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Multiple-Attribute Decision Making Under
Uncertainty: The Evidential Reasoning

Approach Revisited
Van-Nam Huynh, Yoshiteru Nakamori, Member, IEEE, Tu-Bao Ho,

and Tetsuya Murai, Member, IEEE

Abstract—In multiple-attribute decision making (MADM)
problems, one often needs to deal with decision information with
uncertainty. During the last decade, Yang and Singh (1994) have
proposed and developed an evidential reasoning (ER) approach
to deal with such MADM problems. Essentially, this approach
is based on an evaluation analysis model and Dempster’s rule of
combination in the Dempster–Shafer (D–S) theory of evidence.
This paper reanalyzes the ER approach explicitly in terms of
D–S theory and then proposes a general scheme of attribute
aggregation in MADM under uncertainty. In the spirit of such a
reanalysis, previous ER algorithms are reviewed and two other
aggregation schemes are discussed. Theoretically, it is shown that
new aggregation schemes also satisfy the synthesis axioms, which
have been recently proposed by Yang and Xu (2002) for which any
rational aggregation process should grant. A numerical example
traditionally examined in published sources on the ER approach
is used to illustrate the discussed techniques.

Index Terms—Assessment, evidence combination, evidential
reasoning (ER), multiple-attribute decision making (MADM),
uncertainty.

I. INTRODUCTION

P RACTICALLY, decision makers are often required to
choose between several alternatives or options, where each

option exhibits a range of attributes of both quantitative and
qualitative in nature. A decision may not be properly made
without fully taking into account all attributes concerned [2],
[13], [21], [27], [33], [38]. In addition, in many multiple-
attribute decision making (MADM) problems, one also fre-
quently needs to deal with decision knowledge represented
in forms of both qualitative and quantitative information with
uncertainty.

So far, many attempts have been made to integrate techniques
from artificial intelligence (AI) and operational research (OR)
for handling uncertain information, e.g., [1], [3], [5], [8], [14],
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[16], [20], [29], [32], and [40]. During the last decade or so,
an evidential reasoning (ER) approach has been proposed and
developed for MADM under uncertainty in [33], [34], and
[36]–[38]. Essentially, this approach is based on an evaluation
analysis model [42] and the evidence combination rule of the
Dempster–Shafer (D–S) theory [25], which has in turn been one
of the major techniques for dealing with uncertainty in AI [9].
The ER approach has been applied to a range of MADM prob-
lems in engineering and management, including motorcycle
assessment [34], general cargo ship design [23], system safety
analysis and synthesis [28], and retro-fit ferry design [35],
among others.

The kernel of the ER approach is an ER algorithm developed
on the basis of a multiattribute evaluation framework and
Dempster’s rule of combination in the D–S theory of evidence
[33]. Basically, the algorithm makes use of Dempster’s rule of
combination to aggregate attributes of a multilevel structure.
Due to a need of developing theoretically sound methods and
tools for dealing with MADM problems under uncertainty,
recently, Yang and Xu [38] have proposed a system of four
synthesis axioms within the ER assessment framework with
which a rational aggregation process needs to satisfy. It has
also been shown that the original ER algorithm only satisfies
these axioms approximately. At the same time, exactly guided
by the aim, the authors have proposed a new ER algorithm that
satisfies all the synthesis axioms precisely.

Interestingly enough, the D–S theory of evidence on one
hand allows us to coarse or refine the data by changing to a
higher or lower level of granularity (or attribute in the con-
text of a multilevel structure) accompanied with a powerful
evidence combination rule. This is an essential feature for
multiple-attribute assessment systems based on a multilevel
structure of attributes. On the other hand, one of the major
advantages of the D–S theory over conventional probability is
that it provides a straightforward way of quantifying ignorance
and is therefore a suitable framework for handling incomplete
uncertain information. This is especially important and useful
for dealing with uncertain subjective judgments when multiple
basic attributes (also called factors) need to be considered
simultaneously [33].

It would be worth mentioning that the underlying basis
of using Dempster’s rule of combination is the independent
assumption of information sources to be combined. Here, the
authors would like to distinguish between the independent

1083-4427/$20.00 © 2006 IEEE
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assumption among uncertain assessments of sub-attributes used
to derive the assessment of an aggregated attribute in a multi-
level structure of attributes and the assumption of utility inde-
pendence imposed on assessment grades of a decision problem
(see Sections IV-F and V). Regarding the former, in practice, it
is rarely verified and difficult to check (see, e.g., [7] and [15]).
In other words, in situations of multiple-attribute assessment
based on a multilevel structure of attributes, the independent
assumption of the basic attributes’ uncertain evaluations is not
always appropriate. Another important issue concerning the
rule is that it may yield counterintuitive results especially when
a high conflict between information sources to be combined
arises. This problem of completely ignoring conflict caused by
normalization in Dempster’s rule was originally pointed out in
[41] and discussed in more detail in [7]. Consequently, this
has highly motivated researchers to propose a number of other
combination rules in the literature to address the problem, e.g.,
[7], [29], and [31] (see [24] for a recent survey).

This paper deals with the attribute aggregation problem in
the ER approach to MADM under uncertainty developed in,
e.g., [33] and [38]. First, the authors reanalyze the previous
ER approach in terms of the D–S theory so that the attribute
aggregation problem in MADM under uncertainty can be gen-
erally formulated as a problem of evidence combination. Then,
they propose several new aggregation schemes and simultane-
ously examine their theoretical features. For the purpose of the
present paper, only qualitative attributes of an MADM problem
with uncertainty were taken into account, though quantitative
attributes would be also included in a similar way as considered
in [33] and [34].

To proceed, it is first necessary to briefly recall the basic
notions on the MADM problem with uncertainty, the basic
evaluation framework, and the D–S theory of evidence. This
is undertaken in Section II and followed in Section III by a
discussion of the ER approach to MADM under uncertainty
proposed previously. Section IV then explores the attribute
aggregation problem in detail, and Section V examines a
motorcycle performance assessment problem taken from [38].
Finally, Section IV presents some concluding remarks.

II. BACKGROUND

A. Problem Description

This subsection describes an MADM problem with uncer-
tainty through a tutorial example taken from [38]. As mentioned
above, for the purpose of this paper, only qualitative attributes
of the problem are taken into account. For more details, see
[33] and [34].

To subjectively evaluate qualitative attributes (or features) of
alternatives (or options), a set of evaluation grades may first be
supplied as

H = {H1, . . . , Hn, . . . , HN}
where Hns are called evaluation grades to which the state of a
qualitative attribute y may be evaluated. That is, H provides
a complete set of distinct standards for assessing qualitative
attributes in question. In accomplishing this objective, an im-

portant aspect to analyze is the level of discrimination among
different countings of evaluation grades or, in other words, the
cardinality of the set H used to express the information. The
cardinality of the set must be small enough so as not to impose
useless precision on the users and must be rich enough in order
to allow discrimination of the assessments in a limited number
of degrees. According to the observation in [18], in practice,
human beings can reasonably manage to bear in mind seven
or so terms. In addition, although different attributes may have
different sets of evaluation grades, for the sake of simplicity,
in this paper, we assume the same set H for all attributes of
concern. Further, without loss of generality, it is assumed that
Hn+1 is preferred to Hn.

Let us turn to a problem of motorcycle evaluation [10]. To
evaluate the quality of the operation of a motorcycle, the set of
distinct evaluation grades is defined as

H = {poor (H1), indifferent (H2)

average (H3), good (H4), excellent (H5)} . (1)

Because operation is a general technical concept and is not
easy to evaluate directly, it needs to be decomposed into de-
tailed concepts such as handling, transmission, and brakes.
Again, if a detailed concept is still too general to assess
directly, it may be further decomposed into more detailed
concepts. For example, the concept of brakes is measured
by stopping power, braking stability, and feel at control,
which can probably be directly evaluated by an expert and
therefore referred to as basic attributes (or basic factors).

