
n
e
ar
te
e
is

a
h

ns
o
le
il
o

in
l

t
c

nd
an

d

C
of
o

er
e
t

ter
r,
a

].
e
e
er

ther
in

ut
nt
re
y the

ad
ill
ch
is
e

er,

in
le
s, a
g,
nt
tly

an
a

e
ve
that
s,

lues
st

Multiple-Banked Register File Architectures

José-Lorenzo Cruz, Antonio González and Mateo Valero Nigel P. Topham

Departament d’Arquitectura de Computadors Siroyan Ltd
Universitat Politècnica de Catalunya Wyvols Court

Jordi Girona, 1-3 Mòdul D6 Swallowfield
08034 Barcelona, Spain Berkshire RG7 1WY, U.K.

{cruz,antonio,mateo}@ac.upc.es ntopham@siroyan.com
Abstract
The register file access time is one of the critical delays in curre
superscalar processors. Its impact on processor performanc
likely to increase in future processor generations, as they
expected to increase the issue width (which implies more regis
ports) and the size of the instruction window (which implies mor
registers), and to use some kind of multithreading. Under th
scenario, the register file access time could be a dominant delay
a pipelined implementation would be desirable to allow for hig
clock rates.

However, a multi-stage register file has severe implicatio
for processor performance (e.g. higher branch mispredicti
penalty) and complexity (more levels of bypass logic). To tack
these two problems, in this paper we propose a register f
architecture composed of multiple banks. In particular we focus
a multi-level organization of the register file, which provides low
latency and simple bypass logic. We propose several cach
policies and prefetching strategies and demonstrate the potentia
this multiple-banked organization. For instance, we show tha
two-level organization degrades IPC by 10% and 2% with respe
to a non-pipelined single-banked register file, for SpecInt95 a
SpecFP95 respectively, but it increases performance by 87%
92% when the register file access time is factored in.

Keywords: Register file architecture, dynamically-schedule
processor, bypass logic, register file cache.

1. Introduction

Most current dynamically scheduled microprocessors have a RIS
like instruction set architecture, and therefore, the majority
instruction operands reside in the register file. The access time
the register file basically depends on both the number of regist
and the number of ports [8]. To achieve high performanc
microprocessor designers strive to increase the issue wid
by
file
ite
is
n
ile
le-

red

27th. Annual International Symposium on Computer
Architecture (ISCA 2000), Vancouver, Canada, June 12-14
2000
t
is
e
r

nd

n

e
n

g
of
a
t

d

-

f
s
,
h.

However, wider issue machines require more ports in the regis
file, which may significantly increase its access time [2]. Moreove
a wide issue machine is only effective if it is accompanied by
large instruction window [14] or some type of multithreading [13
Large instruction windows and multithreading imply a larg
number of instructions in-flight, which directly determines th
number of required registers [2]. However, increasing the numb
of register also increases the register file access time. On the o
hand, technology evolution produces successive reductions
minimum feature sizes, which results in higher circuit densities b
it also exacerbates the impact of wire delays [7]. Since a significa
part of the register file access time is due to wire delays, futu
processor generations are expected to be even more affected b
access time problem.

Current trends in microprocessor design and technology le
to projections that the access time of a monolithic register file w
be significantly higher than that of other common operations, su
as integer additions. Under this scenario, a pipelined register file
critical to high performance; otherwise, the processor cycle tim
would be determined by the register file access time. Howev
pipelining a register file is not trivial. Moreover, a multi-cycle
pipelined register file still causes a performance degradation
comparison with a single-cycle register file, since a multi-cyc
register file increases the branch misprediction penalty. Beside
multi-cycle register file either requires multiple levels of bypassin
which is one of the most time-critical components in curre
microprocessors, or processor performance will be significan
affected if only a single-level of bypassing is included.

In this paper we propose a register file architecture that c
achieve an IPC rate (instructions per cycle) much higher than
multi-cycle file and close to a single-cycle file, but at the same tim
it requires just a single level of bypass. The key idea is to ha
multiple register banks with a heterogeneous architecture, such
banks differ in number of registers, number of ports and thu
access time. We propose a run-time mechanism to allocate va
to registers which aims to keep the most critical values in the fa
banks, whereas the remaining values are held in slower banks.

We show that the proposed organization degrades IPC
10% and 2% with respect to a one-cycle single-banked register
for SpecInt95 and SpecFP95 respectively, assuming an infin
number of ports. However, when the register file cycle time
factored in and the best configuration in terms of instructio
throughput (instruction per time unit) is chosen for each register f
architecture, the proposed architecture outperforms the sing
banked register file by 87% and 92% respectively. When compa

,



hes

hat

el
nal

e
ss.
id
to

ss
n is
ce
c.

rk
ile
with a two-stage pipelined, single-banked register file with just one
level of bypass, the proposed architecture provides a 10%
(SpecInt95) and 4% (SpecFP95) increase in IPC for infinite number
of ports and a 9% (SpecInt95) increase in instruction throughput for
the best configuration. Moreover, the performance figures for the
two-stage pipelined organization are optimistic since we assume
that the register access can be pipelined into two stages of the same
duration and without any inter-stage overhead.

