by the higher density of waves for

�D=0.1 at times beyond t=800�D.

Only a few shortcuts are present for low p, and many

pathways leading to persistent activity consist only of large

closed loops, which result in low firing rates. As p increases,

the typical loop size decreases, and network configurations

with only large loops and correspondingly low firing rates

become increasingly unlikely. This effect is illustrated in the

probability density function for the firing rate, shown in Fig.

5. As p increases, the distribution is shifted towards larger

firing rates and it narrows substantially, reflecting a satura-

tion close to the maximal firing rate set by the recovery time

T
R

�1�
. This maximal firing rate is marked by a dashed vertical

line in Fig. 5.

For small values of p, the state of persistent activity

settles into a periodic pattern whose oscillations increase in

amplitude with increasing p. This effect is clearly illustrated

in panels �a�–�e� of Fig. 2. A quantitative description of this

effect is shown in Fig. 6, in which the standard deviation of

the firing rate, averaged over a large number of network

configurations that exhibit persistent activity for a given

value of p, is used to characterize the amplitude of the oscil-

lations. An additional feature of this regime, also apparent

from panels �a�–�e� of Fig. 2, is that the time for these oscil-

FIG. 3. Population firing rate, averaged over 1000 configurations for p

�0.2 and over 5000 configurations for p�0.2. The maximal value of the

firing rate, 1 /T
R

�1�
, is indicated in both panels by a dashed horizontal line. �a�

Firing rate as a function of the density of shortcuts p for different values of

the delay �D for a network of size N=1000. Bars give the standard deviation

of the firing rate across configurations for �D=0.1. �b� Firing rate as a func-

tion of the density of shortcuts p for different values of the system size N

with �D=0.1.

FIG. 4. Dynamics in a network of N=2000 neurons with a density of short-

cuts p=0.1. The same network configuration and the same initial activation

is used in both panels. The only difference is in the delay time: �D=0.05 for

the top panel and �D=0.10 for the bottom panel. Note that more waves travel

through the system when the delay is longer. Circles indicate a new wave

spawned for �D=0.10 but not for �D=0.05.

FIG. 5. �Color� Probability distribution of firing rates for several values of

p, for networks of N=2000 neurons with �D=0.1. As p increases, the dis-

tributions narrow in width as they shift towards the maximal firing rate

1 /T
R

�1�
, indicated by a dashed vertical line.
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lations to become established after the excitation of a single

neuron decreases with increasing p. This property is in

agreement with the results of Refs. 15 and 16, which found

that, when excited through a small cluster of driven oscilla-

tory neurons, small-world networks of either Hodgkin-

Huxley or FitzHugh-Nagumo neurons are entrained much

more quickly than regular networks �with no shortcuts� of

the same types of neurons.

For larger values of p, the activity patterns can be quite

complicated. In this regime, as in the small p regime, all

neurons get excited during an oscillation cycle of network

activity. However, in this regime not all neurons and not all

connections between them are necessary for the persistence

of activity, as illustrated in Fig. 7. The full raster plot of

network activity shown in the top panel depicts the spikes

from all neurons �black dots�. This plot also identifies the

spikes from those neurons that are essential for sustainability

�red dots�. These neurons provide a pathway for

recurrence,
26

and they are found as follows. At an arbitrary

time once the steady state has been reached, all neurons that

fire at that time step are labeled. A backwards search is then

performed for preceding ancestors of these labeled neurons,

i.e., those presynaptic neurons that fired one delay �D ago

and triggered the activity of the labeled neurons. These one-

step ancestors are labeled in turn, and the process is iterated

backwards in time until t=0 is reached. The pattern of la-

beled neurons quickly converges to a small subset, as shown

in the middle panel of Fig. 7. Only the neurons in this re-

duced subset contribute to the persistence of the pattern; the

remaining neurons could be cut out of the network without

destroying the persistent activity. The pattern of activity

along this backbone, shown in the bottom panel of Fig. 7, is

periodic in time. The period is only slightly longer than the

recovery time T
R

�1�
, indicated by the dashed vertical lines

�note the expanded time scale in this panel�. Such backbone

pathways have also been identified in an experimental study

of the excitable Belousov-Zhabotinsky reaction;
25

in this

photosensitive system, unidirectional shortcuts were imple-

mented through local optical excitation.

A striking feature of this regime is that a network con-

figuration capable of sustaining persistent activity displays

an extraordinarily large number of different attractors. To

assess the number of coexisting attractors we focus on the

regime of low shortcut density, where all solutions are peri-

odic. Each solution can be characterized by its period, its

mean firing rate, and the standard deviation of the firing rate.

A labeling of attractors based only on these three measures is

likely to underestimate the total number of attractors; how-

ever, it suffices to find a large number of them, as shown in

Fig. 8. This figure illustrates attractor multiplicity for a ran-

domly chosen network configuration of N=1000 neurons

with p=0.05 and �D=0.1. Each of the 471 distinct stable

patterns of persistent activity identified in Fig. 8�a� arises

from an initial condition in which only one neuron is acti-

vated. As shown in Fig. 8�b�, which shows the number of

initial conditions that lead to a solution with a given period,

many of these stable patterns have the same period �note the

logarithmic scale�. In contrast, the standard deviation of the

firing rate �Fig. 8�c�� shows great variability, reflecting dif-

ferent temporal evolutions of the firing rate within a period.

