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Multiple attribute decision making (MADM) problem is one of the most common and popular research 
elds in the theory of
decision science. A variety of methods have been proposed to deal with such problems. Nevertheless, many of them assumed that
attribute weights are determined by di�erent types of additional preference information which will result in subjective decision
making. In order to solve such problems, in this paper, we propose a novel MADM approach based on cross-evaluation with
uncertain parameters. Speci
cally, the proposed approach assumes that all attribute weights are uncertain. It can overcome the
drawback in prior research that the alternatives’ ranking may be determined by a single attribute with an overestimated weight. In
addition, the proposedmethod can also balance themean and deviation of each alternative’s cross-evaluation score to guarantee the
stability of evaluation. 	en, this method is extended to a more generalized situation where the attribute values are also uncertain.
Finally, we illustrate the applicability of the proposedmethod by revisiting two reported studies and by a case study on the selection
of community service companies in the city of Hefei in China.

1. Introduction

Multiple attribute decision making (MADM) is an important
part of modern decision science [1–4]. It assumes that there
exists a set of alternatives with multiple attributes which a
decision maker (DM) should evaluate and analyze. 	e aim
ofMADM is to 
nd themost desirable alternative or rank the
feasible alternatives for supporting decision makings. As an
active research area, MADM problems have been tried to be
solved by some classical methods such as the simple additive
weighting method (SAW), the analytic hierarchy process
(AHP), and the technique for order preference by similarity
to ideal solution (TOPSIS) [5–7]. It also has been extensively
applied to many aspects such as economics, management,
engineering, and technology [8–15].

In MADM problems, the needed decision making infor-
mation includes attribute values and attribute weights. 	e
attribute values describe characteristics, qualities, and per-
formances of alternatives. 	e attribute weights are used to
measure the importance of attributes. Due to the complexity

of the real world and limited knowledge and perception capa-
bility of human beings, both attribute values and attribute
weights are uncertain [16, 17]. 	e decision makers are not
able to express their preferences or assessments explicitly [18].
In order to deal with such problems, many researchers try to
describe attribute values and attribute weights accurately in
uncertain environments. Generally, the researches in this area
can be classi
ed into three categories as follows.

Firstly, fuzzy set theory that appeared in 1965 has gradu-
ally become the mainstream in the 
eld of representing and
handling uncertain attribute values [19]. Since the inception
of the fuzzy set theory, various extensions have been pro-
posed, such as interval-valued fuzzy set [20], fuzzy multiset
[21], intuitionistic fuzzy set (IFS) [22], linguistic fuzzy set
[23], and hesitant fuzzy set (HFS) [24].

Secondly, several approaches have been proposed to
determine attribute weights. Generally, they fall into three
categories: subjective, objective, and hybrid methods [25].
	e subjective methods utilize the preferences of a decision
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maker to select attribute weights [26–28]. 	e objective
methods determine attribute weights based on the objective
information [29, 30]. Hybrid methods [31–34] combine both
the preferences of a decisionmaker and objective information
to determine attribute weights.

	irdly, as a nonparametric programming e�ciency-
rating technique for evaluating a set of decision making units
(DMUs) with multiple inputs and outputs, date envelopment
analysis (DEA) requires relatively less additional informa-
tion [35]. DEA has been considered as an e�ective tool to
solve MADM problems without information on weights. For
instance, Doyle [36] presents an approach based on DEA
method, which derives a set of attribute weights from the
data itself. Bernroider and Stix [37] introduce an approach
based onDEAwith restrictedmultipliers for accountable and
understandable MADM. Wu and Liang [38] develop a new
multiple attribute rankingmethod based onDEAgame cross-
e�ciency model, in which each alternative is viewed as a
player that seeks to maximize its own performance.

Although existing methods handle uncertainty to some
extent, some drawbacks are also exposed which are listed as
follows. First, both di�erent defuzzy approaches and weight
determination methods may generate di�erent attribute
weights and produce di�erent optimal solutions [39, 40].
	erefore, it is di�cult to identify which optimal solution
is the best one. Second, behavior factors are not considered
in existing MADM methods which may lead to deviation
results in decision making. Specially, they do not avoid the
bad situation that the ranking results may be determined by
a single attribute with an exorbitant weight. In other words,
the alternative rank order is consistent with the rank order of
overestimated attribute which means that other attributes are
totally useless in evaluation. Obviously, such result is unfair
and unreasonable because the optimal alternative should be
determined by multiple attributes instead of an individual
attribute. 	ird, although DEA models can evaluate MADM
problems without weight information, it also su�ers from the
following three drawbacks. One is that the optimal weights
derived by DEA may not be consistent with the opinions
of the decision maker [41]. Another shortage is that DEA
identi
es too many e�cient alternatives and cannot well
distinguish them [42, 43]. Furthermore, the nonuniqueness
solution phenomenon is also common inDEA basedMADM
methods [44].

