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Abstract
The q-rung Orthopair fuzzy set (QROFS) is one of the fuzzy structures which can introduce
more fuzzy information than other fuzzy frames proposed by Ronald R. Yager. In this article,
the dynamic multiple attribute decision making (DMADM) approach with complex q-rung
Orthopair fuzzy (CQROF) information has been introduced. The ideas of CQROF variable
and uncertain CQROF variables are defined and introduced new dynamic weighted aver-
aging (DWA) operators called dynamic complex q-rung Orthopair fuzzy weighted average
(DCQROFWA) operator and uncertain dynamic complex q-rung Orthopair fuzzy weighted
average (UDCQROFWA)operator. For themoment, a procedure has been developed based on
DCQROFWAandCQROFWAoperator to solveDMADMproblemswhere all attribute infor-
mation are used in complex q-rungOrthopair fuzzy numbers (CQROFNs) collected at distinct
periods, and another procedure is developed based on UDCQROFWA and CIVQROFWA
operators to solve uncertain DMADMproblems for interval uncertainty in which all attribute
information takes in the form of complex interval-valued q-rung Orthopair fuzzy numbers
(CIVQROFNs) collected at distinct periods. Finally, a comprehensive comparative analy-
sis has been made for the proposed approach for testing its applicability and efficiency by
considering a numerical example.
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Abbreviations
DM Decision makers
AOs Aggregation operators
AHP Analytic hierarchy process
DWA dynamic weighted averaging
IFS Intuitionistic fuzzy set
CIFN Complex intuitionistic fuzzy set
PYFS Pythagorean fuzzy set
CPYFS Complex Pythagorean fuzzy set
QROFS q-Rung Orthopair fuzzy set
CQROF Complex q-Rung Orthopair fuzzy set
MADM Multi attribute decision making
DMADM Dynamic multi attribute decision making
DMAGDM Dynamic multi attribute group decision making
IVIFN Interval-valued intuitionistic fuzzy numbers
CIVQROFS Complex interval-valued q-Rung Orthopair fuzzy set
DCQROFWA Dynamic complex q-Rung Orthopair fuzzy weighted average
VIKOR Multi-criteria Optimization and Compromise Solution, with pronuncia-

tion
TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
TODIM An acronym in Portuguese for Interative Multi-criteria Decision Making
UDCQROFWA Uncertain dynamic complex q-Rung Orthopair fuzzy weighted average
CIVQROFWA Dynamic complex interval-valued q-Rung Orthopair fuzzy weighted

average

1 Introduction

Uncertainty is one of the problems that arrived when we handled realistic situations in the
science and technology environment. In that point, Zadeh (1965) invented fuzzy set (FS),
which were realized in multiple-attribute decision-making (MADM) problems and multiple
attribute group decision-making (MAGDM) problems. However, there are some problems
that FS can not solve. To discuss this issue, Attanassov (1986) carry out the notion of an
intuitionistic fuzzy set (IFS) as an extension of FS. This concept was favourably applied in
different applications areas towards engineering, medical diagnosis, supply chain manage-
ment, and in MADM problems (Chen 2007; Chen and Chang 2015; De et al 2000; Guo
and Song 2014; Gupta et al 2018; Jana et al 2019c; Jana and Pal 2021; Jana 2021; Liu and
Chen 2016; Liu et al 2019; Senapati and Chen 2021; Senapati et al 2021; Senapati and Yager
2019). However, when the sum of the membership and non-membership degrees does not
lie in [0, 1], for example, 0 < 0.5 + 0.7 = 1.2 � 1, this type of situation can not be over-
come by the use of IFS. To solve this kind of problem, Pythagorean fuzzy set (PYFS), as an
extension of IFS, was introduced by Yager and Abbasov (2013) and Yager (2013, 2014), of
which the sum of the square of membership and non-membership grade is “< 1” or “= 1”.
Since then, PYFS has received more and more attention due to its features. A large number
of investigators have paid their interest to handle the decision-making problems with PYFS
data. Rani et al (2020) have studied pharmacological therapy selection for type-2 diabetes
in PYFS information based on new entropy and score function. Liang et al (2019) devel-
oped a decision-making method for testing quality assessment in the internet baking industry
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Fig. 1 Geometric representation of FS, IFS, PyFS

based on TODIM Pythagorean fuzzy VIKOR approach. Garg (2017) have proposed some
generalized PYFS information aggregation using Einstein norms and then applied them to
decision making problems. Ren et al (2016) have been extended PYF information based
TODIM approach to multi-criteria decision making (MCDM) problems. Liang et al (2018)
have utilized extended Bonferroni mean operator in the PYFS and then developed an algo-
rithm for the application of the proposed approach. Jana et al (2019b) used solution concepts
of PYFS information based on Dombi norms (Jana et al 2019; Jana et al 2019a) and applied
Pythagorean Dombi operators for solving MADM problems. For more information related
to PYFS, the reader may see Dick et al (2016) and Reformat and Yager (2014)) (Fig. 1).

Although IFS and PYFS can solve some uncertain situations, these sets cannot be handled
all types of information entirely. As seen in this example, when a decision-maker used 0.8 as
membership and 0.7 as non-membership grade, then observed that 0.82 + 0.72 = 1.13 � 1.
So, PYFS cannot handle such uncertainty. For those problems, Yager (2017) have introduced
Q-rung orthopair fuzzy sets (QROFS) which is more robust and usual than IFS and PYFS
to lead an intricate and uncertain problems in the fuzzy frames. Furthermore, Liu and Wang
(2018) have introducedQROFaggregation functions and then used them for solving aMADM
problem. Liu and Liu (2018) built up a MAGDM problem based on some Bonferroni mean
QROF aggregation functions. Wei et al (2018) proposed Heronian mean QROF aggregation
function and used these operators to develop a MADM method. Liu et al (2018b) have
been motivated to study a MAGDM problem using the power Maclaurin QROF aggregation
function for accumulatingQROF information. Formore information regarding the application
of QROF, see (Ju et al 2019; Krishankumar et al 2020; Tang et al 2020).

However, many contributors thought about what will be happened if we changed the
codomain of FS by a complex number instead of [0, 1]. The essentiality of its appearance
was first proposed byRamot et al (2002),who proposed complex fuzzy sets (CFS) as a another
extension of FS, where CFS is a complex-valued function, i.e., Zτ (x) = Mτ (x) · e2iπNτ (x)

which follows that 0 ≤ Mτ (x), Nτ (x) ≤ 1. Later on, researchers are more attentive to the
study of CFS (Buckley 1989; Nguyen et al 2000). As in earlier, CFS has some advantages for
solving complex fuzzy information. But, there are some problems or difficulties for handling
complex fuzzy information byCFS. Tomanipulate those problems,Alkouri and Salleh (2012)
proposed a complex intuitionistic fuzzy set (CIFS), where CIFS is characterized by complex-
valued membership grade and complex-valued non-membership grade. The sum of the real
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part and imaginary part equal to or less than 1. For more results related to CIFS referred to
Garg and Rani (2019), Liu and Wang (2018), Rani and Garg (2018).

It is well known that CIFS can not solve all the cases of complex-valued function, as shown
in the example when the expert uses 0.8e2iπ(0.7) for membership grade and 0.6e2iπ(0.5) as
a non-membership grade, we observe that 0.8 + 0.6 = 1.4 ≥ 1 and 0.7 + 0.5 = 1.2 ≥ 1.
To control this type of situation, Ullah et al (2020) have proposed a complex Pythagorean
fuzzy set (CPYFS), where the sum of the square of the real (imaginary) part for complex-
valued membership and the sum of the square of the real (imaginary) part of complex-valued
non-membership degrees are “= 1” or “< 1”, here as in previous shows, 0.82 + 0.62 = 1
and 0.72 + 0.52 = 0.74 ≤ 1. Thus, CPYFS received more attention from the researchers.
Later on, Akram and Naz (2019) proposed a novel approach to CPYF graph. The experts
have widely utilized CIFS and CPYFS. Still, due to the complexity of the decision-making
problems, in some cases, where decision-makers are hesitated to give their judgement in the
form of single-valued membership and non-membership degrees. The valuable pre-existing
studies help the experts for depicting the uncertainties in his/her adverse decision in the
complex decision-making problems. Then, it is realized that experts must have the freedom
to give their preferences through intervals.

Same situations arise in the theory of CIFS and CPYFSwhenDMs uses these types of data
because these data do not follow the condition ofCIFS and the condition ofCPYFS.As seen in
the example, for this complex-valuedmembership and non-membership function 0.7e2iπ(0.8)

and 0.8e2iπ(0.9), i.e., 0.7 + 0.8 = 1.6 > 1, 0.8 + 0.9 = 1.7 > 1 and 0.72 + 0.82 = 1.3 >

1, 0.82 + 0.92 = 1.45 > 1. To control such types of complex uncertainties, Liu et al (2019)
proposed complex q-rung Orthopair fuzzy set (CQROFS). The renowned characteristic of
CQROFS is that the sum of the qth power of the real (and imaginary) part formembership and
theqth power of the real (imaginary) part of the non-membership degree is equal to or less than
1, i.e., 0.75 + 0.85 = 0.5 ≤ 1, 0.85 + 0.95 = 0.92 ≤ 1. Thus, CQROFS efficiently handled
complex-valued fuzzy uncertain decision-making problems. It was also noted that CQROFS
is more general than CIFS and CPYFS because if the imaginary part of membership and non-
membership takes zero, then CQROFS is converted into QROFS. For the parameter q = 1,
thenQROFS is reduced to IFS, and for the parameter q = 2, thenQROFS is reduced to PYFS.
Therefore, CQROFS can be consideredmore fuzzy information than CIFS and CPYFS. Later
on, Liu et al (2020) have been utilized for the concepts of CQROF aggregation function for
accumulating CQROF information. The proposed CQROF weighted average (CQROFWA)
operator and CQROF weighted geometric (CQROFWG) operator, and then applied these
operators to develop MADM problems. In the same environment, Garg et al (2020) have
been extended the concept of CQROFS information to a complex interval-valued q-rung
Orthopair set (CIVQROFS) and then used Analytic hierarchy process (AHP) and technique
for order preference by similarity to ideal solution (TOPSIS) method in this environment for
the study of MADM problems.