Generally, a qualitative attribute y may be evaluated through
a hierarchical structure of its sub-attributes. For instance, the
hierarchy for evaluation of the operation of a motorcycle is
depicted as in Fig. 1.

In the evaluation of qualitative attributes, judgments could be
uncertain. For example, in the problem of evaluating different
types of motorcycles, the following types of uncertain subjec-
tive judgments for the brakes of a motorcycle, say “Yamaha,”
was frequently used [10], [38].

1) Its stopping power is average with a confidence degree
of 0.3 and it is good with a confidence degree of 0.6.

2) Its braking stability is good with a confidence degree
of 1.

3) Its feel at control is evaluated to be good with a confi-
dence degree of 0.5 and to be excellentwith a confidence
degree of 0.5.

In the above statements, the confidence degrees represent
the uncertainty in the evaluation. Note that the total confidence
degree in each statement may be smaller than 1 as the case of
the first statement. This may be due to the incompleteness of
available information.

In a similar fashion, all basic attributes in question could
be evaluated. The problem now is how to generate an overall
assessment of the operation of a motorcycle by aggregating all
the uncertain judgments of its basic attributes in a rational way.
The ER approach developed in [33], [34], and [38] has provided
a means based on Dempster’s rule of combination for dealing
with such an aggregation problem.
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Fig. 1. Evaluation hierarchy for operation [38].

Fig. 2. Two-level hierarchy.

B. Evaluation Analysis Model

The evaluation analysis model was proposed in [42] to
represent uncertain subjective judgments, such as statements
specified in the preceding subsection, in a hierarchical structure
of attributes.

To begin with, let us suppose a simple hierarchical structure
consisting of two levels with a general attribute, denoted by y,
at the top level and a finite set E of its basic attributes at the
bottom level (graphically shown in Fig. 2). Let

E = {e1, . . . , ei, . . . , eL}

and assume the weights of basic attributes are given by W =
(w1, . . . , wi, . . . , wL), where wi is the relative weight of the
ith basic attribute (ei) with 0 ≤ wi ≤ 1. Attribute weights
essentially play an important role in multiattribute decision
models. Because the elicitation of weights can be difficult,
several methods have been proposed for reducing the burden
of the process [19].

Given the set of evaluation grades

H = {H1, . . . , Hn, . . . , HN}

designed as distinct standards for assessing an attribute, then
an assessment for ei of an alternative can be mathematically
represented in terms of the distribution [38]

S(ei) = {(Hn, βn,i)|n = 1, . . . , N} , for i = 1, . . . , L
(2)

where βn,i denotes a degree of belief satisfying βn,i ≥ 0,
and

∑N
n=1 βn,i ≤ 1. An assessment S(ei) is called com-

plete (respectively, incomplete) if
∑N

n=1 βn,i = 1 (respectively,∑N
n=1 βn,i < 1).
For example, the three assessments 1)–3) given in the preced-

ing subsection can be represented in the form of distributions
defined by (2) as

S(stopping power) = {(H3, 0.3), (H4, 0.6)}
S(braking stability) = {(H4, 1)}
S(feel at control) = {(H4, 0.5), (H5, 0.5)}

where only grades with nonzero degrees of belief are listed in
the distributions.

Let us denote by βn the degree of belief to which the
general attribute y is assessed to the evaluation grade of Hn.
The problem now is to generate βn, for n = 1, . . . , N , by
combining the assessments for all associated basic attributes
ei (i = 1, . . . , L) as given in (2). However, before continuing
the discussion, it is necessary to briefly review the basis of the
D–S theory of evidence in the next subsection.

C. D–S Theory of Evidence

In the D–S theory, a problem domain is represented by a
finite set Θ of mutually exclusive and exhaustive hypotheses
called the frame of discernment [25]. In the standard proba-
bility framework, all elements in Θ are assigned a probabil-
ity, and when the degree of support for an event is known,
the remainder of the support is automatically assigned to the
negation of the event. On the other hand, in the D–S theory,
mass assignments are carried out for events as they know, and
committing support for an event does not necessarily imply that
the remaining support is committed to its negation. Formally,
a basic probability assignment (BPA, for short) is a function
m : 2Θ → [0, 1], verifying

m(∅) = 0 and
∑

A∈2Θ

m(A) = 1.

The quantitym(A) can be interpreted as a measure of the belief
that is committed exactly to A, given the available evidence. A
subset A ∈ 2Θ with m(A) > 0 is called a focal element of m.
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A BPAm is said to be vacuous ifm(Θ) = 1 andm(A) = 0 for
all A 
= Θ.

Two evidential functions derived from the BPA are the belief
function Bel and the plausibility function Pl defined as

Bel(A) =
∑

∅
=B⊆A

m(B) and Pl(A) =
∑

B∩A 
=∅
m(B).

The difference between m(A) and Bel(A) is that while
m(A) is our belief committed to the subset A excluding any
of its proper subsets, Bel(A) is our degree of belief inA as well
as all of its subsets. Consequently, Pl(A) represents the degree
to which the evidence fails to refute A. Note that all the three
functions are in a one-to-one correspondence with each other.

Two useful operations that play a central role in the manip-
ulation of belief functions are discounting and Dempster’s rule
of combination [25]. The discounting operation is used when
a source of information provides a BPA m, but one knows that
this source has probability α of reliability. Then, one may adopt
(1 − α) as one’s discount rate, which results in a new BPAmα

defined by

mα(A) =αm(A), for any A ⊂ Θ (3)

mα(Θ) = (1 − α) + αm(Θ). (4)

Consider now two pieces of evidence on the same frame Θ
represented by two BPAs m1 and m2. Dempster’s rule of
combination is then used to generate a new BPA, denoted by
(m1 ⊕m2) (also called the orthogonal sum of m1 and m2),
defined as

(m1 ⊕m2)(∅) = 0

(m1 ⊕m2)(A) =
1

1 − k
∑

B∩C=A

m1(B)m2(C) (5)

where

κ =
∑

B∩C=∅
m1(B)m2(C). (6)

Note that the orthogonal sum combination is only applicable
to such two BPAs that meet the condition κ < 1.

As we will partially see in the following sections, these two
operations essentially play an important role in the ER approach
to MADM under uncertainty developed in, e.g., [33], [34], and
[38], though the discounting operation has not been mentioned
explicitly in these published sources.

III. ER APPROACH

Let us return to the two-level hierarchical structure with
a general attribute y at the top level and a finite set E =
{e1, . . . , ei, . . . , eL} of its basic attributes at the bottom level.
Let us be given weights wi (i = 1, . . . , L) of basic attributes
ei (i = 1, . . . , L), respectively. Denote by βn the degree of
belief to which the general attribute y is assessed to the eval-
uation grade of Hn, for n = 1, . . . , N .

A. Original ER Algorithm

The original ER algorithm proposed in [33] has been used
for the purpose of obtaining βn (n = 1, . . . , N) by aggregating
the assessments of basic attributes given in (2). The summary
of the algorithm in this subsection is taken from [38].

Given the assessment S(ei) of a basic attribute ei (i =
1, . . . , L), let mn,i be a basic probability mass representing
the belief degree to which the basic attribute ei supports the
hypothesis that the attribute y is assessed to the evaluation grade
Hn. Let mH,i be the remaining probability mass unassigned
to any individual grade after all the N grades have been
considered for assessing the general attribute y as far as ei is
concerned. These quantities are defined as

mn,i =wiβn,i, for n = 1, . . . , N (7)

mH,i =1 −
N∑

n=1

mn,i = 1 − wi

N∑
n=1

βn,i. (8)

Let EI(i) = {e1, . . . , ei} be the subset of first i basic at-
tributes. Let mn,I(i) be a probability mass defined as the belief
degree to which all the basic attributes in EI(i) support the
hypothesis that y is assessed to Hn. LetmH,I(i) be the remain-
ing probability mass unassigned to individual grades after all
the basic attributes in EI(i) have been assessed. The quantities
mn,I(i) and mH,I(i) can be generated by combining the basic
probability masses mn,j and mH,j for all n = 1, . . . , N and
j = 1, . . . , i.