Considering the above analysis, we attempt to develop a
cross-evaluation based approach to solve MADM problems
with uncertain decision information. To be speci
c, we 
rstly
de
ne and analyze the attribute weight space which contains
all feasible weights. Specially to avoid the single dominating
attribute situation, we calculate the upper bound weight
of each attribute. 	en, considering a condition where the
attribute values are certain and the attribute weights are
uncertain, the return and risk of closeness indexes are cal-
culated based on cross-evaluation in which each alternative
seeks to maximize its closeness index by selecting a set of
optimal weights. And the coe�cient of variation is utilized
to integrate the results and produce an alternative rank
order. In a more generalized condition where the attribute
values are denoted by interval values or ordinal values,

the cross-evaluationmodels consideringDM’s risk preference
are developed.

	e main contributions of the current paper can be
summarized as follows: (1) we 
rstly de
ned the attribute
weight space and determined the upper bound weight of
each attribute to conduct the uncertain information; (2) both
mean and deviationmeasures of closeness index under cross-
evaluation are considered to integrate a unique solution to
the MADM problem; (3) the proposed method is extended
to more generalized situations where the attribute values are
described by interval values and ordinal values, respectively.

	e remainder of this paper is organized as follows. In
Section 2, we brie�y review the relative works. In Section 3,
we propose a cross-evaluation basedmethod to solveMADM
problems with uncertain weight information. In Section 4,
the proposed method is extended to more generalized forms
where the attribute information is expressed by interval
values and ordinal values. Section 5 illustrates the methods
with reportedMADMstudies and a case study of the selection
of community service companies. Conclusions and future
research will be displayed in Section 6.

2. Preliminaries

2.1. Formulation of MADM Problems. Suppose � = {�1,�2, . . . , ��} is a discrete set of alternatives and � = {�1,�2, . . . , ��} is a set of � attributes with the weight vector � =(�1, �2, . . . , ��)�, where �� > 0, ∑��=1 �� = 1. Let � =(���)�×� be a decision matrix, where ��� denotes the attribute
value that the 	th alternative�� ∈ � takes with respect to the�th attribute �� ∈ �.

In general, there are both bene
t type attributes (i.e., the
larger the better) and cost type attributes (i.e., the smaller
the better) in a MADA problem. We transform the original
decision matrix � = (���)�×� into a normalized matrix � =(
��)�×� by using the method from Hwang and Yoon [7]:


�� = {{{{{{{{{{{
���{max� ���} , for bene
t attribute ��

{min� ���}��� , for cost attribute ��,
	 = 1, 2, . . . , �, � = 1, 2, . . . , �.

(1)

2.2. Characteristics of the TOPSIS Method. 	e basic prin-
ciple of TOPSIS method is that the optimal alternative
should have both the shortest distance from the positive ideal
solution and the furthest distance from the negative ideal
solution [14].

	e TOPSIS procedure is performed in six stages as
follows:

(a) Normalize the decision matrix
�� = ���√∑��=1 �2�� , 	 = 1, 2, . . . , �; � = 1, 2, . . . , �, (2)

where ��� is the �th attribute value of alternative 	.
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(b) Calculate the weighted normalized decision matrix

V�� = ��
��, 	 = 1, 2, . . . , �; � = 1, 2, . . . , �, (3)

where �� is the weight of the �th attribute, and∑��=1 �� = 1.
(c) Determine the positive ideal and negative ideal solu-

tion

Positive ideal solution �+ = {V+1 , V+2 , . . . , V+� }= {(max
�

V�� | � ∈ ��) , (min
�

V�� | � ∈ ���)} ,
Negative ideal solution �− = {V−1 , V−2 , . . . , V−� }= {(min

�
V�� | � ∈ ��) , (max

�
V�� | � ∈ ���)} ,

(4)

where �� indicate the index set of the bene
t type
attributes and ��� the index set of the cost type
attributes.

(d) Measure the distances from the positive ideal solution
and negative ideal solution, respectively:

�+� = √ �∑
�=1

(V�� − V
+
� )2, 	 = 1, 2, . . . , �,

�−� = √ �∑
�=1

(V�� − V
−
� )2, 	 = 1, 2, . . . , �. (5)

(e) Calculate the relative closeness to the ideal solutions

"∗� = �−�(�+� + �−� ) , 	 = 1, 2, . . . , �. (6)

(f) Rank the alternatives.

	e larger the closeness index of an alternative, the higher
the rank of the alternative.

2.3. DEA Cross-E�ciency Evaluation. We assume that there
are � DMUs to be evaluated in terms of � inputs and �
outputs. 	e 	th input and 
th output of DMU� are denoted
by %�� (	 = 1, . . . , �) and &	�, respectively. 	e e�ciency of

a DMU
 can be calculated by the following CCR model in
linear programming formulation [35]:

max
�∑
	=1

'	&	
 = *

s.t.