In the above all decision-making problems, they are considering decision information
where all the data take place in the same period. However, there are so many decision areas
such as medical diagnosis, multi-period dynamic investment, dynamic personal selection,
and dynamic military system efficient evaluation, etc.; these original data are collected at
distinct periods. Xu and Yager (2008) first pointed out such type of information in their
DMADM problems. They gave an application of DMADM issues based on dynamic intu-
itionistic fuzzy weighted average (DIFWA) operator and uncertain dynamic intuitionistic
fuzzy weighted average (UDIFWA) operator to accumulate dynamic or uncertain dynamic
IFS information. Further, they appliedDIFWAandUDIFWAoperators to solve twoDMADM
problems, where the argument of the attributes are used in IFNs or IVIFNs. Wei (2009) has
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been studied the DMADM problems where attributes values are used in IFNs or IVIFNs.
He proposed some weighted geometric AOs composed from distinct periods, such as the
DIFW geometric (DIFWG) operator and uncertain DIFW geometric (UDIFWG) operator to
accumulate dynamic or uncertain dynamic IFS data. A procedure has been constructed based
on DIFWG and IFWG operators to develop DIFMADM problems where attribute informa-
tion is in IFNs. Another approach has been developed based on UDIFWG, and IVIFWG
operators are derived for solving uncertain DMADM issues where all the information about
attributes are given in IVIFNs composed at multiple periods. Further, he used three TOPSIS
approaches to obtain the individual closeness coefficient of each alternative to positive and
negative ideal option depending on the decision information provided in real number, lin-
guistic label, and an interval number. Finally, he gave an application of the HGA and DWG
operators for DMADM problems. Li et al (2015) focus on studying the dynamic multi-
criteria decision making (MCDM) approach. In this approach, they applied a mathematical
programming method for calculating an attribute’s weight and used the BUM function to
determine the time weight. Chen and Li (2011) investigated the DMADM approach based
on triangular intuitionistic fuzzy numbers (TIFNs). They have been defined as the dynamic
TIFNs weighted average operator in which the decision data of each attribute is in TIFNs.
Furthermore, some dynamicMADMproblems exist based onAOs (Chen andLi 2011; Li et al
2015; Wei 2009; Xu and Yager 2008) in an intuitionistic fuzzy environment, but they can not
take into account in complex dynamic aggregation operators. On the other, present research
on complex fuzzy environment (Akram and Naz 2019; Dick et al 2016; Garg et al 2020; Garg
and Rani 2019; Liu et al 2020, a; Nguyen et al 2000; Rani et al 2020; Rani andGarg 2018) and
till there is no research on the proposed approach in my knowledge. In this model, we try to
fill this research gap to address the DCQROFMADM with CQROF information. Therefore,
the proposed method is more effective and advanced than other existing methods. The aim of
this paper is to propose some dynamic complex averaging operators such as DCQROFWA
operator and UDCQROFWA operator to accumulate dynamic or uncertain dynamic CQROF
information. Further, using operators DCQROFWA and UDCQROFWA, respectively, we
shall develop two procedures for solving DMADM problems where all the attribute infor-
mation are taken as CQROFNs or CIVQROFNs. The objectives of this paper are to

– a new approach is considered in connection with some complex dynamic operators
– utilize the proposed method for DCQROFMADM approach
– a case study is provided to demonstrate the method by a numerical example
– superiority of the method is verified numerically.

To do so, the remainder of this paper is organized as follows. In the next section, we review
some basic concepts of complex q-rungOrthopair fuzzy set. In Sect. 3, propose a newoperator
called dynamic complex q-rung Orthopair fuzzy weighted average (DCQROFWA) operator.
In Sect. 4, we develop DMADM problem with CQROF information where all the attribute
information is used in CQROFNs take place at distinct periods. Then, an application model
for DMADM has been established based on DCQROFWA and CQROFWA operators to
accumulate CQROFNs collected to corresponding each period and get the most favourable
one(s) alternative from the ordering of the options based on the values of score and accu-
racy function. In Sect. 5, another method has been developed based on UDCQROFWA and
CIVQROFWA operators for solving uncertain DMADM problems under uncertain intervals
in which all the attribute information are provided in CIVQROFNs collected at multiple
periods. An illustrative numerical example is pointed out for the proposed model in Sect. 6.
Scope of future problems aim to work, and a remark is given in Sect. 7.
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2 Preliminaries

Basic concepts of Q-ROFEs are briefly reviewed in this section.

Definition 1 (Liu et al 2020) A CQROFEs is an object of the form

Q% = {〈x, ξc(x), χc(x)〉|x ∈ X }

where ξc = ξrp(x)e
2iπ

(
ξi p(x)

)
andχc = χrp(x)e

2iπ

(
χi p(x)

)
are the complex grade of postive

and negative opinion such that 0 ≤ ξ
q
rp + χ

q
rp ≤ 1 and 0 ≤ ξ

q
ip + χ

q
ip ≤ 1, and the refusal

degree of CQROFEs is denoted as πc =
{
1 −

(
ξ
q
rp + χ

q
rp

)}1/q
e
2iπ

{
1−

(
ξ
q
ip+χ

q
ip

)}1/q

.

The complex Q-rung orthopair fuzzy elements (CQROFE) is simply applying as Q%
1 =(

ξrp−1e2iπ(ξi p−1), χrp−1e2iπ(χi p−1)
)
.

The score function value of the any CQROFE Q%
cq−1 =

(
ξrp−1e2iπ(ξi p−1), χrp−1

e2iπ(χi p−1)
)
is defined in the following equation

Definition 2 (Liu et al 2020)

CSF(Q%
1 ) = 1

2

(
ξrp−1 − χrp−1 + ξi p−1 − χi p−1

)
(1)

where, CSF(Q%
1 ) ∈ [−1, 1] and the accuracy function follows the equation

Definition 3 (Liu et al 2020)

CAF(Q%
1 ) = 1

2

(
ξrp−1 + χrp−1 + ξi p−1 + χi p−1

)
(2)

where, CAF(Q%
1 ) ∈ [0, 1],

then prioritized realtion between any two CQROFEs Q%
1 =

(
ξrp−1e2iπ(ξi p−1), χrp−1

e2iπ(χi p−1)
)
and Q%

2 =
(
ξrp−2e2iπ(ξi p−2), χrp−2e2iπ(χi p−2)

)
is defined as follows:

(i) If CSF(Q%
1 ) < CSF(Q%

2 ), imply Q%
1 ≺ Q%

2
(ii) If CSF(Q%

1 ) > CSF(Q%
2 ), imply Q%

1 � Q%
2

(iii) If CSF(Q%
1 ) = CSF(Q%

2 ), then

(1) If CAF(Q%
1 ) < CAF(Q%

2 ), imply Q%
1 ≺ Q%

2
(2) If CAF(Q%

1 ) > CAF(Q%
2 ), imply Q%

1 ≺ Q%
2

(3) If CAF(Q%
1 ) = CAF(Q%

2 ), imply Q%
1 ∼ Q%

2 .

3 Dynamic complex q-rung orthopair fuzzy weighted averaging
(CQROFWA) operator

To aggregate the CQROFEs, Liu et al (2020) studied complex q-rung Orthopair fuzzy
weighted averaging (CQROFWA) operator. For simplicity, let CQ be the set of all ***com-
plex q-rung orthopair fuzzy numbers.
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Definition 4 Let Q%
j =

(
ξrp− j · e2iπ(ξi p− j ), χrp− j · e2iπ(χi p− j )

)
( j = 1, 2, . . . , v) be a

CQROFEs, and let CQROFW A : �v → �, if

CQROFW A(Q%
1 , Q%

2 , . . . , Q%
v ) =

v∏
j=1

(
ψ j Q

%
j

)

=
({(

1 −
v∏
j=1

(
1 − ξ

q
rp− j

)ψ j
}1/q

e
2iπ

{
(1−∏v

j=1(1−ξ
q
ip− j )

ψ j )

}1/q

,

v∏
j=1

χ
ψ j
r p− j e

2iπ(
v∏
j=1

χ
ψ j
i p− j )

)
(3)

where, ψ = (ψ1, ψ2, . . . , ψv)
T be such that ψ j > 0, and

∑v
j=1 ψ j = 1, the CQROFWA is

called complex q-rung Orthopair fuzzy weighted averaging operator.

However, the CQROFWA can only be considered to accumulate complex q-rung Orthopair
fuzzy information where time is not taken into account. If time is taken is considered, then
CQROFEs information may be collected at different periods, then it is not suitable to lead
these situations.

Definition 5 Let t be consider as time variable, then we call β(t) =
(
ξrpβ(t) · e2iπ(ξi pβ(t)),

χrpβ(t)·e2iπ(χi pβ(t))
)
be complex q-rungOrthopair fuzzy variable (CQROFV),where ξrpβ(t) ∈

[0, 1],χrpβ(t) ∈ [0, 1], and ξi pβ(t) ∈ [0, 1],χi pβ(t) ∈ [0, 1] such that 0 ≤ ξrpβ(t)+χrpβ(t) ≤ 1
, and 0 ≤ ξi pβ(t) + χi pβ(t) ≤ 1.

For CQROFV β(t) =
(
ξrpβ(t) · e2iπ(ξi pβ(t)), χrpβ(t) · e2iπ(χi pβ(t))

)
, if t = t1, t2, . . . , tl , then

Q%(t1), Q%(t2), . . . , Q%(tl) are indicated as l distinct complex q-rung Orthopair fuzzy
numbers.

Definition 6 β(t1) =
(
ξrpβ(t1) · e2iπ(ξi pβ(t1)), χrpβ(t1) · e2iπ(χi pβ(t1))

)
and β(t2) =

(
ξrpβ(t2) ·

e2iπ(ξi pβ(t2)), χrpβ(t2) · e2iπ(χi pβ(t2))
)
be two CQROFV, then

(1) β(t1)
⊕

β(t2)

=
〈{
1 −

((
1 − ξ

q
rpβ(t1)

)(
1 − ξ

q
rpβ(t2)

)}1/q
, e

2iπ

{
1−

(
1−ξ

q
ipβ(t1)

)(
1−ξ

q
ipβ(t2)

)}1/q

,

χrpβ(t1)χrpβ(t2) · e2iπ(χi pβ(t1))e2iπ(χi pβ(t2))

〉

(2) λβ(t1) =
(
1 −

(
1 − ξ

q
rpβ(t1)

)λ)1/q · e2iπ
(
1−ξ

q
ipβ(t1)

)λ)1/q

, χλ
rpβ(t1) · e2iπ(χλ

i pβ(t1)
)
)

,

λ > 0.
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Definition 7 Let Q%
tm =

(
ξrpβ(tm ) · e2iπ(ξi pβ(tm )), χrpβ(tm ) · e2iπ(χi pβ(tm ))

)
, (m = 1, 2, . . . , l)

be a group of CQROFEs at l distinct periods tm (m = 1, 2, . . . , l), and let DCQROFW A :
�v → �, where

DCQROFW Aψ(t)

(
Q%

t1 , Q
%
tm , . . . , Q%

tl

)
=

l∏
m=1

ψ(tm)(Q%
tm ) (4)

where ψ(t) = (ψ(t1), ψ(t2), . . . , ψ(tl))T be a weight vector of the periods tm (m =
1, 2, . . . , l), and ψ(tm) ∈ [0, 1], ∑l

m=1 ψ(tm) = 1. Then, DCQROFWA is called dynamic
complex q-rung Orthopair fuzzy weighted averaging (DCQROFWA) operator.