With these notations, the key step in the original ER algo-
rithm is to inductively calculatemn,I(i+1) andmH,I(i+1) as

mn,I(i+1) =KI(i+1)

(
mn,I(i)mn,i+1 +mn,I(i)mH,i+1

+mH,I(i)mn,i+1

)
(9)

mH,I(i+1) =KI(i+1)

(
mH,I(i)mH,i+1

)
(10)

for n = 1, . . . , N , i = 1, . . . , L− 1, and KI(i+1) is a normal-
izing factor defined by

KI(i+1) =


1 −

N∑
t=1

N∑
j=1
j �=t

mt,I(i)mj,i+1



−1

. (11)

Then, we obtain

βn =mn,I(L), for n = 1, . . . , N

βH =mH,I(L) = 1 −
N∑

n=1

βn. (12)

B. Synthesis Axioms and Modified ER Algorithm

Inclined to developing theoretically sound methods and
tools for dealing with MADM problems under uncertainty,
Yang and Xu [38] have recently proposed a system of four
synthesis axioms within the ER assessment framework with
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which a rational aggregation process needs to satisfy. These
axioms are symbolically stated as follows.

Axiom 1 Independence. If βn,i = 0 for all i = 1, . . . , L,
then βn = 0.

Axiom 2 Consensus. If βk,i = 1 and βn,i = 0 for all i =
1, . . . , L and n = 1, . . . , N , n 
= k, then βk = 1
and βn = 0 for n = 1, . . . , N , n 
= k.

Axiom 3 Completeness. Assume H+ ⊂ H and denote
J+ = {n|Hn ∈ H+}. If βn,i > 0 for n ∈ J+ and∑

n∈J+ βn,i = 1, for all i = 1, . . . , L, then βn > 0
for n ∈ J+ and

∑
n∈J+ βn = 1 as well.

Axiom 4 Incompleteness. If there exists i ∈ {1, . . . , L}
such that

∑N
n=1 βn,i < 1, then

∑N
n=1 βn < 1.

It is easily seen from (9)–(12) that the original ER algorithm
naturally follows the independency axiom. Concerning the sec-
ond axiom, the following theorem is due to Yang and Xu [38].

Theorem 1: If βn and βH are calculated using (12), then the
consensus axiom holds if and only if

L∏
i=1

(1 − wi) = 0. (13)

Note that the only constraint imposed on the weights wi (i =
1, . . . , L) in the ER approach is 0 ≤ wi ≤ 1. By Theorem 1, it
implies that if wi = 1, then ei dominates the assessment of y,
i.e., other basic attributes with smaller weights play no role in
the assessment. To resolve this dilemma, the following scheme
for weight normalization has been considered in [33]–[35]:

wi = α
wi

max
i=1,...,L

1{wi} (14)

and α is a constant determined by satisfying

L∏
i=1


1 − α wi

max
i=1,...,L

{wi}


 ≤ δ

where δ is a small constant representing the degree of approx-
imation in aggregation. By considering normalized weights
wi’s instead of wi’s, it means the consensus axiom could only
be satisfied approximately. However, this weight normalization
has still another shortcoming, that the most important attribute
may play a dominating role in the assessment of y. Further, it
has also been shown in [38] that the original ER algorithm does
not satisfy the completeness axiom.

Under such a consideration, Yang and Xu [38] proposed a
new ER algorithm that satisfies all the synthesis axioms. Its
main features are summarized as follows.

1) Weight normalization. In the new ER algorithm, the
weights wi (i = 1, . . . , L) of basic attributes are normal-
ized such that 0 ≤ wi ≤ 1, and

L∑
i=1

wi = 1. (15)

2) Aggregation process. First, the probability mass mH,i

given in (8) is decomposed into two parts: mH,i =
m̃H,i +mH,i, where

mH,i = 1 − wi and m̃H,i = wi

(
1 −

N∑
n=1

βn,i

)
.

(16)

Then, with the notations as in the preceding section, the
process of aggregating the first i assessments with the
(i+ 1)th assessment is recursively carried out as

mn,I(i+1) =KI(i+1)

[
mn,I(i)mn,i+1 +mn,I(i)mH,i+1

+mH,I(i)mn,i+1

]
(17)

mH,I(i) = m̃H,I(i) +mH,I(i), n = 1, . . . , N

m̃H,I(i+1) =KI(i+1)

[
m̃H,I(i)m̃H,i+1 +mH,I(i)m̃H,i+1

+ m̃H,I(i)mH,i+1

]
(18)

mH,I(i+1) =KI(i+1)

[
mH,I(i) +mH,i+1

]
(19)

whereKI(i+1) is defined as in (11).
For assigning the assessment S(y) for the general

attribute y, after all L assessments of basic attributes have
been aggregated, the algorithm finally defines

βn =
mn,I(L)

1 −mH,I(L)
, for n = 1, . . . , N (20)

βH =
m̃H,I(L)

1 −mH,I(L)
(21)

and then

S(y) = {(Hn, βn), n = 1, . . . , N} . (22)

The following theorems that are taken for granted to develop
the new ER algorithm above are due to Yang and Xu [38].

Theorem 2: The degrees of belief defined by (20) and (21)
satisfy

0 ≤ βn, βH ≤ 1, n = 1, . . . , N

N∑
n=1

βn + βH = 1.

Theorem 3: If βk,i = 1 and βn,i = 0 for all n = 1, . . . , N
with n 
= k and i = 1, . . . , L, then βk = 1 and βn = 0 for all
n = 1, . . . , N with n 
= k and βH = 0.

Theorem 4: Let H+ ⊂ H and H− = H \H+ and denote
J+ = {n|Hn ∈ H+} and J− = {j|Hj ∈ H−}. If βn,i > 0
(n ∈ J+) and

∑
n∈J+ βn,i = 1 and βj,i = 0 (j ∈ J−) for all

i = 1, . . . , L, then
∑

n∈J+ βn = 1 and βj = 0 (j ∈ J−).
Theorem 5: Assume that 0 < wi < 1 for all i = 1, . . . , L.

If there exists an i such that
∑N

n=1 βn,i < 1, then βH > 0.
In [38], the authors have given direct proofs of these the-

orems, which are somehow complicated. In the next section,
by analyzing the ER approach in terms of the D–S theory, we
however show that these theorems follow quite naturally.
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IV. REANALYSIS OF THE ER APPROACH

Let us reexamine the available information given to an
assessment problem in the two-level hierarchical structure, as
depicted in Fig. 2:

1) the assessments S(ei) for basic attributes ei (i =
1, . . . , L), and

2) the weights wi of the basic attributes ei (i = 1, . . . , L).
Given the assessment S(ei) of a basic attribute ei (i =
1, . . . , L), we now define a corresponding BPA, denoted bymi,
which quantifies the belief about the performance of ei for any
H ⊆ H as

mi(H) =



βn,i, if H = {Hn}(

1 −
N∑

n=1
βn,i

)
, if H = H

0, otherwise.

(23)

For the sake of simplicity, we will write mi(Hn) instead of
mi({Hn}) as usual. The quantitymi(Hn) represents the belief
degree that supports the hypothesis that ei is assessed to the
evaluation gradeHn, whilemi(H) is the remaining probability
mass unassigned to any individual grade after all evaluation
grades have been considered for assessing ei. If S(ei) is a
complete assessment, mi is a probability distribution, i.e.,
mi(H) = 0. Otherwise,mi(H) quantifies the ignorance.