The rest of this paper is organized as follows. Section 2
motivates this work by presenting some statistics about the impact
of register file access time on processor performance and bypass
logic. Section 3 presents different multiple-banked architectures
and describes in detail the register file cache architecture, which is
the main contribution of this work. Performance statistics are
discussed in section 4. Section 5 outlines the related work and
finally, section 6 summarizes the main conclusions of this work.

2. Impact of the Register File Architecture

The register file provides the source operands and stores the results
of most instructions. Dynamically scheduled processors rename at
run-time logical registers to physical registers such that each result
produced by any instruction in-flight is allocated to a different
physical register. In this way, name dependences are eliminated and
instruction parallelism is increased. The cost of this technique is
that a large number of registers may be required. Figure 1 shows the
harmonic mean of the IPC of an 8-way issue processor with a
varying number of physical registers for the SpecInt95 and
SpecFP95 benchmarks. Details about the evaluation framework can
be found in section 4.1. Across the whole paper we use the same
architectural parameters with the exception that in Figure 1 we
assume a reorder buffer and an instruction queue of 256 entries in
order to evaluate larger register files. Note that the performance
curves start to flatten beyond 128 registers.

The previous experiment assumed a one-cycle latency for the
register file. However, a register file with 128 registers and 16 read
ports and 8 write ports is unlikely to have such a low access time.
However, a two-cycle register file has some important implications
for processor performance and complexity compared with a single-
cycle register file, as observed by Tullsen et al. [12]:

• The branch misprediction penalty is increased since branc
are resolved one cycle later.

• The register pressure is increased since the time t
instructions are in-flight is increased.

• An extra level of bypass logic is required. Each bypass lev
requires a connection from each result bus to each functio
unit input, if full bypass is implemented. This incurs
significant complexity.

An alternative approach to reducing complexity, at th
expense of a lower performance, is to keep just one level of bypa
In this case, only the last level of bypass is kept in order to avo
‘holes’ in the access to register data. In this context a hole refers
the fact that a value is available in a given cycle (from the bypa
network), then is not available in a subsequent cycle, and later o
available again (from the register file). Holes are undesirable sin
they would significantly increase the complexity of the issue logi

Figure 2 shows the IPC for the whole SPEC95 benchma
suite comparing three different architectures of the register f

Figure 1: IPC for a varying number of physical registers. The
harmonic mean for SpecInt95 and SpecFP95 is
shown. (for this experiment we assume the
architectural parameter described in section 4.1, but
a reorder buffer and an instruction queue of 256
entries).

48 64 96 128 160 192 224 256
2

3

4
SpecInt95

IP
C

Register File Size

48 64 96 128 160 192 224 256
1

2

3
SpecFP95

IP
C

Register File Size

Figure 2: IPC for a 1-cycle register file, a 2-cycle register file
and a 2-cycle register file with just one level of
bypass.

co
m

pr
es

s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

H
m

ea
n

1

2

3

4
1-cycle, 1-bypass level
2-cycle, 2-bypass levels
2-cycle, 1-bypass level

SpecInt95

IP
C

ap
pl

u

ap
si

fp
pp

p

hy
dr

o2
d

m
gr

id

su
2c

or

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e5

H
m

ea
n

1

2

3

4

5

1-cycle, 1-bypass level
2-cycle, 2-bypass levels
2-cycle, 1-bypass level

SpecFP95

IP
C



th

f
us

s, a
. A
or

ar
al

All
ach
l
ce
er

ions
to
to
re.
a
a

architectures: a) one-cycle latency and one level of bypass; b) two-
cycle latency and two levels of bypass; and c) two-cycle latency
with one level of bypass.

We can see that an additional cycle in the register file access
time slightly degrades performance when all additional bypasses
are implemented. Not surprisingly, performance significantly
decreases if only a single level of bypass is available. The impact is
higher for integer codes, due in part to their much higher branch
misprediction rates. Moving from a two-cycle register file with one
bypass level to a two-cycle register file with two bypass levels
produces an average increase in IPC of 20% for SpecInt95. A one-
cycle register file results in an average speedup of 22%. Note that
all programs are significantly affected by the register file latency
and the number of bypass levels. For SpecFP95, the differences are
lower (6% and 7% respectively) but still quite significant. This
results are consistent with the study of Tullsen et al. [12], who
reported a less than 2% performance decrease when the register file
latency increased from 1 to 2 cycles with two levels of bypass.

The register file optimizations proposed in this paper are also
based on the observation that a very small number of registers
would be required to keep the processor at its maximum throughput
if they were more effectively managed. This is because many
physical registers are “wasted” due to several reasons:

• Registers are allocated early in the pipeline (decode stage) to
keep track of dependences. However, they do not hold a value
until the instruction reaches the write-back stage.

