
Received June 3, 2019, accepted June 23, 2019, date of publication June 27, 2019, date of current version August 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2925344

Multiple Attribute Group Decision Making Based
on 2-Tuple Linguistic Neutrosophic Dombi Power
Heronian Mean Operators

PEIDE LIU 1, QAISAR KHAN2, TAHIR MAHMOOD2,
FLORENTIN SMARANDACHE3, AND YING LI1
1School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China
2Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, Pakistan
3Department of Mathematics and Sciences, The University of New Mexico, Gallup, NM 87301, USA

Corresponding author: Peide Liu (liying@mail.sdufe.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 71771140 and Grant 71471172, and in

part by the Special Funds of Taishan Scholars’ Project of Shandong Province under Grant ts201511045.

ABSTRACT As an expansion of 2-tuple linguistic intuitionistic fuzzy set, the newly developed 2-tuple

linguistic neutrosophic set (2-TLNS) is more satisfactory to define decision maker’s assessment information

in decision-making problems. 2-TLN aggregation operators are of great significance in multiple attribute

group decision making (MAGDM) problems with a 2-tuple linguistic environment. Therefore, in this paper,

our main contribution is to develop novel 2-TLN power Heronian aggregation (2-TLNPHM) operators. First,

we develop new operational laws established on Dombi T-norm (DTN) and Dombi T-conorm (DTCN).

Second, Taking full advantages of the power average (PA) operator and Heronian mean (HM) operator,

we develop some new novel power Heronian mean operator and discuss its related properties and special

cases. The main advantages of developed aggregation operators are that they not only remove the effect of

awkward data which may be too high or too low but also have a good capacity to model the extensive cor-

relation between attributes, making them more worthy for successfully solving more and more complicated

MAGDM problems. Thus, we develop a new algorithm to handle MAGDM based on developed aggregation

operators. Finally, we apply the proposed method and algorithm to risk assessment for the construction of

engineering projects to show the efficiency of the developed method and algorithm. The dominant novelties

of this contribution are triplex. First, new operational laws are proposed for 2-TLNNs. Second, novel

2-TLNPHM operators are developed. Third, a new approach for 2-tuple linguistic neutrosophic MAGDM is

developed.

INDEX TERMS 2-TLNS, Dombi T-norm, Dombi T-conorm, PA operator, Heronian mean, MAGDM.

I. INTRODUCTION

In actual life, multiple attribute group decision mak-

ing (MAGDM) problems are the vital part of decision the-

ory in which we select the optimal one from the group of

finite alternatives based on the overall information. Con-

ventionally, it has been accepted that the information con-

cerning acquiring the alternatives is taken in the form of

real number. But in our daily life, it is hard for a deci-

sion maker to give his evaluations regarding the object in

crisp values due to vagueness and insufficient information.

Rather, it has been enhance acceptable that these evaluations

The associate editor coordinating the review of this manuscript and
approving it for publication was Shun-Feng Su.

are given by fuzzy set (FS) or its extended form. Intuition-

istic fuzzy set (IFS) [1] is the vigorous augmentation of

FS [2] to deal with vagueness by including an identical

falsity-membership into the analysis. A lot of studies by dif-

ferent researchers were conducted on IFS in different fields.

IFSs have good capability to explain and articulate deci-

sion maker’s (DMs) fuzzy decision information in MAGDM

problems. However, IFS still have shortcomings and there

exist relatively a few situations in which it is inappropriate

to employ IFS to articulate DMs preference information.

The key motive is that the hesitancy/indeterminacy degree

is dependent of membership degree and non-membership

degree in IFSs, for example when a DM utilizes an IFN

(0.6, 0.2) to represent his/her assessment on a certain
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attribute. Then, the indeterminacy/hesitancy degree of the

DM is 1 − 0.6 − 0.2 = 0.2. In simple words, once

the truth-membership and falsity-membership degrees are

determined, the degree of indeterminacy is determined auto-

matically. Some other generalizations FS are proposed by

some scholars such as Pythagorean fuzzy sets [3], hesi-

tant Pythagorean fuzzy sets [4]. However, these are rather

different from real MAGDM problems. In real MAGDM,

the indeterminacy/hesitancy degrees should not be deter-

mined automatically and should be provided by DMs. For

example, if a DM thinks the membership degree is 0.6,

the membership degree is 0.4, and the degree that he/she

is not sure about the result is 0.2, then the DMs evaluation

value can be denoted as (0.6, 0.4, 0.2), which cannot be

represented by IFSs. In order to deal with this case, Smaran-

dache [5], [6] initially developed the concept of neutrosophic

set (NS), which has the capacity of dealing inconsistent and

indeterminate information. In the NS, its degree of mem-

bership TRA(a), degree of indeterminacy INA(a) and degree

of falsity FLA(a) are expressed independently, which lie

real standard or non-standard subsets of
]
0−, 1+

[
, that is

TRA(a) : U →
]
0−, 1+

[
, INA(a) : U →

]
0−, 1+

[
and

FLA(a) : U →
]
0−, 1+

[
, such that 0− ≤ TRA(a)+ INA(a)+

FLA(a) ≤ 3+. Thus, the use of nonstandard interval
]
0−, 1+

[

may verdict some difficulty in real applications. To utilize NS

easily in real application Wang et al. [7] proposed the con-

cept of single valued neutrosophic set (SVNS) by changing

the non-standard unit interval into the standard unit interval

[0, 1] . Further, Wang et al. [8] proposed the concept of

interval neutrosophic set (INS). Ye [9] developed simplified

neutrosophic set (SNS), which consist of both concepts of

SVNS and INS. Some researcher developed improved oper-

ational laws for these sets [10], [11].

In recent time, information aggregation operators [12]–[15]

have enticed comprehensive recognitions of researchers and

have become a vital part of MAAGDM. Generally, for

aggregating a group of data, it is mandatory to assess the

functions and the operations of aggregation operators. For the

functions, the conventional aggregation operator developed

Xu and Yager [16] and Xu [17] only can aggregate a group of

real values into a single real value. In the past few years, some

expanded aggregation operators have been developed by

different researchers. For example, Sun et al. [18] developed

some Choquet integral operator for INS. Liu and Tang [19]

and Peng et al. [20] extended the power average (PA)

operator developed by Yager [21] to interval neutrosophic

and multi-valued neutrosophic environment, which has the

capacity of removing the bad impact of awkward data.

Wu et al. [22] developed cross entropy and prioritized aggre-

gation operators for SNNs, which take the priorities of crite-

rion by priority weights. Besides, some aggregation operators

can consider interrelationship among aggregated arguments.

That is Bonferroni mean (BM) operator developed by Bon-

ferroni [23], Heronian mean (HM) operator developed by

Sykora [24].

All the above aggregation operators are capable to deal

with information available in the form of real numbers. How-

ever, in various actual situations, mostly for various actual

MAGDM problems, the assessment information associated

with every alternatives are normally unpredictable or vague,

due to the increasing complexity such as lack of time, lack of

knowledge and various other limitations. Therefore, it is often

hard for DMs to represent the assessment information about

alternatives in the form of numeric values. Hence, to deal

with such type of situations, Zadeh [25] initially proposed

the concept of linguistic variable. It has also been general-

ized to various linguistic environments such as 2-tuple lin-

guistic representation model [26]–[30], intuitionistic 2-tuple

linguistic model [31] and so on [32], [33]. These developed

concepts have also the same limitations to that of FS and

IFS have. To overcome these limitations, Zhang et al. [34]

developed the concept of 2-tuple linguistic neutrosophic set

(2-TLNS) based on the SVNS and 2-tuple linguistic informa-

tion model, which is the generalization of several concepts

such as 2-tuple linguistic set, 2-tuple linguistic fuzzy set and

2-tuple linguistic intuitionistic fuzzy set [35]. They described

some operational laws for 2-tuple linguistic neutrosophic

number (2-TLNN), proposed some aggregation operators and

apply these aggregation operators to solve MADM prob-

lems. Wang et al. [36] and Jie et al. [37] further developed

MAGDM method based TODIM and Muirhead mean opera-

tors to deal with 2-tuple linguistic environment.Wu et al. [38]

proposed some 2-tuple linguistic neutrosophic Hamy mean

(2-TLNHM) operators. Wu et al. [39] proposed the idea

of SVN 2-tuple linguistic set (SVN2TLS), SVN 2 tuple

linguistic number (SVN2TN), basic operational laws based

on Hamacher triangular norm and conorm. Then based on

these operational laws propose some aggregation operators

and apply these aggregation operator to deal with MAGDM

problem under SVN2TL information.

The Dombi t-norm (DTN) and Dombi t-conorm (DTCN)

proposed by Dombi [40] have general parameter, which

makes the information aggregation process more flexible.

In the past few years, some researchers proposed Dombi

operational laws for various sets and based on these Dombi

operational laws they developed different aggregation opera-

tors [41]–[56].

Due to the increasing complexity in real decision mak-

ing problems day by day, we have to look at the following

questions, when selecting the best alternative. (1) In various

situations, the assessment values of the attributes presented

by the DMs may be too high or too low, have a negative

effect on the final ranking results. The PA operator is a useful

aggregation operator that authorizes the assessed values to

equally supported and improved. Therefore, we may utilize

the PA operator to vanish such bad effect by choosing differ-

ent weights constructed by the support measure. (2) In various

practical decision making problems the assessment values

of attribute are dependent. Therefore, the interrelationship

among the values of the attributes should be scrutinized. The

HM operator can gain this function. However, HM operator
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has some advantages over BM. From the existing literature,

we can notice that there is a need to combine PA operator with

HM operator to deal with 2-TLN environment and achieved

the above advantages.

Therefore, the main aim of this article is to propose some

Dombi operational laws for 2-TLNNs, combine PA operator

with HM operator, and extend the idea to 2-TLN environ-

ment, and develop some new aggregation operators such

as 2-TLN power HM (2-TLNHM) operator, its weighted

form, 2-LN power geometric HM (2-TLNHM) operator, its

weighted form and discussed some special cases of the devel-

oped aggregation operator and apply them to MAGDM to

achieve the two requirements discussed above.

To do so, the rest of the article is organized as follows.

In section 1, some basic definitions about SVNS, 2-TLNS,

PA operator, HM operator and related properties are dis-

cussed. In section 3, we developed some operational laws

for 2-TLNNs. In section 4, based on these operational laws

we developed some 2-tuple linguistic Dombi power Hero-

nian mean operators, related properties and special cases

are discussed. In section 5, MAGDM method is developed

based on these newly developed aggregation operators and a

numerical example is given to show the effectiveness of the

proposedMAGDM approach. In section 6, comparison of the

developed approach and some existing approaches are given.

At the end Conclusion, future work and references are given.

II. PRELIMINARIES

In this part, we gave some basic definitions and results about

2-TLNSs, PA operator and HM operator.

A. 2-TLNS AND THEIR OPERATIONS

Definition 1 [7]: Let 2 be a space of points (objects), with a

common component in 2 denoted by η. A SVNS S̃N in 2 is

expressed by,

S̃N =
{〈
η, ξS̃N (η) , ψS̃N (η) , ζS̃N (η)

〉
|η ∈ 2

}
(1)

where ξS̃N (η) , ψS̃N (η) and ζS̃N (η) respectively denote the

TMD, IMD and FMD of the element η ∈ 2 to the set S̃N .

For each point η ∈ 2, we have ξS̃N (η) , ψS̃N (η) , ζS̃N (η) ∈

[0, 1], and 0 ≤ ξS̃N (η)+ ψS̃N (η)+ ζS̃N (η) ≤ 3.

Definition 2 [34]: Suppose that Ŵ =
{
Ŵ1, Ŵ2, . . . ., Ŵp

}

is a 2-TLSs with p + 1 cardinality. That is the order of

2-TLSs is odd. If Ŵ =
〈
(st , 4) , (si, 9) ,

(
sf , ϒ

)〉
is described

for (st , 4) , (si, 9) ,
(
sf , ϒ

)
∈ Ŵ and 4,9,ϒ ∈ [o, p] ,

where (st , 4) , (si, 9) and
(
sf , ϒ

)
respectively, represents

the truth-membership degree, indeterminacy-membership

degree and falsity-membership degree by 2-TLNSs, then the

2-TLNSs is described as follows:

Ŵg =
{〈(
stg , 4g

)
,
(
sig , 9g

)
,
(
sfg , ϒg

)〉}
(2)

where, 0 ≤ 1−1
(
stg , 4

)
≤ p, 0 ≤ 1−1

(
sig , 9

)
≤

p, 0 ≤ 1−1
(
sfg , ϒ

)
≤ p such that 0 ≤ 1−1

(
stg , 4

)
+

1−1
(
sig , 9

)
+1−1

(
sfg , ϒ

)
≤ 3p.

Definition 3 [34]: Let Ŵ =
〈
(st , 4) , (si, 9) ,

(
sf , ϒ

)〉

be a 2-TLNN. Then, the score and accuracy functions are

described as follows:

SR (Ŵ)

= 1

{
2p+1−1 (st , 4)−1−1 (si, 9)−1−1

(
sf , ϒ

)

3p

}
,

SR (Ŵ) ∈ [0, 1] ; (3)

AC (Ŵ)

= 1

{
1−1 (st , 4)−1−1

(
sf , ϒ

)}
, AC (Ŵ) ∈ [−p, p] .