�∑
�=1

��%�� − �∑
	=1

'	&	� ≥ 0, � = 1, 2, . . . , �,
�∑
�=1

��%�
 = 1,
�� ≥ 0, 	 = 1, 2, . . . , �,'	 ≥ 0, 
 = 1, 2, . . . , /.

(7)

When the above model is solved, a set of optimal weights�∗1
, . . . , �∗�
, '∗1
, . . . , '∗�
 is obtained. 	en the 4 cross-
e�ciency of any DMU� is computed as [38]

5
� = ∑�	=1 '∗	
&	�∑��=1 �∗�
%�� , 4, � = 1, . . . , �. (8)

For DMU� (� = 1, . . . , �), the average of all 5
� (4 =1, . . . , �), denoted by 5� = (1/�)∑�
=1 5
�, is considered as
the cross-e�ciency score of DMU�.

3. Proposed Method

In this section, we will introduce the so-called single dom-
inating attribute issue and propose a model to support
decisions by incorporating considerations on this issue in
Section 3.1; furthermore, in Section 3.2, we will introduce
the cross-evaluation framework and the accompanying risk
consideration; 
nally, in Section 3.3, we propose a proce-
dure summarizing all the aforementioned considerations for
MADM.

3.1. Determination of the Weight Space. We observe that, in
MADM problems, an individual attribute can determine the

nal ranks of all alternatives when the corresponding weight
is greater than some threshold value. In other words, the
rank order of the alternatives is completely in accordance
with the rank order of the dominating attribute and the
rest of the attributes are totally ignored in the evaluation.
It should be noted that the ignored attributes are taken
into the evaluation only because the decision maker regards
them as import factors or they could have excluded them
from the decision process in the 
rst place. 	erefore, we
argue this is unacceptable. In order to address this issue,
it is necessary to de
ne and compute the threshold upper
bound of each attribute weight. 	e upper bound can aid the
decision process by suggesting meaningful weights.

For the simplicity of exposition, if the attribute values
�� (	 = 1, . . . , �) in the 7th column of the decision matrix� have the relation 
�1� ≥ 
�2� ≥ ⋅ ⋅ ⋅ ≥ 
��� (	� ∈{1,�}, / = 1, . . . , �), then we denote the ranks of the
alternatives according to the values of the 7th attribute ��
as ��1≻���2≻� ⋅ ⋅ ⋅ ≻���� . With this notation in position, the
single dominating attribute happens if the 
nal rank order
of all alternates is the same as some ��1≻���2≻� ⋅ ⋅ ⋅ ≻����
no matter how the decision maker distributes the relative
weights of the other attributes. We formulize this notion as
De
nition 1 as below.

De�nition 1. Let 7 be the index of some attribute. �∗� is the
threshold upper bound of �� if and only if the following
conditions are satis
ed:

(a) If �� ≥ �∗� , then ∀1 ≤ 	, ? ≤ �, 
�� ≥ 

� if and only
if ∑��=1 ��
�� ≥ ∑��=1 ��

�.

(b) If �� < �∗� , then ∃1 ≤ 	, ? ≤ �, such that 
�� ≥ 

�
and∑��=1 ��
�� ≤ ∑��=1 ��

� hold true simultaneously.



4 Mathematical Problems in Engineering

To implement De
nition 1, we provide 	eorem 2 below
to determine the threshold upper bound.

�eorem 2. 	e threshold upper bound of the 7th attribute
(�∗� ) is given by the minimization program

min ��
s.t. ��
�11 + �∑

�=1,� ̸=�
�(�)� 
�1� ≥ ��
�21 + �∑

�=1,� ̸=�
�(�)� 
�2�

≥ ⋅ ⋅ ⋅
≥ ��
��1 + �∑

�=1,� ̸=�
�(�)� 
���

(9)

�∑
�=1

�� = 1,
�� ≥ 0,� = 1, 2, . . . , �,B = 1, 2, . . . , � − 1,

(10)