• Some registers hold values that will be used by later
instructions that have not yet entered the instruction window.

• For reasons of simplicity, registers are released late. Instead of
freeing a register as soon as its last consumer commits, it is
freed when the next instruction with the same logical
destination register commits.

• Some registers are never read since the value that they hold is
either supplied to its consumers through bypass paths or never
read.

Figure 3 shows in solid lines the cumulative distribution of
the number of registers that contain a value that is the source
operand of at least one unexecuted instruction in the window. Only
average numbers for SpecInt95 and SpecFP95 are shown. Note that
90% of the time about 4 and 5 registers are enough to hold such
values for integer and FP codes respectively. If the processor
provided low latency in the access to these operands, performance
could not be degraded even if the remaining registers had a much
higher latency. In fact, the number of required registers may be
even lower, since some of these operands may not be useful to any
instruction at that time, since the instructions that consume them are
waiting for other operands. The critical values are those that are
source operands of an instruction in the window that has all its
operands ready. The cumulative distribution of this measure is
shown in Figure 3 by means of a dashed line. Note that on average,
the number of critical values is less than 4 (resp. less than 3) for
90% of the time in SpecInt95 (resp. SpecFP95).

3. A Multiple-Banked Register File

The main conclusion from the previous section is that a processor
needs many physical registers but a very small number are actually
required from a register file at a given moment. Moreover, register
file access time has a significant impact on the performance and

complexity of bypass logic. We propose to use a register file wi
multiple banks to tackle these problems.

A multiple-banked register file architecture consists o
several banks of physical registers with a heterogeneo
organization: each bank may have a different number of register
different number of ports and therefore, a different access time
multiple-banked register file can have a single-level organization
a multi-level organization, as shown in Figure 4 for the particul
case of two banks. In a single-level organization, each logic
register is mapped to a physical register in one of the banks.
banks can provide source operands to the functional units, and e
result is stored just in one of the banks. In a multi-leve
organization, only the uppermost level can directly provide sour
operands to the functional units. A subset of registers in the low
levels are cached in the upper levels depending on the expectat
of being required in the near future. Results are always written
the lowest level, which contains all the values, and optionally
upper levels if they are expected to be useful in the near futu
Since this multi-level organization has many similarities with
multi-level cache memory organization, we will also refer to it as

Figure 3: Cumulative distribution of number of registers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

10

20

30

40

50

60

70

80

90

100

Value & Instruction
Value & Ready Instruction

SpecInt95% cycles

#registers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

10

20

30

40

50

60

70

80

90

100

Value & Instruction
Value & Ready Instruction

SpecFP95% cycles

#registers



e
urce
e to
the

les.
by
tion

uch
be

e

its
ed
ry
se
the
ter
er
nto

he
s,
or
al,
es.
are
ces
an
e
all

the
ess

Figure 4: Multiple-banked register file architectures.

Bank 1
Bank 2

Bank 2

Bank 1

a) one-level b) multi-level (register file cache)

lowest
level

uppermost
level
register file cache. In this paper, we focus on this register file
architecture.

A register file cache can have a bank at the upper level that
has many ports but few registers, which may result in a single-cycle
access time. Banks at the lower levels have many more registers
and a somewhat lower number of ports, which may result in an
increased latency. However, it requires the same bypass logic as a
monolithic register file with one-cycle latency, since source
operands are always provided by the uppermost level.

When results are produced they are cached in upper levels,
based on heuristics described below. In addition, there is a prefetch
mechanism that moves values from lower to upper levels of the
hierarchy. Note that data is never moved from upper to lower levels
since registers are written only once, and the lowest level is always
written.

The approach to deciding which values are cached in the
upper level of the hierarchy is a critical issue. Like in cache
memories, a criterion based on locality seems appropriate, that is,
upper levels should contain those values that are more likely to be
accessed in the near future. However, the locality properties of
registers and memory are very different. First of all, registers have
a much lower temporal re-use. In fact, most physical registers are
read only once, and there is even a significant percentage that are
never read. Spatial locality is also rare, since physical register
allocation and register references are not correlated at all.

We need then different criteria to predict which values are
most likely to be accessed in the near future. We propose a caching
policy based on the observation that most register values are read at
most once. We have observed that this happens for 88% of the
values generated by the SpecInt95 and 85% of the FP register
values produced by SpecFP95. For a two-level organization, one
option is to cache only those results that are not read from the
bypass logic. These values will be written in both register banks,
whereas bypassed values are written only in the lowest bank. We
refer to this policy asnon-bypass caching.

With non-bypasscaching, we still cache some values whos
first use does not occur for many cycles because they may be so
operands of instructions whose other operands take a long tim
be produced. In this case, we are wasting a precious space in
uppermost level to store a value that is not needed for many cyc
The second policy we have investigated tackles this problem
caching just those results that are source operands for an instruc
that is not yet issued, but which now has all operands ready. In s
cases we can be sure the value will be required soon, but will not
available via the bypass logic. We refer to this policy asready
caching.