(4)

Definition 4 [34]: Let Ŵ1 =
〈(
st1 , 41

)
,
(
si1 , 91

)
,
(
sf1 , ϒ1

)〉

and Ŵ2 =
〈(
st2 , 42

)
,
(
si2 , 92

)
,
(
sf2 , ϒ2

)〉
be any two arbi-

trary 2-TLNNs. Then, the comparison rules are described as

follows:

(1) If SR (Ŵ1) > SR (Ŵ2), then Ŵ1 > Ŵ2;

(2) If SR (Ŵ1) = SR (Ŵ2), then

i. If AC (Ŵ1) > AC (Ŵ2), then Ŵ1 > Ŵ2;

ii. If AC (Ŵ1) = AC (Ŵ2), then Ŵ1 = Ŵ2.

Definition 5 [36]:LetŴ1 =
〈(
st1 , 41

)
,
(
si1 , 91

)
,
(
sf1 , ϒ1

)〉

and Ŵ2 =
〈(
st2 , 42

)
,
(
si2 , 92

)
,
(
sf2 , ϒ2

)〉
be any two arbi-

trary 2-TLNNs. Then, the normalized Hamming distance is

described as follows:

DH (Ŵ1, Ŵ2) =
1

3p





∣∣1−1
(
st1 , 41

)
−1−1

(
st2 , 42

)∣∣
+
∣∣1−1

(
si1 , 91

)
−1−1

(
si2 , 92

)∣∣
+
∣∣1−1

(
sf1 , ϒ1

)
−1−1

(
sf2 , ϒ2

)∣∣





(5)

B. THE PA OPERATOR

Yager [21] was the first one who presented the concept of the

PA which is one of the important aggregation operators. The

PA operator diminishes some negative effects of unnecessar-

ily high or unnecessarily low arguments given by experts. The

conventional PA operator can only deal with crisp numbers,

and is defined as follows.

Definition 6 [21]: Let bi(i = 1, 2, . . . ,m) be a group

of non-negative crisp numbers, the PA is a function defined

by

PA (b1, b2, . . . ., bm) =

m∑
i=1

(1 + T (bi)) bi

m∑
i=1

(1 + T (bi))

(6)

where T (bi) =
m∑
j=1
j 6=i

Sup(bi, bj) and Sup (b, c) is the sup-

port degree for b from c, which satisfies some axioms. 1)

Sup (b, c) ∈ [0, 1]; 2) Sup (b, c) = Sup (c, b); 3) Sup (b, c) ≥

Sup (d, e) , if |b− c| < |d − e| .

C. HM OPERATOR

HM [24] is also an important tool, which can represent the

interrelationships of the input values, and it is defined as

follows:

VOLUME 7, 2019 100207
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Definition 7 [24]:Let I = [0, 1] , x, y ≥ 0,H x,y : Im → I ,

if H x,y satisfies;

H x,y (b1, b2, . . . , bm) =


 2

m2 + m

m∑

i=1

m∑

j=i

bxi b
y
j




1
x+y

(7)

Then the mapping H x,y is said to be HM operator with

parameters. The HM satisfies the properties of idem potency,

boundedness and monotonicity.

III. DOMBI OPERATIONAL LAWS FOR 2-TLNNs

A. DOMBI TN AND TCN

Dombi operations consist of the Dombi sum and Dombi

product.

Definition 8 [40]: Let α and β be any two real number.

Then, the DTN and DTCN among α and β are explain as

follows:

TD(α, β) =
1

1 +

{(
1−α
α

)ℑ

+

(
1−β
β

)ℑ
} 1

ℑ

; (8)

T ∗
D(α, β) = 1 −

1

1 +

{(
α

1−α

)ℑ

+

(
β

1−β

)ℑ
} 1

ℑ

. (9)

where ℑ ≥ 1, and (α, β) ∈ [0, 1] × [0, 1] .

According to the DTN and DTCN, we develop few opera-

tional rules for 2-TLNNs.

Definition 9: Let Ŵ1 =
〈(
st1 , 41

)
,
(
si1 , 91

)
,
(
sf1 , ϒ1

)〉

and Ŵ2 =
〈(
st2 , 42

)
,
(
si2 , 92

)
,
(
sf2 , ϒ2

)〉
be an arbitrary

2-TLNNs and ℑ > 0, for simplicity, we assume that
1−1

(
stg ,4g

)

h
= tg,

1−1
(
sig ,9g

)

h
= ig,

1−1
(
sfg ,ϒg

)

h
= f g for

g = 1, 2. Then, the operational laws can be described as

follows:

(1)Ŵ1 ⊗ Ŵ2

=

〈
1



h




1

1 +

((
1−t1

t1

)ℑ

+

(
1−t2

t2

)ℑ
)1/ℑ






,

1



h



1 −

1

1 +

((
i1

1−i1

)ℑ

+

(
i2

1−i2

)ℑ
)1/ℑ






,

1



h



1 −

1

1 +

((
f 1

1−f 1

)ℑ

+

(
f 2

1−f 2

)ℑ
)1/ℑ







〉
(10)

(2)Ŵ1 ⊗ Ŵ2

=

〈
1



h



1 −

1

1 +

((
t1

1−t1

)ℑ

+

(
t2

1−t2

)ℑ
)1/ℑ






,

1



h




1

1 +

((
1−i1

i1

)ℑ

+

(
1−i2

i2

)ℑ
)1/ℑ






,

1



h




1

1 +

((
1−f 1

f 1

)ℑ

+

(
1−f 2

f 2

)ℑ
)1/ℑ







〉
; (11)

(3) ξŴ1

=

〈
1



h



1 −

1

1 +

(
ξ

(
t1

1−t1

)ℑ
)1/ℑ






,

1



h




1

1 +

(
ξ

(
1−i1

i1

)ℑ
)1/ℑ






,

1



h




1

1 +

(
ξ

(
1−f 1

f 1

)ℑ
)1/ℑ







〉
, ξ > 0; (12)

(4) Ŵ
ξ

1 =

〈
1



h




1

1 +

(
ξ

(
1−t1

t1

)ℑ
)1/ℑ






,

1



h



1−

1

1 +

(
ξ

(
i1

1−i1

)ℑ
)1/ℑ






,
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1



h



1 −

1

1+

(
ξ

(
f 1

1−f 1

)ℑ
)1/ℑ







〉
, ξ > 0. (13)

IV. THE 2-TUPLE LINGUISTIC NEUTROSOPHIC DOMBI

HERONIAN AGGREGATION OPERATORS

In this part, based on the Dombi operational laws for

2-TLNNs, we combine PA operator and HM operator to

propose 2-TLNDPHM operator, 2-TLNDWPHM operator,

2-TLNDPGHM operator, 2-TLNDWPGHM operator and

discuss some related properties.

A. THE 2-LNDPHM AND 2-LNDWPHM OPERATORS

Definition 10: Let Ŵg (g = 1, 2, . . . , p) be a group of

2-TLNNs, x, y ≥ 0. Then, the 2-TLNNDPHM operator is

described as follows:

2 − TLNDPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=




2

p2 + p

p∑

g=1

p∑

q=g




p
(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

Ŵg




x

⊗D




p
(
1 + T

(
Ŵq
))

p∑
r=1

(1 + T (Ŵr ))

Ŵq




y


1
x+y

. (14)

where T
(
Ŵg
)

=
p∑

q=1,g 6=q

Sup
(
Ŵg, Ŵq

)
, Sup

(
Ŵg, Ŵq

)
=

1 − D
(
Ŵg, Ŵq

)
is the support degree for Ŵg from Ŵq,

which satisfy the following conditions: (1) Sup
(
Ŵg, Ŵq

)
∈

[0, 1]; (2) Sup
(
Ŵg, Ŵq

)
= Supp

(
Ŵg, Ŵq

)
;(3) Sup

(
Ŵg, Ŵq

)
≥

Sup (Ŵr , Ŵs), if D
(
Ŵg, Ŵq

)
< D (Ŵr , Ŵs), in which

D
(
Ŵg, Ŵq

)
is the distance measure between 2-TLNNs Ŵg and

Ŵq defined in Definition (5).

In order, to represent Equation (14) in a simple form,

we assume that

ℵg =

(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

(15)

Therefore, Equation (14) takes the form

2 − TLNDPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=


 2

p2 + p

p∑

g=1

p∑

q=g

(
pℵgŴg

)x
⊗D

(
ℵqŴq

)y



1
x+y

. (16)

Theorem 1: Let x, y ≥ 0, and x, y do not take the value 0 at

the same time, Ŵg(g = 1, 2, . . . , p) be a group of 2-TLNNs

and let
1−1

(
stg ,4g

)

h
= tg,

1−1
(
sig ,9g

)

h
= ig,

1−1
(
sfg ,ϒg

)

h
= f g.

Then, the aggregated value utilizing Equation (14), is still a

2-TLNN, and (17), as shown at the top of the next page.

Proof: According to operational laws, we have

pℵgŴg =

〈
1


h


1 − 1

/
1 +


pℵg

(
tg

1 − tg

)ℑ



1
ℑ





 ,

1


h


1

/
1 +


pℵg

(
1 − ig

ig

)ℑ



1
ℑ





 ,

1


h


1

/
1 +


pℵg


1 − f g

f g




ℑ



1
ℑ







〉
,

and

pℵqŴq =

〈
1


h


1 − 1

/
1 +


pℵq

(
tq

1 − tq

)ℑ



1
ℑ





 ,

1


h


1

/
1 +


pℵq

(
1 − iq

iq

)ℑ



1
ℑ





 ,

1


h


1

/
1 +


pℵq


1 − f q

f q




ℑ



1
ℑ







〉
.

Let ag =
tg

1−tg
, aq =

tq

1−tq
, bg =

1−ig

ig
, bq =

1−iq

iq
, cg =

1−f g

f g
, cq =

1−f q

f q
. Then, we can obtain

pℵgŴg =

〈
1

(
h

(
1 − 1

/
1 +

(
pℵg

) 1
ℑ ag

))
,

1

(
h

(
1

/
1 +

(
pℵg

) 1
ℑ bg

))
,

1

(
h

(
1

/
1 +

(
pℵg

) 1
ℑ cg

))〉
,

pℵqŴq =

〈
1

(
h

(
1 − 1

/
1 +

(
pℵq

) 1
ℑ aq

))
,

1

(
h

(
1

/
1 +

(
pℵq

) 1
ℑ bq

))
,

1

(
h

(
1

/
1 +

(
pℵq

) 1
ℑ cq

))〉
,

and

(
pℵgŴg

)x
=

〈
1

(
h

(
1

/
1 + x

1
ℑ

/(
pℵg

) 1
ℑ ag

))
,

1

(
h

(
1 − 1

/
1 + x

1
ℑ

/(
pℵg

) 1
ℑ bg

))
,

1

(
h

(
1 − 1

/
1 + x

1
ℑ

/(
pℵg

) 1
ℑ cg

))〉
,
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2 − TLNPHM
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=

〈
1



h



1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1,
q=q

1

/



x

pℵg

(
tg

1−tg

)ℑ
+

y

pℵq

(
tq

1−tq

)ℑ










1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1
q=g

1

/



x

pℵg

(
1−ig

ig

)ℑ
+

y

pℵq

(
1−iq

iq

)ℑ










1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1
q=g

1

/



x

pℵg

(
1−f g

f g

)ℑ
+

y

pℵq

(
1−f q

f q

)ℑ










1
ℑ










〉
. (17)

(
pℵqŴq

)y
=

〈
1

(
h

(
1

/
1 + y

1
ℑ

/(
pℵq

) 1
ℑ aq

))
,

1

(
h

(
1 − 1

/
1 + y

1
ℑ

/(
pℵq

) 1
ℑ bq

))
,

1

(
h

(
1 − 1

/
1 + y

1
ℑ

/(
pℵq

) 1
ℑ cq

))〉
.

Furthermore, we can have
(
pℵgŴg

)x
⊗D

(
pℵqŴq

)y

=

〈
1

(
h

(
1

/
1 +

(
x
/
pℵga

ℑ

g
+ y
/
pℵqa

ℑ

q

) 1
ℑ

))
,

1

(
h

(
1 − 1

/
1 +

(
x
/
pℵgb

ℑ

g
+ y
/
pℵqb

ℑ

q

) 1
ℑ

))
,

1

(
h

(
1 − 1

/
1 +

(
x
/
pℵgc

ℑ

g
+ y
/
pℵqc

ℑ

q

) 1
ℑ

))〉
,

and
p∑

g=1,
q=g

(
pℵgŴg

)x
⊗D

(
pℵqŴq

)y
, as shown at the top of the

next page.

So, we can have 2
p2+p

p∑
g=1,
q=g

(
pℵgŴg

)x
⊗D

(
pℵqŴq

)y
, as

shown at the top of the next page.

Then (18), as shown at the top of the page 8.

Now put ag =
tg

1−tg
, aq =

tq

1−tq
, bg =

1−ig

ig
, bq =

1−iq

iq
, cg =

1−f g

f g
, cq =

1−f q

f q
in Equation (18), we can have

the equation can be derived, as shown at the top of the page 8.

This completes the proof of Theorem (1).

Theorem 2 (Idempotency): Let Ŵg(g = 1, 2, . . . , p) be a

group of 2-TLNNs, if all Ŵg(g = 1, 2, . . . , p) are same, that

is Ŵg = Ŵ =
〈
(st , 4) , (si, 9) ,

(
sf , ϒ

)〉
(g = 1, 2, . . . , p).