As such, with L basic attributes ei, we obtain L corre-
sponding BPAs mi as quantified beliefs of the assessments
for basic attributes. The problem now is how to generate an
assessment for y, i.e., S(y), represented by a BPA m, from mi

and wi (i = 1, . . . , L). Formally, we aim at obtaining a BPAm
that combines all mi’s while taking weights wi’s into account
in the general form of

m =
L⊕

i=1

(wi ⊗mi) (24)

where ⊗ is a product-type operation, and ⊕ is a sum-type
operation in general.

With this general rule of weighted combination, by applying
different particular operations for ⊗ and ⊕, we may have differ-
ent aggregation schemes for obtaining the BPAm representing
the generated assessment S(y). However, before exploring any
new aggregation schemes, we first interestingly reinterpret the
original ER approach in the spirit of the new formulation.

A. Discounting-and-Orthogonal Sum Scheme

Let us first consider ⊗ as the discounting operation and ⊕
as the orthogonal sum in the D–S theory. Then, for each i =
1, . . . , L, we have (wi ⊗mi) as a BPA [refer to (3) and (4)]

defined by (25) shown at the bottom of the page, for anyH ⊆ H
and n = 1, . . . , N .

With this formulation, we consider each mi as the belief
quantified from the information source S(ei) and the weight
wi as the “degree of trust” of S(ei) supporting the assessment
of y as a whole. As mentioned in [25], an obvious way to
use discounting with Dempster’s rule of combination is to
discount all BPAs mi (i = 1, . . . , L) at corresponding rates
(1 − wi) (i = 1, . . . , L) before combining them.

Thus, Dempster’s rule of combination now allows us to
combine BPAs mwi

i (i = 1, . . . , L) under the independent as-
sumption of information sources for generating the BPA m for
the assessment of y. Namely

m =
L⊕

i=1

mwi
i (26)

where, with an abuse of the notation, ⊕ stands for the orthog-
onal sum.

At this juncture, we can see that the aggregation processes
in the original ER approach reviewed above formally follow
this discounting-and-orthogonal sum scheme. In other words,
despite the differences in interpretation, the two approaches
lead essentially to mathematically equivalent formulations. In
addition, it is of interest to note that, by definition, in this
aggregation scheme, it would not be necessary to require the
process of weight normalization satisfying the constraint

L∑
i=1

wi = 1.

This remark implies that the aggregation scheme could be
applied to different normalization strategies only satisfying
0 ≤ wi ≤ 1. Furthermore, in our opinion, in the hierarchical
representation of an aggregated attribute y as shown in Fig 2,
we have at least two possible interpretations. In the first one,
the performance of an alternative regarding the attribute y
depends on one regarding all the sub-attributes simultaneously;
the second interpretation is the performance of an alternative
regarding the attribute y depending on that of it regarding
only one of the sub-attributes, but we do not know which
one actually plays the role. While the mutual and exclusive
assumption of information sources is appropriate for the latter
interpretation, it may not be the case in the former. Therefore,
by relaxing the constraint on weights, we may be able to avoid
the mutual and exclusive assumption of information sources
supporting the assessment for y in some situations.

(wi ⊗mi)(H)
�
= mwi

i (H) =



wiβn,i, if H = {Hn}
(1 − wi) + wi

(
1 −

N∑
n=1

βn,i

)
= 1 − wi

N∑
n=1

βn,i, if H = H
0, otherwise

(25)
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It would be worth noting that two BPAs mwi
i and mwj

j are
combinable, i.e., (mwi

i ⊕mwj

j ) does exist, if and only if

κ =
N∑

t=1

N∑
n=1
n �=t

mwi
i (Hn)mwj

j (Ht) < 1.

For example, assume that we have two basic attributes
e1 and e2 with

S(e1) = {(H1, 0), (H2, 0), (H3, 0), (H4, 1), (H5, 0)}
S(e2) = {(H1, 0), (H2, 0), (H3, 1), (H4, 0), (H5, 0)}

and both are equally important, or w1 = w2. In the extreme,
setting δ = 0 and the weights w1 and w2 being normalized
using (14) lead to w1 = w2 = 1, resulting in (mw1

1 ⊕mw2
2 ),

which does not exist.
Another issue with the orthogonal sum operation is in using

the total probability mass κ (called the degree of conflict [29])
associated with conflict, as defined in the normalization factor.
Consequently, applying it in an aggregation process may yield
counterintuitive results in the face of significant conflict in
certain contexts, as pointed out in [41]. Fortunately, in the
context of the aggregated assessment based on a hierarchical
evaluation model, by discounting all BPAs mi (i = 1, . . . , L)
at corresponding rates (1 − wi) (i = 1, . . . , L), we actually re-
duce the conflict between the various basic assessments before
combining them.

Note further that, by definition, the focal elements of each
mwi

i are either singleton sets or a whole set H. It is easy to see
thatm also verifies this property if applicable. Interestingly, the
commutative and associative properties of Dempster’s rule of
combination with respect to a combinable collection of BPAs
mwi

i (i = 1, . . . , L) and the mentioned property essentially
form the basis for the ER algorithms developed in [33] and [38].
In other words, the original ER algorithm summarized in (9)
and (10) has been implemented for calculation of the BPA m.
More particularly, with the same notations as in the preceding
section, and denoting further

mI(i) =
i⊕

j=1

m
wj

j

for i = 1, . . . , L, we have

mI(i)(Hn) =mn,I(i), for n = 1, . . . , N (27)

mI(i)(H) =mH,I(i). (28)

Further, by a simple induction, we easily see that the follow-
ing holds.

Lemma 1: With the quantity mH,I(i) inductively defined by
(19), we have

mH,I(i) = KI(i)

i∏
j=1

(1 − wj) (29)

whereKI(i) is inductively defined by (11).

By now, it is obviously clear that, except the weight normal-
ization, the key difference between the original ER algorithm
and the modified ER algorithm is in the way of assignment of
βn (n = 1, . . . , N) and βH after obtaining m. That is, in the
original ER algorithm, the BPAm is directly used to define the
assessment for y by assigning

βn =m(Hn) = mn,I(L), for n = 1, . . . , N (30)

βH =m(H) = mH,I(L). (31)

While in the modified ER algorithm, after obtaining the BPA
m, instead of using m to define the assessment for y, as in the
original ER algorithm, it defines a BPAm′ derived fromm as

m′(Hn) =
m(Hn)

1 −mH,I(L)
, for n = 1, . . . , N (32)

m′(H) =

(
m(H) −mH,I(L)

)
1 −mH,I(L)

=
m̃H,I(L)

1 −mH,I(L)
. (33)

Note that in this case we must have wi < 1 for all i = 1, . . . , L.
Then, the assessment for y is defined by assigning

βn =m′(Hn), for n = 1, . . . , N (34)

βH =m′(H). (35)

By (32) and (33), Theorem 2 straightforwardly follows asm
is a BPA. Further, the following lemma holds.

Lemma 2: If all assessments S(ei) (i = 1, . . . , L) are
complete, we have

m(H) = mH,I(L) = KI(L)

L∏
i=1

(1 − wi) (36)

i.e., m̃H,I(L) = 0; and, consequently, S(y) defined by (34) is
also complete.

As if wi = 0, then the BPA mwi
i immediately becomes the

vacuous BPA and consequently plays no role in the aggrega-
tion. Thus, without any loss of generality, we assume that 0 <
wi < 1 for all i = 1, . . . , L. Under this assumption, it is easy
to see that if the assumption of Theorem 4 holds, then

Fm
wi
i

=
{{Hn}|n ∈ I+} ∪ {H}, for i = 1, . . . , L (37)

where Fm
wi
i

denotes the family of focal elements of mwi
i .

Hence, by a simple induction, we also have

Fm =
{{Hn}|n ∈ I+} ∪ {H}. (38)

Note that the assumption of Theorem 3 is the same as that given
in Theorem 4 with |I+| = 1.