Orthogonal to these two caching policies we hav
investigated two fetching mechanisms. The first one we callfetch-
on-demand.In this policy, registers from the lower level are
brought down to the upper level whenever an instruction has all
operands ready and some of them are in the lowest level (provid
that the bus between both levels is available). This policy is ve
conservative since it brings to the uppermost levels only tho
operands that are ready to be used. However, it may delay
execution of some instructions for several cycles, since af
identifying a ready instruction with some operands in the low
level, these operands must be read from that level, then written i
the upper level, and then read from there to be issued.

A more aggressive fetching mechanism could prefetch t
values before they are required. Like in cache memorie
prefetching must be carefully implemented to prevent premature
unnecessary fetching from polluting the upper levels. In gener
prefetching can be implemented by software or hardware schem
In this paper we focus on the latter. For cache memories, hardw
prefetching is based on predicting the addresses of future referen
before they are known. For a register file cache, prefetching c
exploit knowledge about the instructions in-flight. In fact, th
rename and issue logic of a conventional processor can identify
the operand communications between the instructions in
window. Therefore, the processor knows some of the future acc
to the register file.



ve
is

ile

re

me
is

a
s
le.
es
s

ite.

s
00

an
r
ns
IPC
We propose the following prefetching scheme that exploits
this predictability of register references. Whenever an instruction is
issued, it brings to the uppermost level of the hierarchy the other
source operand of the first instruction that uses the result of the
current one. For instance, in the following code (already renamed):

(1) p1 = p2+p3

(2) p4 = p3+p6

(3) p7 = p1+p8

when instruction (1) is issued, a prefetch of registerp8 is issued. In
this way, part of the latency of bringingp8 to the uppermost level
of the hierarchy can be overlapped with the execution of instruction
(1). We refer to this prefetching scheme asprefetch-first-pair.

4. Performance Evaluation

4.1. Experimental Framework

The performance of the proposed register file architecture has been
evaluated through a cycle-level simulator of a dynamically-
scheduled superscalar processor and an analytical model of the area
and access time of the register file.

The processor simulator models a 6-stage pipeline
(instruction fetch; decode and rename; read operands; execute;
write-back; commit). Each stage takes one cycle except for the read
and execute stages, which can take several cycles depending on the
instruction and the particular architecture. The main features of the
microarchitecture are described in Table 1.

Based on the results presented in Section 2, our experiments
use 128 physical registers at the lower level with a 16-register cache

at the upper level. The upper level has a fully-associati
organization with a pseudo-LRU replacement. The aim of th
experimental evaluation is to analyze the effect of register f
bandwidth, at each level, on area and performance.

The analytical models of the area and access time a
described in [4]. The area model measures the area inλ2 units and
is generic for different technological processes. The access ti
model is an extension of the CACTI model [16]. The model
configured with the technology parameters corresponding to
process withλ=0.5 µm. This is somewhat old for current design
but is the most aggressive configuration that we have availab
However, we have always compared different architectur
assuming the sameλ, and the performance gains are alway
reported as speedups relative to a base architecture.

Our experiments used the complete Spec95 benchmark su
Programs were compiled with the Compaq/Alpha compiler using-
O4 and -O5 optimization flags for integer and FP code
respectively. The resulting programs were simulated for 1
million instructions, after skipping the initialization part.

4.2. Performance results

We first evaluated the performance of the register file cache for
unlimited number of ports. In fact, the number of ports fo
maximum performance is bounded by the number of instructio
that can simultaneously issue and complete. Figure 5 shows the

Parameter Value

Fetch width 8 instructions (up to 1 taken branch)

I-cache 64KB, 2-way set-associative, 64 byte lines,
1 cycle hit time, 6 cycle miss time

Branch predictor Gshare with 64K entries

Instruction
window size 128 entries

Functional units
(latency in
brackets)

6 Simple int (1); 3 int mult/div (2 for mult
and 14 for div); 4 simple FP (2); 2 FP div

(14); 4 load/store

Load/store queue 64 entries with store-load forwarding

Issue mechanism
8-way out-of-order issue

loads may execute when prior store
addresses are known

Physical registers 128 int / 128 FP

Dcache

64KB, 2-way set-associative, 64 byte lines,
1 cycle hit time, write-back, 6-cycle miss
time if not dirty, 8-cycle miss time if dirty,

up to 16 outstanding misses

Commit width 8 instructions

Table 1: Processor microarchitectural parameters

Figure 5: IPC for different register file cache architectures.

co
m

pr
es

s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

H
m

ea
n

1

2

3

4 ready caching + fetch-on-demand
non-bypass caching + fetch-on-demand
ready caching + prefetch-first-pair
non-bypass caching + prefetch-first-pair

SpecInt95

IP
C

ap
pl

u

ap
si

fp
pp

p

hy
dr

o2
d

m
gr

id

su
2c

or

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e5

H
m

ea
n

1

2

3

4

5

ready caching + fetch-on-demand
non-bypass caching + fetch-on-demand
ready caching + prefetch-first-pair
non-bypass caching + prefetch-first-pair

SpecFP95

IP
C



l,
FP
her
or
file
95
%
P
on
n
s

th
s.
an
or
ile
).