Assume that
1−1

(
stg ,4g

)

h
= tg,

1−1
(
sig ,9g

)

h
=

ig,
1−1

(
sfg ,ϒg

)

h
= f g, then

2 − TLNPHM
(
Ŵ1, Ŵ2, . . . , Ŵp

)
= Ŵ. (19)

Proof: Since all Ŵg = Ŵ =
〈
(st , 4) , (si, 9) ,

(
sf , ϒ

)〉

(g = 1, 2, . . . , p) , so we can have Sup
(
Ŵg, Ŵq

)
= 1, for all

g, q = 1, 2, . . . , p, so

ℵg = 1
p
, for all g = 1, 2, . . . , p. Then 2 −

TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

= 2 − TLNPHM x,y (Ŵ, Ŵ, . . . , Ŵ), as shown at the top of the

page 9

Theorem 3 (Boundedness): Let Ŵg(g = 1, 2, . . . , p) be a

group of 2-TLNNs. Ifm
−

=
〈
ming

(
stg , 4g

)
,maxg

(
sig , 9g

)
,

maxg
(
sfg , ϒg

)〉
and m

+
=
〈
maxg

(
stg , 4g

)
,ming

(
sig , 9g

)
,

ming
(
sfg , ϒg

)〉
, then

m
−

≤ 2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
≤ m

+
(20)

Proof: To prove this let us assume that,

1−1
(
stg , 4g

)

h
= tg,

1−1
(
sig , 9g

)

h
= ig,

1−1
(
sfg , ϒg

)

h
= f g,

1−1
(
st−g , 4

−
g

)

h
= t

−

g ,

1−1
(
si−g , 9

−
g

)

h
= i

−

g ,
1−1

(
sf −
g
, ϒ−

g

)

h
= f

−

g ,

1−1
(
st+g , 4

+
g

)

h
= t

+

g ,
1−1

(
si+g , 9

+
g

)

h
= i

+

g ,

1−1
(
sf +
g
, ϒ+

g

)

h
= f

+

g .

Sincem
+

=
〈
maxg

(
stg , 4g

)
,ming

(
sig , 9g

)
,ming

(
sfg , ϒg

)〉
,

m
−

=
〈
ming

(
stg , 4g

)
,maxg

(
sig , 9g

)
,maxg

(
sfg , ϒg

)〉
.

Then, there are
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p∑

g=1,
q=g

(
pℵgŴg

)x
⊗D

(
pℵqŴq

)y

=

〈
1



h



1 − 1

/
1 +




p∑

g=1,
q=g







1

1 +

(
x
/
pℵga

ℑ

g
+ y
/
pℵqa

ℑ

q

) 1
ℑ




/

1 −

1

1 +

(
x
/
pℵga

ℑ

g
+ y
/
pℵqa

ℑ

q

) 1
ℑ







ℑ


1
ℑ






,

1



h



1

/



1+




p∑

g=1,
q=g






1−1+

1

1+

(
x
/
pℵgb

ℑ

g
+ y
/
pℵqb

ℑ

q

) 1
ℑ




/


1−

1

1+

(
x
/
pℵgb

ℑ

g
+ y
/
pℵqb

ℑ

q

) 1
ℑ







ℑ


1
ℑ









,

1



h



1

/


1+




p∑

g=1,
q=g





1 − 1 +

1

1 +

(
x
/
pℵgc

ℑ

g
+ y
/
pℵqc

ℑ

q

) 1
ℑ




/

1−

1

1+

(
x
/
pℵgc

ℑ

g
+y
/
pℵqc

ℑ

q

) 1
ℑ







ℑ


1
ℑ










〉
,

=

〈
1


h


1−1

/

1+




p∑

g=1,
q=g

1

/
 x

pℵga
ℑ

g

+
y

pℵqa
ℑ

q







1
ℑ








 , 1


h


1
/

1+




p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ








,

1


h


1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ

g

+
y

pℵqc
ℑ

q







1
ℑ










〉
.

2

p2 + p

p∑

g=1,
q=g

(
pℵgŴg

)x
⊗D

(
pℵqŴq

)y

=

〈
1



h



1−1

/



1 +




2

p2 + p





1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵga
ℑ
g

+
y

pℵqa
ℑ
q







1
ℑ







/

1 − 1 + 1

/
1 +




p∑

g=1,
q=g

1

/
 x

pℵga
ℑ
g

+
y

pℵqa
ℑ
q







1
ℑ







ℑ


1
ℑ









,

1



h



1

/



1 +




2

p2 + p





1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ







/

1

/
1 +




p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ







ℑ


1
ℑ









,

1



h



1

/



1 +




2

p2 + p





1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ
g

+
y

pℵqc
ℑ
q







1
ℑ







/

1

/
1 +




p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ
g

+
y

pℵqc
ℑ
q







1
ℑ







ℑ


1
ℑ










〉
,

=

〈
1


h


1 − 1

/

1 +




2

p2 + p

p∑

g=1,
q=g

1

/
 x

pℵga
ℑ
g

+
y

pℵqa
ℑ
q







1
ℑ








 ,1


h


1

/

1 +




2

p2 + p

p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ








 ,

1


h


1

/

1 +




2

p2 + p

p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ
g

+
y

pℵqc
ℑ
q







1
ℑ










〉
.
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


2

p2 + p

p∑

g=1,
q=g

(
pℵgŴg

)x
⊗D

(
pℵqŴq

)y




1
x+y

=

〈
1


h


1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/
 x

pℵga
ℑ

g

+
y

pℵqa
ℑ

q







1
ℑ








 ,

1


h


1 − 1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ








 ,

1


h


1 − 1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ

g

+
y

pℵqc
ℑ

q







1
ℑ










〉
.

(18)

=

〈
1



h



1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
tg

1−tg

)ℑ
+

y

pℵq

(
tq

1−tq

)ℑ







1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
1−ig

ig

)ℑ
+

y

pℵq

(
1−iq

iq

)ℑ







1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
1−f g

f g

)ℑ
+

y

pℵq

(
1−f g

f g

)ℑ







1
ℑ










〉
.

t
−

≤ t
(
Ŵg
)

≤ t
+
, i

−

≤ i
(
Ŵg
)

≤ i
+

, f
−

≤ f
(
Ŵg
)

≤ f
+

for all g = 1, 2, . . . ., p. So, we have t
(
Ŵg
)
, as shown at the

top of the page 10

Then, there is the following comparison:

(1) For the expected value:

SR (Ŵ)

= 1

{
2h+1−1 (st , 4)−1−1 (si, 9)−1−1

(
sf , ϒ

)

3h

}

≥ 1

{
2h+1−1

(
st− , 4

−
)
−1−1

(
si+ , 9

+
)
−1−1

(
sf + , ϒ+

)

3h

}

= SR
(〈
(st− , 4)−1−1 (si− , 9)−1−1

(
sf − , ϒ

)〉)
.

If SR (Ŵ) > SR
(〈
(st− , 4)−1−1 (si− , 9)−1−1

(
sf − , ϒ

)〉)
,

then
〈
(st− , 4)−1−1 (si− , 9)−1−1

(
sf − , ϒ

)〉

< 2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
,

Else SR (Ŵ)=SR
(〈
(st− , 4)−1

−1 (si− , 9)−1
−1
(
sf − , ϒ

)〉)
,

then we have the score function

(2)

AC (Ŵ) = 1

{
1−1 (st , 4)−1−1

(
sf , ϒ

)}

≥ 1

{
1−1

(
st− , 4

−
)
−1−1

(
sf + , ϒ+

)}

= AC
(〈
(st− , 4)−1

−1 (si− , 9)−1−1
(
sf − , ϒ

)〉)
.

If AC (Ŵ)>AC
(〈
(st− , 4)−1

−1 (si− , 9)−1
−1
(
sf − , ϒ

)〉)
,

then

〈
(st− , 4)−1−1 (si− , 9)−1−1

(
sf − , ϒ

)〉

< 2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
,

Else

AC (Ŵ) = AC
(〈
(st− , 4)−1−1 (si− , 9)−1−1

(
sf − , ϒ

)〉)

= 2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
,
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2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

= 2 − TLNPHM x,y (Ŵ, Ŵ, . . . , Ŵ)

=

〈
1


h


1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/


x

p 1
p

(
t

1−t

)ℑ
+

y

p 1
p

(
t

1−t

)ℑ







1
ℑ








 ,

1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

p 1
p

(
1−i

i

)ℑ
+

y

p 1
p

(
1−i

i

)ℑ







1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

p 1
p

(
1−f

f

)ℑ
+

y

p 1
p

(
1−f

f

)ℑ







1
ℑ










〉
,

=

〈
1


h


1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/


x + y
(

t

1−t

)ℑ







1
ℑ








 ,

1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x + y
(

1−i

i

)ℑ







1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x + y
(

1−f

f

)ℑ







1
ℑ










〉
,

=

〈
1


h


1

/

1 +




1

(x + y)
× 1

/


x + y
(

t

1−t

)ℑ







1
ℑ








 ,

1



h



1 − 1

/


1 +




1

(x + y)
× 1

/



x + y
(

1−i

i

)ℑ







1
ℑ









,

1



h



1 − 1

/


1 +




1

(x + y)
× 1

/



x + y
(

1−f

f

)ℑ







1
ℑ










〉
,

=
〈
(st , 4) , (si, 9) ,

(
sf , ϒ

)〉
= Ŵ

So, we have

m
−

≤ 2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
.

In a similar way, we can show that

2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
≤ m

+
.
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t
(
Ŵg
)

= 1



h



1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
tg

1−tg

)ℑ
+

y

pℵq

(
tq

1−tq

)ℑ







1
ℑ










≥ 1



h



1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
t
−

g

1−t
−

g

)ℑ
+

y

pℵq

(
t
−

q

1−t
−

q

)ℑ







1
ℑ










= t
−
,

i
(
Ŵg
)

= 1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
1−ig

ig

)ℑ
+

y

pℵq

(
1−iq

iq

)ℑ







1
ℑ










≤ 1



h



1 − 1

/



1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
1−i

+

g

i
+

g

)ℑ
+

y

pℵq

(
1−i

+

q

i
+

q

)ℑ







1
ℑ










= i
+

,

f
(
Ŵg
)

= 1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
1−f g

f g

)ℑ
+

y

pℵq

(
1−f q

f q

)ℑ







1
ℑ










≤ 1



h



1 − 1

/



1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
1−f

+

g

f
+

g

)ℑ
+

y

pℵq

(
1−f

+

q

f
+

q

)ℑ







1
ℑ










= f
+

.

Hence we have

m
−

≤ 2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
≤ m

+
.

In the following, we shall discuss some special cases with

respect to the parameter parameters x and y.

(1) When y → 0,ℑ > 0, we can have

2 − TLNDPHM x,0
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=




2

p2 + p

p∑

g=1

p∑

q=g




p
(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

Ŵg




x

⊗




p
(
1 + T

(
Ŵq
))

p∑
r=1

(1 + T (Ŵr ))

Ŵq




y


1
x+y

=




2

p2 + p

p∑

g=1


(p+1−g)



p
(
1+T

(
Ŵg
))

p∑
r=1

(1+T (Ŵr))

Ŵg




x





1
x

.

That is, the 2-TLDPHM operator degenerates into the 2-tuple

linguistic neutrosophic descending Dombi power average

operator.

(2) When x → 0,ℑ > 0, we can have

2 − TLNDPHMo,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=




2

p2 + p

p∑

g=1

p∑

q=g




p
(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

Ŵg




x
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⊗




p
(
1 + T

(
Ŵq
))

p∑
r=1

(1 + T (Ŵr ))

Ŵq




y


1
x+y

=




2

p2 + p

p∑

g=1


(g)




p
(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

Ŵg




y





1
y

.

That is, the 2-TLDPHM operator degenerates into

the 2-tuple linguistic neutrosophic ascending Dombi

power average operator.

(3) When y → 0,ℑ > 0, and Sup
(
Ŵg, Ŵq

)
=

β (β ∈ [0, 1]) for all g 6= q, then, we can have

2 − TLNDPHM x,0
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=




2

p2 + p

p∑

g=1

p∑

q=g




p
(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

Ŵg




x

⊗




p
(
1 + T

(
Ŵq
))

p∑
r=1

(1 + T (Ŵr ))

Ŵq




y


1
x+y

=


 2

p2 + p

p∑

g=1

(
(p+ 1 − g)

(
Ŵg
)x)



1
x

.

That is, the 2-TLDPHM operator degenerates into

the 2-tuple linguistic neutrosophic linear descend-

ing Dombi weighted average operator. Certainly,

the weight vector of Ŵxg is (p, p− 1, . . . ., 1) .

(4) When x → 0,ℑ > 0, and Sup
(
Ŵg, Ŵq

)
=

β (β ∈ [0, 1]) for all g 6= q, then, we can have

2 − TLNDPHM0,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=




2

p2 + p

p∑

g=1

p∑

q=g




p
(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

Ŵg




x

⊗




p
(
1 + T

(
Ŵq
))

p∑
r=1

(1 + T (Ŵr ))

Ŵq




y


1
x+y

=


 2

p2 + p

p∑

g=1

(
(g)

(
Ŵg
)y)



1
y

.

That is, the 2-TLDPHM operator degenerates into

the 2-tuple linguistic neutrosophic linear descending

Dombi weighted average operator.