where �(�)� = 1 − �� if � is the Bth element of the set{1, . . . , C} \ {7} in ascending order; otherwise, �(�)� = 0. Let
us take 7 = 1 as an example. We have (�(1)2 , �(1)3 , . . . , �(1)� ) =(1 − �1, 0, . . . , 0), (�(2)2 , �(2)3 , . . . , �(2)� ) = (0, 1 − �1, 0, . . . , 0),. . . , (�(�−1)2 , �(�−1)3 , . . . , �(�−1)� ) = (0, . . . , 0, 1 − �1). 	e sub-
script 	ℎ (ℎ ∈ {1, . . . , �}) of 
 in the above model indicates the	ℎ preferred alternative determined by the preference relation��1≻���2≻� ⋅ ⋅ ⋅ ≻���� .
Proof. Clearly, there are (� − 1) constraints in (9). When7 = 1, the weight combinations (�(1)2 , �(1)3 , . . . , �(1)� ) =(1 − �1, 0, . . . , 0), (�(2)2 , �(2)3 , . . . , �(2)� ) = (0, 1 − �1, 0, . . . , 0),. . . , (�(�−1)2 , �(�−1)3 , . . . , �(�−1)� ) = (0, . . . , 0, 1 − �1) are applied
to the �−1 constraints in order.	e
rst constraint guarantees
that the alternatives rank result has nothing to do with
attribute �2. Similarly, the remaining � − 2 constraints ensure
that the alternatives rank result has nothing to do with the
other attributes �3, . . . , ��. So the optimal minimization �1
satis
es (a) in De
nition 1.

Conversely, we suggest that a constraint belonging to theEth (E = 1, . . . , � − 1) group is removed from the model. 	en,
attribute �� may play a part in the ranking because it is not
completely suppressed. In other words, (b) in De
nition 1
holds.

Similarly, the upper bound of each attribute weight(�∗� , 7 = 2, . . . , �) can be calculated by the model in
	eorem 2 with 7 = 2, . . . , �. 	is proof is completed.

Example 3. Ma et al. [31] consider a case of a robot user
expecting to select a robot and there are four alternatives for
him to choose. 	ere are four attributes to evaluate them,

that is, cost, velocity, repeatability, and load capacity.	e nor-
malized decision matrix is as follows:

� = (((
(

0 1 56 13512 35 1 01 0 0 123 25 23 23
)))
)

. (11)

Suppose that the information on attribute weights is
completely unknown. 	e upper bound weight of the 
rst
attribute cost can be calculated by the above model.

By calculating the above model provided in 	eorem 2,
we obtain the optimal value�∗1 = 2/3 denoting the threshold
upper bound of the 
rst attribute�1. Analogously, each upper
boundof attributeweight can be calculated by similarmodels,
and the values are �∗2 = 10/13, �∗3 = 4/5, �∗4 = 9/14.
3.2. Mean and Deviation of Closeness Index Based Cross-
Evaluation Models. In this subsection, in the environment
of uncertain attribute weights, we develop cross-evaluation
models to calculate the mean and deviation of closeness
index for each assessed alternative, respectively. 	en, the
computed indexes are integrated to obtain the evaluation
results.

Cross-e�ciency evaluation method, since being pro-
posed by Sexton et al. [45], has been used to evaluate and
rankDMUs. Itsmain idea is to use cross-evaluation instead of
a self-evaluation. 	ere are at least two advantages for cross-
evaluation method. One is that it obtains a unique ranking
among the DMUs. 	e other is that the cross-e�ciency
means can act e�ectively to di�erentiate between good and
bad alternatives [46]. Hence, the cross-evaluation method
is widely used for ranking performance of alternatives, for
example, equipment design [47], supplier selection [48], and
stock market [49].

To calculate the self-evaluation closeness index for each
alternative, we consider the following mathematical pro-
gramming problem for a given alternative��:

max
�−��−� + �+� = "max

�� ∈ Ω (�) . (12)

Here, �−� and �+� represent the distance from negative
ideal point and ideal point (de
ned in (5)), respectively. For
ease of calculation, the ideal point and negative point are
de
ned as �+ = {�1, �2, . . . , ��} and �− = {0, 0, . . . , 0}. 	en�+� and �−� are denoted by �+� = √∑��=1(��
�� − ��)2 and�−� = √∑��=1(��
��)2, respectively. 	e constraint � ∈ Ω(�)
depicts the possible set of attribute weights. Obviously, when
the weights information of attributes is completely unknown,Ω(�) = {�� > 0, ∑��=1 �� = 1}. Introducing the upper bound
weight information calculated in Section 3.1, Ω(�) = {�� <�∗� , ∑��=1 �� = 1}.
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In many practical situations, although the weight values
are di�cult to obtain, the weight information is partially
known and prede
ned by the weight space. As follows,
we introduce two types of partial weight information as
references to decision maker.

Type 1 (pairwise comparisonweights information). InMADM,
attribute weights �� are mainly introduced to re�ect the
importance to attributes �� (� = 1, 2, . . . , �). As stated in
Section 1, pairwise comparison is a widely accepted subjective
method to determine attribute weight.

Attribute �2 is at least two times and not more than three
times as important as attribute �1.

In notational jargons, this is denoted by2�1 ≤ �2 ≤ 3�1. (13)

In general terms, we compare �1 with �� (� = 2, 3, . . . , �),
respectively. 	e bound linear constraints are denoted byE��1 ≤ �� ≤ '��1, (14)

in which E� and '� represent the lower and upper bounds of
times�� compared with�1, respectively. Hence, the attribute
weights space is obtained by the above pairwise comparison
information, which is expressed as Ω(�) = {�� > 0, E��1 ≤�� ≤ '��1, � = 1, 2, . . . , �}. Clearly, E1 = '1 = 1 holds.