Figure 6: Register file cache versus a single bank with a single level of bypass.

co
m

pr
es

s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

H
m

ea
n

1

2

3

4
SpecInt95

IP
C

ap
pl

u

ap
si

fp
pp

p

hy
dr

o2
d

m
gr

id

su
2c

or

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e5

H
m

ea
n

1

2

3

4

5

1-cycle
non-bypass caching + prefetch-first-pair
2-cycle

SpecFP95

IP
C

Figure 7: Register file cache versus a single bank with full bypass.

co
m

pr
es

s

gc
c go

ijp
eg li

m
88

ks
im pe
rl

vo
rt

ex

H
m

ea
n

1

2

3

4
SpecInt95

IP
C

ap
pl

u

ap
si

fp
pp

p

hy
dr

o2
d

m
gr

id

su
2c

or

sw
im

to
m

ca
tv

tu
rb

3d

w
av

e5

H
m

ea
n

1

2

3

4

5

non-bypass caching + prefetch-first-pair
2-cycle

SpecFP95

IP
C

(instructions committed per cycle) for four register file
configurations that arise from combining the two caching policies
and the two fetch strategies presented in the previous section.
Results show thatnon-bypasscaching outperformsreadycaching
by 3% and 2% for integer and FP programs respectively. Thenon-
bypasspolicy is also much easier to implement, since identifying
which values are not bypassed is straightforward. The second
conclusion of this graph is that the proposed prefetching scheme
is only effective for a few programs: it provides significant speed-
ups formgrid , fpppp , andwave5 and slight improvements for
ijpeg , apsi andapplu . However, it is important to point out
that these figures refer to register files with an unrestricted
bandwidth. We will lately show that for a limited number of
register file ports the benefits of prefetching are more noticeable.

Figure 6 compares the IPC of the best register file cache
configuration (non-bypasscaching with prefetch-first-pair) with
that of a single-banked register file with a single level of bypass
and an access time of either 1 or 2 cycles. These three
architectures all have the same bypass hardware complexity, but

their performance characteristics differ significantly. In genera
integer codes are more sensitive to register file latency than the
codes. For integer codes, the register file cache has 10% hig
IPC than the conventional two-cycle register file, on average. F
FP codes the average benefit is 4%. Note that the register
cache exhibits significant speed-ups for almost all Spec
programs. The IPC of the register file cache is still 10% and 2
lower than that of a one-cycle register file for integer and F
codes respectively, which suggests that further research
caching and fetching policies may be worthwhile. However, whe
the cycle time is factored in, the register file cache outperform
the one-cycle register file as shown below.

Figure 7 compares the IPC of the register file cache wi
that of a single bank with a two-cycle access time and full bypas
We can observe that the IPC of the register file cache is lower th
that of the conventional register file (8% and 2% on average f
integer and FP codes respectively). However, the register f
cache requires a much simpler bypass network (a single level



half
ile
ny
ve
sts
the
en.
file
re
s
.
ns
le

the
rea
e in
r

ch
che
%
ile
rve
me

the
s

en
ew
gle

4
B

ars

Figure 8: Performance for a varying area cost.

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

21
00

0

22
00

0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1-cycle
non-bypass caching + prefetch-first-pair
2-cycle

SpecInt95
re

la
ti

ve
 p

er
fo

rm
an

ce

area 

in
fi

ni
te

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

16
00

0

17
00

0

18
00

0

19
00

0

20
00

0

21
00

0

22
00

0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1-cycle
non-bypass caching + prefetch-first-pair
2-cycle

SpecFP95

re
la

ti
ve

 p
er

fo
rm

an
ce

area

in
fi

ni
te
When the number of ports is varied, the different
configurations provide different levels of performance as well as
different implementation costs. Figure 8 compares the
performance of the three register file architectures with a single
level of bypass (one-cycle single-banked, two-cycle single-
banked, register file cache). Performance is shown as IPC relative
to the IPC of the one-cycle single-banked with an unlimited
number of ports. For each particular area cost (in 10Kλ2 units) the
best configuration in terms of number of read and write ports has
been shown. In fact, for each register file architecture we have
analyzed all possible combinations of number of read and write
ports. Then, we have eliminated those configurations for which
there is another configuration of the same register file architecture
that has lower area and higher IPC. We can observe that the
register file cache offers a significant speed-up over the two-cycle
single-banked architecture, especially for integer programs, and
its performance is close to that of the one-cycle single-banked
architecture, especially for FP programs, for the whole range of
area cost.