(5) When x = y = 1,ℑ > 0, and Sup
(
Ŵg, Ŵq

)
=

β (β ∈ [0, 1]) for all g 6= q, then, we can have

2 − TLNDPHM0,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=


 2

p2 + p

p∑

g=1

p∑

q=g

((
Ŵg
)
⊗
(
Ŵq
))



1
2

.

That is, the 2-TLDPHM operator degenerates into the 2-

tuple linguistic neutrosophic linear Dombi Heronian mean

operator.

In the above developed 2-TLNDPHMoperator, only power

weight vector and the correlation between input arguments

are taken under consideration and are not to consider the

weight vector of the input arguments. Therefore, to remove

this deficiency, we will propose it weighted form, that is 2-

TPLNDWPHM operator.

Definition 11: Let Ŵg (g = 1, 2, . . . , p) be a group of 2-

TLNNs, x, y ≥ 0,W =
(
w1,w2, . . . .,wp

)T
be the weight

vector such that wg ∈ [0, 1] and
p∑

g=1

wg = 1. Then, the 2-

TLNNDWPHM operator is described as follows:

2 − TLNDWPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=




2

p2 + p

p∑

g=1

p∑

q=g




pwg
(
1 + T

(
Ŵg
))

p∑
r=1

wt (1 + T (Ŵr ))

Ŵg




x

⊗




pwq
(
1 + T

(
Ŵq
))

p∑
r=1

wt (1 + T (Ŵr ))

Ŵq




y


1
x+y

. (21)

where T
(
Ŵg
)

=
p∑

q=1,g 6=q

Sup
(
Ŵg, Ŵq

)
, Sup

(
Ŵg, Ŵq

)
=

1 − D
(
Ŵg, Ŵq

)
is the support degree for Ŵg from Ŵq,

which satisfy the following conditions: (1) Sup
(
Ŵg, Ŵq

)
∈

[0, 1]; (2) Sup
(
Ŵg, Ŵq

)
= Supp

(
Ŵg, Ŵq

)
;(3) Sup

(
Ŵg, Ŵq

)
≥

Sup (Ŵr , Ŵs), if D
(
Ŵg, Ŵq

)
< D (Ŵr , Ŵs), in which

D
(
Ŵg, Ŵq

)
is the distance measure between 2-TLNNs Ŵg and

Ŵq defined in Definition (5).

In order, to represent Equation (21) in a simple form,

we assume that

2g =
wg
(
1 + T

(
Ŵg
))

p∑
r=1

wr (1 + T (Ŵr ))

(22)

Therefore, Equation (21) takes the form

2 − TLNDWPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=


 2

p2 + p

p∑

g=1

p∑

q=g

(
p2gŴg

)x
⊗
(
2qŴq

)y



1
x+y

. (23)
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2 − TLNDWPHM
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=

〈
1



h



1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1,
q=q

1

/



x

p2g

(
tg

1−tg

)ℑ
+

y

p2q

(
tq

1−tq

)ℑ










1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1
q=g

1

/



x

p2g

(
1−ig

ig

)ℑ
+

y

p2q

(
1−iq

iq

)ℑ










1
ℑ









,

1



h



1 − 1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1
q=g

1

/



x

p2g

(
1−f g

f g

)ℑ
+

y

p2q

(
1−f q

f q

)ℑ










1
ℑ










〉
. (24)

Theorem 4: Let x, y ≥ 0, and x, y do not take the value 0 at

the same time, Ŵg(g = 1, 2, . . . , p) be a group of 2-TLNNs

and let
1−1

(
stg ,4g

)

h
= tg,

1−1
(
sig ,9g

)

h
= ig,

1−1
(
sfg ,ϒg

)

h
= f g.

Then, the aggregated value utilizing Equation (21), is still a

2-TLNN, and (24), as shown at the top of this page

Proof: Same is Theorem 1.

It is worthy to note that the 2-TLNDWPHM operator has

only the property of boundedness and does not have the

properties of idempotency and monotonicity.

B. THE 2-TLNDPGHM OPERATOR AND 2-TLNDWPGHM

OPERATOR

Definition 12: Let Ŵg (g = 1, 2, . . . , p) be a group of 2-

TLNNs, x, y ≥ 0. Then, the 2-TLNNDPGHM operator is

described as follows:

2 − TLNDPGHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x+y




p∏

g=1

p∏

q=g



x
(
Ŵg
)
p(1+T(Ŵg))
p∑

r=1
(1+T (Ŵr ))

⊕ y
(
Ŵq
)
p(1+T(Ŵq))
p∑

r=1
(1+T (Ŵr))







2

p2+p

.

(25)

where T
(
Ŵg
)

=
p∑

q=1,g 6=q

Sup
(
Ŵg, Ŵq

)
, Sup

(
Ŵg, Ŵq

)
=

1 − D
(
Ŵg, Ŵq

)
is the support degree for Ŵg from Ŵq,

which satisfy the following conditions: (1) Sup
(
Ŵg, Ŵq

)
∈

[0, 1]; (2) Sup
(
Ŵg, Ŵq

)
= Supp

(
Ŵg, Ŵq

)
;(3) Sup

(
Ŵg, Ŵq

)
≥

Sup (Ŵr , Ŵs), if D
(
Ŵg, Ŵq

)
< D (Ŵr , Ŵs), in which

D
(
Ŵg, Ŵq

)
is the distance measure between 2-TLNNs Ŵg and

Ŵq defined in Definition (5).

In order, to represent Equation (25) in a simple form,

we assume that

ℵg =

(
1 + T

(
Ŵg
))

p∑
r=1

(1 + T (Ŵr ))

(26)

Therefore, Equation (25) takes the form

2 − TLNDPGHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x + y




p∏

g=1

p∏

q=g

(
x
(
Ŵg
)pℵg

⊕ y
(
Ŵq
)pℵq)




2

p2+p

. (27)

Theorem 5: Let x, y ≥ 0, and x, y do not take the value 0 at

the same time, Ŵg(g = 1, 2, . . . , p) be a group of 2-TLNNs

and let
1−1

(
stg ,4g

)

h
= tg,

1−1
(
sig ,9g

)

h
= ig,

1−1
(
sfg ,ϒg

)

h
= f g.

Then, the aggregated value utilizing Equation (25), is still

a 2-TLNN, and (28), as shown at the top of the next

page

Proof: According to operational laws, we have

Ŵ
pℵg
g

=

〈
1


h


1

/
1 +


pℵg

(
1 − tg

tg

)ℑ



1
ℑ





 ,

1


h


1 − 1

/
1 +


pℵg

(
ig

1 − ig

)ℑ



1
ℑ





 ,

1


h


1 − 1

/
1 +


pℵg


 f g

1 − f g




ℑ



1
ℑ







〉
,
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2 − TLNDWPGHM
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=

〈
1



h



1 − 1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1
q=g

1

/



x

pℵg

(
1−tg

tg

)ℑ
+

y

pℵq

(
1−tq

tq

)ℑ










1
ℑ









,

1



h



1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1,
q=q

1

/



x

pℵg

(
ig

1−ig

)ℑ
+

y

pℵq

(
iq

1−iq

)ℑ










1
ℑ









,

1



h



1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1,
q=q

1

/



x

pℵg

(
f g

1−f g

)ℑ
+

y

pℵq

(
f q

1−f q

)ℑ










1
ℑ










〉
. (28)

and

Ŵ
pℵq
q

=

〈
1


h


1

/
1 +


pℵq

(
1 − tq

tq

)ℑ



1
ℑ





 ,

1


h


1 − 1

/
1 +


pℵq

(
iq

1 − iq

)ℑ



1
ℑ





 ,

1


h


1 − 1

/
1 +


pℵq


 f q

1 − f q




ℑ



1
ℑ







〉
,

Let

ag =
1 − tg

tg
, aq =

1 − tq

tq
, bg =

ig

1 − ig

, bq =
iq

1 − iq

,

cg =
f g

1 − f g

, cq =
f q

1 − f q

.

Then, we can obtain

Ŵ
pℵg
g =

〈
1

(
h

(
1

/
1 +

(
pℵg

) 1
ℑ ag

))
,

1

(
h

(
1 − 1

/
1 +

(
pℵg

) 1
ℑ bg

))
,

1

(
h

(
1 − 1

/
1 +

(
pℵg

) 1
ℑ cg

))〉
,

Ŵ
pℵq
q =

〈
1

(
h

(
1

/
1 +

(
pℵq

) 1
ℑ aq

))
,

1

(
h

(
1 − 1

/
1 +

(
pℵq

) 1
ℑ bq

))
,

1

(
h

(
1 − 1

/
1 +

(
pℵq

) 1
ℑ cq

))〉
,

and

xŴ
pℵg
g =

〈
1

(
h

(
1 − 1

/
1 + x

1
ℑ

/(
pℵg

) 1
ℑ ag

))
,

1

(
h

(
1

/
1 + x

1
ℑ

/(
pℵg

) 1
ℑ bg

))
,

1

(
h

(
1

/
1 + x

1
ℑ

/(
pℵg

) 1
ℑ cg

))〉
,

yŴ
pℵq
q =

〈
1

(
h

(
1 − 1

/
1 + y

1
ℑ

/(
pℵq

) 1
ℑ aq

))
,

1

(
h

(
1

/
1 + y

1
ℑ

/(
pℵq

) 1
ℑ bq

))
,

1

(
h

(
1

/
1 + y

1
ℑ

/(
pℵq

) 1
ℑ cq

))〉
,

Furthermore, we can have

xŴ
pℵg
g ⊕D xŴ

pℵq
q

=

〈
1

(
h

(
1 − 1

/
1 +

(
x
/
pℵga

ℑ

g
+ y
/
pℵqa

ℑ

q

) 1
ℑ

))
,

1

(
h

(
1

/
1 +

(
x
/
pℵgb

ℑ

g
+ y
/
pℵqb

ℑ

q

) 1
ℑ

))
,

1

(
h

(
1

/
1 +

(
x
/
pℵgc

ℑ

g
+ y
/
pℵqc

ℑ

q

) 1
ℑ

))〉
,

and
∏p

g=1,
q=g

xŴ
pℵg
g ⊕D yŴ

pℵq
q , as shown at the top of the next

page

So, we can have

(
∏p

g=1,
q=g

xŴ
pℵg
g ⊕D yŴ

pℵq
q

) 2

p2+p

, as shown

at the top of the next page

Then (29), as shown at the top of the page 15
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p∏

g=1,
q=g

xŴ
pℵg
g ⊕D yŴ

pℵq
q

=

〈
1



h



1

/


1 +




p∑

g=1,
q=g





1 − 1 +

1

1 +

(
x
/
pℵga

ℑ
g

+ y
/
pℵqa

ℑ
q

) 1
ℑ




/

1 −

1

1 +

(
x
/
pℵga

ℑ
g

+ y
/
pℵqa

ℑ
q

) 1
ℑ







ℑ


1
ℑ









,

1



h



1 − 1

/
1 +




p∑

g=1,
q=g







1

1 +

(
x
/
pℵgb

ℑ

g
+ y
/
pℵqb

ℑ

q

) 1
ℑ




/


1 −

1

1 +

(
x
/
pℵgb

ℑ

g
+ y
/
pℵqb

ℑ

q

) 1
ℑ







ℑ


1
ℑ






,

1



h



1 − 1

/
1 +




p∑

g=1,
q=g







1

1 +

(
x
/
pℵgc

ℑ
g

+ y
/
pℵqc

ℑ
q

) 1
ℑ




/

1 −

1

1 +

(
x
/
pℵgc

ℑ
g

+ y
/
pℵqc

ℑ
q

) 1
ℑ







ℑ


1
ℑ







〉
,

=

〈
1


h


1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵga
ℑ
g

+
y

pℵqa
ℑ
q







1
ℑ








 , 1


h


1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ








,

1


h


1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ
g

+
y

pℵqc
ℑ
q







1
ℑ










〉
.




p∏

g=1,
q=g

xŴ
pℵg
g ⊕D yŴ

pℵq
q




2

p2+p

=

〈
1



h



1

/



1 +




2

p2 + p





1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵga
ℑ
g

+
y

pℵqa
ℑ
q







1
ℑ







/

1

/
1 +




p∑

g=1,
q=g

1

/
 x

pℵga
ℑ
g

+
y

pℵqa
ℑ
q







1
ℑ







ℑ


1
ℑ









,

1



h



1 − 1

/



1 +




2

p2 + p





1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ







/

1 − 1 + 1

/
1 +




p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ







ℑ


1
ℑ









,

1



h



1 − 1

/



1 +




2

p2 + p





1 − 1

/

1 +




p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ
g

+
y

pℵqc
ℑ
q







1
ℑ







/

1 − 1 + 1

/
1 +




p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ
g

+
y

pℵqc
ℑ
q







1
ℑ







ℑ


1
ℑ










〉
,

=

〈
1


h


1

/

1 +




2

p2 + p

p∑

g=1,
q=g

1

/
 x

pℵga
ℑ
g

+
y

pℵqa
ℑ
q







1
ℑ








 , 1


h


1 − 1

/

1 +




2

p2 + p

p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ








 ,

1


h


1 − 1

/

1 +




2

p2 + p

p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ
g

+
y

pℵqc
ℑ
q







1
ℑ










〉
.
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1

x + y




p∏

g=1,
q=g

xŴ
pℵg
g ⊕D yŴ

pℵq
q




2

p2+p

=

〈
1


h


1 − 1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/
 x

pℵga
ℑ

g

+
y

pℵqa
ℑ

q







1
ℑ








 ,

1


h


1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/
 x

pℵgb
ℑ

g

+
y

pℵqb
ℑ

q







1
ℑ








 ,

1


h


1

/

1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/
 x

pℵgc
ℑ

g

+
y

pℵqc
ℑ

q







1
ℑ










〉
. (29)

=

〈
1



h



1 − 1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
1−tg

tg

)ℑ
+

y

pℵq

(
1−tq

tq

)ℑ







1
ℑ









,

1



h



1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
ig

1−ig

)ℑ
+

y

pℵq

(
iq

1−iq

)ℑ







1
ℑ









,

1



h



1

/


1 +




p2 + p

2 (x + y)

p∑

g=1,
q=g

1

/



x

pℵg

(
f g

1−f g

)ℑ
+

y

pℵq

(
f q

1−f q

)ℑ







1
ℑ










〉
.