Following from Definition 6, Eq. (4) can be written in the form as

DCQROFW Aψ(t)

(
Q%

t1 , Q
%
tm , . . . , Q%

tl

)

=
〈{
1 −

l∏
m=1

(
1 − ξ

q
rpβ(t1)

)ψ(tm )}1/q · e
2iπ

{
1−

l∏
m=1

(
1−ξ

q
ipβ(tm )

)ψ(tm )}1/q

,

l∏
m=1

χ
ψ(tm )

rpβ(tm ) · e2iπ
(

χ
ψ(tm )

i pβ(tm )

)〉
(5)

For DCQROFWA operator, to assign the weight vector
ψ(t) = (ψ(t1), ψ(t2), . . . , ψ(tl))T of the periods tm (m = 1, 2, . . . , l) is a very important

step. In general, ψ(t) is is determine by decision maker(s) directly, or can be assigned by
excited methods from Xu and Yager (2008).

4 A approach for dynamic complex q-rung Orthopair fuzzymultiple
attribute decisionmaking problem

The following notations are utilized to present the dynamic MADM with complex q-rung
Orthopair fuzzy information.

(1) Here, we use discrete set of alternatives A = {A1,A2, . . . ,Au} which are known.
(2) The set of attributes G = {G1,G2, . . . ,Gv} are known attributes, and w = (w1, w2, . . . ,

wv)
T be the weight vector of the attributes, such that w j > 0,

∑v
j=1 w j = 1 for

j = 1, 2, . . . , v.
(3) There are l distinct periods tm (k = 1, 2, . . . , l) whose weight is considered as ψ(t) =

(ψ(t1), ψ(t2), . . . , ψ(tl))l such as ψ(tm) > 0, m = 1, 2, . . . , l, and ψ(tm) ∈ [0, 1],∑l
m=1 ψ(tm) = 1.

(4) Suppose M(tm) =
(

i j (tm)

)
u×v

=
(
ξrp(tm )−i j · e2iπ(ξi p(tm )−i j ), χrp(tm )−i j ·

e2iπ(χi p(tm )−i j )
)
u×v

is the complex q-rung Orthopair fuzzy decision matrix which take

l distinct periods tm (m = 1, 2, . . . , l), where ξrp(tm )−i j · e2iπ(ξi p(tm )−i j ) is the degree of
CQROFE’s grade of positive opinion for the alternativeAu satisfying the attribute Gv at
periods tm (m = 1, 2, . . . , l), and χrp(tm )−i j · e2iπ(χi p(tm )−i j ) is the degree of CQROFE’s
grade of negative opinion for the alternative Au does not satisfying the attribute Gv

at periods tm (m = 1, 2, . . . , l) such as ξrp(tm )−i j ∈ [0, 1], χrp(tm )−i j ∈ [0, 1],
ξi p(tm )−i j ∈ [0, 1], and χi p(tm )−i j ∈ [0, 1], and 0 ≤ ξ

q
rp(tm )−i j + χ

q
rp(tm )−i j ≤ 1, and

0 ≤ ξ
q
ip(tm )−i j + χ

q
ip(tm )−i j ≤ 1.
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Based on the above-supplied information, we develop an Algorithm to order and select
the favourable one(s). The Algorithm contains the following steps.

(Procedure I)
step 1: Applying the DCQROFWA operator:

DCQROFW Aψ(t)

(
Q%(t1), Q

%(t2), . . . , Q
%(tl)

)

=
〈{
1 −

l∏
m=1

(
ξ
q
rpβ(t1)

)ψ(tm )}1/q · e
2iπ

{
1−

l∏
m=1

(
1−ξ

q
ipβ(tm )

)ψ(tm )}1/q

,

l∏
m=1

χ
ψ(tm )

rpβ(tm ). e
2iπ

(
χ

ψ(tm )

i pβ(tm )

)〉
. (6)

To aggregate all the complex q-rung Orthopair fuzzy decision matrices M(tm) =(
ξrp(tm )−i j · e2iπ(ξi p(tm )−i j ), χrp(tm )−i j · e2iπ(χi p(tm )−i j )

)
u×v

(m = 1, 2, . . . , l) into a complex

q-rung Orthopair fuzzy decision matrix, M = (
(
ξrp−i j ·e2iπ(ξi p−i j ), χrp−i j ·e2iπ(χi p−i j )

)
u×v

.

Step 2: Utilize CQROFWA operator:

ri =
(
ξrp−i · e2iπ(ξi p−i ), χrp−i · e2iπ(χi p−i )

)
= CQROFW Aw

(
Q%

i1, Q
%
i2, . . . , Q

%
iv

)

=
〈{
1 −

v∏
i=1

(
ξ
q
rp−i

)w}1/q · e
2iπ

{
1−

v∏
i=1

(
1−ξ

q
ip−i

)w)}1/q

,

v∏
i=1

χw
rp−i · e2iπ

(
χw
i p−i

)〉
. (7)

Step 3: Compute the score value CSF(
i ) (i = 1, 2, . . . , u) of the overall CQROFEs
to rank all the alternatives Ai (i = 1, 2, . . . , u) to adopt desired choice Ai . If the val-
ues of CSF(
i ) and CSF(
 j ) are same, then we continue to evaluate accuracy degrees
CAF(
i ) andCAF(
 j ) based on overall CQROFEs information band rank the alternatives
Ai depending on degree of accuracy CAF(
i ) and CAF(
 j ).

Step 4: Rank all the alternative Ai (i = 1, 2, . . . , u) in order to choose the best one(s) in
accordance with CSF(
i ) and CAF(
 j ) (i = 1, 2, . . . , u).

Step 5: End.

5 Interval-valued complex q-rung Orthopair fuzzy information

Garg et al (2020) introduced complex interval-valued q-rung orthopair fuzzy set (CIVQRO-
FES), which is a generalization of complex q-rung orthopair fuzzy set (CQROFEs), proposed
by Liu et al (2020). The main characteristic of CIVQROFES is that complex grades of mem-
bership and non-membership values are interval numbers rather than exact numbers.

Definition 8 (Liu et al 2020) A CIVQROFEs is an object of the form

Q% = {〈x, ξ ′
c, χ

′
c(x)〉|x ∈ X }

where ξ ′
c =

[
ξ L
rp, ξ

R
rp

]
·e2iπ

([
ξ L
ip,ξ

R
ip

])
and χ ′

c =
[
χ L
rp, χ

R
rp

]
·e2iπ

([
χ L
ip,χ

R
ip

])
are the complex

interval-valued grade of postive and negative opinion such that

0 ≤
(
ξ
qR
rp

)q +
(
χ
qR
rp

)q ≤ 1 and 0 ≤
(
ξ
qR
ip

)q +
(
χ R
ip

)q ≤ 1, and The complex interval-

valued Q-rung orthopair fuzzy elements (CIVQROFE) is applying for convenience as
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Q%
j =

([
ξ L
rp− j , ξ

R
rp− j

]
· e2iπ

([
ξ L
ip− j ,ξ

R
ip− j

])
,
[
χ L
rp− j , χ

R
rp− j

]
· e2iπ

([
χ L
ip− j ,χ

R
ip− j

]))
.

Definition 9 (Garg et al 2020; Liu et al 2020a) Let Q%
civ =

([
ξ L
rp, ξ

R
rp

]
· e2iπ

([
ξ L
ip,ξ

R
ip

])
,

[
χ L
rp, χ

R
rp

]
· e2iπ

([
χ L
ip,χ

R
ip

]))
be a CIVQROFEs, then score function CSF of CIVQROFN

can be defined as follows:

CSF(Q%) = 1

2

(ξ L
rp + ξ R

rp

2
+ ξ L

ip + ξ R
ip

2
− χ L

rp + χ R
rp

2
− χ L

ip + χ R
ip

2

)
,CSF ∈ [−1, 1] (8)

Definition 10 (Garg et al 2020; Liu et al 2020a) Let Q% =
([

ξ L
rp, ξ

R
rp

]
· e2iπ

([
ξ L
ip,ξ

R
ip

])
,

[
χ L
rp, χ

R
rp

]
·e2iπ

([
χ L
ip,χ

R
ip

]))
be aCIVQROFEs, then accuracy functionCAF ofCIVQROFN

can be defined as follows:

CAF(Q%) = 1

2

(ξ L
rp + ξ R

rp

2
+ ξ L

ip + ξ R
ip

2
+ χ L

rp + χ R
rp

2
+ χ L

ip + χ R
ip

2

)
,CAF ∈ [0, 1]. (9)

to evaluate the accuracy degree of CIVQROFN Q% =
([

ξ L
rp, ξ

R
rp

]
· e2iπ

([
ξ L
ip,ξ

R
ip

])
,

[
χ L
rp, χ

R
rp

]
· e2iπ

([
χ L
ip,χ

R
ip

]))
where CAF ∈ [0, 1]. The larger the value of CAF , the more

degree of accuracy of the CIVQROFN Q%.
The score function CAF and the accuracy function CAF , as presented by Garg et al

(2020) of the above equations. Based on the score function CSF and accuracy function
CAF , in the following Garg et al (2020) set an order relation between two CIVQROFNs as
follows.

Definition 11 Let Q%
1 =

([
ξ L
rp−1, ξ

R
rp−1

]
· e

2iπ

([
ξ L
ip−1,ξ

R
ip−1

])
,
[
χ L
rp−1, χ

R
rp−1

]
·

e
2iπ

([
χ L
ip−1,χ

R
ip−1

]))

and Q%
2 =

([
ξ L
rp−2, ξ

R
rp−2

]
· e2iπ

([
ξ L
ip−2,ξ

R
ip−2

])
,
[
χ L
rp−2, χ

R
rp−2

]
· e2iπ

([
χ L
ip−2,χ

R
ip−2

]))

be two CIVQROFEs.