A large number of attractors is typical for these net-

works. Figure 9 shows the number of attractors as a function

of network size; black circles represent data points obtained

as averages over 20 different network configurations of a

fixed size. Most attractors have quite small basins of attrac-

tions: within the restricted set of initial conditions in which

only a single neuron is excited, most attractors can be

reached from only one such initial condition �red squares�.
The overall number of attractors increases roughly linearly

with system size for large values of N, as does the number of

attractors with different periods �blue diamonds�, but the lat-

ter is about an order of magnitude smaller than the total

number of attractors. The identification of attractors requires

that networks achieve a steady state of persistent activity, but

since the duration of the transients grows with system size,

the computation time grows faster than N2. This precludes us

from simulating significantly larger system sizes than shown

in Fig. 9; such data would be necessary to reliably estimate

scaling relations between network size and number of attrac-

tors. �For N=4000 the computation takes over 2 weeks on a

desktop PC.� Preliminary computations with more general

FIG. 6. Amplitude of oscillatory activity, measured through the standard

deviation of the firing rate, as an increasing function of the shortcut density

p. The standard deviation is obtained as an average over 5000 network

configurations that exhibit persistent activity for �D=0.1; N=1000.

FIG. 7. Spiking activity in a network of N=1000 neurons with a density of

shortcuts p=0.1 is shown in the top panel for �D=0.1. The activity of neu-

rons that are part of the backbone pathway is indicated in red. The middle

panel shows the spiking activity within the backbone. The enlargement

shown in the bottom panel displays periodic activity, with a period longer

than the recovery time T
R

�1�
=2.494 �delimited by dashed vertical lines�. See

text for details.
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initial conditions reveal many more attractors than those

shown in Fig. 8. Thus, while the restricted initial conditions

that give rise to Fig. 9 suggest an almost linear increase in

the number of attractors with system size, the full number of

attractors may grow substantially faster.

At this point, the origin for this exceedingly large num-

ber of different attractors is not clear. In all-to-all coupled

oscillator systems, factorially large numbers of attractors are

due to the permutation symmetry associated with the global

coupling.
27

The small-world networks investigated here do

not possess such symmetry. In this case, the large number of

attractors found for a specific network configuration is likely

to be due to a combination of geometrical and dynamical

causes: the coexistence of many backbones that can indepen-

dently support sustained activity, and the variability in mem-

brane potentials that can result in distinct but not too differ-

ent firing patterns. While we find transitions between

different attractors in the presence of finite-amplitude

noise,
26

we have not investigated whether this system exhib-

its the extreme noise sensitivity found in the case of all-to-all

coupled oscillators, where it is due to the crowding of large

numbers of attractors.
27

As the density p of shortcuts increases, the distance trav-

eled by the waves before encountering the entrance to a

shortcut decreases. Consequently, waves of excitation spread

throughout the network more rapidly, as shown in the pro-

gression of spatiotemporal patterns of Figs. 2�a�–2�e� for in-

creasing values of p. If p becomes too large, activity spreads

too fast and it quickly dies away, as shown in Fig. 2�f�. Since

the shortcuts are randomly placed, different network configu-

rations will exhibit different dynamics. Thus, while the over-

all likelihood of persistent activity decreases with increasing

p, the actual network dynamics depend on the particular net-

work configuration.

The mechanism that leads to the extinction of network

activity is easily elucidated.
20

Once a neuron has emitted a

spike, its membrane potential is reset to a fixed value, chosen

here to be Vres=0. While the membrane potential of the neu-

ron recovers towards its resting value V�, activity spreads

through the network, eventually finding its way back. Once

this occurs, the neuron receives synaptic input equal to gsyn.

This input will be sufficient to trigger a spike only if this

neuron has recovered sufficiently. It is therefore clear that as

the number of shortcuts is increased and activity spreads

more rapidly, the network is less likely to sustain persistent

activity. Whether or not this mechanism of premature return

will lead to the extinction of activity in a given network

depends on its particular configuration. Many different net-

work configurations for a given value of p have been simu-

lated in order to measure the fraction that fail to sustain

persistent activity. This probability of failure is shown as a

function of p for different values of the system size N in the

left inset of Fig. 10. In agreement with our intuitive argu-

ment, the probability that a network drawn at random fails to

sustain activity increases with increasing p. In fact, there is a

sharp crossover from a low p regime characterized by the

ability to sustain persistent activity into a large p regime in

which activity will always fail. The transition between these

FIG. 8. Large number of attractors for a specific network configuration, with

N=1000 neurons, p=0.05, and �D=0.1. �a� The mean firing rate, its standard

deviation, and the period of all 471 distinct attractors evoked by initial

conditions in which only one neuron is activated. �b� Number of initial

conditions that lead to an attractor with a given period; many attractors,

although distinct, have the same period �note the logarithmic vertical scale�.
�c� Number of initial conditions that lead to an attractor with a given stan-

dard deviation of the firing rate.