Now put ag =
1−tg

tg
, aq =

1−tq

tq
, bg =

ig

1−ig
, bq =

iq

1−iq
, cg =

f g

1−f g
, cq =

f q

1−f q
in Equation (29), we can have

the equation can be derived, as shown at the top of this page

This completes the proof of Theorem.

Theorem 6 (Idempotency): Let Ŵg(g = 1, 2, . . . , p) be a

group of 2-TLNNs, if all Ŵg(g = 1, 2, . . . , p) are same, that

is Ŵg = Ŵ =
〈
(st , 4) , (si, 9) ,

(
sf , ϒ

)〉
(g = 1, 2, . . . , p).

Assume that
1−1

(
stg ,4g

)

h
= tg,

1−1
(
sig ,9g

)

h
= ig,

1−1
(
sfg ,ϒg

)

h

= f g, then

2 − TLNPGHM
(
Ŵ1, Ŵ2, . . . , Ŵp

)
= Ŵ. (30)

Theorem 7 (Boundedness): Let Ŵg(g = 1, 2, . . . , p) be a

group of 2-TLNNs. Ifm
−

=
〈
ming

(
stg , 4g

)
,maxg

(
sig , 9g

)
,

maxg
(
sfg , ϒg

)〉
and m

+
=
〈
maxg

(
stg , 4g

)
,ming

(
sig , 9g

)
,

ming
(
sfg , ϒg

)〉
, then

m
−

≤ 2 − TLNPHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)
≤ m

+
. (31)

By specifying different values to the parameters x and y, some

particular cases of the 2-TLNDPGHM operator are described

below:

(1) If y → 0,ℑ > 0, then we can have

2 − TLNDPGHM x,0
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x+y




p∏

g=1

p∏

q=g


x
(
Ŵg
)

p(1+T (Ŵg))
p∑

r=1
(1+T (Ŵr ))

⊕y
(
Ŵq
)

p(1+T (Ŵq))
p∑

r=1
(1+T (Ŵr ))







2

p2+p

=
1

x




p∏

g=1



x
(
Ŵg
)
p(1+T(Ŵg))
p∑

r=1
(1+T (Ŵr ))




(p+1−g)



2

p2+p

.

That is, the 2-TLNDPGHM operator degenerates into the 2-

tuple linguistic neutrosophic Dombi descending power geo-

metric average operator.
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(2) If x → 0,ℑ > 0, then we can have

2 − TLNDPGHM0,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x+y




p∏

g=1

p∏

q=g



x
(
Ŵg
)
p(1+T(Ŵg))
p∑

r=1
(1+T (Ŵr ))

⊕y
(
Ŵq
)
p(1+T(Ŵq))
p∑

r=1
(1+T (Ŵr ))







2

p2+p

=
1

y




p∏

g=1



y
(
Ŵg
)
p(1+T(Ŵg))
p∑

r=1
(1+T (Ŵr ))




(g)



2

p2+p

.

That is, the 2-TLNDPGHM operator degenerates into the 2-

tuple linguistic neutrosophic Dombi descending power geo-

metric average operator.

(3) If y → 0,ℑ > 0, and Sup
(
Ŵg, Ŵq

)
= β (β ∈ [0, 1])

for all g 6= q. Then, we can have

2 − TLNDPGHM x,0
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x+y




p∏

g=1

p∏

q=g



x
(
Ŵg
)
p(1+T(Ŵg))
p∑

r=1
(1+T (Ŵr ))

⊕y
(
Ŵq
)
p(1+T(Ŵq))
p∑

r=1
(1+T (Ŵr ))







2

p2+p

=
1

x




p∏

g=1

(
xŴg

)(p+1−g)




2

p2+p

.

That is, the 2-TLNDPGHM operator degenerates into 2-tuple

linguistic neutrosophic Dombi descending geometric average

operator.

(4) If x → 0,ℑ > 0, and Sup
(
Ŵg, Ŵq

)
= β (β ∈ [0, 1])

for all g 6= q. Then, we can have

2 − TLNDPGHM x,0
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x+y




p∏

g=1

p∏

q=g



x
(
Ŵg
)
p(1+T(Ŵg))
p∑

r=1
(1+T (Ŵr ))

⊕y
(
Ŵq
)
p(1+T(Ŵq))
p∑

r=1
(1+T (Ŵr ))







2

p2+p

=
1

y




p∏

g=1

(
yŴg

)(g)



2

p2+p

.

That is, the 2-TLNDPGHM operator degenerates into 2-tuple

linguistic neutrosophic Dombi ascending geometric average

operator.

Similar to 2-TLNDPHM operator, the 2-TLNDPGHM

operator have only power weight vector and the correlation

between input arguments are taken under consideration and

are not to consider the weight vector of the input arguments.

Therefore, to remove this deficiency, we will propose its

weighted form, that is 2-TPLNDWPGHM operator.

Definition 13: Let Ŵg (g = 1, 2, . . . , p) be a group of 2-

TLNNs, x, y ≥ 0. Then, the 2-TLNNDWPGHM operator is

described as follows:

2 − TLNDWPGHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x+y




p∏

g=1

p∏

q=g



x
(
Ŵg
)
pwg(1+T(Ŵg))
p∑

r=1
wr (1+T (Ŵr ))

⊕y
(
Ŵq
)
pwg(1+T(Ŵq))
p∑

r=1
wr (1+T (Ŵr ))







2

p2+p

.

(32)

where T
(
Ŵg
)

=
p∑

q=1,g 6=q

Sup
(
Ŵg, Ŵq

)
, Sup

(
Ŵg, Ŵq

)
=

1 − D
(
Ŵg, Ŵq

)
is the support degree for Ŵg from Ŵq,

which satisfy the following conditions: (1) Sup
(
Ŵg, Ŵq

)
∈

[0, 1]; (2) Sup
(
Ŵg, Ŵq

)
= Supp

(
Ŵg, Ŵq

)
;(3) Sup

(
Ŵg, Ŵq

)
≥

Sup (Ŵr , Ŵs), if D
(
Ŵg, Ŵq

)
< D (Ŵr , Ŵs), in which

D
(
Ŵg, Ŵq

)
is the distance measure between 2-TLNNs Ŵg and

Ŵq defined in Definition (5).

In order, to represent Equation (32) in a simple form,

we assume that

2g =
wg
(
1 + T

(
Ŵg
))

p∑
r=1

wr (1 + T (Ŵr ))

(33)

Therefore, Equation (32) takes the form

2 − TLNDWPGHM x,y
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=
1

x + y




p∏

g=1

p∏

q=g

(
x
(
Ŵg
)p2g

⊕ y
(
Ŵq
)p2q

)



2

p2+p

. (34)

Theorem 8: Let x, y ≥ 0, and x, y do not take the value 0 at

the same time, Ŵg(g = 1, 2, . . . , p) be a group of 2-TLNNs

and let
1−1

(
stg ,4g

)

h
= tg,

1−1
(
sig ,9g

)

h
= ig,

1−1
(
sfg ,ϒg

)

h
= f g.

Then, the aggregated value utilizing Equation (32), is still a

2-TLNN, and (35), as shown at the top of the next page

Similar to 2-TLNDWPHM, the 2-TLNDWPGHM opera-

tor has only the property of boundedness and does not have

the properties of idempotency and monotonicity.

V. AN APPLICATION OF 2-TLNDWPHM AND

2-TLNDWPGHM OPERATOR TO GROUP DECISION

MAKING

In this section, we pertains the afore-presented Dombi

power Heronian aggregation operators to establish construc-

tive approach for MAGDM under 2-TLNN environments.

Let AT =

{
AT 1,AT 2, . . . ,ATm

}
be the set of discrete

alternatives, the set of attributes is expressed by CT ={
CT 1,CT 2, . . . ,CT n

}
, the weight vector of the attributes

is represented by W =
(
w1,w2, . . . ,wn

)T
such that we ∈

[0, 1] ,
n∑

e=1

we = 1, and DE =

(
de1, de2, . . . , dea

)
denote
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2 − TLNDWPGHM
(
Ŵ1, Ŵ2, . . . , Ŵp

)

=

〈
1



h



1 − 1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1
q=g

1

/



x

p2g

(
1−tg

tg

)ℑ
+

y

p2q

(
1−tq

tq

)ℑ










1
ℑ









,

1



h



1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1,
q=q

1

/



x

p2g

(
ig

1−ig

)ℑ
+

y

p2q

(
iq

1−iq

)ℑ










1
ℑ









,

1



h



1

/


1 +




p2 + p

2(x + y)
× 1

/



p∑

g=1,
q=q

1

/



x

p2g

(
f g

1−f g

)ℑ
+

y

p2q

(
f q

1−f q

)ℑ










1
ℑ










〉
. (35)

the set of a decision makers, with weight vector expressed by

̟ = (̟1,̟2, . . . ,̟a)
T such that ̟b ∈ [0, 1] ,

a∑
b=1

̟b =

1. Assume that DT
b

=
(
Ŵbce
)
m×n

is the decision matrix,

where Ŵbce =

〈(
stbce , 4

b
ce

)
,

(
sibce , 9

b
ce

)
,

(
sf bce , ϒ

b
ce

)〉
takes the

form of 2-TLNN, given by decision maker deb for alternative

AT c with respect to the attribute CT e.

Then, depending on real decision situations where the

weight vector of both attributes and decision makers are

completely known in advance. Therefore, in the following

we present a MAGDM approach based on the developed

2-TLNDWPHM and 2-TLNDWPGHM operators. To do so,

just follow the step below:

Step 1: Calculate the support degrees by the following

formula:

Sup
(
Ŵbce, Ŵ

l
ce

)
= 1 − DH

(
Ŵbce, Ŵ

l
ce

)
,

(b, l = 1, 2, . . . , a; c = 1, 2, . . . ,m; e = 1, 2, . . . , n) .

(36)

Which satisfy the axioms for support functions,DH
(
Ŵbce, Ŵ

l
ce

)

is the distance measure given in Definition (5).

Step 2: Determine the support degree T
(
Ŵbce
)
that IFN Ŵbce

receives from other 2-TLNNs Ŵlce (l = 1, 2, . . . , a; l 6= b) ,

where

T
(
Ŵbce

)
=

a∑

l=1,l 6=b

sup
(
Ŵbce, Ŵ

l
ce

)
. (37)

Step 3: Utilize weights ̟b (b = 1, 2, . . . ., a) for decision

makers deb to determine weights ℵbce associated with the 2-

TLNN Ŵbce,

ℵbce =
̟b

(
1 + T

(
Ŵbce
))

a∑
b=1

̟b

(
1 + T

(
Ŵbce
)) , (b = 1, 2, . . . , a). (38)

where ℵbce ≥ 0 and
a∑

b=1

ℵbce = 1.

Step 4: Aggregate all the individual decision matrices

DT
b

=
(
Ŵbce
)
m×n

(b = 1, 2, . . . , a) into group decision

matrix D̃T = (Ŵce)m×n by utilizing 2-TLNDWPHM or

2-TLNDWPGHM operators, where

Ŵbce = 2 − TLNDWPHM
(
Ŵ1
ce, Ŵ

2
ce, . . . , Ŵ

a
ce

)
(39)

Or

Ŵbce = 2 − TLNDWPGHM
(
Ŵ1
ce, Ŵ

2
ce, . . . , Ŵ

a
ce

)
(40)

Step 5: Determine support degrees Sup (Ŵce, Ŵcx) by the

following formula;

Sup (Ŵce, Ŵcx) = 1 − DH (Ŵce, Ŵcx) ;

(c = 1, 2, . . . ,m, e = 1, 2, . . . , n, e 6= x) (41)

where DH (Ŵce, Ŵcx) is distance measure given in Defini-

tion(5).

Step 6: Determine the support degree T (Ŵce) that 2-

TLNNs Ŵce collects from other 2-TLNNs Ŵcx(x =

1, 2, . . . , n; e 6= x), where

T (Ŵce) =

n∑

x=1,x 6=e

wxSup (Ŵce, Ŵcx) . (42)

Step 7: Determine weighting vector8ce(c = 1, 2, . . . .,m,

e = 1, 2, . . . , n) associated with Ŵce,

8ce =
we (1 + T (Ŵce))
n∑

e=1

we (1 + T (Ŵce))

. (43)

Step 8: Utilize 2-TLNDWPHM or 2-TLNNDWPGHM

operators to aggregate all assessment values Ŵce(c =

1, 2, . . . .,m, e = 1, 2, . . . , n) into overall assessment value
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TABLE 1. The 2-TLN decision matrix DT
1
.