For some particular programs such asmgrid , hydro2d
andvortex , the register file cache outperforms, in some cases,
the one-cycle single-banked configuration with the same area.
This is because for a given area cost, the register file cache can
have a larger number of ports in the uppermost level at the
expense of a lower number of ports in the lowest level.

Performance is ultimately determined by execution time.
When the number of instructions and the cycle time does not vary,
execution time is proportional to 1/IPC. In our experiments, the
number of instructions of a given program is fixed but the cycle
time depends on the register file access time, which in turn
depends on its number of ports. Thus, when alterations to the
micro-architecture are critical to cycle time, one must combine
predicted cycles with simulated IPC values to obtain a more
realistic model of expected performance.

Figure 9 compares the performance of the register file
cache with that of a single-banked register file assuming that the
register file access time determines the cycle time of the
processor. For the single-banked configuration with 2-cycle

access time, we have assumed that the processor cycle time is
the register file cycle time (i. e., we suppose that the register f
can be pipelined into two stages of equal duration and without a
inter-stage overhead, which is somewhat optimistic). We ha
chosen four different configurations that represent different co
in terms of area, as described in Table 2. For each area cost,
optimal number of ports for each architecture has been chos
The area of the single-banked architectures and the register
cache are very similar for each configuration, although they a
not exactly the same since it is impossible to find configuration
with identical area due to their differing architectures
Performance is measured as instruction throughput (instructio
committed per time unit) relative to the throughput of a one-cyc
single-banked architecture with configuration C1.

We can see in Figure 9 that performance increases as
area rises, up to a certain point where a further increase in a
degrades performance, This point is reached when an increas
cycle time is not offset by the boost in IPC provided by a large
number of ports. If we choose the best configuration for ea
architecture we can see that the speed-up of the register file ca
over the single-banked architecture is very high, averaging 87
for SpecInt95 and 92% for SpecFP95. Comparing the register f
cache with the two-cycle single-banked architecture, we obse
an average speed-up of 9% for SpecInt95 and about the sa
performance for SpecFP95. However, note that the figures for
two-cycle single-banked architecture are optimistic a
commented above.

5. Related work

The organization and management of the register file has be
extensively researched in the past. However, there are very f
proposals based on a multiple-banked organization for a sin
cluster architecture.

A two-level register file organization was implemented in
the Cray-1 [10]. The Cray-1 processor had 8 first-level and 6
second-level registers for addresses (referred to as A and
registers respectively) and the same organization for scal



the
.

k
f
ks,
e

h
no
s.
.

In
ter
ld
t

conf.

one-cycle single-banked two-cycle single-banked register file cache

Area
(10K λ2)

cycle
time R W Area

(10K λ2)

cycle
time R W Area

(10K λ2)

cycle
time

upperm
ost

level

lowest
level

B

R W W

C1 10921 4.71 3 2 10921 2.35 3 2 10593 2.45 3 2 2 2

C2 15070 4.98 3 3 15070 2.49 3 3 15487 2.55 4 3 3 2

C3 18855 5.22 4 3 18855 2.61 4 3 20529 2.61 4 4 4 2

C4 24163 5.48 4 4 24163 2.74 4 4 25296 2.67 4 4 4 3

Table 2: Number of read (R) write (W) ports of each configuration. For the register file cache, number of buses (B) between the two
levels are also specified. Each bus implies a read port in the lowest level and an additional write port in the uppermost level.

Figure 9: Performance of different register file architectures when the access time is factored in. The different
architectures are described in Table 2.

C1 C2 C3 C4
0

1

2

SpecInt95
re

la
ti

ve
 in

st
ru

ct
io

n 
th

ro
ug

hp
ut

C1 C2 C3 C4
0

1

2

3

1-cycle
non-bypass caching + prefetch-first-pair
2-cycle, 1-bypass

SpecFP95

re
la

ti
ve

 in
st

ru
ct

io
n 

th
ro

ug
hp

ut
(referred to as S and T respectively). Data movement between the
first and second levels was done completely under software
control by means of explicit instructions. Another hierarchical
register file that is very similar to the Cray-1 organization was
proposed in [11].

A replicated multiple-banked organization is a well-known
technique to reduce the number of ports of each bank. This
approach is used for instance by the Alpha 21264 microprocessor
[3]. The integer unit of this processor has a two-bank register file
with a one-level organization (both banks can feed the functional
units) and full replication of registers. Each functional unit can be
fed only by one of the banks and the results are always written in
both, with a one-cycle delay for the non-local bank.

A multiple-banked register file organization was also
proposed in [15]. This is a one-level organization with two read

and one write ports per bank. Register allocation was done at
end of the execution in order to avoid conflicts in the write ports

The non-consistent dual-register file [5] is a two-ban
organization for VLIW architectures with partial replication o
registers. It is a one-level organization with homogeneous ban
in which the allocation of registers to banks was done by th
compiler.