FIG. 9. Number of attractors: all attractors �circles�, attractors with basin of

attraction of size one �squares�, and attractors with different periods �dia-

monds; note different vertical scale on the right� as a function of network

size N.
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two regimes occurs at higher values of p as the system size N

increases.

As discussed in Ref. 20 this transition can be captured in

a mean-field approximation in which the return time is as-

sumed to be identical for all neurons. In this approximation,

the maximum return time TA needed for the activity to

traverse the entire network can be expressed as a function of

only p and N. Setting this time to be equal to the recovery

time yields an upper bound for the critical density of short-

cuts at which a transition from persistent activity to failure

occurs,

TA�pcr� = TR
�1�. �5�

An approximate form for TA is easily derived. Assume an

initial condition in which a single neuron fires at time t=0.

Given a density p of shortcuts, the entrance to a shortcut will

be typically encountered after 1 / p neurons have fired, which

occurs after a time �D /2p; the factor of 2 is due to the two

wave fronts that emerge from the initially activated neuron

and propagate in opposite directions. Due to the activity in-

jected through the shortcut, four wave fronts are now propa-

gating through the system; 2/ p neurons will fire during the

subsequent time interval of duration �D /2p, at the end of

which a new shortcut entrance will typically be found and

two more wave fronts will be generated. The process is iter-

ated, with 2k−1 / p neurons firing during the kth cycle. It takes

n cycles to ensure that all neurons have fired, with n such

that

�
k=0

n−1

2k = pN , �6�

which leads to a total time

TA�p� 
 n
�D

2p
= �D

ln�1 + pN�

2p ln 2
. �7�

This is a purely geometric result for the time it takes for

activity to traverse the entire extent of the network; this time

is related trivially to the largest distance in the network. The

geometric mean-field properties of small-world networks

have been analyzed by Newmann, Moore, and Watts,
28

who

used a continuum limit to calculate the fraction of a small-

world network that is covered by starting at a single point

and extending outwards a distance r in both directions; this is

equivalent to following the spread of waves of activation

during a time r�D for the neural network considered here.

The calculation in Ref. 28 takes into account two effects that

were omitted from their earlier calculation
29

and from our

derivation, Eq. �7�. First, as the network is covered, a short-

cut might lead to a part of the network that has already been

traced over; this contribution should not be counted. In the

neural scenario, this is equivalent to an attempt at injecting

activity into a neuron that has already fired but not yet re-

covered to the point where it can fire again. Such a shortcut

does not contribute to sustained activity. Second, when two

covering fronts meet, they stop and no longer contribute. In

the neural network, this corresponds to activity wave fronts

that meet and annihilate. The incorporation of these two ad-

ditional mechanisms leads to a two-component model that

correctly describes both the covered fraction of the network

and the number of fronts.
28

The result, when applied to the

neural network of Eq. �1�, yields

��1 +
4

pN
� tanh���1 +

4

pN
� pTA�p�

2�D

 = 1. �8�

The identification TA�pcr�=T
R

�1�
then yields the mean-field es-

timate p
cr

�MFT�
for the density at the failure transition.

The main panel in Fig. 10 shows the failure rates as a

function of shortcut density, with p rescaled by the critical

density p
cr

�MFT�
that follows from Eq. �8�. All rescaled curves

intersect at a common value of p, which defines the transi-

tion point at pcr. The mean-field theory yields an upper

bound, pcr� p
cr

�MFT�
. It is interesting to note that a similar

rescaling using the estimate for pcr that results from Eq. �7�
also produces a family of rescaled curves that intersect at a

common value of p, as shown in the right inset of Fig. 10.

While p
cr

�MFT�
overestimates the true pcr at which the rescaled

curves cross, the estimate based on Eq. �7� underestimates

the true pcr. In an earlier report
20

we incorrectly used TR

instead of T
R

�1�
as the recovery time in Eq. �8�. The corre-

sponding rescaled curves intersected at zero. We cannot tell

whether this agreement with the true pcr was just a coinci-

dence or the consequence of a subtle cancellation between

factors leading to overestimation or underestimation. In any

case, it is worth emphasizing that all three methods, although

only approximate, succeed in rescaling the curves in the left

inset of Fig. 10 so as to obtain a unique crossing. This is due

to the fact that these phenomenological approaches result in

estimations for the critical density pcr with very similar de-

pendencies on system size N; these estimates seem to pro-

vide a good approximation to the true dependence on system

size.