Ŵc(c = 1, 2, . . . .,m) corresponding to the alternatives

ALc (c = 1, 2, . . . ,m) :

Ŵc = 2 − TLNDWPHM (Ŵc1, Ŵc2, . . . , Ŵcn) (44)

Or

Ŵc = 2 − TLNDWPGHM (Ŵc1, Ŵc2, . . . , Ŵcn) (45)

Step 9: Determine the scores SC
(
if d

)
for the overall

IFN of the alternatives ALd (d = 1, 2, . . . , g) by utilizing

Definition (3).

Step 10: Rank all alternatives ALd (d = 1, 2, . . . , g) and

select the optimal one (s) with the ranking order Ŵd (d =

1, 2, . . . , g).

A. NUMERICAL EXAMPLES AND COMPARATIVE ANALYSIS

The following example is adapted from [38], to show the

validity and practicality of the developed aggregation oper-

ators.

Example 1: Let us assume that there are five poten-

tial construction engineering projects (alternatives) ALb (b =

1, 2, . . . , 5) to be assess. These five potential alternatives are

assessed by decision makers with respect to the following

four attributes (1) the construction work environment denoted

by CT 1;

(2) the construction site safety protection measure denoted

by CT 2;(3) The safety management ability of the engi-

neering projects management denoted by CT 3 and (4) the

safety production responsibility system denoted byCT 4, with

weight vector (0.5, 0.3, 0.1, 0.1)T and expert weight vector is

(0.2, 0.5, 0.3)T . The experts provide information in the form

of 2-TLNNs, which are listed in Tables 1-3.

TABLE 2. The 2-TLN decision matrix DT
2
.

TABLE 3. The 2-TLN decision matrix DT
3
.

Step 1: Calculate the support degrees by utilizing for-

mula (36). For simplicity we shall denote

Sup
(
Ŵbce, Ŵ

l
ce

)

= Sblce, (b, l = 1, 2, 3; c = 1, . . . , 5; e = 1, . . . , 4) .

S1211 = S2111 = 0.8333, S1311 = S3111 = 0.8889,

S2311 = S2311 = 0.8333, S1212 = S2112 = 0.8333,

S1312 = S3112 = 0.8889, S2312 = S3212 = 0.8333;

S1213 = S2113 = 0.9444, S1313 = S3113 = 0.7778,

S2313 = S3213 = 0.7222, S1214 = S2114 = 0.7222,

S1314 = S3114 = 0.7222, S2314 = S3214 = 1.000;

S1221 = S2121 = 0.8889, S1321 = S3121 = 0.8333,

S2321 = S3221 = 0.9444, S1222 = S2122 = 0.8333,

S1322 = S3122 = 0.7778, S2322 = S3222 = 0.8333;
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S1223 = S2123 = 0.8333, S1323 = S3123 = 0.7778,

S2323 = S3223 = 0.9444, S1224 = S2124 = 0.7778,

S1324 = S3124 = 0.8333, S2324 = S3224 = 0.9444;

S1231 = S2131 = 0.777778, S1331 = S3131 = 0.6111,

S2331 = S2331 = 0.8333, S1232 = S2132 = 0.7778,

S1332 = S3132 = 0.7778, S2332 = S3232 = 1.000;

S1233 = S2133 = 0.833333, S1333 = S3133 = 0.6111,

S2333 = S3233 = 0.6667, S1234 = S2134 = 0.8333,

S1334 = S3134 = 0.6667, S2334 = S3234 = 0.8333;

S1241 = S2141 = 0.8889, S1341 = S3141 = 0.9444,

S2341 = S3241 = 0.9444, S1242 = S2142 = 0.722222,

S1342 = S3142 = 0.7222, S2342 = S3242 = 0.8889;

S1243 = S2143 = 0.7222, S1343 = S3143 = 0.8889,

S2343 = S3243 = 0.8333, S1244 = S2144 = 0.9444,

S1344 = S3144 = 0.7222, S2344 = S3244 = 0.7778;

S1251 = S2151 = 0.8889, S1351 = S3151 = 0.8889,

S2351 = S3251 = 0.8889, S1252 = S2152 = 0.722222,

S1352 = S3152 = 0.8889, S2352 = S3252 = 0.8333;

S1253 = S2153 = 0.8889, S1353 = S3153 = 0.8889,

S2353 = S3253 = 0.7778, S1254 = S2154 = 0.8889,

S1354 = S3154 = 0.7222, S2354 = S3254 = 0.7222;

Step 2: Determine the support degree T
(
Ŵbce
)
by utilizing

formula (37). For simplicity, we shall denote T
(
Ŵbce
)
by

T bce (b = 1, 2, 3; c = 1, . . . , 5; e = 1, . . . , 4) .

T 1
11 = 1.7222, T 2

11 = 1.6667, T 3
11 = 1.7222,

T 1
12 = 1.7222, T 2

12 = 1.6667, T 3
12 = 1.7222;

T 1
13 = 1.7222, T 2

13 = 1.6667, T 3
13 = 1.5000,

T 1
14 = 1.4444, T 2

14 = 1.7222, T 3
14 = 1.7222;

T 1
21 = 1.7222, T 2

21 = 1.8333, T 3
21 = 1.7778,

T 1
22 = 1.6111, T 2

22 = 1.6667, T 3
22 = 1.6111;

T 1
23 = 1.6111, T 2

23 = 1.7778, T 3
23 = 1.7222,

T 1
24 = 1.6111, T 2

24 = 1.7222, T 3
24 = 1.7222;

T 1
31 = 1.3889, T 2

31 = 1.6111, T 3
31 = 1.4444,

T 1
32 = 1.5556, T 2

32 = 1.7778, T 3
32 = 1.7778;

T 1
33 = 1.444444, T 2

33 = 1.5000, T 3
33 = 1.2778,

T 1
34 = 1.5000, T 2

34 = 1.6667, T 3
34 = 1.6667;

T 1
41 = 1.8333, T 2

41 = 1.8333, T 3
41 = 1.8889,

T 1
42 = 1.4444, T 2

42 = 1.6111, T 3
42 = 1.6111;

T 1
43 = 1.6111, T 2

43 = 1.5556, T 3
43 = 1.7222,

T 1
44 = 1.6667, T 2

44 = 1.7222, T 3
44 = 1.7222;

T 1
51 = 1.7778, T 2

51 = 1.7778, T 3
51 = 1.7778,

T 1
52 = 1.6111, T 2

52 = 1.5556, T 3
52 = 1.7222;

T 1
53 = 1.7778, T 2

53 = 1.6667, T 3
53 = 1.6667,

T 1
54 = 1.6111, T 2

54 = 1.6111, T 3
54 = 1.6111;

Step 3: Utilize weights ̟b (b = 1, 2, . . . ., a) for decision

makers deb to determine weights ℵbce utilizing formula (38),

we have

ℵ1
11 = 0.2021, ℵ2

11 = 0.4949, ℵ3
11 = 0.3031,

ℵ1
12 = 0.2021, ℵ2

12 = 0.4949, ℵ3
12 = 0.3031;

ℵ1
13 = 0.2072, ℵ2

13 = 0.5074, ℵ3
13 = 0.2854,

ℵ1
14 = 0.1833, ℵ2

14 = 0.5104, ℵ3
14 = 0.3063;

ℵ1
21 = 0.1948, ℵ2

21 = 0.5070, ℵ3
21 = 0.2982,

ℵ1
22 = 0.1979, ℵ2

22 = 0.5053, ℵ3
22 = 0.2968;

ℵ1
23 = 0.1915, ℵ2

23 = 0.5092, ℵ3
23 = 0.2994,

ℵ1
24 = 0.1934, ℵ2

24 = 0.5041, ℵ3
24 = 0.3025;

ℵ1
31 = 0.1898, ℵ2

31 = 0.5188, ℵ3
31 = 0.2914,

ℵ1
32 = 0.1870, ℵ2

32 = 0.5081, ℵ3
32 = 0.3049;

ℵ1
33 = 0.2018, ℵ2

33 = 0.5161, ℵ3
33 = 0.2821,

ℵ1
34 = 0.1899, ℵ2

34 = 0.5063, ℵ3
34 = 0.3038;

ℵ1
41 = 0.1988, ℵ2

41 = 0.4971, ℵ3
41 = 0.3041,

ℵ1
42 = 0.1897, ℵ2

42 = 0.5065, ℵ3
42 = 0.3039;

ℵ1
43 = 0.1996, ℵ2

43 = 0.4883, ℵ3
43 = 0.3121,

ℵ1
44 = 0.1967, ℵ2

44 = 0.5020, ℵ3
44 = 0.3012;

ℵ1
51 = 0.2000, ℵ2

51 = 0.5000, ℵ3
51 = 0.3000,

ℵ1
52 = 0.1996, ℵ2

52 = 0.4883, ℵ3
52 = 0.3121;

ℵ1
53 = 0.2066, ℵ2

53 = 0.4959, ℵ3
53 = 0.2975,

ℵ1
54 = 0.2000, ℵ2

54 = 0.5000, ℵ3
54 = 0.3000.

Step 4: Aggregate all the individual decision matrices

DT
b

=
(
Ŵbce
)
m×n

(b = 1, 2, 3; c = 1, . . . , 5; e =

1, 2 . . . ., 4) into group decision matrix D̃T = (Ŵce)m×n by

utilizing formula (39) or (40), we have (assume x = y =

1,ℑ = 2 )

Step 5: Calculate the support degrees of Table4,

by utilizing formula (41). For simplicity we shall

denote

Sup (Ŵce, Ŵce) = Scec , (c = 1, . . . , 5; e = 1, . . . , 4) .

S121 = S211 = 0.9228, S131 = S311 = 0.8821,

S141 = S411 = 0.8518, S231 = S321 = 0.8416,

S241 = S421 = 0.8153, S341 = S431 = 0.9697;

S122 = S212 = 0.8703, S132 = S312 = 0.8929,

S142 = S412 = 0.9383, S232 = S322 = 0.9152,

S242 = S422 = 0.8843, S342 = S432 = 0.9374;

S123 = S213 = 0.9307, S133 = S313 = 0.8526,

S143 = S413 = 0.9008, S233 = S323 = 0.8977,

S243 = S423 = 0.9246, S343 = S433 = 0.8468;

S124 = S214 = 0.9038, S134 = S314 = 0.7857,

S144 = S414 = 0.8948, S234 = S324 = 0.8349,

S244 = S424 = 0.9097, S344 = S434 = 0.7446;

S125 = S215 = 0.9006, S135 = S315 = 0.9284,
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TABLE 4. Overall decision matrix utilizing 2-TLNDWPHM operator.

TABLE 4. Overall decision matrix utilizing 2-TLNDWPHM operator (Cont.).

S145 = S415 = 0.8848, S235 = S325 = 0.8510,

S245 = S425 = 0.9842, S345 = S435 = 0.8352;

or

Calculate the support degrees of Table 5, by utilizing for-

mula (41). For simplicity we shall denote

S121 = S211 = 0.9261, S131 = S311 = 0.9754,

S141 = S411 = 0.9175, S231 = S321 = 0.9393,

S241 = S421 = 0.8444, S341 = S431 = 0.9051;

S122 = S212 = 0.8718, S132 = S312 = 0.8720,

S142 = S412 = 0.9527, S232 = S322 = 0.8957,

S242 = S422 = 0.8864, S342 = S432 = 0.9129;

S123 = S213 = 0.9138, S133 = S313 = 0.9177,

S143 = S413 = 0.9168, S233 = S323 = 0.8314,

S243 = S423 = 0.8858, S343 = S433 = 0.9456;

S124 = S214 = 0.9115, S134 = S314 = 0.6977,

S144 = S414 = 0.9221, S234 = S324 = 0.7431,

S244 = S424 = 0.8811, S344 = S434 = 0.7252;

S125 = S215 = 0.9052, S135 = S315 = 0.9089,

S145 = S415 = 0.8794, S235 = S325 = 0.8827,

S245 = S425 = 0.9185, S345 = S435 = 0.8455;

TABLE 5. Overall decision matrix utilizing 2-TLNDWPGHM operator.

TABLE 5. Overall decision matrix utilizing 2-TLNDWPGHM operator
(Cont.).

Step 6: Determine the support degree T (Ŵce) by utilizing

formula (42)

T11 = 2.6567, T12 = 2.5797, T13 = 2.6934,

T14 = 2.6368, T21 = 2.7015, T22 = 2.6698,

T23 = 2.7456, T24 = 2.7601; T31 = 2.6840,

T32 = 2.7530, T33 = 2.5971, T34 = 2.6721,

T41 = 2.5844, T42 = 2.6484, T43 = 2.3653,

T44 = 2.5491; T51 = 2.7138, T52 = 2.7358,

T53 = 2.6146, T54 = 2.7042.

Or

Determine the support degree T (Ŵce) by utilizing for-

mula (42)

T11 = 2.8189, T12 = 2.7097, T13 = 2.8197,

T14 = 2.6669, T21 = 2.6965, T22 = 2.6539,

T23 = 2.6806, T24 = 2.7521; T31 = 2.7482,

T32 = 2.6311, T33 = 2.6947, T34 = 2.7482,

T41 = 2.5313, T42 = 2.5357, T43 = 2.1660,

T44 = 2.5284; T51 = 2.6936, T52 = 2.7064,
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T53 = 2.6372, T54 = 2.6434.