Then order relation between two CIVQROFNs Q%
civ−1 and Q%

civ−2 defined as:

(i) If CSF(Q%
1) < CSF(Q%

2), imply Q%
1 ≺ Q%

2

(ii) If CSF(Q%
1) > CSF(Q%

2), imply Q%
1 � Q%

2

(iii) If CSV (Q%
1) = CSF(Q%

2), then

(1) If CAF(Q%
1) < CAF(Q%

2), imply Q%
1 ≺ Q%

2

(2) If CAF(Q%
1) > CAF(Q%

2), imply Q%
1 � Q%

2

(3) If CAF(Q%
1) = CAF(Q%

2), imply Q%
1 ∼ Q%

2.
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6 Dynamic complex interval-valued q-rung orthopair fuzzy weighted
averaging (CIVQROFWA) operator

To aggregate the CIVQROFEs, Liu et al (2020) studied complex interval-valued q-rung
Orthopair fuzzy weighted averaging (CIVQROFWA) operator. For simplicity, let C IV Q be
the set of all complex interval-valued q-rung orthopair fuzzy numbers (CIVQROFN).

Definition 12 Let Q%
j =

([
ξ L
rp− j , ξ

R
rp− j

]
· e

2iπ

([
ξ L
ip− j ,ξ

R
ip− j

])
,
[
χ L
rp− j , χ

R
rp− j

]
·

e
2iπ

([
χ L
ip− j ,χ

R
ip− j

]))
( j = 1, 2, . . . , v) be a CIVQROFNs, and letC IV QROFW A : �v →

�, if

C IV QROFW A(Q%
1 , Q%

2 , . . . , Q%
v )

=
v∏
j=1

(
ψ j Q

%
j

)

=
([(

1 −
v∏
j=1

(
1 −

(
ξ L
rp− j

)q)ψ j
)1/q

,

(
1 −

v∏
j=1

(
1 −

(
ξ R
rp− j

)q)ψ j
)1/q]

·e
2iπ

([(
1−

v∏
j=1

(1−(ξ L
ip− j )

q )
ψ j

)1/q

,

(
1−

v∏
j=1

(
1−(ξ R

ip− j )
q

)ψ j
)1/q])

,

[ v∏
j=1

(
χ L
rp− j

)ψ j
,

v∏
j=1

(
χ R
rp− j

)psi j
]

· e
2iπ

([
v∏
j=1

(
χ L
ip− j

)ψ j
,

v∏
j=1

(
χ R
ip− j

)ψ j
]))

(10)

where, ψ = (ψ1, ψ2, . . . , ψv)
T be such that ψ j > 0, and

∑v
j=1 ψ j = 1, the CIVQROFWA

is called complex interval-valued q-rung Orthopair fuzzy weighted averaging operator.

However, the CIVQROFWA can only be considered to aggregate CIVQROF information
where time is not taken into account. If time is taken is considered, then CIVQROF informa-
tion may be collected at different periods, then it is not suitable to lead these situations.

Definition 13 Let t be consider as time variable, then we call β(t) =
([

ξ L
rpβ(t), ξ

R
rpβ(t)

]
.

e
2iπ([ξ L

ipβ(t),ξ
R
ipβ(t)

]
)
,
[
χ L
rpβ(t), χ

R
rpβ(t)

]
· e2iπ(

[
χ L
ipβ(t),χ

R
ipβ(t)

]
))

be complex interval-valued q-

rungOrthopair fuzzyvariable (CIVQROFV),where ξ L
rpβ(t), ξ

R
rpβ(t) ∈ [0, 1],χ L

rpβ(t), χ
R
rpβ(t) ∈

[0, 1], and ξ L
ipβ(t), ξ

R
ipβ(t) ∈ [0, 1], χ L

ipβ(t), χ
R
ipβ(t) ∈ [0, 1] such that 0 ≤

(
ξ R
rpβ(t)

)q +(
χ R
rpβ(t)

)q ≤ 1 , and 0 ≤
(
ξ R
ipβ(t)

)q +
(
χ R
ipβ(t)

)q ≤ 1.
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For CIVQROFV

β(t) =
([

ξ L
rpβ(t), ξ

R
rpβ(t)

]
.e
2iπ([ξ L

ipβ(t),ξ
R
ipβ(t)

]
)
,
[
χ L
rpβ(t), χ

R
rpβ(t)

]
· e2iπ(

[
χ L
ipβ(t),χ

R
ipβ(t)

]
))
, if

t = t1, t2, . . . , tl , then Q%(t1), Q%(t2), . . . , Q%(tl) are indicated as l distinct complex
interval-valued q-rung Orthopair fuzzy numbers.

Definition 14 β(t1) =
([

ξ L
rpβ(t1)

, ξ R
rpβ(t1)

]
· e

2iπ([ξ L
ipβ(t1)

,ξ R
ipβ(t1)

]
)
,
[
χ L
rpβ(t1)

, χ R
rpβ(t1)

]
·

e
2iπ(

[
χ L
ipβ(t1)

,χ R
ipβ(t1)

]
))

and

β(t2) =
([

ξ L
rpβ(t2)

, ξ R
rpβ(t2)

]
·e2iπ([ξ L

ipβ(t2)
,ξ R
ipβ(t2)

]
)
,
[
χ L
rpβ(t2)

, χ R
rpβ(t2)

]
·e2iπ(

[
χ L
ipβ(t2)

,χ R
ipβ(t2)

]
))

be two CQROFV, then

(1) β(t1)
⊕

β(t2) =
([{

1 −
(
1 − (ξ L

rpβ(t1))
q
)(

1 − (ξ L
rpβ(t2))

q
)}1/q

,

{
1 −

(
1 − (ξ R

rpβ(t1))
q
)(

1 − (ξ R
rpβ(t2))

q
)}1/q]

·e2iπ
([{

1 −
(
1 − (ξ L

ipβ(t1))
q
)(

1 − (ξ L
ipβ(t2))

q
)}1/q

,

{
1 −

(
1 − (ξ R

ipβ(t1))
q
)(

1 − (ξ R
ipβ(t2))

q
)1/q])

,

[
χ L
rpβ(t1)χ

L
rpβ(t2), χ

R
rpβ(t1)χ

R
rpβ(t2)

]

·e2iπ([χ L
ipβ(t1)

)χ L
ipβ(t2)

,χ R
ipβ(t1)

χ R
ipβ(t2)

)
])

(2) λβ(t1) =
([(

1 −
(
1 − (ξ L

rpβ(t1))
q
)λ)1/q

,
(
1 −

(
1 − (ξ R

rpβ(t1))
q
)λ)1/q]

·e2iπ
([(

1−
(
1−(ξ L

ipβ(t1)
)q

)λ)1/q

,

(
1−

(
1−(ξ R

ipβ(t1)
)q

)λ)1/q ]
,

[(
χ L
rpβ(t1)

)λ

,
(
χ R
rpβ(t1)

)λ]

·e2iπ(

[(
χ L
ipβ(t1)

)λ

,

(
χ R
ipβ(t1)

)λ]))
, λ > 0.

Definition 15 LetQ%(tm) =
([

ξ L
rpβ(tm ), ξ

R
rpβ(tm )

]
.e
2iπ([ξ L

ipβ(tm )
,ξ R
ipβ(tm )

]
)
,
[
χ L
rpβ(tm ), χ

R
rpβ(tm )

]
·

e
2iπ(

[
χ L
ipβ(tm )

,χ R
ipβ(tm )

]
))
, (m = 1, 2, . . . , l) be a group of CIVQROFNs at l different periods

tm (m = 1, 2, . . . , l), and let DC IV QROFW A : �v → �, where

DC IV QROFW Aψ(t)

(
Q%(t1), Q

%(t2), . . . , Q
%((tl)

)
=

l∏
m=1

ψ(tm)(Q%(tm)) (11)

where ψ(t) = (ψ(t1), ψ(t2), . . . , ψ(tl))T be a weight vector of the periods tm (m =
1, 2, . . . , l), andψ(tm) ∈ [0, 1],∑l

m=1 ψ(tm) = 1.Then,DCIVQROFWAis called uncertain
dynamic complex q-rung Orthopair fuzzy weighted averaging (DCIVQROFWA) operator.
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Following from Definition 14, Eq. (11) can be written in the form as

UDCQROFW Aψ(t)

(
Q%(t1), Q

%(t2), . . . , Q
%(tl)

)

([(
1 −

l∏
m=1

(
1 − (ξ L

rpβ(tm ))
q
)ψ(tm ))1/q

,
(
1 −

l∏
m=1

(
1 − (ξ R

rpβ(tm ))
q
)ψ(tm ))1/q]

·e
2iπ

([(
1−

l∏
m=1

(
1−(ξ L

ipβ(tm )
)q

)ψ(tm ))1/q

,

(
1−

l∏
m=1

(
1−(ξ R

ipβ(tm )
)q

)ψ(tm ))1/q ]
,

[(
χ L
rpβ(tm )

)ψ(tm )

,
(
χ R
rpβ(tm )

)ψ(tm )] · e2iπ(

[(
χ L
ipβ(tm )

)ψ(tm )

,

(
χ R
ipβ(tm )

)ψ(tm )]))
(12)

For DCIVQROFWA operator, to assign the weight vector
ψ(t) = (ψ(t1), ψ(t2), . . . , ψ(tl))T of the periods tm (m = 1, 2, . . . , l) is a very important

step. In general, ψ(t) is is determine by decision maker(s) directly, or can be assigned by
excited methods from Xu and Yager (2008).

7 A approach for uncertain dynamic complex q-rung Orthopair fuzzy
multiple attribute decisionmaking problem

The following notations are utilized to present the dynamic MADM problems with complex
interval-valued q-rung Orthopair fuzzy information.

(1) Here, we use discrete set of alternatives A = {A1,A2, . . . ,Au} which are known.
(2) The set of attributes G = {G1,G2, . . . ,Gv} are known attributes, and w = (w1, w2, . . . ,

wv)
T be the weight vector of the attributes, such that w j > 0,

∑v
j=1 w j = 1 for

j = 1, 2, . . . , v.
(3) There are l distinct periods tm (k = 1, 2, . . . , l) whose weight is considered as ψ(t) =

(ψ(t1), ψ(t2), . . . , ψ(tl))l such as ψ(tm) > 0, m = 1, 2, . . . , l, and ψ(tm) ∈ [0, 1],∑l
m=1 ψ(tm) = 1.