Compared with conventional subjective weight determi-
nation approaches such as the AHP, weights space is more
feasible and applicative because the decision makers need
not express their preferences explicitly. In many situations,
experts are pleased to give such interval information rather
than exact value due to the complexity of actual problems.

Type 2 (ordinal weights information). Outranking relation
[50], usually denoted by Q, was proposed by Roy whose
aim was to establish a realistic representation of the three
basic preference situations: strict preference, indi�erence,
and incomparability. Motivated by the widely accepted out-
ranking relation, we introduce the concept of rank-order
weights information. In many situations, although the weight
values are di�cult to give by decision makers, the ranking
of each attribute is easy to obtain according to importance.
Take the Olympic Games as an example, the achievements
of athletes and nations are judged by gold, silver, and bronze
medals. Apparently, a gold medal is more important than a
silver medal, and a silver medal is more important than a
bronze medal. 	en, the weights space can be denoted byΩ(�) = {�1 > �2 > �3, �1, �2, �3 > 0}, in which�1, �2, �3 represent the weight of gold, silver, and bronze
medal, respectively.

	e above self-evaluation model (see (12)) shows that all
alternatives choose their own attribute weights in order to
maximize their own self-evaluation closeness index. Similar
to the formofDEA cross-e�ciency, we obtain a set of optimal
attribute weights R∗� = (�∗�1, . . . , �∗��) according to the above
model. When these optimal weights are applied to evaluate
alternative��, a cross score denoted by"�� = �−��/(�−��+�+��)
is obtained.

For alternative 7 (7 = 1, . . . , �), we use the average of
all "�� to measure the expected return of cross-evaluation
closeness index, which is written as


 (��) = 1� �∑�=1"��. (15)

Furthermore, we use the standard variance

S (��) = √∑��=1 ("�� − 
 (��))2� (16)

tomeasure the risk caused by di�erent sets of optimal weights
produced by each alternative.

In general, there are both return of closeness index
(de
ned by the mean of cross-evaluation score) and risk of
closeness index (de
ned by the deviation between return and
each cross-evaluation closeness index) in cross-evaluation
framework. It is not hard to see that the larger return score
the better and the smaller risk score the better. Speci
cally,
given two alternatives �� and �
, if �(��) > �(�
) andS(��) < S(�
), then �� ≻ �
 (�� is better than �
) clearly
holds. However, when �(��) > �(�
) and S(��) > S(�
), it
is not easy to compare the two alternatives directly.

	en, we integrate the return and risk measures by the
well-known coe�cient of variation [51]

C.V (��) = S (��)
 (��) × 100%. (17)

For two given alternatives, one having a smaller coe�-
cient of variation is considered to be better than the other
one. 	us, all the alternatives are ranked by the comparison
of their corresponding coe�cient of variation.

3.3. Procedure of the Proposed Approach. Based on the above
analysis, the procedure for generating a solution to the
MADM problem is elaborated in the following.

Step 1 (formulation of a MADM problem). 	e decision
maker identi
es � attributes to evaluate � alternatives. 	e
original attribute values are standardized by (1).

Step 2 (obtainment of the attribute weight space). First, the
upper bounds of each attribute are calculated by	eorem 2 to
guarantee the e�ectiveness of all the attributes.	en, di�erent
types of constraint of attribute weights are determined by the
decision maker to re�ect the importance of each attribute.
Last, the weight space including all the feasible weight
combinations is obtained.

Step 3 (calculation of the mean and deviation measures).
Firstly, the maximized closeness index of each alternative
is calculated by (12). Secondly, the mean measure of each
alternative’s cross closeness index is computed by (15). 	ird,
the deviation measure of each alternative’s cross closeness
index is obtained by (16).
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Step 4 (evaluation of the alternatives via coe�cient of
variation). Since the mean and deviation measures of each
alternative’s cross closeness index are obtained in Step 3, the
coe�cient of variation de
ned in (17) is utilized to integrate
the results.

Step 5 (generation of rank order of the alternatives). 	rough
comparing the coe�cients of variation among the alterna-
tives, the rank order can be directly obtained.