The failure transition occurs at the value of p for which

the geometrical quantity TA�p� equals T
R

�1�
. This recovery

time is thus the central quantity that determines persistence

or failure for a given shortcut configuration. It is worth point-

ing out that this recovery time is not the same as the absolute

refractory period Tr. During the refractory period, neurons

are inhibited from receiving synaptic input, while the mem-

FIG. 10. Probability of failure as a function of shortcut density for different

values of the system size N. The density of shortcuts is scaled by pcr from

Eq. �8�. Left inset: unscaled data. Right inset: data scaled by pcr from

Eq. �7�.
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brane potential still relaxes towards its resting value. While

Tr is an intrinsic property of individual neurons, T
R

�1�
depends

strongly on the strength of the synaptic coupling. The curves

in Fig. 11 show the fraction of network configurations that

fail to sustain persistent activity for different values of the

refractory period Tr. For Tr�2�D, the input that neurons in

the wake of a propagating wave receive at a time 2�D after

their own firing is unaffected, and the relevant recovery time

is T
R

�1� �cf. Eq. �4��. The corresponding curves are as those for

Tr=0, shown in Fig. 10. The input received at 2�D after firing

is suppressed for Tr�2�D. In this low p regime, the persis-

tent states do not depend on neurons receiving additional

inputs before the one that triggers a spike, and the failure

transition is controlled by TR �cf. Eq. �3��. The failure tran-

sition is thus independent of Tr as long as 2�D�Tr�TR. It is

only for Tr�TR that the refractory period suppresses relevant

input to the neurons and affects the failure transition. This is

illustrated in Fig. 11, where the refractory period Tr is seen to

have little effect on persistent activity when it takes values

between 2�D=0.20 and TR=2.83.

In our analysis of persistent activity and transition to

failure, we have also considered the possibility of an upper

bound in the length of allowed shortcuts. We summarize our

results without showing the corresponding numerical data:

the behavior of the system is qualitatively unchanged as long

as this upper bound exceeds a threshold value; below thresh-

old, the network is essentially only locally coupled and the

failure probability rapidly approaches one. Other modifica-

tions to the distribution of shortcut lengths might include

allowing for a nonuniform distribution. It is unclear how a

nonuniform distribution of shortcut lengths would affect the

dynamics. However, it has been shown that one-dimensional

networks maintain a small-world structure if the distribution

of shortcut lengths is power-law with power �2.
30

We as-

sume that the regime we have discussed in this section will

also be present in such a scenario.

IV. THE DISORDERED REGIME: CHAOTIC
TRANSIENTS IN SLOW WAVES

For small values of the density of shortcuts p, a small-

world network of integrate-and-fire neurons is quite likely to

sustain persistent activity. As discussed in the preceding sec-

tion, the spatiotemporal pattern of network activity in this

regime is highly regular and most often periodic, despite the

complex, heterogeneous topology of the network itself. As p

increases, a transition takes place: more and more network

configurations exhibit activity which peaks and then shuts

down. Interestingly, for large enough �D there is an addi-

tional change in network dynamics as p increases. As shown

in Fig. 12 for �D=0.16 and 0.18, the failure probability ini-

tially increases with p, as for low values of �D, but it then

turns downwards again as p increases further. To understand

this reentrant phenomenon, we first analyze the spatiotempo-

ral dynamics characteristic of this seemingly persistent activ-

ity at large p.

Examples of network dynamics for slow waves ��D

=0.16� are shown in Fig. 13. For values of p below or near

the theoretical transition to failure �Figs. 13�a�–13�c��, the

activity is similar to that shown for fast waves ��D=0.10� in

Fig. 2. However, in the reentrant regime �Fig. 13�d��, the

activity is chaotic �cf. Fig. 15�a� below� and the population

firing rate exhibits irregular peaks that reflect near-

synchronous activity involving a large fraction of the net-

work.

A detailed, quantitative analysis for �D=0.18 shows that

the change in behavior occurs already before the maximum

of the failure probability curve. For fast waves, correspond-

ing to small �D, the amplitude of the oscillations in the popu-

lation activity, as measured by the standard deviation of the

firing rate, was found to increase monotonically with p �cf.

Fig. 6�. However, for slow waves, corresponding to large �D,

this amplitude of oscillations is nonmonotonic and decreases

over the range 0.4� p�0.6 �Fig. 14�. It is instructive to

compute the spectral entropy of the population firing rate,

S = − �
	

P�	�ln P�	� , �9�

which measures the number of significant peaks in the power

spectrum P�	�. The spectral entropy exhibits a significant

increase over the same range 0.4� p�0.6 �Fig. 15�b��, indi-

cating an increase in the complexity of the dynamics. The

variability of the spectral entropy across network configura-

tions with the same density of shortcuts exhibits a broad

maximum in the same range of p values, and reaches very

small nonzero values �about 0.06� in the strongly chaotic

regime. The detailed evolution towards chaotic dynamics,

FIG. 11. Dependence of failure probability on shortcut density for different

values of the refractory period Tr. Shown are averages over 500 network

configurations, with N=1000, �D=0.1, and TR=2.83.

FIG. 12. Dependence of failure probability on shortcut density for different

values of the delay �D=0.06,0.08,0.10,0.12,0.14,0.16. Shown are averages

over 2000 network configurations for N=1000. Note the nonmonotonic

character of the curves for large enough delay. In the large p regime, failure

probability is estimated within a finite time T*=100.
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which depends on the specific configuration of shortcuts, is

not investigated in further detail in this work.