(4) SupposeM(tm) =
(

i j (tm)

)
u×v

=
(([

ζ L
rp(tm )−i j , ζ

R
rp(tm )−i j

]
·e2iπ

([
ζ L
ip(tm )−i j ,ζ

R
ip(tm )−i j

])
,

[
ηL
rp(tm )−i j , η

R
rp(tm )−i j

]
· e2iπ

([
ηL
ip(tm )−i j ,η

R
rp(tm )−i j

]))
u×v

is the complex q-rung Orthopair

fuzzy decisionmatrixwhich take l distinct periods tm (m = 1, 2, . . . , l), where ξrp(tm )−i j ·
e2iπ(ξi p(tm )−i j ) is the degree of CQROFE’s grade of positive opinion for the alternativeAu

satisfying the attribute Gv at periods tm (m = 1, 2, . . . , l), and χrp(tm )−i j · e2iπ(χi p(tm )−i j )

is the degree of CQROFE’s grade of negative opinion for the alternative Au does

not satisfying the attribute
[
ξ L
rp(tm )−i j , ξ

R
rp(tm )−i j

]
⊂ [0, 1],

[
χ L
rp(tm )−i j , χ

R
rp(tm )−i j

]
⊂

[0, 1],
[
ξ L
ip(tm )−i j , ξ

R
ip(tm )−i j

]
⊂ [0, 1], and

[
χ L
ip(tm )−i j , χ

R
ip(tm )−i j

]
⊂ [0, 1], and 0 ≤(

ξ R
rp(tm )−i j

)q +
(
χ R
rp(tm )−i j ≤

)q
1, and 0 ≤

(
ξ R
ip(tm )−i j

)q +
(
χ R
ip(tm )−i j

)q ≤ 1.

Based on the above-supplied information, we develop an Algorithm to order and select
the favourable one(s). The Algorithm contains the following steps.
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Procedure II
step 1: Applying the DCQROFWA operator:

UDCQROFW Aψ(t)

(
Q%(t1), Q

%(t2), . . . , Q
%(tl)

)

=
([(

1 −
l∏

m=1

(
1 − (ξ L

rpβ(tm ))
q
)ψ(tm ))1/q

,
(
1 −

l∏
m=1

(
1 − (ξ R

rpβ(tm ))
q
)ψ(tm ))1/q]

·e
2iπ

([(
1−

l∏
m=1

(
1−(ξ L

ipβ(tm )
)q

)ψ(tm ))1/q

,

(
1−

l∏
m=1

(
1−(ξ R

ipβ(tm )
)q

)ψ(tm ))1/q ]
,

[(
χ L
rpβ(tm )

)ψ(tm )

,
(
χ R
rpβ(tm )

)ψ(tm )] · e2iπ(

[(
χ L
ipβ(tm )

)ψ(tm )

,

(
χ R
ipβ(tm )

)ψ(tm )]))
(13)

M(tm) =
(([

ξ L
rp(tm )−i j , ξ

R
rp(tm )−i j

]
· e2iπ

([
ξ L
ip(tm )−i j ,ξ

R
ip(tm )−i j

])
,
[
χ L
rp(tm )−i j , χ

R
rp(tm )−i j

]
·

e
2iπ

([
χ L
ip(tm )−i j ,χ

R
rp(tm )−i j

])))
u×v

(m = 1, 2, . . . , l) into a complex interval-valued q-

rung Orthopair fuzzy decision matrix, M = (
([

ξ L
rp−i j , ξ

R
rp−i j

]
· e2iπ

([
ξ L
ip−i j ,ξ

R
rp−i j

])
,

[
χ L
rp−i j , χ

R
rp−i j

]
· e2iπ

([
χ L
ip−i j ,χ

R
ip−i j

]))
u×v

.

Step 2: Utilize CIVQROFWA operator:

ri =
([

ζ L
rp−i , ζ

R
rp−i

]
· e2iπ

([
ζ L
ip−i ,ζ

R
rp−i

])
,
[
ηL
rp−i , η

R
rp−i

]
· e2iπ

([
ηL
ip−i ,η

R
ip−i

]))

= C IV QROFW Aw

(
Q%

cq−i1, Q
%
cq−i2, . . . , Q

%
cq−iv

)

〈[{
1 −

v∏
i=1

(
1 −

(
ξ L
rp−i

)q)wi
}1/q

,
{
1 −

v∏
i=1

(
1 −

(
ξ R
rp−i

)q)wi
}1/q]

·e
2iπ

([{
1−

v∏
i=1

(
1−

(
ξ L
ip−i

)q)wi
}1/q

,

{
1−

v∏
i=1

(
1−

(
ξ L
ip−i

)q)wi
}1/q])

,

[ v∏
i=1

(
χ L
rp−i

)wi
,

v∏
i=1

(
χ R
rp−i

)wi
]

· e
2iπ

([
v∏

i=1

(
χ L
ip−i

)wi
,

v∏
i=1

(
χ L
ip−i

)wi
])〉

. (14)

Step 3: Compute the score value CSF(
i ) (i = 1, 2, . . . , u) of the overall CQROFEs
to rank all the alternatives Ai (i = 1, 2, . . . , u) to adopt desired choice Ai . If the val-
ues of CSF(
i ) and CSF(
 j ) are same, then we continue to evaluate accuracy degrees
CAF(
i ) andCAF(
 j ) based on overall CQROFEs information band rank the alternatives
Ai depending on degree of accuracy CAF(
i ) and CAV (r j ).

Step 4: Rank all the alternative Ai (i = 1, 2, . . . , u) in order to choose the best one(s) in
accordance with CSF(
i ) and CAF(
 j ) (i = 1, 2, . . . , u).

Step 5: End.
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Table 1 Decision matrix for
expert1

G1 G2
A1 (0.5e2iπ(0.2), 0.4e2iπ(0.5)) (0.5e2iπ(0.6), 0.3e2iπ(0.2))

A2 (0.6e2iπ(0.3), 0.3e2iπ(0.4)) (0.4e2iπ(0.3), 0.2e2iπ(0.6))

A3 (0.4e2iπ(0.3), 0.4e2iπ(0.3)) (0.3e2iπ(0.5), 0.4e2iπ(0.3))

A4 (0.4e2iπ(0.4), 0.3e2iπ(0.5)) (0.4e2iπ(0.3), 0.4e2iπ(0.2))

A5 (0.7e2iπ(0.6), 0.2e2iπ(0.3)) (0.6e2iπ(0.2), 0.2e2iπ(0.4))

G3 G4
(0.3e2iπ(0.3), 0.5e2iπ(0.5)) (0.4e2iπ(0.4), 0.3e2iπ(0.4))

(0.6e2iπ(0.3), 0.3e2iπ(0.2)) (0.5e2iπ(0.2), 0.2e2iπ(0.4))

(0.3e2iπ(0.4), 0.5e2iπ(0.6)) (0.6e2iπ(0.4), 0.2e2iπ(0.4))

(0.6e2iπ(0.5), 0.2e2iπ(0.2)) (0.5e2iπ(0.2), 0.3e2iπ(0.4))

(0.5e2iπ(0.4), 0.3e2iπ(0.3)) (0.6e2iπ(0.5), 0.1e2iπ(0.2))

8 Numerical example

The Recent development of modern science and technology makes our society very com-
plicated, and as a result, human decision processes have become uncertain and difficult to
analyze. Contemporary society has increased day-to-day demand for information technology.
The emerging software systems selection takes a vital role. The main intention of this plan
is to predict the favourable software systems based on their performances, which has five
options to have emerging software systems. Thus, to this problem, we introduce a numerical
example to predict the potential assessment of software technology systems depicted in Ye
(2014) to investigate the efficiency and applicability of the proposed method. There is a com-
mittee which selects five possible software systems Ai (i = 1, 2, . . . , 5). The assessment of
five possible software systems are made under the following four attributes:

G1: Contribution about organization performance
G2: Effort to transform the current system
G3: Costs of hardware and software investment
G4: Outsourcing software developer reliability.

The five possible alternatives Ai (i = 1, 2, . . . , 5) are to be evaluated on as listed in the
following matrices are given in Tables 1, 2 and 3.

Let importance of the experts be ψ(t) = (0.2, 0.3, 0.5)T of the periods tm (m = 1, 2, 3),
and w = (0.35, 0.25, 0.20, 0.30)T be the weight vector of the attributes Gcq− j ( j =
1, 2, 3, 4). Then, we apply the proposed Procedure I to get most favourable alternative.

Step 1: Applying the DCQROFWA operator to aggregate the all the complex q-rung
Orthopair fuzzy decision matrices M(tm) given in Tables 1, 2 and 3 into a complex q-rung
Orthopair fuzzy decision matrix M as given in Table 4 below:

Step 2: Applying CQROFWA operator to get the overall values of ri of the alternatives
Ai (i = 1, 2, 3, 4, 5),


1 = (0.4428e2iπ(0.4104), 0.2307e2iπ(0.2647)), 
2 = (0.5279e2iπ(0.2695), 0.2311e2iπ(0.3218))


3 = (0.4462e2iπ(0.4495), 0.2267e2iπ(0.2711)), 
4 = (0.3873e2iπ(0.4030), 0.2493e2iπ(0.2713))


5 = (0.5324e2iπ(0.3563), 0.2242e2iπ(0.2846)).
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Table 2 Decision matrix for
expert2

G1 G2
A1 (0.3e2iπ(0.4), 0.4e2iπ(0.2)) (0.6e2iπ(0.2), 0.2e2iπ(0.4))

A2 (0.4e2iπ(0.3), 0.3e2iπ(0.3)) (0.3e2iπ(0.3), 0.4e2iπ(0.2))

A3 (0.6e2iπ(0.4), 0.2e2iπ(0.3)) (0.5e2iπ(0.6), 0.2e2iπ(0.2))

A4 (0.3e2iπ(0.4), 0.3e2iπ(0.2)) (0.3e2iπ(0.5), 0.2e2iπ(0.2))

A5 (0.4e2iπ(0.2), 0.2e2iπ(0.3)) (0.6e2iπ(0.2), 0.3e2iπ(0.4))

G3 G4
(0.5e2iπ(0.4), 0.3e2iπ(0.3)) (0.4e2iπ(0.4), 0.3e2iπ(0.2))