Step 7: Determine weighting vector 8ce by utilizing for-

mula (43),

811 = 0.5029, 812 = 0.2954, 813 = 0.1016,

814 = 0.1000, 821 = 0.4999, 822 = 0.2974,

823 = 0.1012, 824 = 0.1016; 831 = 0.4985,

832 = 0.3047, 833 = 0.0974, 834 = 0.0994,

841 = 0.5009, 842 = 0.3059, 843 = 0.0941,

844 = 0.0992; 851 = 0.5006, 852 = 0.3021,

853 = 0.0974, 854 = 0.0999.

Or

Determine weighting vector 8ce by utilizing

formula (43),

811 = 0.5063, 812 = 0.2951, 813 = 0.1013,

814 = 0.0972, 821 = 0.5012, 822 = 0.2973,

823 = 0.0998, 824 = 0.1017; 831 = 0.5055,

832 = 0.2938, 833 = 0.0996, 834 = 0.1011,

841 = 0.1430, 842 = 0.3034, 843 = 0.0906,

844 = 0.1009; 851 = 0.5009, 852 = 0.3016,

853 = 0.0987, 854 = 0.0988.

Step 8: Utilize 2-TLNDWPHM or 2-TLNNDWPGHM

operators given in formula (44) or formula (45) to aggregate

all assessment values (assume x = y = 1,ℑ = 2 )

AL1 = 〈(s4,−0.3978) , (s2, 0.0053) , (s2,−0.1452)〉 ;

AL2 = 〈(s3,−0.2250) , (s3, 0.0835) , (s3, 0.3512)〉 ;

AL3 = 〈(s3, 0.1907) , (s2, 0.2747) , (s2, 0.4501)〉 ;

AL4 = 〈(s3, 0.3506) , (s2,−0.2546) , (s2, 0.2681)〉 ;

AL5 = 〈(s4,−0.4224) , (s2, 0.4077) , (s2,−0.2722)〉 .

or

AL1 = 〈(s4,−0.4206) , (s2, 0.3839) , (s2, 0.0258)〉 ;

AL2 = 〈(s3,−0.2382) , (s3, 0.0972) , (s3, 0.3152)〉 ;

AL3 = 〈(s3,−0.2307) , (s3,−0.1970) , (s3,−0.0111)〉 ;

AL4 = 〈(s3, 0.2394) , (s2, 0.0406) , (s3,−0.3743)〉 ;

AL5 = 〈(s3, 0.3430) , (s3,−0.4474) , (s2,−0.0295)〉 .

Step 9: Calculate the score values utilizing Definition (3),

we have

SR
(
AL1

)
= 0.6523, SR

(
AL2

)
= 0.4634,

SR
(
AL3

)
= 0.5814, SR

(
AL4

)
= 0.6298,

SR
(
AL5

)
= 0.6357.

Calculate the score values utilizing Definition (3), we have

SR
(
AL1

)
= 0.6205, SR

(
AL2

)
= 0.4639,

TABLE 6. Effect of parameter x and y on ranking result utilizing
2-TLNDWPHM operator.

SR
(
AL3

)
= 0.4987, SR

(
AL4

)
= 0.5874,

SR
(
AL5

)
= 0.6011.

Step 10: Rank all the alternatives and select the best one

according to their score values.

AL1 > AL5 > AL4 > AL3 > AL3.
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or

AL1 > AL5 > AL4 > AL3 > AL3.

AL1 is the best one while the worst one is AL3.

VI. DISCUSSION

In the following, we will further analyze the effect of the

parameters x, y and ℑ on the final ranking result of Exam-

ple 1. Then we can adopt the different values of x and y in

step 4 and step 8, while the value ℑ is fix. The results are

given in Table 6 and Table 7. Moreover, the effect of general

parameter ℑ, is shown in Table 8 and Table 9, while the

parameters x, y are fix.

From Table 6 and Table 7, we can notice that the ranking

orders are different for different values of the parameters x, y.

However, the best alternative AL1 or AL5. From Table 6 and

Table 7, we can also notice that, when the values of the

parameter x or y increases, the score values increases utilizing

2-TLNDWPHM operator, while the score values decreases

utilizing2-TLNDWPGHM operator. Generally, for computa-

tional simplicity one may select x = y = 1, or x = y = 1
2

according to the actual need of decision making problems.

From Table 8 and Table 9, we can notice that the ranking

orders are different for different values of the parameters ℑ.

However, the best alternative AL1 or AL5. From Table 8 and

Table 9, we can also notice that, when the values of the

parameter ℑ increases, the score values increases utilizing

2-TLNDWPHM operator, while the score values decreases

utilizing2-TLNDWPGHM operator. So, one may select the

parameter value according to the actual need of decision

making problem.

A. COMPARE WITH EXISTING METHODS

In order to confirm the efficacy of the developed approach

and describe its advantages, we can compare our developed

method with some existing methods.

B. VALIDITY OF THE DEVELOPED METHOD

In order to confirm the validity of the developed approach,

we can utilize some existing methods to solve the same exam-

ple. Since the developed approach is based on the combina-

tion of PA, HM operators and Dombi operations. So, we can

utilize the methods in which the interrelationships between

two input arguments are considered. Therefore, the reference

methods of comparison are 2-TLNNWBM, 2-TLNNWGBM

operators and 2-TLNHM, 2-TLNDHM operators. The score

values and ranking orders of the above example by solv-

ing these two methods and the developed method as given

in Table 10. From Table 10, we can notice that the ranking

order obtained by the existing methods is the same as that

obtained from the proposed approach. This shows the devel-

oped approach is valid.

From Table 10, we can see that the ranking order obtained

from the proposed method based on developed aggrega-

tion operator and the methods developed Wang et al. [34],

TABLE 7. Effect of parameter x and y on decision result utilizing
2-TLNDWPGHM operator.

Wu et al. [38] are same. This shows the validity of the

proposed method. Yet, it cannot manifest the advantages of

the developed method due to same ranking results.

Further, in the following we will show the advantages of

the developed method.

C. THE ADVANTAGES OF THE DEVELOPED METHOD

(1) The developed method is based on the 2-TLNDWPHM

operator and the method presented by Wang et al. 34] is
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TABLE 8. Effect of parameter ℑ on decision result 2-TLNDWPHM operator.

based on 2-TLNNWBM operator. Both the methods have

the characteristics of considering interrelationship among two

input arguments and the only difference between them is that

the developed aggregation operators also remove the effect of

awkward data which may be too low or too high. In order to

show this advantage, we give the following example.

Example 2: We can only change some data in the

Example 1. We slightly change the value of alternative

AL1 with respect to the attribute CT 4. That is the value

〈(s4, 0) , (s1, 0) , (s3, 0)〉 is changed to 〈(s3, 0) , (s2, 0) ,

(s4, 0)〉 and the score values and ranking order are given

in Table 11.

From Table 11, we can notice that when we slightly change

the value of the alternative AL1 with respect to the attribute

CT 4 in Table 2, then the ranking order obtained from the pro-

posed method remain the same, while that acquired from the

method developed byWang et al. [34] is totally different. The

best alternative remains the same in the proposed approach

while utilizing the Wang et al. [34] approach based on

2-TLNNWBM and 2-TLNNWGBM, the best alternative is

AL5. The main reason behind these different ranking orders is

that, the aggregation operators developed by Wang et al. [34]

TABLE 9. Effect of parameter ℑ on decision result 2-TLNDWPGHM
operator.

just only consider the interrelationship among input argu-

ments and does not have the capacity of removing the bad

impact of awkward data on final ranking result. While,

the proposed approach is based on the proposed aggrega-

tion operators have the property of removing the effect of

awkward data and consider the interrelationship among input

arguments. The proposed aggregation operators are based on

Dombi operational laws which have a general parameter, that

makes the decision process more flexible. So the developed

aggregation operator in this article is more general and prac-

tical to be used in solving MAGDM problems.

(2) COMPARE WITH THE APPROACH BASED ON

HAMY MEAN OPERATOR

To compare the developed approach with that of Hamy

mean operator proposed by Wu et al. [38], we take another

Example adapted from [12]. The Hamy mean operator pro-

posed byWu et al. [38] can also consider the interrelationship

among input arguments.

Example 3: Let there is an investment company who wants

to invest some money in the available four companies as

a group of alternatives ALb (b = 1, 2, . . . , 4). These four
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TABLE 10. The score values and ranking orders obtained from different
methods.

TABLE 11. The score values and ranking orders obtained from different
methods.

companies are respectively, a car company denoted by AL1,

a food company denoted by AL2,, a computer company

denoted by AL3 and an arm company denoted by AL4. These

TABLE 12. The 2-TLN decision matrix.

TABLE 13. The score values and ranking orders obtained from different
methods.

four potential alternatives are assessed by decision makers

with respect to the following three attributes (1) the risk

denoted by CT 1; (2) the growth denoted by CT 2; and (3) The

environmental impact denoted by CT 3 with weight vector

(0.4, 0.2, 0.4)T . The assessment information is provided in

the form of 2-TLNNs and is given in Table 12.

The score values and ranking results obtained by the pro-

posed aggregation operators and the 2-TLNWHM operator,

2-TLNWDHM operator are given in Table 13.

From Table 13, one can notice that the ranking order

obtained from the developed aggregation operators and that

of obtained by 2-TLNWHM operator, and 2-TLNWDHM

operator are totally different. From the proposed aggregation

operator the best alternative is AL3, while the worst one is

AL1, and from the 2-TLNWHM operator or 2-TLNWDHM

operator proposed in Wu et al. [38], the best alternative is

AL4, while the worst one remain the same. The main reason

behind different ranking order is that the both the aggregation

operators can consider the interrelationship between input

arguments, but the developed aggregation operator have two

more characteristics. It can remove the effect of awkward

data and proposed aggregation operators are based on Dombi
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operational laws, which have a general parameter that makes

the information aggregation process more flexible. Therefore

the developed aggregation operators are more flexible and

general to be used in solving MAGDM problems.

VII. CONCLUSION

In this article firstly, we proposed some new operational laws

for 2-TLNNs based on Dombi T-norm and Dombi T-conorm.

Secondly, we proposed some new aggregation operators on

these operational laws such as 2-tuple linguistic neutrosophic

Dombi power Heronian mean operator, 2-tuple linguistic

neutrosophic Dombi weighted power Heronian mean oper-

ator, 2-tuple linguistic neutrosophic Dombi power geometric

Heronian mean operator and 2-tuple linguistic neutrosophic

Dombi weighted power geometric Heronian mean operator.

We also discussed it properties and few special cases with

respect to parameters. Furthermore, we developed an algo-

rithm for solving MAGDM problems under 2-tuple linguistic

neutrosophic environment. We also show the advantages of

the developedMAGDM approaches by comparing with some

existing MAGDM approaches. The main advantages of the

developed aggregation operators are The developed aggrega-

tion operators are based on Dombi operational laws, which

consists of general parameter, that makes the information

aggregation process more flexible. The developed aggrega-

tion operators have two characteristics at a time, firstly, it can

vanish the effect of awkward data by taking the advantage of

PA operator, Secondly, it can consider the interrelationship

among the input arguments by taking the advantages of HM

operator. For these reasons the developed MAGDM method

based on these developed aggregation operator is more gen-

eral and reasonable.

In future research, we will extend power Heronian mean

operators to some new extension such as 2-tuple linguistic

cubic neutrosophic, 2-tuple linguistic Double valued neutro-

sophic and so on. At the same time, we also research on some

applications in energy and supply chain management.

REFERENCES

[1] K. T. Atanassov, ‘‘Intuitionistic fuzzy sets,’’ Fuzzy Sets Syst., vol. 20,

pp. 87–96, Aug. 1986.

[2] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 2, pp. 338–356, 1965.

[3] R. R. Yager, ‘‘Pythagorean fuzzy subsets,’’ in Proc. Joint IFSA World

Congr. NAFIPS Annu. Meeting (IFSA/NAFIPS), Jun. 2013, pp. 57–61.

[4] Q. Wu, W. Lin, L. Zhou, Y. Chen, and H. Chen, ‘‘Enhancing mul-

tiple attribute group decision making flexibility based on information

fusion technique and hesitant Pythagorean fuzzy sets,’’ Comput. Ind. Eng.,

vol. 127, pp. 954–970, Jan. 2019.

[5] F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic.

American Research Press: Rehoboth, DE, USA, 1998.

[6] F. Smarandache, ‘‘Neutrosophic set-a generalization of the intuitionistic

fuzzy set,’’ Int. J. Pure Appl. Math., vol. 24, no. 3, p. 287, 2005.

[7] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, ‘‘Single val-

ued neutrosophic sets,’’ in Proc. 10th Int. Conf. Fuzzy Theory Technol.,

Oct. 2005, p. 10.

[8] H. Wang, P. Madiraju, Y. Zhang, and R. Sunderraman, Interval Neutro-

sophic Sets and Logic: Theory and Applications in Computing. Frontignan,

France: Hexis S.A., 2018.

[9] J. Ye, ‘‘A multicriteria decision-making method using aggregation opera-

tors for simplified neutrosophic sets,’’ J. Intell. Fuzzy Syst., vol. 26, no. 5,

pp. 2459–2466, 2014.

[10] H. Y. Zhang, J. Q. Wang, and X. H. Chen, ‘‘Interval neutrosophic sets and

their application in multi-criteria decision making problems,’’ Sci. World

J., vol. 2014, Feb. 2014, Art. no. 645953.