The Sack [6] is a one-level two-bank architecture wit
heterogeneous organization (different number of ports) and
replication, which was proposed again for VLIW architecture
The allocation of registers to banks was done at compile-time

A two-level register file organization for a windowed
register file of an in-order issue processor was proposed in [1].
this case, the uppermost level stored a small number of regis
windows, including the active one, whereas the lowest level he
the remaining windows. Overflow/underflow in the uppermos



,

e

,

e

,

er

,

,
n

,

rs

us

,

level (due to a call/return respectively) was handled by halting the
processor and using a special mechanism to transfer an entire
window to/from the lowest level. The idea of caching a subset of the
registers in a fast bank was also proposed in [17]. That paper
presented some statistics about the hit rate of such a cache assuming
that every result was cached under an LRU replacement policy.
They also derived some performance implications for an in-order
processor based on some simple analytical models.

Several partitioned register file organizations for media
processing were proposed in [9]. That work presents a taxonomy of
partitioned register file architectures across three axes. Register
files can be split along the data-parallel axis resulting in a SIMD
organization, or along the instruction-level parallel axis resulting in
a distributed register file organization, or along the memory
hierarchy axis resulting in a hierarchical organization. They
concluded that partitioned register file organizations reduce area,
delay, and power dissipation in comparison to the tradicional
central register file organization.

This paper is the first work, to the best of our knowledge, that
proposes a register file cache for a dynamically scheduled processor
and evaluates it with respect to other single-banked architectures
with different levels of bypass. It also proposes a prefetching
scheme for a register file cache.

6. Conclusions

This paper tackles the problem of the increasing impact on
performance of the register file access time. The proposed solution
is based on a multiple-banked register file architecture. Among the
different multiple-banked organizations outlined in this paper we
focus on a two-level organization that we call a register file cache.
This organization allows a low latency register access and a single
level of bypass, whilst supporting a large number of physical
registers.

A multiple-banked register file architecture allows for a
heterogeneous organization in which some banks have a higher
bandwidth and/or lower latency than others. The effectiveness of
the caching and fetching policies is critical to performance. In this
paper we have proposed two caching policies and a prefetching
scheme.

We have shown that the register file cache outperforms a
non-pipelined single-banked architecture with the same bypass
complexity by 87% and 92% for SpecInt95 and SpecFP95
respectively.

Different caching and prefetching policies as well as their
extension to the one-level organization are currently being
investigated.

7. Acknowledgments

This work has been supported by the projects CYCIT TIC98-0511
and ESPRIT 24942, and by the grant PN96-46655316. We would
like to thank Jim Smith, Yale Patt, Andy Glew and Eric Sprangle
for their comments and suggestions on this work. The research
described in this paper has been developed using the resources of
the European Center of Parallelism of Barcelona (CEPBA).

8. References

[1] B.K. Bray and M.J. Flynn, “A Two-Level Windowed
Register File”, Technical Report CSL-TR-91-499
Stanford University, 1991.

[2] K.I. Farkas, N.P. Jouppi and P. Chow, “Register Fil
Considerations in Dynamically Scheduled
Processors”, inProc. of Int. Symp. on High-
Performance Computer Architecture, pp. 40-51,
1996.

[3] R.E. Kessler, “The Alpha 21264 Microprocessor”
IEEE Micro, 19(2):24-36, March 1999.

[4] J. Llosa and K. Arazabal, “Area and Access Tim
Models for Multi-Port Register Files and Queue
Files”, Technical Report UPC-DAC-1998-35
Universitat Politècnica de Catalunya,www.ac.upc.es/
recerca/reports (in Spanish), 1998.

[5] J. Llosa, M. Valero and E. Ayguade, “Non-
Consistent Dual Register Files to Reduce Regist
Pressure”, inProc. of 1st. Int. Symp. on High-
Performance Computer Architecture, pp. 22-31,
1995.

[6] J. Llosa, M. Valero, J.A.B. Fortes and E. Ayguade
“Using Sacks to Organize Registers in VLIW
Machines”, inProc. of CONPAR94 - VAPP VI, pp.
628-639, 1994.

[7] D. Matzke, “Will Physical Scalability Sabotage
Performance Gains?”,IEEE Computer, 30(9):37-39,
Sept. 1997.

[8] A.S. Palacharla, N.P. Jouppi and J.E. Smith
“Complexity-Effective Superscalar Processors”, i
Proc. of Int. Symp. on Computer Architecture, Edited
by M. Hill, N. Jouppi and G. Sohi, pp. 206-218
1997.

[9] S. Rixner et al., “Register Organization for Media
Processing”, in Proc. of Int. Symp. on High-
Performance Computer Architecture, pp. 375-384,
2000.

[10] R. M. Russell, “The Cray-1 Computer System”, in
Reading in Computer Architecture, Morgan
Kaufmann, pp. 40-49, 2000.

[11] J.A. Swensen and Y.N. Patt, “Hierarchical Registe
for Scientific Computers”, inProc. of Int. Conf. on
Supercomputing, pp. 346-353, 1988.