(0.6e2iπ(0.2), 0.3e2iπ(0.4)) (0.4e2iπ(0.2), 0.3e2iπ(0.5))

(0.6e2iπ(0.5), 0.1e2iπ(0.2)) (0.4e2iπ(0.4), 0.2e2iπ(0.3))

(0.4e2iπ(0.3), 0.3e2iπ(0.5)) (0.3e2iπ(0.5), 0.3e2iπ(0.2))

(0.3e2iπ(0.2), 0.4e2iπ(0.3)) (0.5e2iπ(0.2), 0.2e2iπ(0.3))

Table 3 Decision matrix for
expert3

G1 G2
A1 (0.2e2iπ(0.4), 0.3e2iπ(0.4)) (0.5e2iπ(0.4), 0.2e2iπ(0.2))

A2 (0.4e2iπ(0.3), 0.3e2iπ(0.4)) (0.6e2iπ(0.2), 0.2e2iπ(0.3))

A3 (0.3e2iπ(0.2), 0.4e2iπ(0.3)) (0.2e2iπ(0.5), 0.4e2iπ(0.3))

A4 (0.4e2iπ(0.4), 0.2e2iπ(0.4)) (0.3e2iπ(0.2), 0.4e2iπ(0.5))

A5 (0.6e2iπ(0.2), 0.2e2iπ(0.6)) (0.5e2iπ(0.3), 0.3e2iπ(0.1))

G3 G4
(0.4e2iπ(0.4), 0.3e2iπ(0.3)) (0.4e2iπ(0.4), 0.2e2iπ(0.3))

(0.7e2iπ(0.3), 0.1e2iπ(0.4)) (0.3e2iπ(0.2), 0.4e2iπ(0.4))

(0.5e2iπ(0.3), 0.2e2iπ(0.4)) (0.4e2iπ(0.5), 0.2e2iπ(0.3))

(0.4e2iπ(0.3), 0.2e2iπ(0.4)) (0.2e2iπ(0.4), 0.4e2iπ(0.2))

(0.3e2iπ(0.2), 0.3e2iπ(0.4)) (0.2e2iπ(0.4), 0.5e2iπ(0.4))

Step 3: Calculate the scores CSF(rcq−i ) (i = 1, 2, . . . , u) of complex q-rung Orthopair
fuzzy preference values
i (i = 1, 2, . . . , u) to rank all the alternativesAi (i = 1, 2, 3, 4, 5)

CSF(
1) = 0.1704, CSF(
2) = 0.1223,

CSF(
3) = 0.1990, CSF(
4) = 0.1349,

CSF(
5) = 0.1899.

Step 4: The ordering of the alternatives Ai (i = 1, 2, . . . , 5) and selected the favourable
one(s) in accordance with CSF(
i ) and CSF(ri ) (i = 1, 2, . . . , 5) as A3 � A5 � A1 �
A4 � A2. Thus, computed desirable alternative is A3.

Let ψ(t) = (0.2, 0.3, 0.5)T be the weight vector of periods tm (m = 1, 2, 3), and w =
(0.35, 0.25, 0.20, 0.30)T be the weight vector of the attributes G j ( j = 1, 2, 3, 4). If the all
the alternatives Ai (i = 1, 2, . . . , 5) are to be evaluated by using complex q-rung Orthopair
fuzzy by the decision makers based on the above attributes G j ( j = 1, 2, 3, 4) at the periods
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Table 4 Aggregate value of the alternatives

G1 G2
A1 (0.3367e2iπ(0.3758), 0.2828e2iπ(0.3397)) (0.5353e2iπ(0.4321), 0.2169e2iπ(0.2462))

A2 (0.4588e2iπ(0.3000), 0.3000e2iπ(0.3669)) (0.5253e2iπ(0.2395), 0.2462e2iπ(0.2814))

A3 (0.4564e2iπ(0.3069), 0.3249e2iπ(0.3000)) (0.3643e2iπ(0.5353), 0.3249e2iπ(0.2656))

A4 (0.3757e2iπ(0.4000), 0.2449e2iπ(0.3397)) (0.3256e2iπ(0.3643), 0.3249e2iπ(0.3162))

A5 (0.5867e2iπ(0.3771), 0.2000e2iπ(0.4243)) (0.5559e2iπ(0.2599), 0.2766e2iπ(0.2000))

G3 G4
(0.4228e2iπ(0.3842), 0.3323e2iπ(0.3323)) (0.4000e2iπ(0.4000), 0.2449e2iπ(0.2814))

(0.6560e2iπ(0.2774), 0.1732e2iπ(0.3482)) (0.3881e2iπ(0.2000), 0.3194e2iπ(0.4277))

(0.5132e2iπ(0.4016), 0.1951e2iπ(0.3523)) (0.4588e2iπ(0.4563), 0.2000e2iπ(0.3178))

(0.4588e2iπ(0.3620), 0.2259e2iπ(0.3723)) (0.3367e2iπ(0.4160), 0.3464e2iπ(0.2297))

(0.3620e2iπ(0.2690), 0.3270e2iπ(0.3464)) (0.4458e2iπ(0.3921), 0.2753e2iπ(0.3194))

Table 5 Decision matrix for expert1

G1 G2
A1 ([0.5, 0.6]e2iπ([0.2,0.3]), [0.3, 0.4]e2iπ([0.2,0.3])) ([0.4, 0.5]e2iπ([0.5,0.6]), [0.2, 0.3]e2iπ([0.2,0.3]))
A2 ([0.5, 0.6]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.3,0.4])) ([0.4, 0.5]e2iπ([0.3,0.4]), [0.1, 0.2]e2iπ([0.5,0.6]))
A3 ([0.4, 0.5]e2iπ([0.2,0.3]), [0.3, 0.4]e2iπ([0.2,0.3])) ([0.2, 0.3]e2iπ([0.4,0.5]), [0.3, 0.4]e2iπ([0.2,0.3]))
A4 ([0.3, 0.4]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.4,0.5])) ([0.3, 0.4]e2iπ([0.2,0.3]), [0.3, 0.4]e2iπ([0.1,0.2]))
A5 ([0.6, 0.7]e2iπ([0.5,0.6]), [0.1, 0.2]e2iπ([0.2,0.3])) ([0.5, 0.6]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.3,0.4]))

G3 G4
([0.2, 0.3]e2iπ([0.2,0.3]), [0.4, 0.5]e2iπ([0.4,0.5])) ([0.3, 0.4]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.3,0.4]))
([0.5, 0.6]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.1,0.2])) ([0.4, 0.5]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.4,0.5]))
([0.2, 0.3]e2iπ([0.3,0.4]), [0.4, 0.5]e2iπ([0.5,0.6])) ([0.4, 0.6]e2iπ([0.3,0.4]), [0.1, 0.2]e2iπ([0.3,0.4]))
([0.5, 0.6]e2iπ([0.4,0.5]), [0.1, 0.2]e2iπ([0.1,0.2])) ([0.4, 0.5]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.3,0.4]))
([0.4, 0.5]e2iπ([0.2,0.4]), [0.2, 0.3]e2iπ([0.2,0.3])) ([0.4, 0.6]e2iπ([0.4,0.5]), [0.1, 0.2]e2iπ([0.2,0.3]))

tm (m = 1, 2, 3), are as shown in the following Tables 5, 6, and 7. In such a case, we are
applying the proposed Procedure II to get the most desirable alternative one(s).

Step 1: Utilize the UDCIVQROFWA operator to aggregate all complex interval-valued
q-rung Orthopair fuzzy matrices M(tm) given in Tables 5,6 and 7 into a complex q-rung
Orthopair fuzzy decision matrix M presented in Table 8.

Step2:Applying theCIVQROFWAoperator to get the overall values ri =
([

ξ L
rp−i , ξ

R
rp−i

]
·

e
2iπ

([
ξ L
ip−i ,ξ

R
ip−i

])
,
[
χ L
rp−i , χ

R
rp−i

]
· e2iπ

([
χ L
ip−i ,χ

R
rp−i

]))
of the alternatives Ai (i = 1, 2, 3,

4, 5) as follows:
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Table 6 Decision matrix for expert2

G1 G2
A1 ([0.3, 0.4]e2iπ([0.3,0.4]), [0.3, 0.4]e2iπ([0.2,0.3])) ([0.5, 0.6]e2iπ([0.2,0.3]), [0.1, 0.2]e2iπ([0.3,0.4]))
A2 ([0.3, 0.4]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.2,0.3])) ([0.3, 0.4]e2iπ([0.3,0.4]), [0.4, 0.5]e2iπ([0.2,0.3]))
A3 ([0.5, 0.6]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.2,0.3])) ([0.4, 0.5]e2iπ([0.5,0.6]), [0.2, 0.3]e2iπ([0.1,0.2]))
A4 ([0.3, 0.4]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.1,0.2])) ([0.2, 0.3]e2iπ([0.4,0.5]), [0.2, 0.3]e2iπ([0.2,0.3]))
A5 ([0.4, 0.5]e2iπ([0.2,0.3]), [0.1, 0.2]e2iπ([0.3,0.4])) ([0.5, 0.6]e2iπ([0.2,0.3]), [0.3, 0.4]e2iπ([0.3,0.4]))

G3 G4
([0.4, 0.5]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.2,0.3])) ([0.3, 0.4]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.2,0.3]))
([0.5, 0.6]e2iπ([0.1,0.2]), [0.2, 0.3]e2iπ([0.3,0.4])) ([0.3, 0.4]e2iπ([0.1,0.2]), [0.2, 0.3]e2iπ([0.4,0.5]))
([0.5, 0.6]e2iπ([0.4,0.5]), [0.1, 0.2]e2iπ([0.2,0.3])) ([0.4, 0.3]e2iπ([0.4,0.5]), [0.2, 0.3]e2iπ([0.2,0.3]))
([0.2, 0.4]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.4,0.5])) ([0.2, 0.3]e2iπ([0.4,0.5]), [0.2, 0.3]e2iπ([0.2,0.3]))
([0.2, 0.3]e2iπ([0.1,0.2]), [0.4, 0.5]e2iπ([0.3,0.4])) ([0.4, 0.5]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.3,0.4]))