Therefore, Theorems 3 and 4 immediately follow from
Lemma 2 along with (32)–(35), and (38).
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It is also easily seen that

m(H) =KI(L)

L∏
i=1

mwi
i (H)

=KI(L)

L∏
i=1

[wimi(H) + (1 − wi)] (39)

and, in addition, if there is an incomplete assessment, say S(ej),
then wjmj(H) > 0, resulting in

wjmj(H)
L∏

i=1
i�=j

(1 − wi) > 0.

This directly implies m′(H) > 0. Consequently, Theorem 4
follows as (34) and (35).

B. Discounting-and-Yager’s Combination Scheme

To address the issue of conflict as mentioned above, Yager
proposed in [29] a modification of Dempster’s rule of com-
bination by adding the total probability mass associated with
conflict to the frame of discernment instead of using it for
normalization. That is, given two BPAsm1 andm2 over a frame
Θ, Yager’s rule of combination yields a BPA denoted bymY as

m1 ⊕m2(A)

�
= mY (A)

=




0, if A = ∅
m1(Θ)m2(Θ) +

∑
B∩C=∅

m1(B)m2(C), if A = Θ∑
B∩C=A

m1(B)m2(C), otherwise.

(40)

As such, in Yager’s rule of combination, the total probability
mass associated with conflict between the two BPAs to be com-
bined is attributed to the frame Θ and, consequently, enlarges
the degree of ignorance.

In the context of a multiattribute assessment framework, after
discounting the BPA mi (i = 1, . . . , L) obtained from a basic
assessment for ei at a discount rate of (1 − wi), we would
now like to apply Yager’s rule of combination for obtaining an
aggregated BPA for the assessment of the general attribute y.
As Yager’s rule of combination is not associative, we cannot
combine mwi

i (i = 1, . . . , L) in a recursive manner, as in the
case of Dempster’s rule, but apply a multiple piece of evidence
version defined in [29]. This rule is suitable for an aggregation
process (but not an updating process), as in the multiple-
attribute aggregation.

Particularly, we define mY as a combination of BPAs mwi
i

(i = 1, . . . , L)

mY(H)=




0, if H=∅
L∏

i=1

mwi
i (H) +

∑
Hi⊆H

L
∩

i=1
Hi=∅

L∏
i=1

mwi
i (Hi), if H=H

∑
Hi⊆H

L
∩

i=1
Hi=H

L∏
i=1

mwi
i (Hi), otherwise.

(41)

Recall, by definition, that the focal elements of each mwi
i

are either singleton sets or the whole set H. For i = 1, . . . , L,
let us denote

Fi = {{Hn}|Hn ∈ H ∧ wiβn,i > 0} ∪ {H}. (42)

With this notation, if wi = 1 and S(ei) is complete, the family
of focal elements of mwi

i (i = 1, . . . , L) is F+
i = Fi \ {H}.

Otherwise, the family of focal elements of mwi
i (i = 1, . . . , L)

is Fi. For simplicity, we use Hn instead of {Hn} without
danger of confusion.

Then, we get

mY (Hn) =
∑

Hi∈Fi
L
∩

i=1
Hi=Hn

L∏
i=1

mwi
i (Hi) (43)

mY (H) =
L∏

i=1

mwi
i (H) +K (44)

whereK is a constant defined as

K =
∑

Hi∈F+
i

L
∩

i=1
Hi=∅

L∏
i=1

mwi
i (Hi) (45)

representing the total degree of conflict.
Now, by this aggregation scheme, we can define

βn =mY (Hn), for n = 1, . . . , N (46)

βH =mY (H) = 1 −
N∑

n=1

mY (Hn) (47)

for generating the aggregated assessment for y.
Let us denote

I = {1, 2, . . . , L} (48)

I+n = {i ∈ I|wiβn,i > 0}, for n = 1, . . . , N (49)
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and P(I+n ) the power set of I+n . Then, βn (n = 1, . . . , N) is
calculated algorithmically as

mY (Hn) =
∑

∅
=τ∈P(I+
n )

∏
i∈τ

wiβn,i

∏
j∈I\τ

(
1 − wj

N∑
n=1

βn,j

)
.

(50)

We are now ready with the synthesis axioms. Obviously, the
first independency axiom is followed as there is at least one
Hi in (43) being Hn; thus, we have βn = 0 if βn,i = 0 for all
i. Similar to the original ER algorithm, we have the following
theorems.

Theorem 6: If βn and βH are calculated using (46) and (47),
then the consensus axiom holds if and only if

L∏
i=1

(1 − wi) = 0.

Proof: Assume that βk,i = 1 for all i = 1, . . . , L, and
βn,i = 0 for n = 1, . . . , N , n 
= k, and i = 1, . . . , L.

By definition, we have

mwi
i (Hn) =

{
wi, if n = k
0, if n 
= k

and mwi
i (H) = (1 − wi), for i = 1, . . . , L. Consequently,

F+
i = {Hk}. This directly implies from (45) that K = 0. So,

we obtain

βH =
L∏

i=1

(1 − wi).

Then, the consensus axiom and F+
i ={Hk} immediately imply

βH =
L∏

i=1

(1 − wi) = 0.

Conversely, if
∏L

i=1(1 − wi) = 0, then the consensus axiom is
trivially satisfied. This concludes the proof. �

It is not surprising that, as in the case of the discounting-and-
orthogonal sum scheme above, the discounting-and-Yager’s
combination scheme does not directly yield a generated assess-
ment for y exactly satisfying the completeness axiom. This can
be overcome by modifying the assignment of βn and βH from
mY as shown in the following.

C. Modified Discounting-and-Yager’s Combination Scheme

As we have seen, the direct use of the discounting-and-
Yager’s combination scheme for defining the assessment for y
makes it fail to desirably satisfy the synthesis axioms. This is
caused mainly by the fact that an aggregated rate of discount
is attributed to βH as a part of the unassigned probability
mass. Yet a so-called degree of disagreement as a part of the
conflict factor K also plays a role. In this part, instead of
committing these factors to the unassigned probability mass,
they are used for the normalization before assigning for βn’s

and βH. However, before doing so, we must first be clear on
what these factors are.

Denote

F+ =
L⋂

i=1

F+
i (51)

where F+
i = Fi \ {H} (i = 1, . . . , L). That is, F+ consists of

common singleton focal elements of all BPAs mwi
i . In other

words, all basic attributes ei (i = 1, . . . , L) are assessed to all
evaluation grades in F+ to variously positive degrees of belief.
As a part of conflict that arises during the aggregation process
of basic assessments, we define the degree of disagreement, de-
noted by κ1, among the various basic assessments at evaluation
grades in F+ as

κ1 =
∑

Hi∈F+

L
∩

i=1
Hi=∅

L∏
i=1

mwi
i (Hi). (52)

Note that κ1 is also a constant and is a part of the degree of
conflictK defined by (45), as shown in the Appendix.

Due to the multiplicative nature of the combination rule, we
define the aggregated rate of discount, denoted by κ2, as

κ2 =
L∏

i=1

(1 − wi). (53)

Also, κ2 is a constant and is a part of
∏L

i=1m
wi
i (H).

The assignment of a constant amount of (κ1 + κ2) to βH
as part of an unassigned probability mass may cause the
aggregated assessment to be incomplete even when all basic
assessments are not. Therefore, in the modified discounting-
and-Yager’s combination scheme, this amount of (κ1 + κ2) is
assigned proportionally back to all individual grades and H
using the normalization process

βn =
mY (Hn)

1 − (κ1 + κ2)
, for n = 1, . . . , N (54)

βH =
mY (H) − (κ1 + κ2)

1 − (κ1 + κ2)
. (55)

As remarked above on κ1 and κ2, it is easily seen, by
definition, that the following holds.

Proposition 1: The degrees of belief generated using (54)
and (55) satisfy

0 ≤ βn, βH ≤ 1, for n = 1, . . . , N

N∑
n=1

βn + βH = 1.

Regarding the synthesis axioms, we have, desirably, the
following.

Theorem 7: The aggregated assessment for y defined as in
(54) and (55) exactly satisfies all four synthesis axioms.