4. Extension with Uncertain Attribute Values

4.1. Model with Interval Attribute Value. It is widely acknowl-
edged that uncertainty is associated with attribute values due
to complexity of real world and limited knowledge of human
beings. In many situations, the attribute value 
�� is uncertain,
but we know that the feasible attribute value 
�� ∈ [
−�� , 
+��].
Here, we present the following self-evaluation model with
interval attribute values [52] and uncertain attribute weights:

max U √∑��=1 (��
+��)2√∑��=1 (��
+��)2 + √∑��=1 (��
+�� − ��)2
+ W √∑��=1 (��
−��)2√∑��=1 (��
−��)2 + √∑��=1 (��
−�� − ��)2= "max

�� ∈ Ω (�) ,U + W = 1, U ≥ 0, W ≥ 0,

(18)

in which √∑��=1(��
+��)2, √∑��=1(��
+�� − ��)2, √∑��=1(��
−��)2,
and√∑��=1(��
−�� − ��)2 represent distance of upper bounds

from ideal point, distance of upper bounds from negative
ideal point, distance of lower bounds from ideal point,
and distance of lower bounds from negative ideal point,
respectively. U and W re�ect the risk coe�cients that combine
upper closeness index and lower closeness, respectively. In
practice,U andW are decided by the decisionmaker according
to his or her risk preference. Speci
cally, the decision maker
is neutral if U = W = 1/2; U > W and U < W indicate that he is
optimistic and pessimistic, respectively.

4.2. Model with Ordinal Attribute Value. Another form of
uncertain preferential information is expressed by ordinal
attribute value (e.g., “more preferable” and “less preferable”).
It is argued to be more stable and more reliable than cardinal
value in some situations [53]. In this paper, an approach of
threshold value is introduced to transform ordinal value into
linear formulation. For instance, given four attributes �, X, Y,
and 4, the ordinal values are 1, 2, 3, and 4, respectively. By
specifying a threshold value 0.1, the attribute values can be
converted to a cardinal attribute space Ω(�, X, Y, 4) = {� = 1,

� − X ≥ 0.1, X − Y ≥ 0.1, Y − 4 ≥ 0.1, 4 = 0}. In general,
let the ordinal attribute values ��� (	 = 1, . . . , �) have relation��1� > ��2� > ⋅ ⋅ ⋅ > ���� (	� ∈ [1,�], 7 = 1, . . . , �), and then
the cardinal attribute spaceΩ(
��) = {���� = 1, ����−���−1� ≥ Z,���−1�−���−2� ≥ Z, . . . , ��2�−��1� ≥ Z, ��1� = 0, Z > 0} is obtained
(Z is the threshold value given by the decision maker). Here,
we present the following self-evaluation model with ordinal
attribute values and uncertain attribute weights:

max

√∑��=1 (��
��)2√∑��=1 (��
��)2 + √∑��=1 (��
�� − ��)2= "max

�

s.t. 
 ∈ Ω (
)� ∈ Ω (�) ,
(19)

	 = 1, . . . , �; (20)� = 1, . . . , �. (21)

For each alternative �� (7 = 1, . . . , �) under evaluation,
we obtain a group of optimal attribute values and a set of

attribute weights. 	ey are denoted by �∗� = (
���)�×� andR∗� = (��1 , ��2 , . . . , ���), respectively. When the optimal
decision information is applied to evaluate alternative�� (E =1, . . . , �), a cross score denoted by "�� = √∑��=1(��� 
���)2/(√∑��=1(��� 
���)2 + √∑��=1(��� 
��� − ��� )2) is obtained.

Similar to that de
ned by (14) and (15), the mean and
deviation measures of alternative �� are denoted by 
(��) =∑��=1 "�� and S(��) = √∑��=1("�� − 
(��))2/�, respectively.

Note that (12), (18), and (19) are nonlinear models; they
can be transformed into linear forms according to practical
cases.

5. Illustrative Examples

In order to illustrate the applications of our proposed meth-
ods, three practical MADM problems are presented.

5.1. Application to House Selection with Cardinal Attribute
Values. Xu [54] stated a purchase house problem: there are
four possible houses to be selected, and the attributes are as
follows: (1)�1 is the house price (ten thousand yuan); (2)�2 is
the usable area (square meter); (3) �3 is the distance between
house and the center of city (kilometers); (4) �4 is the nature
environment (scores), where �2 and �4 are bene
t attributes
and �1 and �3 are cost attributes. 	e attribute weights are
completely unknown. 	e decision making matrix � and
normalized decision making matrix � are listed in Tables 1
and 2, respectively. Step 1 is completed.

By utilizing (9) and (10), the upper boundof each attribute
weight is obtained. And as a result, the attribute weight space
is Ω(�) = {0 < �1 < 0.77, 0 < �2 < 0.78, 0 < �3 < 0.62,0 < �4 < 0.62, �1 + �2 + �3 + �4 = 1}. Step 2 is completed.
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Table 1: Decision making matrix � of house evaluation.�1 �2 �3 �4�1 3.0 100 10 7�2 2.5 80 8 5�3 1.8 50 20 11�4 2.2 70 12 9

Table 2: Normalized decisionmakingmatrix� of house evaluation.�1 �2 �3 �4�1 0.6 1.0 0.8 0.636�2 0.72 0.8 1.0 0.455�3 1.0 0.5 0.4 1.0�4 0.818 0.7 0.667 0.818

Table 3: 	e cross-evaluation measurements.