[12] D.M. Tullsen et al., “Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneo
Multithreading Processor”, inProc. of the Int. Symp.
on Computer Architecture,pp. 191-202, 1996.

[13] D.M. Tullsen, S.J. Eggers and H.M. Levy
“Simultaneous Multithreading: Maximizing On-
Chip Parallelism”, inProc. of the Int. Symp. on
Computer Architecture,pp. 392-403, 1995.



e

r

[14] D.W. Wall, “Limits of Instruction-Level Parallelism”
Technical Report WRL 93/6 Digital Western
Research Laboratory, 1993.

[15] S. Wallace and N. Bagherzadeh, “A Scalable
Register File Architecture for Dynamically
Scheduled Processors”, inProc. 1996 Conf. on
Parallel Architectures and Compilation Techniques,
pp. 179-184, 1996.

[16] S.J.E. Wilton and N.P. Jouppi, “An Enhanced Cach
Access and Cycle Time Model”,IEEE Journal of
Solid-State Circuits, 31(5):677-688, May 1996.

[17] R. Yung and N.C. Wilhelm, “Caching Processo
General Registers”, inProc. Int. Conf. on Circuits
Design, pp. 307-312, 1995.


	Abstract
	1. Introduction
	Figure 1: IPC for a varying number of physical registers. The harmonic mean for SpecInt95 and Spe...

	2. Impact of the Register File Architecture
	Figure 2: IPC for a 1-cycle register file, a 2-cycle register file and a 2-cycle register file wi...
	Figure 3: Cumulative distribution of number of registers.

	3. A Multiple-Banked Register File
	4. Performance Evaluation
	4.1. Experimental Framework
	Table 1: Processor microarchitectural parameters

	4.2. Performance results
	Figure 5: IPC for different register file cache architectures.


	5. Related work
	6. Conclusions
	7. Acknowledgments
	8. References
	[1] B.K. Bray and M.J. Flynn, “A Two-Level Windowed Register File”, Technical Report CSL-TR-91-49...
	[2] K.I. Farkas, N.P. Jouppi and P. Chow, “Register File Considerations in Dynamically Scheduled ...
	[3] R.E. Kessler, “The Alpha 21264 Microprocessor”, IEEE Micro, 19(2):24-36, March 1999.
	[4] J. Llosa and K. Arazabal, “Area and Access Time Models for Multi-Port Register Files and Queu...
	[5] J. Llosa, M. Valero and E. Ayguade, “Non- Consistent Dual Register Files to Reduce Register P...
	[6] J. Llosa, M. Valero, J.A.B. Fortes and E. Ayguade, “Using Sacks to Organize Registers in VLIW...
	[7] D. Matzke, “Will Physical Scalability Sabotage Performance Gains?”, IEEE Computer, 30(9):37-3...
	[8] A.S. Palacharla, N.P. Jouppi and J.E. Smith, “Complexity-Effective Superscalar Processors”, i...
	[9] S. Rixner et al., “Register Organization for Media Processing”, in Proc. of Int. Symp. on Hig...
	[10] R. M. Russell, “The Cray-1 Computer System”, in Reading in Computer Architecture, Morgan Kau...
	[11] J.A. Swensen and Y.N. Patt, “Hierarchical Registers for Scientific Computers”, in Proc. of I...
	[12] D.M. Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable Sim...
	[13] D.M. Tullsen, S.J. Eggers and H.M. Levy, “Simultaneous Multithreading: Maximizing On- Chip P...
	[14] D.W. Wall, “Limits of Instruction-Level Parallelism” Technical Report WRL 93/6 Digital Weste...
	[15] S. Wallace and N. Bagherzadeh, “A Scalable Register File Architecture for Dynamically Schedu...
	[16] S.J.E. Wilton and N.P. Jouppi, “An Enhanced Cache Access and Cycle Time Model”, IEEE Journal...
	[17] R. Yung and N.C. Wilhelm, “Caching Processor General Registers”, in Proc. Int. Conf. on Circ...
	Figure 4: Multiple-banked register file architectures.
	Figure 6: Register file cache versus a single bank with a single level of bypass.
	Figure 7: Register file cache versus a single bank with full bypass.



	Multiple-Banked Register File Architectures
	José-Lorenzo Cruz, Antonio González and Mateo Valero Nigel P. Topham
	Departament d’Arquitectura de Computadors Siroyan Ltd
	Universitat Politècnica de Catalunya Wyvols Court
	Jordi Girona, 1-3 Mòdul D6 Swallowfield
	08034 Barcelona, Spain Berkshire RG7 1WY, U.K.
	{cruz,antonio,mateo}@ac.upc.es ntopham@siroyan.com
	Figure 8: Performance for a varying area cost.
	Figure 9: Performance of different register file architectures when the access time is factored i...
	Table 2: Number of read (R) write (W) ports of each configuration. For the register file cache, n...