Proof: See the Appendix. �
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D. Discounting-and-Averaging Scheme

In the aggregation schemes above, we have defined, for each
i = 1, . . . , L, (wi ⊗mi) as the BPAmwi

i by discountingmi by
a factor (1 − wi) [refer to (24)]. Then, Dempster’s and Yager’s
rules of combination are, respectively, applied for obtaining the
BPA m of the assessment for y. Here, we also assume that
0 < wi ≤ 1 for all i = 1, . . . , N .

In this subsection, instead of applying these combination
operations after discounting mis, we apply the averaging op-
eration over L BPAs mwi

i (i = 1, . . . , L) to obtain a BPA m
defined by

m(H) =
1
L

L∑
i=1

mwi
i (H) (56)

for any H ⊆ H.
Due to (24), we have

m(H) =




1
L

L∑
i=1

wiβn,i, if H = {Hn}

1
L

L∑
i=1

(
1 − wi

N∑
n=1

βn,i

)
, if H = H

0, otherwise.

(57)

After obtaining the aggregated BPAm, the problem now is to
usem for generating the aggregated assessment for the general
attribute y. Naturally, we can assign

βn =m(Hn) =
1
L

L∑
i=1

wiβn,i, for n = 1, . . . , N (58)

βH =m(H) =
1
L

L∑
i=1

(
1 − wi

N∑
n=1

βn,i

)
. (59)

Then, the assessment for y is defined by

S(y) = {(Hn, βn)|n = 1, . . . , N} . (60)

Regarding the synthesis axioms, we easily see that the first
axiom holds for the assessment (60). For the next two axioms,
we have the following.

Theorem 8: The assessment (60) defined via (58) and (59)
satisfies the consensus axiom and/or the completeness axiom if
and only if wi = 1 for all i = 1, . . . , L.

Proof: For the consensus axiom, the proof is straight-
forward. Now we rewrite βH defined by (59) as

βH =
1
L

L∑
i=1

(
1 − wi

N∑
n=1

βn,i

)

=
1
L

L∑
i=1

wi

(
1 −

N∑
n=1

βn,i

)
+

(
1 −

∑L
i=1 wi

L

)
. (61)

Thus, if all wi = 1 and the assumption of the completeness
axiom holds, we have βH = 0, and the conclusion of the axiom

follows easily. Inversely, if the completeness axiom is satisfied,
we must have

1 −

L∑
i=1

wi

L
= 0

that directly implies wi = 1 for all i. �
The assessment for y according to this aggregation scheme

also satisfies the incompleteness axiom trivially due to the
nature of discounting-and-averaging.

Unfortunately, the requirement of wi = 1 for all i to satisfy
the consensus axiom and the completeness axiom would not
be appropriate in general. This is due to the allocation of the
average of discount rates

α
�
=


1 −

L∑
i=1

wi

L




to H as a part of an unassigned probability mass. This dilemma
can be resolved in a similar way as in the modified algorithms
above. Interestingly, this modification leads to the weighted
sum scheme, as shown in the following.

E. Weighted Sum as Modified
Discounting-and-Averaging Scheme

By applying the discounting-and-averaging scheme, we ob-
tain the BPAm as defined by (57). Now, guided by the synthesis
axioms, instead of making direct use of m in defining the
generated assessment S(y) (i.e., allocating the average discount
rate α to βH as a part of unassigned probability mass) as above,
we define a new BPA denoted bym′ derived fromm by making
use of (1 − α) as a normalization factor. More particularly,
we define

m′(Hn) =
m(Hn)
1 − α , for n = 1, . . . , N (62)

m′(H) =
m(H) − α

1 − α . (63)

Combining (57) and (61), we interestingly obtain

m′(Hn) =
L∑

i=1

wiβn,i, for n = 1, . . . , N (64)

m′(H) =
L∑

i=1

wi

(
1 −

N∑
n=1

βn,i

)
(65)

where

wi =
wi

L∑
i=1

wi

, for i = 1, . . . , L.

Let us turn back to the general scheme of combination given
in (25). Under the view of this general scheme, the above BPA
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m′ is nothing but an instance of it by simply considering ⊗ as
the multiplication and ⊕ as the weighted sum. Namely, we have

m′(Hn) =
L∑

i=1

wimi(Hn), for n = 1, . . . , N (66)

m′(H) =
L∑

i=1

wimi(H) (67)

where relative weights wi are normalized as above so that∑
i wi = 1. It is of interest to note that the possibility of

using such an operation has previously been mentioned in, for
example, [7] and [30]. Especially, the weighted sum operation
of two BPAs has been used for the integration of distributed
databases for purposes of data mining [17].

Now we quite naturally define the assessment for y by
assigning

βn = m′(Hn) =
L∑

i=1

wimi(Hn), for n = 1, . . . , N (68)

βH = m′(H) =
L∑

i=1

wimi(H). (69)

Appealingly simple as it is, we can see quite straightfor-
wardly that the following theorem holds.

Proposition 2: The degrees of belief generated using (68)
and (69) satisfy

0 ≤ βn, βH ≤ 1, for n = 1, . . . , N

N∑
n=1

βn + βH = 1.

Furthermore, concerning the synthesis axioms, we have the
following theorem.

Theorem 9: The aggregated assessment for y defined as in
(68) and (69) exactly satisfies all four synthesis axioms.

Proof: The proof is trivial. �

F. Expected Utility in the ER Approaches

In the tradition of decision making under uncertainty [22],
the notion of expected utility has been mainly used to rank
alternatives in a particular problem. That is, one can represent
the preference relation � on a set of alternatives X with a
single-valued function u(x) on X , called expected utility, such
that for any x, y ∈ X , x � y if and only if u(x) ≥ u(y). Maxi-
mization of u(x) overX provides the solution to the problem of
selecting x.

When the D–S theory is considered in the perspective of
decision analysis under uncertainty, as a BPA does not in
general provide a unique probability distribution but a set of
compatible probabilities bounded by the corresponding belief
and plausibility functions, it is strictly nothing equivalent to the
notion of expected utility, leading to a single decision. However,
it is possible to meaningfully define the interval utility as
done in the ER approach in the following way [38], [39] (or

in decision analysis with costs, one can define the interval
expected costs, as mentioned in [4] and [6]).

In the ER approach, we assume a utility function

u′ : H → [0, 1]

satisfying

u′(Hn+1) > u′(Hn), if Hn+1 is preferred to Hn.

This utility function u′ may be determined using the probability
assignment method [14] or using other methods as in [33]
and [38].

If all assessments for basic attributes are complete, Lemma 2
shows that the assessment for y is also complete, i.e., βH = 0.
Then, the expected utility of an alternative on the attribute y is
defined by

u(y) =
N∑

n=1

βnu
′(Hn). (70)

An alternative a is strictly preferred to another alternative b if
and only if u(y(a)) > u(y(b)).

Due to incompleteness, in general, in basic assessments, the
assessment for y may be incomplete. In such a case, in [38], the
authors define three measures, called the minimum, maximum,
and average expected utilities, as

umax(y) =
N−1∑
n=1

βnu
′(Hn) + (βN + βH)u′(HN ) (71)

umin(y) = (β1 + βH)u′(H1) +
N∑

n=2

βnu
′(Hn) (72)

uavg(y) =
umax(y) + umin(y)

2
(73)

where, without loss of generality, suppose H1 is the least
preferred grade having the lowest utility and HN the most
preferred grade having the highest utility.

The ranking of two alternatives a and b on y is carried out by

• a �y b if and only if umin(y(a)) > umax(y(b))
• a ∼y b if and only if umin(y(a)) = umin(y(b)) and
umax(y(a)) = umax(y(b)).

If these are not the case, the average expected utility can be
used to generate a ranking (see, e.g., [38] for more details).