[11] J. J. Peng, J. Q. Wang, J. Wang, H. Y. Zhang, and X. H. Chen, ‘‘Simplified

neutrosophic sets and their applications in multi-criteria group decision-

making problems,’’ Int. J. Syst. Sci., vol. 47, no. 10, pp-2342–2358,

Jul. 2016.

[12] P. Liu, T. Mahmood, and Q. Khan, ‘‘Group decision making based on

power Heronian aggregation operators under linguistic neutrosophic envi-

ronment,’’ Int. J. Fuzzy Syst., vol. 20, no. 3, pp. 970–985, 2018.

[13] P. Liu and Y. Wang, ‘‘Multiple attribute decision-making method based

on single-valued neutrosophic normalized weighted Bonferroni mean,’’

Neural Comput. Appl., vol. 25, pp. 2001–2010, Dec. 2014.

[14] J. Q. Wang, Y. Yang, and L. Li, ‘‘Multi-criteria decision-making method

based on single-valued neutrosophic linguistic Maclaurin symmetric mean

operators,’’ Neural Comput. Appl., vol. 30, no. 5, pp. 1529–1547, 2018.

[15] P. Liu and L. Shi, ‘‘Some neutrosophic uncertain linguistic number Hero-

nian mean operators and their application to multi-attribute group decision

making,’’ Neural Comput. Appl., vol. 28, no. 5, pp. 1079–1093, 2017.

[16] Z. Xu and R. R. Yager, ‘‘Some geometric aggregation operators based on

intuitionistic fuzzy sets,’’ Int. J. Gen. Syst., vol. 35, no. 4, pp. 417–433,

2006.

[17] Z. Xu, ‘‘Intuitionistic fuzzy aggregation operators,’’ IEEE Trans. Fuzzy

Syst., vol. 15, no. 6, pp. 1179–1187, Dec. 2007.

[18] H.-X. Sun, H.-X. Yang, and J.-Z. Wu, ‘‘Interval neutrosophic numbers

Choquet integral operator for multi-criteria decision making,’’ J. Intell.

Fuzzy Syst., vol. 28, no. 6, pp. 2443–2455, 2015.

[19] P. Liu and G. Tang, ‘‘Some power generalized aggregation operators based

on the interval neutrosophic sets and their application to decision making,’’

J. Intell. Fuzzy Syst., vol. 30, no. 5, pp. 2517–2528, 2016.

[20] J. J. Peng, J. Q. Wang, X. H. Wu, J. Wang, and X. H. Chen, ‘‘Multi-valued

neutrosophic sets and power aggregation operators with their applications

in multi-criteria group decision-making problems,’’ Int. J. Comput. Intell.

Syst., vol. 8, no. 2, pp. 345–363, Mar. 2015.

[21] R. R. Yager, ‘‘The power average operator,’’ IEEE Trans. Syst., Man,

Cybern. A, Syst. Humans, vol. 31, no. 6, pp. 724–731, Nov. 2001.

[22] X. H. Wu, J. Q. Wang, J. J. Peng, and X. H. Chen, ‘‘Cross-entropy and

prioritized aggregation operator with simplified neutrosophic sets and their

application inmulti-criteria decision-making problems,’’ Int. J. Fuzzy Syst.,

vol. 18, no. 6, pp. 1104–1116, Dec. 2016.

[23] C. Bonferroni, ‘‘Sulle medie multiple di potenze,’’ Bollettino Dell’Unione

Matematica Italiana, vol. 5, no. 3, pp. 267–270, 1950.

[24] S. Sýkora, ‘‘Mathematical means and averages: Generalized Heronian

means,’’ Stan’s Library, Castano Primo, Italy, 2009.

[25] L. A. Zadeh, ‘‘The concept of a linguistic variable and its application to

approximate reasoning—I,’’ Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975.

[26] F. Herrera and L. Martinez, ‘‘A 2-tuple fuzzy linguistic representation

model for computing with words,’’ IEEE Trans. Fuzzy Syst., vol. 8, no. 6,

pp. 746–752, Dec. 2000.

[27] Q. Wu, F. Wang, L. Zhou, and H. Chen. ‘‘Method of multiple attribute

group decision making based on 2-dimension interval type-2 fuzzy

aggregation operators with multi-granularity linguistic information,’’

Int. J. Fuzzy Syst., vol. 19, no. 6, pp. 1880–1903, Dec. 2017.

[28] Q. Wu, P. Wu, Y. Zhou, L. Zhou, H. Chen, and X. Ma, ‘‘Some 2-tuple

linguistic generalized power aggregation operators and their applications

to multiple attribute group decision making,’’ J. Intell. Fuzzy Syst., vol. 29,

no. 1, pp. 423–436. 2015.

[29] P. Xiao, Q. Wu, H. Li, L. Zhou, Z. Tao, and J. Liu, ‘‘Novel hesitant

fuzzy linguistic multi-attribute group decision making method based on

improved supplementary regulation and operational laws,’’ IEEE Access,

vol. 7, pp. 32922–32940, 2019.

[30] P. Liu and S. Chen, ‘‘Multiattribute group decision making based on

intuitionistic 2-tuple linguistic information,’’ Inf. Sci., vols. 430–431,

pp. 599–619, Mar. 2018.

[31] H. Liao, L. Jiang, Z. Xu, J. Xu, and F. Herrera, ‘‘A linear programming

method for multiple criteria decision making with probabilistic linguistic

information,’’ Inf. Sci., vols. 415–416, pp. 341–355, Nov. 2017.

[32] P. Liu and Y. Wang, ‘‘Multiple attribute group decision making methods

based on intuitionistic linguistic power generalized aggregation opera-

tors,’’ Appl. Soft Comput., vol. 17, pp. 90–104, Apr. 2014.

[33] J. Wang, G. Wei, and W. Yu, ‘‘Models for green supplier selection with

some 2-tuple linguistic neutrosophic number Bonferroni mean operators,’’

Symmetry, vol. 10, no. 5, p. 131, May 2018.

VOLUME 7, 2019 100229



P. Liu et al.: MAGDM Based on 2-Tuple Linguistic Neutrosophic Dombi Power HM Operators

[34] Y. Zhang, H. Ma, B. Liu, and J. Liu, ‘‘Group decision making with 2-tuple

intuitionistic fuzzy linguistic preference relations,’’ Soft Comput., vol. 16,

no. 8, pp. 1439–1446, May 2012.

[35] J. Wang, G. Wei, and M. Lu, ‘‘TODIMmethod for multiple attribute group

decision making under 2-tuple linguistic neutrosophic environment,’’

Symmetry, vol. 10, no. 10, p. 486, 2018.

[36] W. Jie, H. Gao, and G.Wei, ‘‘Some 2-tuple linguistic neutrosophic number

Muirhead mean operators and their applications to multiple attribute deci-

sion making,’’ J. Exp. Theor. Artif. Intell., vol. 31, pp. 409–439, Dec. 2018.

[37] S. Wu, G. Wang, G. Wei, and Y. Wei, ‘‘Research on construction engineer-

ing project risk assessment with some 2-tuple linguistic neutrosophic hamy

mean operators,’’ Sustainability, vol. 10, no. 5, p. 1536, 2018.

[38] Q. Wu, P. Wu, L. Zhou, H. Chen, and X. Guan, ‘‘Some new Hamacher

aggregation operators under single-valued neutrosophic 2-tuple linguistic

environment and their applications to multi-attribute group decision mak-

ing,’’ Comput. Ind. Eng., vol. 116, pp. 144–162, Feb. 2018.

[39] J. Dombi, ‘‘A general class of fuzzy operators, the demorgan class of fuzzy

operators and fuzziness measures induced by fuzzy operators,’’ Fuzzy Sets

Syst., vol. 8, no. 2, pp. 149–163, Aug. 1982.

[40] G. Wei and Y. Wei, ‘‘Some single-valued neutrosophic Dombi prioritized

weighted aggregation operators in multiple attribute decision making,’’

J. Intell. Fuzzy Syst., vol. 1, pp. 1–13, Jan. 2018.

[41] L. G. Wu, H. Wei, and Y. Gao, ‘‘Some interval-valued intoitionistic

fuzzy OMBI HAMY mean operators and their application for evaluating

the elderly tourism service quality in tourism destination,’’ Mathematics,

vol. 6, no. 12, p. 294, 2018.

[42] Q. Khan, P. Liu, T. Mahmood, F. Smarandache, and K. Ullah, ‘‘Some

interval neutrosophic Dombi power bonferroni mean operators and their

application in multi-attribute decision-making,’’ Symmetry, vol. 10, no. 10,

p. 459, Oct. 2018.

[43] P. Liu, J. Liu, and S.-M. Chen, ‘‘Some intuitionistic fuzzy Dombi Bonfer-

roni mean operators and their application to multi-attribute group decision

making,’’ J. Oper. Res. Soc., vol. 69, no. 1, pp. 1–24, Oct. 2018.

[44] S. Lilian and J. Ye, ‘‘Dombi aggregation operators of neutrosophic cubic

sets for multiple attribute decision-making,’’ Algorithms, vol. 11, no. 3,

p. 29, 2018.

[45] L. Xueping and J. Ye, ‘‘Dombi aggregation operators of linguistic cubic

variables formultiple attribute decisionmaking,’’ Information, vol. 9, no. 8,

p. 188, Jul. 2018.

PEIDE LIU received the B.S. and M.S. degrees

in signal and information processing from South-

east University, Nanjing, China, in 1988 and 1991,

respectively, and the Ph.D. degree in informa-

tion management fromBeijng Jiaotong University,

Beijing, China, in 2010.

He is currently a Professor with the School of

Management Science and Engineering, Shandong

University of Finance and Economics, Shandong,

China. He has authored or coauthored more than

200 publications. His research interests include aggregation operators, fuzzy

logic, fuzzy decision making, and their applications. He is currently an

Associate Editor of the Journal of Intelligent and Fuzzy Systems, an Editorial

Board of the Journal Technological and EconomicDevelopment of Economy,

and a member of the editorial boards of the other 12 journals.

QAISAR KHAN received the M.S. degree in

mathematics from International Islamic University

Islamabad, Pakistan, in 2014, under the supervi-

sion of Dr. T. Mahmood, where he is currently

pursuing the Ph.D. degree with the Department

of Mathematics and Statistics. He has 28 inter-

national publications to his credit. His research

interests include automata theory, decision making

and neutrosophic theory.

TAHIR MAHMOOD received the Ph.D. degree

in mathematics from Quaid-i-Azam University

Islamabad, Pakistan, in 2012, under the supervi-

sion of Dr. M. Shabir. He is currently an Assistant

Professor of mathematics with the Department of

Mathematics and Statistics, International Islamic

University Islamabad, Pakistan. His research inter-

ests include algebraic structures, fuzzy algebraic

structures, and soft sets. He has more than 65 inter-

national publications to his credit and he has also

produced 38 M.S. students.

FLORENTIN SMARANDACHE received the

M.Sc. degree in mathematics and computer sci-

ence from the University of Craiova, Romania,

and the Ph.D. degree in mathematics from the

State University of Kishinev, and the Postdoctoral

degree in applied mathematics from the Okayama

University of Sciences, Japan. He is currently a

Professor of mathematics with The University of

New Mexico, USA. He is the Founder of neutros-

ophy (generalization of dialectics), neutrosophic

set, logic, probability, and statistics, since 1995, and has published hundreds

of papers on neutrosophic physics, superluminal and instantaneous physics,

unmatter, absolute theory of relativity, redshift and blueshift due to the

medium gradient and refraction index besides the Doppler effect, paradox-

ism, outerart, neutrosophy as a new branch of philosophy, Law of Included

Multiple-Middle, multispace and multistructure, degree of dependence and

independence between neutrosophic components, refined neutrosophic set,

neutrosophic over-under-off-set, plithogenic set, neutrosophic triplet and

duplet structures, quadruple neutrosophic structures, DSmT, and so on to

many peer-reviewed international journals and many books and he presented

papers and plenary lectures to many international conferences around the

world.

YING LI received the B.S. degree in logistics man-

agement from the Shandong University of Finance

and Economics, Jinan, China, in 2015, where she

is currently pursuing the master’s degree in man-

agement science and engineering.

She has authored or coauthored five publica-

tions. Her research interests include aggregation

operators, fuzzy logic, fuzzy decision making, and

their applications.

100230 VOLUME 7, 2019


	INTRODUCTION
	PRELIMINARIES
	2-TLNS AND THEIR OPERATIONS
	THE PA OPERATOR
	HM OPERATOR

	DOMBI OPERATIONAL LAWS FOR 2-TLNNs
	DOMBI TN AND TCN

	THE 2-TUPLE LINGUISTIC NEUTROSOPHIC DOMBI HERONIAN AGGREGATION OPERATORS
	THE 2-LNDPHM AND 2-LNDWPHM OPERATORS
	THE 2-TLNDPGHM OPERATOR AND 2-TLNDWPGHM OPERATOR

	AN APPLICATION OF 2-TLNDWPHM AND 2-TLNDWPGHM OPERATOR TO GROUP DECISION MAKING
	NUMERICAL EXAMPLES AND COMPARATIVE ANALYSIS

	DISCUSSION
	COMPARE WITH EXISTING METHODS
	VALIDITY OF THE DEVELOPED METHOD
	THE ADVANTAGES OF THE DEVELOPED METHOD

	CONCLUSION
	REFERENCES
	Biographies
	PEIDE LIU
	QAISAR KHAN
	TAHIR MAHMOOD
	FLORENTIN SMARANDACHE
	YING LI