Table 7 Decision matrix for expert3

G1 G2
A1 ([0.2, 0.3]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.3,0.4])) ([0.4, 0.5]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.1,0.2]))
A2 ([0.3, 0.4]e2iπ([0.3,0.4]), [0.3, 0.4]e2iπ([0.4,0.5])) ([0.5, 0.6]e2iπ([0.1,0.2]), [0.2, 0.3]e2iπ([0.2,0.3]))
A3 ([0.2, 0.3]e2iπ([0.2,0.3]), [0.3, 0.4]e2iπ([0.2,0.3])) ([0.2, 0.3]e2iπ([0.4,0.5]), [0.3, 0.4]e2iπ([0.2,0.3]))
A4 ([0.3, 0.4]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.3,0.4])) ([0.3, 0.4]e2iπ([0.2,0.3]), [0.4, 0.5]e2iπ([0.4,0.5]))
A5 ([0.5, 0.6]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.5,0.6])) ([0.4, 0.5]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.1,0.2]))

G3 G4
([0.4, 0.5]e2iπ([0.3,0.4]), [0.3, 0.4]e2iπ([0.2,0.3])) ([0.3, 0.4]e2iπ([0.4,0.5]), [0.2, 0.3]e2iπ([0.2,0.3]))
([0.6, 0.7]e2iπ([0.2,0.3]), [0.1, 0.2]e2iπ([0.3,0.4])) ([0.2, 0.3]e2iπ([0.2,0.3]), [0.4, 0.5]e2iπ([0.3,0.4]))
([0.4, 0.5]e2iπ([0.2,0.3]), [0.2, 0.3]e2iπ([0.3,0.4])) ([0.3, 0.4]e2iπ([0.4,0.5]), [0.2, 0.3]e2iπ([0.2,0.3]))
([0.3, 0.4]e2iπ([0.3,0.4]), [0.2, 0.3]e2iπ([0.3,0.4])) ([0.2, 0.3]e2iπ([0.3,0.4]), [0.4, 0.5]e2iπ([0.2,0.3]))
([0.2, 0.3]e2iπ([0.1,0.2]), [0.2, 0.3]e2iπ([0.3,0.4])) ([0.2, 0.3]e2iπ([0.3,0.4]), [0.4, 0.5]e2iπ([0.3,0.4]))

r1 = ([0.3753, 0.4741]e2iπ([0.3331,0.4328]), [0.1858, 0.2850]e2iπ([0.1767,0.2821]))
r2 = ([0.4326, 0.5308]e2iπ([0.2440,0.3411]), [0.1925, 0.2952]e2iπ([0.2533,0.3568]))
r3 = ([0.3777, 0.4752]e2iπ([0.3649,0.4632]), [0.1910, 0.2918]e2iπ([0.1789,0.2777]))
r4 = ([0.3072, 0.4115]e2iπ([0.3169,0.4167]), [0.2045, 0.3055]e2iπ([0.2033,0.3083]))
r5 = ([0.4373, 0.5358]e2iπ([0.2828,0.3753]), [0.1725, 0.2747]e2iπ([0.2272,0.3323])).

Step 3: Evaluate the score values CSF(
i ) of the overall values of complex interval-
valued q-rung Orthopair fuzzy preference 
i (i = 1, 2, 3, 4, 5) to ordering the alternative
Ai (i = 1, 2, . . . , 5).
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Table 8 Aggregated values of the alternatives for CIVCQROF information

G1
A1 ([0.3367, 0.4289]e2iπ([0.2853,0.3842]), [0.2449, 0.3464]e2iπ([0.2249,0.3464]))
A2 ([0.3620, 0.4588]e2iπ([0.2843,0.3842]), [0.2449, 0.3464]e2iπ([0.3067,0.4102]))
A3 ([0.3819, 0.4750]e2iπ([0.2395,0.3369]), [0.2656, 0.3669]e2iπ([0.2000,0.3000]))
A4 ([0.3000, 0.4000]e2iπ([0.3000,0.4000]), [0.2000, 0.3000]e2iπ([0.2285,0.3397]))
A5 ([0.5020, 0.6017]e2iπ([0.3194,0.4084]), [0.1414, 0.2449]e2iπ([0.3571,0.4625]))

G2
([0.4357, 0.5353]e2iπ([0.3473,0.4414]), [0.1625, 0.2656]e2iπ([0.1597,0.2670]))
([0.4387, 0.5370]e2iπ([0.2415,0.3314]), [0.2144, 0.3224]e2iπ([0.2402,0.3446]))
([0.2930, 0.3860]e2iπ([0.4357,0.5353]), [0.2656, 0.3669]e2iπ([0.1625,0.2656]))
([0.2774, 0.4000]e2iπ([0.2930,0.3860]), [0.3067, 0.4102]e2iπ([0.2462,0.3571]))
([0.4563, 0.5559]e2iπ([0.2000,0.3000]), [0.2259, 0.3270]e2iπ([0.1732,0.2828]))

G3
([0.3758, 0.4736]e2iπ([0.2853,0.3842]), [0.2814, 0.3837]e2iπ([0.2297,0.3323]))
([0.5559, 0.6560]e2iπ([0.1807,0.2774]), [0.1414, 0.2449]e2iπ([0.2408,0.3482]))
([0.4160, 0.5132]e2iπ([0.3069,0.4016]), [0.1866, 0.2942]e2iπ([0.2942,0.3979]))
([0.3473, 0.4414]e2iπ([0.3069,0.4036]), [0.1741, 0.2766]e2iπ([0.2625,0.3723]))
([0.2690, 0.3620]e2iπ([0.1340,0.2279]), [0.2462, 0.3479]e2iπ([0.2259,0.3270]))

G4
([0.3000, 0.4000]e2iπ([0.3575,0.4563]), [0.2000, 0.3000]e2iπ([0.2169,0.3178]))
([0.2929, 0.3881]e2iπ([0.1807,0.2774]), [0.2828, 0.3873]e2iπ([0.3464,0.4472]))
([0.3575, 0.4563]e2iπ([0.3842,0.4836]), [0.1741, 0.2766]e2iπ([0.2169,0.3178]))
([0.2690, 0.3620]e2iπ([0.3256,0.4228]), [0.2828, 0.3873]e2iπ([0.2169,0.3178]))
([0.3314, 0.4260]e2iπ([0.3069,0.4036]), [0.2462, 0.3571]e2iπ([0.2766,0.377]))

CSF(
1) = 0.1714, CSF(
2) = 0.1126,

CSF(
3) = 0.1854, CSF(
4) = 0.1076,

CSF(
5) = 0.1561.

Step 4: The ordering of the alternatives Ai (i = 1, 2, . . . , 5) and selected the favourable
one(s) in accordance with CSF(
i ) and CAF(
i ) (i = 1, 2, . . . , 5) as A3 � A1 � A5 �
A2 � A4, and thus most favourable alternative is A3.

From the above-using operator’s output, when we used DCQROFWA and CQROFWA
operators, and ordering of the alternatives is as follows A3 � A5 � A1 � A4 � A2, and
when used UDCQROFWG and CIVQROFWA operators then ranking shows A3 � A1 �
A5 � A2 � A4. It is concluded that although ranking order is different for these operators
but both operators provided A3 as the most favourable alternative.
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Table 9 Influence of parameter
to the ranking order by
DCQROFWA operator

q CSV (r1) CSV (r2) CSV (r3)

q = 1 0.1909 0.1289 0.2184

q = 3 0.1704 0.1223 0.1990

q = 5 0.1806 0.1281 0.2126

q = 10 0.1918 0.1471 0.2252

CSV (r4) CSV (r5) Ranking

0.1489 0.1983 A3 � A5 � A1 � A4 � A2

0.1349 0.1899 A3 � A5 � A1 � A4 � A2

0.1340 0.1937 A3 � A5 � A1 � A4 � A2

0.1402 0.2048 A3 � A5 � A1 � A2 � A4

Table 10 Influence of parameter
to the ranking order by
UDCQROFWA operator

q CSV (r1) CSV (r2) CSV (r3)

q = 1 0.1847 0.1179 0.1949

q = 3 0.1741 0.1126 0.1854

q = 5 0.1721 0.1252 0.1883

q = 10 0.1781 0.1412 0.1986

CSV (r4) CSV (r5) Ranking

0.1229 0.1593 A3 � A1 � A5 � A2 � A4

0.1076 0.1561 A3 � A1 � A5 � A2 � A4

0.1048 0.1630 A3 � A1 � A5 � A2 � A4

0.1049 0.1766 A3 � A1 � A5 � A2 � A4

9 Flexibility and sensitivity analysis of the parameter q on
decision-making results

In order to analyze the flexibility and sensitivity of the parameter q on decision making
results, we set the different values of q to sort the new practical DMADM example. The
ranking order of the alternatives is shown in Tables 9 and 10.

From Table 9, we see that the aggregating results are different with the increasing value
of the parameter q when applying the DCQROFWA operator. For the different values of
q , the ranking results are still the same as A3 � A5 � A1 � A4 � A2, and optimal
choice is A3. Also, for increasing value of q , the score value of A1, A2, A3, A4, and A5 are
fluctuated. When the value of q is increasing, it can more reflect the attitude of the DMs is
optimistic or pessimistic and optimal choice is still the same. From Table 10, we see that the
aggregating results are different with the increasing value of the parameter q when applying
the UDCQROFWA operator. The ranking orders are same as A3 � A1 � A5 � A2 � A4

for increasing value of q and optimal choice is A3. Also, it noticeable that for increasing
value of q , the score value of A1, A2, A3, A4, and A5 are some increasing and decreasing.
When the value of q is increasing, the attitude of the DMs is optimistic and pessimistic, but
the optimal choice is still A3. In general, different DM can set the different values to set the
parameter q on the basis of their preferences.
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10 Discussing results for comparative analysis

Some existing operators: dynamic intuitionistic fuzzyweighted geometric (DIFWG) operator
and uncertain dynamic intuitionistic fuzzy weighted geometric (UDIVIFWG) operator is a
particular case of the proposed operators, so, in order to compare the performance of the
proposed operators under this environment, convert the considering data into intuitionistic
fuzzy numbers. In that direction, set the phase term of each CQROFN and CIVQROFN
(imaginary part) to be zero for q = 1, and apply existing operators (Xu and Yager 2008).
The results are briefly discussed as follows:

Applying weight vector ψ(t) = (0.2, 0.3, 0.5)T of the periods (tm) (m = 1, 2, 3) for the
expert decision matrices when q = 1. To study the comparative results, we used the expert’s
decision matrices Tables 1, 2, 3, 5, 6 and 7 without considering complex parts. We find the
results as follows.