Alternatively, guided by the Generalized Insufficient Reason
Principle, we are also able to define a probability function Pm

on H derived from m for the purpose of making decisions via
the pignistic transformation [26]. Namely

Pm(Hn) = m(Hn) +
1
N
m(H), for n = 1, . . . , N. (74)

That is, as in the two-level language of the so-called transfer-
able belief model [26], the aggregated BPA m itself represent-
ing the belief is entertained based on available evidence at the
credal level, and when a decision must be made, the belief at the
credal level induces the probability function Pm defined by (74)
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Fig. 3. Evaluation hierarchy for motorcycle performance assessment [38].

for decision making. Particularly, the approximate assessment
for y for the purpose of decision making is then defined as

β′n = Pm(Hn) = βn +
1
N
βH, for n = 1, . . . , N. (75)

Therefore, the expected utility of an alternative on the at-
tribute y is straightforwardly defined by

u(y) =
N∑

n=1

β′nu
′(Hn) =

N∑
n=1

(
βn +

1
N
βH

)
u′(Hn). (76)

As such, while the amount of belief βH (due to ignorance) is
allocated either to the least preferred grade H1 or to the most
preferred grade HN to define the expected utility interval in
Yang’s approach [38], in our approach, it is uniformly allo-
cated to every evaluation grade Hn, guided by the Generalized
Insufficient Reason Principle [26], to define an approximate
assessment for y and, hence, a single-valued expected utility
function.

In the following section, we examine a tutorial example
taken from [38] to illustrate how the difference between the
various aggregation schemes as well as the respective results
yielded.
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TABLE I
GENERALIZE DECISION MATRIX FOR MOTORCYCLE ASSESSMENT [38]

TABLE II
AGGREGATED ASSESSMENTS FOR FOUR TYPES OF MOTORCYCLES USING THE MODIFIED ER METHOD [38]

V. EXAMPLE: MOTORCYCLE ASSESSMENT PROBLEM

The problem is to evaluate the performance of four types of
motorcycles, namely, Kawasaki, Yamaha, Honda, and BMW.

The overall performance of each motorcycle is evaluated
based on three major attributes, which are quality of engine,
operation, and general finish. These attributes are all gen-
eral and difficult to assess directly. So these attributes are
correspondingly decomposed into more detailed sub-attributes
to facilitate the assessment. The process of attribute decompo-
sition for the evaluation problem of motorcycles results in an
attribute hierarchy graphically depicted in Fig. 3, where the
relative weights of attributes at a single level associated with
the same upper level attribute are defined by wi, wij , and wijk

for the attributes at levels 1, 2, and 3, respectively.
Using the five-grade evaluation scale as given in (1), the

assessment problem of motorcycles is given in Table I, where
P , I , A, G, and E are the abbreviations of poor, indifferent,
average, good, and excellent, respectively, and a number in
brackets denoted the degree of belief to which an attribute is
assessed to a grade. For example, E(0.8) means “excellent to a
degree of 0.8.”

Further, all relevant attributes are assumed to be of equal
relative importance [38]. That is

w1 = w2 = w3 = 0.3333

w11 = w12 = w13 = w14 = w15 = 0.2

w21 = w22 = w23 = 0.3333

w211 = w212 = w213 = w214 = 0.25

w221 = w222 = 0.5

w231 = w232 = w233 = 0.3333

w31 = w32 = w33 = w34 = w35 = 0.2.

In the sequel, for the purpose of comparison, we generate
three different results of aggregation corresponding to Yang
and Xu’s modified ER method and the other two developed in
this paper.

By applying the modified ER method, the distributed as-
sessments for overall performance of four types of motorcy-
cles are given in Table II. These four distributions and their
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TABLE III
APPROXIMATE ASSESSMENTS FOR FOUR TYPES OF MOTORCYCLES USING THE MODIFIED ER METHOD

Fig. 4. Overall evaluation of motorcycles via the modified ER method.
(a) Aggregated assessment. (b) Approximate assessment via the pignistic
transformation.

approximations via the pignistic transformation (Table III) are
graphically shown in Fig. 4.

At the same time, by applying the weighted sum aggre-
gation scheme (shortly, WS method), we easily obtain the
distributed assessments for overall performance of four types
of motorcycles, as shown in Table IV [graphically depicted
in Fig. 5(a)]. The pignistic transformation applied to these
aggregated assessments yields the approximate assessments
for overall performance of motorcycles, as given in Table V
[graphically, Fig. 5(b)].

It would be worth noticing that, though there is not so
much difference between the results obtained by the modified
ER algorithm and that obtained by the weighted sum method
[especially where the behavior of corresponding assessment
distributions is almost the same as shown in Figs. 4(a) and 5(a)],
the two methods have very different behaviors. That is, while
the weighted sum method clearly has a linear behavior, the
modified ER method exhibits a quasi-linear behavior with equal
weights and strongly nonlinear behavior with unequal weights
[37]. In fact, the two sets of results generated in the exam-
ple look largely similar because of the assumption of equal
weights applied to the same group of attributes. This is the-
oretically also in relation to the relationship between the
discounting-and-orthogonal sum scheme and the averaging
combination scheme regarding conflicting information, as es-
tablished in [25]. More particularly, when combining a number
L of equally reliable sources using Dempster’s rule on equally
discounted BPAs, one gets a similar result as by trading off
between the L sources with equal reliability weights, i.e.,
averaging operation, if the sources are highly conflicting and
have been sufficiently discounted.

However, as we see in the following, the result yielded by the
modified Yager’s combination method (shortly, MY method) is
relatively different from those obtained by the above methods.
This is unsurprising as we were attributing a factor of conflict
to H as “unknown” in the aggregated assessment.

For generating the assessment for an attribute y at a higher
level in the hierarchy of attributes shown in Fig. 3, all the
BPAs of its direct sub-attributes are first aggregated via (50),
and the generated assessment for y is then obtained using
the normalization process represented in (54) and (55). This
process is carried out upward from the bottom level to the
top of the hierarchy in order to obtain the overall assessment.
With this method of aggregation, we obtain the distributed
assessments for overall performance of four types of motor-
cycles, as shown in Table VI, which are graphically depicted
in Fig. 6(a).

From the obtained result, it is interesting to observe that,
although a total degree of incompleteness in basic assessments
of Honda is 1.25 compared to those of the other three, which in
turn are 0.5 for both Kawasaki and Yamaha and 0.4 for BMW,
the unassigned probability mass of the generated assessment for
Honda is smaller than those of the remainders. This is due to a
lower conflict between basic assessments of Honda compared
to those of the others.

For the purpose of decision making, we apply the pignistic
transformation to the aggregated assessments in order to obtain
the approximate assessments for overall performance of mo-
torcycles, as shown in Table VII and depicted graphically in
Fig. 6(b).
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TABLE IV
AGGREGATED ASSESSMENTS FOR FOUR TYPES OF MOTORCYCLES USING THE WEIGHTED SUM COMBINATION METHOD

Fig. 5. Overall evaluation of motorcycles via the weighted sum method.
(a) Aggregated assessment. (b) Approximate assessment via the pignistic
transformation.

We are now ready to assume a utility function u′ : H → [0, 1]
defined in [38] as

u′(P ) = 0, u′(I) = 0.35,

u′(A) = 0.55, u′(G) = 0.85, u′(E) = 1.

Using (76), we easily obtain the expected utility of four
types of motorcycles according to the various methods given
in Table VIII.

Consequently, the ranking of the four types of motorcycles is
given in Table IX.

Note that the same ranking result for all methods could also
be obtained by the expected utility interval and the ranking
scheme by Yang and Xu [38] as mentioned above. As we have
seen, although the solution to the problem of selecting the best
alternative is the same for all the three methods of aggregation,
the ranking order between the alternatives is different. More
particularly, while Yamaha is preferred over BMW according
to the results of the first two methods, BMW is preferred
over Yamaha according to the third method. This is because,
by the third method of aggregation, the former is assessed to
good and excellent to a total degree of 0.5797, while the latter
is 0.54872.