What underlies the emergence of reentrant activity with

increasing p? The answer lies in the interplay between net-

work topology and the delay �D. The mean-field model that

provides a description of the failure transition, Eq. �5�, is

based on the assumption that the maximal firing frequency of

each neuron is limited by the recovery time T
R

�1�
. However, a

small-world network constructed by adding shortcuts allows

for neurons to receive more than one incoming shortcut. The

probability of such configurations is small at low p; in this

regime, the fraction of neurons with two incoming shortcuts

is given by s2	 p2 /2,
26

which is indeed negligibly small for

p�1. �We assume that the number of neurons with more

than two shortcut inputs can be ignored and we compute the

most likely rather than the expected value of the number of

neurons with two shortcut inputs.� Mean-field results that

ignore such configurations describe the failure transition pro-

vided it occurs at pcr�1. However, as p approaches 1, i.e.,

for �p−1�
1, the fraction of neurons with two incoming

shortcuts becomes s2=1−�2/2+ �p−1� /2, which is nearly

0.3 for p=1. In this regime, a significant fraction of neurons

is likely to receive several synaptic inputs during one cycle

of network activity. Such neurons would not be constrained

by the recovery time T
R

�1�
, but would rather be primed to fire

earlier, potentially allowing the activity to persist where it

otherwise would fail. A neuron that has received n inputs at

times tr, r=1, . . . ,n, since its last firing has a recovery time

T
R

�n�
given by

TR
�n��t1, . . . ,tn� = ln�V� − gsyn�r=1

n etr

V� + gsyn − 1
� . �10�

Note that Eq. �10� reduces to Eq. �3� for n=0 and to Eq. �4�
for n=1 �with t1=2�D�. In general, T

R

�n�
depends on the spe-

cific firing times of the n neurons that provide inputs through

shortcuts; these times depend in turn on the details of activity

propagation in each specific network configuration. How-

ever, since integrate-and-fire neurons become increasingly

sensitive to their input as time passes after their firing, the

value of T
R

�n�
in Eq. �10� is bounded below by T

R,min

�n�
, which

FIG. 13. Examples of network dynamics for �D=0.16

and for different values of the density p of shortcuts.

The values p=0.01, 0.2, 0.4, and 1.0 correspond to pan-

els �a�–�d�, respectively. Each panel shows both spiking

activity and population firing rate. The reentrant activity

in �d� is noisy and exhibits synchronized population

bursts.

FIG. 14. Average population activity �mean firing rate� and amplitude of its

oscillations �standard deviation of the firing rate� as a function of the short-

cut density p. Note the nonmonotonic behavior of these curves. Data ob-

tained as an average over those configurations �out of 200� for which the

activity persists for at least 15 000 steps for �D=0.18 and N=1000.

FIG. 15. Temporal complexity of activity patterns. �a� Representative power

spectra for p=0.2 �S=4.6� and p=1.0 �S=7.4�. �b� Spectral entropy S �mean

and standard deviation across 200 configurations� for �D=0.18 and N

=1000, over 15 000 time steps.
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occurs when all n inputs coincide at T
R,min

�n�
itself. This lower

bound is given by

TR,min
�n� �ti = TR,min

�n� � = ln� V�

V� + ngsyn − 1
� . �11�

For small enough p, the interspike intervals �ISI� of al-

most all neurons in almost all network configurations are

bounded below by T
R

�1�
; this property has allowed us to cal-

culate the time for activity to spread throughout the whole

network using a purely geometric approach. For higher val-

ues of p, there may be a subset of neurons with shorter

allowable ISI. However, many neurons will still receive only

one input per cycle, and the frequency of their spiking activ-

ity should reflect this fact. The distribution function for the

ISI shown in Fig. 16 supports this argument. Fast spiking

activity with ISI�T
R

�1�
occurs appreciably only for p�0.6,

and becomes both more common and faster with increasing

shortcut density. Our earlier analysis
20

showed that the spikes

with ISI�T
R

�1�
occur in population bursts, with no such

spikes in between bursts. In the absence of other spikes, the

activity would die out during these intervals between bursts.

However, the fast spiking neurons that receive multiple in-

puts via multiple incoming shortcuts are primed to carry over

the activity during the intervals between bursts; their fast

spiking sustains activity during the time needed for the slow

spiking neurons to recover.

Long delays �D contribute in several ways to bridging

the periods of low activity between bursts. For larger �D, the

failure transition is shifted towards larger shortcut densities,

thus significantly enhancing the number of neurons that re-

ceive multiple shortcut inputs. At the same time, in order to

bridge the time between the return time TA and the recovery

time T
R

�1�
of the slow spiking neurons, fewer fast spiking

neurons are needed if the delay is longer. Moreover, the ex-

ponential recovery of integrate-and-fire neurons towards

their resting potential implies that later inputs have a stronger

impact on the recovery period than earlier ones �cf. Eqs. �10�
and �11��. With increasing �D, all inputs are shifted to later

times relative to the most recent spike of the postsynaptic

neuron; this shift significantly reduces the recovery time.

However, an increased delay �D is not necessary to establish

a regime of prolonged activity. As shown in Fig. 17 for fixed

delay �D=1.4, increasing the system size from N=1000 to

N=16 000 shifts the failure transition to sufficiently large p

that the number of neurons with multiple inputs is sufficient

to bridge the gap between bursts of slow spiking activity,

even for this shorter delay.