Step 1:Applying the DIFWA operator to accumulate the all IFS decision matrices M(tm)

into a complex IFS decision matrix M as given in Table 11 below:
Step 2: Let β+

i = (β+
1 , β+

2 , . . . , β+
m ) and β−

i = (β−
1 , β−

2 , . . . , β−
m ) define as the intu-

itionistic fuzzy positive ideal solution (IFPIS) and intuitionistic fuzzy negative ideal solution
(IFNIS) respectively, where β+

i = (1, 0, 0), as the largest v IFNs and β−
i = (0, 1, 0), are as

the smallest v IFNs.
Step 3: Evaluate the distance between IFPIS β+

i and the alternative Ai , and IFNIS β−
i

and the alternative Ai are as follows:

D(Ai , β
+) = 1

2

v∑
j=1

w j D
(
ri j , β

+
j

)
= 1

2

v∑
j=1

w j

(
|ξi j − 1| + |χi j − 0| + |πi j − 0|

)

= 1

2

v∑
j=1

w j

(
1 − ξi j + χi j − 0 + 1 − ξi j − χi j

)

=
v∑
j=1

w j

(
1 − ξi j

)
. (15)

D(Ai , β
−) = 1

2

v∑
j=1

w j D
(
ri j , β

−
j

)
= 1

2

v∑
j=1

w j

(
|ξi j | + |χi j − 1| + |πi j − 0|

)

= 1

2

v∑
j=1

w j

(
1 + ξi j − χi j + 1 − ξi j − χi j

)

=
v∑
j=1

w j

(
1 − χi j

)
. (16)

Step 4: Calculate the closeness coefficient of each alternative by the following equation:

Ci (Ai ) = D(Ai , β
−)

D(Ai , β+) + D(Ai , β−)

i = 1, 2, . . . , v. (17)

Step 5: Rank all the alternatives Ai (i = 1, 2, . . . , u) based on the values of the closeness
coefficient, higher value of closeness coefficient Ci (Ai ) imply the better choice alternative.

In this method, we give some main calculating results. In this direction, applying step
by 1-4, at the periods tm (m = 1, 2, . . . , p), we obtain the measures of each option from
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IFPIA and IFNIA. Finally, we are finding all the closeness coefficients of each options Ai

as follows C(A1) = 0.5505, C(A2) = 0.5590, C(A3) = 0.5864, C(A4) = 0.5247 and
C(A5) = 0.5831. Then ordering of the alternative is A3 � A5 � A2 � A1 � A4, and best
alternative is A3.

If q = 1, then complex interval-valued q-rung Orthopair fuzzy set (CIVQROFS) con-
verted into complex interval-valued intuitionistic fuzzy set (CIVIFS). But, for comparing the
performance of pre-existing operator UDIFWA (Xu and Yager 2008), set each phase term of
the proposed operator to be zero for converting into required data for q = 1. The results are
briefly discussed as follows:

Applying expert’s weight vectorψ(t) = (0.2, 0.3, 0.5)T of the periods (tm) (m = 1, 2, 3)
for the expert decision matrices.

Step1:Applying theUDCROFWAoperator to accumulate the all IVIFNdecisionmatrices
M(tm) into a complex IVIFN decision matrix M as given in Table 12 below:

Step 2:Let β+
i = (β+

1 , β+
2 , . . . , β+

m ) and β−
i = (β−

1 , β−
2 , . . . , β−

m ) define as the uncertain
intuitionistic fuzzy positive ideal solution (UIFPIS) and uncertain intuitionistic fuzzy negative
ideal solution (UIFNIS) respectively, where β+

i = ([1, 1], [0, 0], [0, 0]), as the largest v

UIFNs and β−
i = ([0, 0], [1, 1], [0, 0]), are as the smallest v UIFNs.

Step 3: Evaluate the distance between UIFPIS β+
i and the alternative Ai , and UIFNIS

β−
i and the alternative Ai are as follows:

D(Ai , β
+) (18)

= 1

4

v∑
j=1

w j D
(
ri j , β

+
j

)
(19)

= 1

4

v∑
j=1

w j

(
|ξ L
i j − 1| + |ξ R

i j − 1| + |χ L
i j − 0| + |χ R

i j − 0| + |π L
i j − 0| + |π L

i j − 0|
)

= 1

4

v∑
j=1

w j

(
2 − (ξ L

i j + ξ R
i j ) + χ L

i j + χ R
i j + 1 − ξ L

i j − ξ R
i j + 1 − χ L

i j − χ R
i j

)

= 1

2

v∑
j=1

w j

(
2 − (ξ L

i j + ξ R
i j )

)
. (20)

D(Ai , β
−) (21)

= 1

4

v∑
j=1

w j D
(
ri j , β

−
j

)
(22)

= 1

4

v∑
j=1

w j

(
|ξ L
i j − 0| + |ξ R

i j − 0| + |χ L
i j − 1| + |χ R

i j − 1| + |π L
i j − 0| + |π L

i j − 0|
)

= 1

4

v∑
j=1

w j

(
2 + ξ L

i j + ξ R
i j + −(χ L

i j + χ R
i j ) + 1 − ξ L

i j − ξ R
i j + 1 − χ L

i j − χ R
i j

)

= 1

2

v∑
j=1

w j

(
2 − (χ L

i j + χ R
i j )

)
. (23)
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Step 4: Calculate the closeness coefficient of each alternative by the following equation:

Ci (Ai ) = D(Ai , β
−)

D(Ai , β+) + D(Ai , β−)

i = 1, 2, . . . , v. (24)

Step 5: Rank all the alternativesAi (i = 1, 2, . . . , u) based on the values of the closeness
coefficient, higher value of closeness coefficient Ci (Ai ) imply the better choice alternative.

In this method, we give some main calculating results. In this direction, applying step
by 1-4, at the periods tm (m = 1, 2, . . . , p), we obtain the measures of each option from
UIFPIA and UIFNIA. Finally, we are finding all the closeness coefficients of each options
Ai as follows C(A1) = 0.5406, C(A2) = 0.5587, C(A3) = 0.5687, C(A4) = 0.5153 and
C(A5) = 0.5630. Then ordering of the alternative is A3 � A5 � A2 � A1 � A4, and best
alternative is A3.

From the above-using operator’s output, when we used the DCQROFWA operator, then
ordering of the alternative is A3 � A5 � A1 � A4 � A2, and when used UDCQROFWA
operator then ranking is as follows A3 � A1 � A5 � A2 � A4 . Here, A3 is the most
favourable alternative in both CQROF and CIVQROF environments. But, in comparative
results, the ranking order shows as A3 � A5 � A2 � A1 � A4 and A3 � A5 � A2 �
A1 � A4 for using the two operators DIFWA and UDIFWA, and the best alternative is
A3. Although ranking order is different but desirable option is always the same as A3.
Our proposed methods in complex q-rung Orthopair fuzzy environment used more fuzzy
information than comparative methods in intuitionistic fuzzy environment. Hence, our result
is optimal.

Here, we listed some advantages of the proposed method:

(1) The proposed approach in this paper express a wider range of fuzzy information, and
they used the sum of membership and non-membership grade in real as well as in
imaginary part is greater than one. So there is a huge scope of application in our complex
real-life problems. In Today’s complex decision-making environment, we effectively
express fuzzy decision making information and avoid a lot of information distortion.
Our methods are more general, which are justified in the following points.

(2) If the parameter q = 1, then the proposed DCQROFWA operator converted into
DCIFWA operator is a special case of the sponcord work.

(3) If the parameter q = 2, then the proposed DCQROFWA operator converted into
DCPYFWA operator is a special case of the proposed work.

(4) If the parameter q = 1, the proposed UDCQROFWA operator converted into
UDCIFWA operator is a special case of the proposed work.

(5) If the parameter q = 2, the proposed UDCQROFWA operator converted into
UDCPYFWA operator, is a special case of the proposed work.

(6) If the parameter q = 1 and imaginary part zero, then the proposed DCQROFWA
operator converted into DIFWA operator is a special case of the proposed work.

(7) If the parameter q = 2 and imaginary part zero, then the proposed DCQROFWA
operator converted into DPYFWA operator is a special case of the proposed work.

(8) If the parameter q = 1 and imaginary part zero, then the proposed UDCQROFWA
operator converted into UDIFWA operator is a special case of the proposed work.

(9) If the parameter q = 2 and imaginary part zero, then the proposed UDCQROFWA
operator converted into UDPYFWA operator is a special case of the proposed work.
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(10) If we choose the parameter q = 1 and imaginary part zero, then the proposed
CQROFWA operator converted into intuitionistic fuzzy set (Attanassov 1986), is a
special case of the proposed work.

(11) If the parameter q and imaginary part zero, then the proposed CQROFWA operator
converted into q-rungOrthopair fuzzy sets (Yager 2014), is a special case of the proposed
work.

Thus, our proposed methods in a complex q-rung Orthopair fuzzy environment have adopted
more fuzzy information than other fuzzy frames. Hence, our result is optimal.

11 Conclusions

In this manuscript, we have studied the dynamic complex q-rung Orthopair fuzzy multiple
attributes decision making (DCQROFMADM)models where all the attribute values are used
in CQROFNs or CIVQROFNs information. Here, we considered some dynamic new averag-
ing aggregation functions such as the dynamic CQROF weighted averaging (DCQROFWA)
operator and uncertain dynamic CIVQROF weighted averaging (UDQROFWA) operator to
aggregate the dynamic or uncertain dynamic CQROF information. We have developed two
procedures to solve DMADM problems: one procedure has been developed based on the
DCQROFWA and CQROFWA operators to solve the DCQROF-MADM problems where
attribute information used in CQROFNs are collected at distinct periods, and another one
is constructed based on the UDQROFWA and CIVQROFWA operators to solve uncertain
DMADM problems where all attribute information use CIVQROFNs collected at multiple
periods. For the efficiency of the proposed approach, a numerical example is discussed to
the potential software selection problems. The sensitivity analysis is performed to show
the flexibility of the study on the decision-making method for various values of q. Later, a
comparative study was performed with the former results to check the effectiveness of the
proposedmethod. Themain advantage of this proposed approach is that the technique is more
general to accumulate QROF and CQROF information than others. The proposed method
can be applied for the future development of dynamic decision-making methods such as
dynamic personal selection, medical diagnosis for management of the COVID-19 situation,
dynamic investment method, active social media management, and dynamic evaluation of
military system management, complex fuzzy dynamic decision-making with GRA method,
AHP based dynamic decision making in complex fuzzy environment.
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