VI. CONCLUDING REMARKS

In this paper, the authors have re-analyzed the ER approach
to MADM under uncertainty. Interestingly, the analysis pro-
vides a general formulation for the attribute aggregation prob-
lem in MADM under uncertainty. Under such a generalization,
several various aggregation schemes have been examined, in-
cluding the previous one. The theoretical properties of new
schemes regarding the synthesis axioms proposed in [38] were
also explored. In addition, this reformulation of the attribute
aggregation problem has practically shown that the aggregation
scheme based on the weighted sum operation could also be
considered for the aggregation process in the context of MADM
under uncertainty, especially when the assumption regarding
the independence of attributes’ uncertain evaluations is not
appropriate.

For the purpose of decision making, an approximate meth-
od of uncertain assessments based on the so-called pignistic
transformation [26] has been applied to define the expected
utility function instead of using the expected utility interval
proposed previously. A tutorial example has been examined to
illustrate the discussed techniques.

In summary, by the results obtained in this paper, the
authors do hope to support further aggregation schemes for
the attribute aggregation problem in MADM under uncer-
tainty. This is especially helpful in decision-making situations
where a single method of aggregation would be inapplicable
or not sufficient.

The approach proposed in this paper can also be extended
to apply to uncertain assessments where belief degrees may be
assigned not only to singleton sets but also to non-singleton
ones. For further work, the authors are planning to study
problems of hybrid MADM under uncertainty [34] in the
spirit of the proposed approach. Also, the decision model
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TABLE V
APPROXIMATE ASSESSMENTS FOR FOUR TYPES OF MOTORCYCLES USING THE WEIGHTED SUM COMBINATION METHOD

TABLE VI
AGGREGATED ASSESSMENTS FOR FOUR TYPES OF MOTORCYCLES USING THE MODIFIED YAGER’S COMBINATION METHOD

recently proposed in [12] for multiexpert decision-making
problems under linguistic assessments may be applied to
MADM problems under uncertainty as well, but further re-
search is required.

APPENDIX

In this Appendix, we give the proof of Theorem 7 on the
synthesis axioms for the modified discounting-and-Yager’s
combination scheme. Clearly, the independency axiom is im-
mediately followed from (43) as the case of the discounting-
and-Yager’s combination scheme. Note that we assume here
that weights wi are normalized so that 0 < wi < 1 for all i ∈ I .
First, we need some preparations. Recall that

βn =
mY (Hn)

1 − (κ1 + κ2)
, for n = 1, . . . , N

βH =
mY (H) − (κ1 + κ2)

1 − (κ1 + κ2)

mY (H) = ∆ +K

where

∆ =
L∏

i=1

[wimi(H) + (1 − wi)]

K =
∑

Hi∈F+
i

:
L∩

i=1
Hi=∅

L∏
i=1

wimi(Hi)

F+
i = {Hn|Hn ∈ H ∧ wiβn,i > 0}.

Let us denote

F=F+
1 ×F+

2 × · · · × F+
L

F
+ =F+ ×F+ × · · · × F+

Fig. 6. Overall evaluation of motorcycles via the modified Yager’s combina-
tion method. (a) Aggregated assessment. (b) Approximate assessment via the
pignistic transformation.
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TABLE VII
APPROXIMATE ASSESSMENTS FOR FOUR TYPES OF MOTORCYCLES USING THE MODIFIED YAGER’S COMBINATION METHOD

TABLE VIII
EXPECTED UTILITY OF FOUR TYPES OF MOTORCYCLES

where × denotes the Cartesian product. For

H = (H1, . . . , HL) ∈ F (or F
+)

by ∩H , we mean ∩L
i=1H

i. We can now decompose ∆ into two
parts as ∆ = ∆′ + κ2, where

∆′ =
∑

∅
=τ∈P(I)

∏
i∈τ

wimi(H)
∏

i∈I\τ
(1 − wi). (77)

Similarly,K is decomposed asK = K ′ + κ1 with

K ′ =
∑

H∈(F\F+)
∩H=∅

L∏
i=1

wimi(Hi). (78)

Proof for the consensus axiom: Suppose that βk,i = 1
for all i ∈ I, and βn,i = 0 for k 
= n = 1, . . . , N , n 
= k,
and i ∈ I.

Then, we have

mwi
i (Hn) =

{
wi, if n = k
0, if n 
= k

andmwi
i (H) = (1 − wi), for i ∈ I. Thus

F+
i = {Hk}, for all i = 1, . . . , L.

This directly implies thatK = 0. Further, we have ∆′ = 0 since
mi(H) = 0 for all i ∈ I . Hence, we get

mY (H) = κ2 =
L∏

i=1

(1 − wi)

and it immediately follows that βH = 0.
Inductively, we have

∑
τ∈P(I)

∏
i∈τ

wi

∏
j∈I\τ

(1 − wj) = 1.

TABLE IX
RANKING OF FOUR TYPES OF MOTORCYCLES

Therefore ∑
∅
=τ∈P(I)

∏
i∈τ

wi

∏
j∈I\τ

(1 − wj) = 1 − κ2.

From (49) and the assumption, we have I+k = I . Thus, the last
equation and (50) imply that βk = 1. This completes the proof
for the consensus axiom. �

Proof for the completeness axiom: Assume H+ ⊂ H and
denote J+ = {n|Hn ∈ H+}. We now prove the following
statement.

If βn,i > 0 for n ∈ J+ and
∑

n∈J+ βn,i = 1 for all i ∈ I ,
then βn > 0 for n ∈ J+ and

∑
n∈J+ βn = 1 as well.

Since 0 < wi < 1 for all i ∈ I , we have

mwi
i (Hn) =

{
wiβn,i > 0, if n ∈ J+

0, otherwise

and hence

F+
i = {Hn|n ∈ J+}, for all i ∈ I.

Therefore, F
+ = F, which directly follows K ′ = 0. Further,

from (49) we get I+n = I for all n ∈ J+. Using (50), we obtain

mY (Hn) =
∑

∅
=τ∈P(I)

∏
i∈τ

wiβn,i

∏
j∈I\τ

(1 − wj) (79)

for any Hn ∈ H+ (i.e., n ∈ J+).
On the other hand, we havemi(H) = 0 for all i. So, we also

have ∆′ = 0. By definition, we get

mY (H) = κ1 + κ2.

Thus

βH =
mY (H) − (κ1 + κ2)

1 − (κ1 + κ2)
= 0.

From (43) and the assumption βn,i = 0, if n 
∈ J+ for all
i ∈ I , we easily deduce that

mY (Hn) = 0, for any n ∈ {1, . . . , N} \ J+.
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Immediately, it follows that

βn = 0, for any n ∈ {1, . . . , N} \ J+.

Again, since 0 < wi < 1 for all i, it follows κ2 > 0. This
implies from (79) that mY (Hn) > 0 for all n ∈ J+. Thus,
βn > 0 for all n ∈ J+. Finally, the desired equation∑

n∈J+

βn = 1

is followed as
∑N

n=1 βn + βH = 1. This concludes the proof
for the completeness axiom. �

Proof for the incompleteness axiom: Now we give proof
for the last axiom. Assuming there is an index i0 ∈ I such that∑N

n=1 βn,i0 < 1, we must prove that

N∑
n=1

βn < 1, or equivalently βH > 0.

By definition, we have

βH =
mY (H) − (κ1 + κ2)

1 − (κ1 + κ2)
=

∆′ +K ′

1 − (κ1 + κ2)
.

So it is sufficient to show either ∆′ > 0 orK ′ > 0, say ∆′ > 0.
Indeed, since

N∑
n=1

βn,i0 < 1

we havemi0(H) > 0. This follows

wi0mi0(H)
∏

i∈I\{i0}
(1 − wi) > 0

as 0 < wi < 1 for all i ∈ I. Thus, from (77), we easily deduce

∆′ > 0

which we desired. This completely concludes the proof of the
theorem. �
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