For low values of p, the spatiotemporal dynamics are

most often periodic. In those cases the dynamics can truly be

called persistent. For p�1, the chaotic nature of the dynam-

ics precludes such a clear assessment; in fact, failure is pos-

sible even after very long times. In this regime, prolonged

activity relies on bridging the quiescent period between

bursts of slow spiking activity through fast spiking neurons

that receive multiple shortcut inputs; it is necessary that these

shortcuts are actually activated at suitable times during the

quiescent part of the cycle. Thus, while in one cycle the

activity during the burst may have excited such a pathway,

the different activity pattern in the next burst may fail to do

so; the activity could then die out. Indeed, we find that the

prolonged activity characteristic of large shortcut densities

eventually fails for essentially all configurations. Examples

of such long-lived transients are shown in Fig. 18, where

population firing rates are shown for a fixed network con-

figuration of shortcuts at increasing values of �D.

The value of �D has a strong influence on the duration of

the transient. As shown in Fig. 18, the overall trend is for the

lifetime of the transient activity to increase with increasing

delay �note the change in temporal scale from panel to

panel�. However, the actual dependence on �D is more subtle,

FIG. 16. Distribution of interspike intervals �ISI� for �D=0.16 and different

values of the shortcut density p. For low p, all allowed ISI are above the

recovery period T
R

�1� �dashed vertical line�. For p�0.6, multiple inputs result

in ISI below T
R

�1�
.

FIG. 17. Failure probability as a function of shortcut density p for �D

=0.14 and different values of system size N. Shown are averages over 400

configurations; failure probability is estimated within a finite time T*=28.

Note the prevalence of prolonged activity in larger systems.

FIG. 18. Population firing rate for four values of the delay �D, with p=1.

The same network configuration and the same initial activation is used in all

four panels. Failure tends to occur later as �D increases; note the change in

temporal scale from panel to panel.
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as shown in Fig. 19. The fraction of network configurations

for which the prolonged activity fails before a specified time

T* is reached exhibits a surprising degree of structure in its

dependence on �D. Most surprising is the finding that an

increase in �D does not always decrease the probability of

failure, but can in fact enhance it. These changes can occur

over very small intervals in �D, as shown in the expanded

window of Fig. 19�b�. This fine structure is reminiscent of

resonances, although these are more like antiresonances; the

values of �D within these windows are in some sense optimal

for escaping from prolonged activity. While details of the

mechanism underlying this structure are not yet understood,

it is clear that the dependence on �D reflects the significance

of the ratio �D /TR. This effect is illustrated in Fig. 20, which

shows the dependence of the failure probability on �D for

two network sizes: N=500 and N=1000. While the probabil-

ity of failure is higher overall for the smaller network, the

location of the “resonant” windows in �D does not show

much dependence on system size. However, even a small

reduction in recovery time from TR=2.83 to TR=2.79, due to

an increase in synaptic strength from gsyn=0.200 to gsyn

=0.202, results in a significant shift of the “resonant” win-

dows towards lower values of �D.

To assess whether any significant fraction of the network

configurations sustains truly persistent activity, we consider

the failure fraction F as a function of the final time T*, so as

to extrapolate to T*→�. The complementary fraction

1−F�T*� of network configurations that sustain persistent

activity up to a time T* is shown for different values of the

delay �D in Fig. 21. As anticipated from the nonmonotonicity

in Fig. 19, the fraction of failing network configurations is

largest for �D=0.167; a very rapid drop in failure rate occurs

from �D=0.17 to �D=0.18. When considered as a function of

time for fixed �D, the behavior of the curves in Fig. 21 indi-

cates that the decay is not exponential.

To obtain an approximate analytic form for the failure

fraction F�T*�, let us consider a specific network configura-

tion for a given value of p. The duration of the activity until

failure will then depend on the initial condition. In this nu-

merical experiment we choose a specific network configura-

tion and consider 2000 different initial conditions; to reduce

the computational effort these simulations are done for a

smaller system with N=200. The initial conditions are ran-

dom and given by Vi=V0+i, i=1. . .N, with V0=0.85 and i

drawn from a uniform distribution in the interval �−0.5,

+0.5�. A failure time is determined for the activity triggered

by each initial condition. The resulting distribution of failure

times exhibits exponential behavior of the form �e−t/T for

large times; this allows the extraction of a characteristic fail-

ure time T associated with this network configuration. An

exponential distribution of failure times suggests that the

chaotic dynamics effectively lead to a fixed probability for

the activity to die out after each population burst.

The characteristic failure time T is then computed for

many network configurations of the same size and same

shortcut density, leading to a distribution ��T� of character-

istic failure times, as illustrated in Fig. 22. The large-T be-

havior of this distribution is well fit by an exponential decay,

FIG. 19. �a� Failure rates for different values of the final time T*=5TR,

10TR, 20TR, 40TR, and 100TR. Shown are averages over 2000 configurations

with N=1000 and p=1. �b� Enlarged view of the data within the box in �a�
for T*=100TR illustrates the fine structure in the failure rate. Shown are four

runs based on averages over 8000 configurations each; the black line is the

average over the four runs.