Alternatives "max

� "1� "2� "3� "4� 
 (��) S (��)�1 0.96 0.96 0.82 0.61 0.61 0.75 0.15�2 0.92 0.80 0.92 0.66 0.66 0.76 0.11�3 1 0.52 0.51 1 1 0.76 0.24�4 0.818 0.70 0.70 0.818 0.818 0.76 0.06

Table 4: Alternative e�ciency matrix.

Alternatives �1 �2 �3 �4
CV (��) 0.20 0.14 0.32 0.08

In terms of Step 3 in Section 3.3, we obtain the cross-
evaluation measurements of each alternative, which are
presented in Table 3. Step 3 is completed.

Based on Table 3 and the calculation of coe�cient of
variation, the results are shown in Table 4.

	erefore, we can rank the houses in accordance with the
CV values presented in Table 4 to get a complete rank order:�4 ≻ �2 ≻ �1 ≻ �3. And �4 is the best house under
evaluation. Step 4 is completed.

In order to understand our approach more clearly, we
compare our approachwith other three similarmethods [54],
namely, average attribute value method, maximizing devia-
tion method, and information entropy method, respectively,
with the same example. 	e corresponding results of such
three methods are listed in Table 5.

According to Tables 4 and 5, the result derived from our
cross-evaluation approach is quite di�erent from that of the
existing three weight determination methods. In fact, Table 5
shows that the three weight determination methods generate
three attribute weight vectors and produce three di�erent
optimal solutions. However, there is no single method that
can guarantee more convincing weight vector than others.
Hence, we treat the attribute weight as a weight space rather

Table 5: 	e results of three methods.

Method Weight vector Rank order

Average attribute
value

(0.25, 0.25, 0.25, 0.25) �1 ≻ �4 ≻ �2 ≻ �3
Maximizing
deviation

(0.20, 0.24, 0.29, 0.27) �1 ≻ �2 ≻ �4 ≻ �3
Information
entropy

(0.13, 0.22, 0.36, 0.29) �1 ≻ �2 ≻ �4 ≻ �3
Table 6: Attribute weights.�1 �2 �3[��1 , ��1 ] [��2 , ��2 ] [��3 , ��3 ][0.35, 0.50] [0.15, 0.30] [0.30, 0.35]

Table 7: Attribute values of alternatives.�1 �2 �3� [0.65, 0.85] [0.68, 0.86] [0.45, 0.78]` [0.75, 1] [0.55, 0.78] [0.64, 0.80]" [0.54, 0.68] [0.46, 0.55] [0.78, 1]� [0.77, 0.90] [0.67, 0.78] [0.56, 0.77]5 [0.25, 0.45] [0.89, 1] [0.75, 0.94]
than a certain value in this paper.	e comparison result vali-
dates that our proposed approach can overcome the shortage
that we cannot obtain themost dominant result caused by the
diversity of the way of weight vector determined.

5.2. Application to University Faculty with Interval Attribute
Value. Consider the example in Bryson and Mobolurin’s
[55] study; that is, 
ve faculty candidates (�, `, ", �,5) are evaluated for tenure and promotion through three
attributes: teaching, research, and service. According to the
DM’s preference, the information for both attribute and
alternatives is given by interval numbers, as shown in Tables
6 and 7, respectively (for the purpose of illustration, our data
is di�erent from the literature).

Table 8 shows the computed results of the proposed
approach with interval values. 	e self-evaluation score of
each alternative is listed in the second column and the cross-
evaluation scores are listed in columns 3–7. Columns 8 and
9 show the mean and deviation measures, respectively. 	en,
the results in column 10 are applied to generate a rank order
of the 
ve candidates� ≻ " ≻ 5 ≻ ` ≻ �, which is a solution
to the problem.

5.3. Application to the Selection of Community Service Com-
panies with Ordinal Attribute Values. In this subsection, we
apply our approach to the evaluation and selection of 
ve
community service companies that are located in Hefei, a
city in Anhui province of China. 	ese companies provide
various kinds of service for the public, such as property
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Table 8: Evaluation results for the comparison of faculty candidates.