FIG. 20. Failure rates averaged over 8000 network configurations with N

=500 and p=1. Data are shown for both gsyn=0.200 �circles� and gsyn

=0.202 �squares�. Data for N=1000 �cf. Fig. 19� shown for comparison.

FIG. 21. �Color� Complementary failure fraction 1−F as a function of time

for different values of the delay �D. Note the logarithmic scale on the ver-

tical axis. Inset: Failure fraction F for the same data; the vertical scale is

now linear.
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lim
T→�

��T� � e−�T. �12�

The distribution ��T� of characteristic failure times deter-

mines the average number of failures expected to have oc-

curred by time T*,

F�T*� = �
0

�

dT��T��1 − �e−T*/T� . �13�

Inserting the asymptotic behavior identified in Eq. �12� into

Eq. �13� and assuming that the prefactor � does not depend

on the characteristic failure time T yields the expected failure

rate for large t,

F�t� = 1 − 2���tK1�2��t� , �14�

where K1�x� is the first-order modified Bessel function of the

second kind. The asymptotic expansion of this Bessel func-

tion for large arguments leads to

F�t� 	 1 − �����t�1/4e−2��t�1/2

, �15�

which displays stretched exponential behavior. The analytic

result of Eq. �14� provides a good fit to the time dependence

of the failure probability, as shown in Fig. 23. For �D=0.18,

the fit with �=0.67�10−5 and �=0.91 is good over essen-

tially the whole time range. For �D=0.165 �inset�, the fit is

not quite as good; the curvature of the analytic function

seems to be smaller than that of the data. A fit to the �D

=0.165 data for t�3400 yields �=0.12�10−3 and �=0.64.

This fit �blue dotted line� underestimates the data for long

times. A fit with �=0.10�10−3 and �=0.54 �red dashed

line� reduces the underestimation at long times, but is not as

good for smaller times. In any case, the analytic results of

Eqs. �14� and �15� indicate the existence of very long tran-

sients of prolonged activity. This activity will always even-

tually fail; F�t�→1 as t→�.

V. CONCLUSION

In this paper we have used a minimal model to study the

influence of network topology on the dynamics of coupled

excitable elements. The network consists of a ring of locally

connected elements; the connectivity is enhanced through

random shortcuts that connect arbitrarily distant elements.

Since our goal is to capture gross features of cortical connec-

tivity, we assume that these shortcuts provide only unidirec-

tional connections. This is in contrast to the bidirectional

shortcuts that are appropriate for modeling epidemic

propagation
19

or regular diffusive processes.

The dynamics of the system exhibit three distinct re-

gimes, depending on the density of shortcuts and the speed

of the waves that propagate through the network. For low but

nonzero density of shortcuts, activity persists for essentially

all network configurations when triggered by the initial ex-

citation of a single neuron. This activity is predominantly

periodic, and the mean firing rate of these persistent states

shows only little dependence on the wave speed or the den-

sity of shortcuts once p�0.05. This firing rate is quite close

to the maximal firing rate allowed by the recovery period of

the neurons.

The recovery period is not to be confused with an abso-

lute, intrinsic refractory period; rather, it is the time from one

spike until the membrane potential has recovered to a value

such that a single synaptic input of specified strength will

suffice to trigger a new spike. This recovery period can be

much longer than the absolute refractory period; this phe-

nomenon has been observed in neurons that exhibit a slow

after-hyperpolarization that underlies the slow oscillations

��1 Hz� observed in vivo in cat
31

and in cortical slices of

ferret.
32

There, the recovery period induced by after-

hyperpolarization can last as long as a few seconds. Of rel-

evance to the dynamics investigated here is the time associ-

ated with the propagation speed of such slow oscillations

over the whole network; specifically, the dependence of this

propagation time on network connectivity. This dependence

has been studied in cortical models
33,34

that do not incorpo-

rate shortcuts but use other mechanisms to control and vary

network connectivity: either a variable spatial width of the

Gaussian distribution that controls the probability that two

neurons are connected,
34

or a trimodal probability distribu-

tion that captures a type of patchy connectivity in the

cortex.
33

As expected, the speed of activity propagation was

found to increase with increased connectivity; it was conjec-

tured that this connectivity dependence underlies the large

difference in propagation times observed for slow waves in

olfactory cortex and neocortex.
34

For low density of shortcuts, the persistent activity trig-

gered by a localized excitation is periodic. However, the

overall dynamical behavior of the system can be quite com-

FIG. 22. Distribution of characteristic failure times T, from 50 000 network

configurations with N=200, p=1, and �D=0.16. Note the logarithmic scale

on the vertical axis.