Candidates "max

� "1� "2� "3� "4� "5� 
� S� C.V(��)� 0.717 0.717 0.712 0.706 0.717 0.703 0.711 0.006 0.008` 0.792 0.792 0.792 0.788 0.792 0.746 0.782 0.018 0.023" 0.672 0.651 0.661 0.672 0.651 0.660 0.659 0.008 0.012� 0.774 0.774 0.771 0.764 0.774 0.737 0.764 0.014 0.4615 0.645 0.525 0.526 0.540 0.525 0.645 0.552 0.047 0.018

Table 9: Ordinal values of alternatives.�1 �2 �3 �4�1 4 2 4 2�2 1 4 3 3�3 2 5 1 1�4 5 3 2 5�5 3 1 5 4

management, catering, health care, and entertainment. In
the case study, the decision maker is an o�cial from the
development and reform commission of Hefei, with the
help of a group of experts from the governments, relevant
enterprises, and community organizations. Four attributes
are used to evaluate the six companies. 	ey are quality of
service (�1), diversity of service (�2), pro
tability (�3), and
development potential (�4). 	e original attribute values are
given by ordinal values, as shown in Table 9. 	e decision
procedures are as follows.

A�er considering the four attributes, the decision maker
views that quality of service (�1) is the most important
attribute in evaluation. 	e development potential (�4) is the
second most important one, pro
tability (�3) is the third
most important one, and diversity of service (�2) is the
least important one, respectively. And the di�erence between
two adjacent attribute weights should be more than 0.1. In
addition, each weight value should be nomore than 0.5.	en
the weight space is denoted by Ω(�) = {�1 − 0.1 > �4,�4 − 0.1 > �3, �3 − 0.1 > �2, �1 ≤ 0.5, �2 ≤ 0.5, �3 ≤ 0.5,�4 ≤ 0.5, �1 + �2 + �3 + �4 = 1}.

By specifying a threshold value of 0.1, ordinal attribute
values are transformed into four sets of attribute value spaces.
	ey are denoted by

Ω(�1) = {
21 = 1, 
21 − 
31 ≥ 0.1, 
31 − 
51 ≥ 0.1, 
51
− 
11 ≥ 0.1, 
11 − 
41 ≥ 0.1, 
41 = 0} ;

Ω (�2) = {
52 = 1, 
52 − 
12 ≥ 0.1, 
12 − 
42 ≥ 0.1, 
42
− 
22 ≥ 0.1, 
22 − 
32 ≥ 0.1, 
32 = 0} ;

Ω (�3) = {
33 = 1, 
33 − 
43 ≥ 0.1, 
43 − 
23 ≥ 0.1, 
23− 
13 ≥ 0.1, 
13 − 
53 ≥ 0.1, 
53 = 0} ;Ω (�4) = {
34 = 1, 
34 − 
14 ≥ 0.1, 
14 − 
24 ≥ 0.1, 
24− 
54 ≥ 0.1, 
54 − 
44 ≥ 0.1, 
44 = 0} .
(22)

Table 10 shows the computed results of the proposed
approach.	e second column shows the self-evaluation score
of each alternative computed by (19). And columns 3–7 list
the cross-evaluation scores. 	en the mean and deviation
measures of each alternative are presented in columns 8 and
9, respectively. Consequently, the results in column 10 are
applied to generate a rank order of the 
ve community service
companies �5 ≻ �1 ≻ �2 ≻ �4 ≻ �3. 	e decision maker
is pleased to select company �5 with the best performance
among the 
ve alternatives.

6. Conclusions and Future Research

Due to the complexity and uncertainty of MADM problems
in real world, the decision maker is not able to provide the
exact attribute weights. And di�erent weight determination
methods are di�cult to generate a most satisfaction solution.
	e current paper presents a new MADM method based
on cross-evaluation, in which the weight information is
expressed by the so-called weight space. It attempts to rectify
some shortcomings of existingMADMmethods by providing
the following important features: (1) it is more feasible
to provide a weight space rather than specifying a set of
weight values; (2) the single dominating attribute drawback
can be avoided by the restriction of the upper bound of
each attribute; (3) compared with DEA based methods, the
variable attribute weights are consistent with the opinion
of decision maker; (4) both mean score and the deviation
score are considered in our cross-evaluation models; and (5)
the proposed method is also successfully extended to more
generalized situations in which attribute values are expressed
by interval values and ordinal values, respectively.

We have illustrated the applicability of the proposed
methods by revisiting two reported MADM studies and by
depicting a case study on the selection of community service
companies. Although our proposed method makes some
improvement in solving MADM problems, it only can deal
with the individual decision making case. Future research



Mathematical Problems in Engineering 9

Table 10: Evaluation results for the selection of community service companies.

Candidates "max

� "1� "2� "3� "4� "5� 
� S� C.V(��)�1 0.489 0.489 0.317 0.295 0.317 0.317 0.347 0.072 0.207�2 0.532 0.433 0.532 0.508 0.458 0.504 0.487 0.036 0.074�3 0.535 0.526 0.526 0.535 0.526 0.526 0.528 0.004 0.008�4 0.223 0.202 0.223 0.211 0.223 0.223 0.216 0.009 0.042�5 0.422 0.349 0.349 0.103 0.349 0.422 0.314 0.109 0.347

may attempt to employ our cross-evaluation methods to
handle group decision making problem.
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