FIG. 23. �Color� Complementary failure fraction 1−F as a function of time

for p=1 and �D=0.18 �inset for �D=0.165�. Dashed red and dotted blue lines

are fits to Eq. �14�. Note the logarithmic scale on the vertical axis.
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plex due to the coexistence of a large number of stable solu-

tions for a given network configuration. Whether the number

of attractors grows as fast with system size as it does for

globally coupled oscillator networks is not known at this

point. In the case of global coupling, the permutation sym-

metry leads to a factorial growth of the number of attractors

and to attractor crowding;
27

however, this permutation sym-

metry is broken in the small-world topology. So far as we

have been able to investigate the dynamics of increasingly

large networks, we have not been able to reach saturation of

the number of attractors evoked through different initial con-

ditions. The mechanism underlying this large number of at-

tractors is not yet apparent; however, it is clear that noise

will induce switching between these different attractors.
26

As the density of shortcuts is increased, the number of

network configurations that can sustain persistent activity de-

creases, until persistent activity is essentially no longer pos-

sible. For fast waves, the transients after a localized excita-

tion consist of a single population burst followed by activity

extinction. For slow waves, the crossover to complete failure

occurs at larger shortcut densities than for fast waves. In

addition, slow waves can exhibit exceedingly long transients

that comprise thousands of population bursts. This activity

eventually fails; the failure times for different network con-

figurations at a fixed density of shortcuts follow an exponen-

tial distribution, which leads to a stretched exponential dis-

tribution for the expected probability of failure as a function

of time. The mechanism responsible for these long transients

is crucially dependent on the existence of pathways that

bridge the quiescent periods between population bursts.

These pathways are supported by the topology of the small-

world network; this mechanism is thus expected to differ

from the one relevant for dilute random networks of pulse-

coupled oscillators.
35

Another quantity of interest is the fraction of network

configurations that has already failed by a specified time T*.

This quantity exhibits an overall decreasing trend with de-

creasing wave speed, or increasing recovery time �D. In ad-

dition to this decreasing trend, this quantity exhibits an intri-

cate fine structure that includes sharp, resonance-like

increases of the failure fraction with decreasing wave speeds.

A naive argument supports the decreasing trend, but not the

sharp resonances; a decrease in wave speed is likely to allow

for additional shorter loops to contribute to the activity, and

thus enhance the chances for persistence. However, the exis-

tence of sharp increases in failure probability indicates that

the activation of one such loop can block the propagation of

activity through previously active loops, and thus induce fail-

ure. While it is clear that such a switching between loops can

occur with increasing �D, the mechanism that underlies these

increased failures is not yet fully understood.

The crossover to failure, which can be understood in

detail based on an analytic mean-field result for the effective

size of these idealized small-world networks, provides the

basis for understanding a number of recent studies of related

but more complex neural network models.
4,22,23

In Ref. 22, the connection between network connectivity

and epilepsy in the hippocampus was investigated by consid-

ering small-world networks of three different types of neu-

rons: noisy and leaky integrate-and-fire neurons, stochastic

Hodgkin-Huxley cells, and Poisson spike-train cells. As pa-

rameters such as synaptic strength, number of synapses per

neuron, and proportion of local versus shortcut connections,

were varied, the network displayed dynamical behaviors de-

scribed as “normal,” “seizing,” and “bursting.” For low

shortcut density, noise-driven activity was found to remain at

a low level; this pattern of activity was associated with nor-

mal behavior. With increasing shortcut density, the level of

activity triggered by a noise-driven event strongly increased,

due to the recruitment of a vastly larger number of neurons.

This pattern of activity was likened to seizing behavior. Ac-

cording to our analysis, this regime corresponds to patterns

of connectivity that support persistent activity. Yet further

increases in the shortcut density were found to induce burst-

ing dynamics, characterized by irregular bursts involving a

large fraction of all neurons, separated by quiescent periods.

This pattern of activity corresponds in our analysis to net-

work configurations associated with failure, for which each

noise-triggered event leads to a population burst that brings

essentially all neurons into their recovery period.

In Ref. 23, the role of network connectivity in sustaining

population bursting activity was investigated by considering

a small-world network of Morris-Lecar neurons. Activity

was initiated through a localized set of pacemaker neurons. It

was found that in the presence of shortcuts, network activity

builds up over several driven cycles into bursts that involve a

large fraction of neurons firing within a small time window.

Both the time needed to build up such bursts and the time

between them were found to decrease with increasing short-

cut density. The appearance of repeated bursts is related to

the failing configurations discussed here. As expected from

our analysis, bursting behavior was supplanted by persistent

activity when the wave speed was reduced �cf. increasing �D

in Fig. 12�. The slow buildup towards bursting activity ob-

served in Ref. 23 appears to be specific to the Morris-Lecar

neurons used in their model.

In Ref. 4, a 1:20 functional model of the rat dentate

gyrus was constructed to investigate the functional conse-

quences of two types of changes in network architecture that

take place concurrently during epileptogenesis: loss of hillar

mossy cells and sprouting of granular cell axons. The re-

moval of mossy cells resulted in a massive reduction in the

total number of connections, but this effect was to some

extent compensated by an increase in local connectivity due

to spatially restricted sprouting of granular cell axons. Sur-

prisingly, as long as mossy cells were not almost fully elimi-

nated, they continued to provide intermediate and long-range

connections onto granule cells, thus preserving the short net-

work diameter characteristic of small-world connectivity.

The hyperexcitability that arises from these structural

changes corresponds in our analysis to the sustained propa-

gation of fast waves in the presence of a small density of

shortcuts.
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