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Abstract However, wider issue machines require more ports in the register

) . . N . file, which may significantly increase its access time [2]. Moreover,

The register file access time is one of the critical delays in current 5 wide issue machine is only effective if it is accompanied by a
superscalar processors. Its impact on processor performance isarge instruction window [14] or some type of multithreading [13].
likely to increase in future processor generations, as they are| grge instruction windows and multithreading imply a large
expected to increase the issue width (which implies more register nymper of instructions in-flight, which directly determines the
ports) and the size of the instruction window (which implies more  nymper of required registers [2]. However, increasing the number
registers), and to use some kind of multithreading. Under this of register also increases the register file access time. On the other
scenario, the register file access time could be a dominant delay andhang, technology evolution produces successive reductions in
a pipelined implementation would be desirable to allow for high - minimum feature sizes, which results in higher circuit densities but
clock rates. it also exacerbates the impact of wire delays [7]. Since a significant

However, a multi-stage register file has severe implications part of the register file access time is due to wire delays, future
for processor performance (e.g. higher branch misprediction processor generations are expected to be even more affected by the
penalty) and complexity (more levels of bypass logic). To tackle access time problem.
these two problems, in this paper we propose a register file Current trends in microprocessor design and technology lead
architecture composed of multiple banks. In particular we focus on g projections that the access time of a monolithic register file will
a multi-level organization of the register file, which provides low  pe significantly higher than that of other common operations, such
latency and simple bypass logic. We propose several cachingas integer additions. Under this scenario, a pipelined register file is
policies and prefetching strategies and demonstrate the potential ofxritical to high performance; otherwise, the processor cycle time
this multiple-banked organization. For instance, we show that a \ould be determined by the register file access time. However,
two-level organization degrades IPC by 10% and 2% with respect pipelining a register file is not trivial. Moreover, a multi-cycle
to a non-pipelined single-banked register file, for Specint95 and pipelined register file still causes a performance degradation in
SpecFP95 respectively, but it increases performance by 87% a“dgomparison with a single-cycle register file, since a multi-cycle

92% when the register file access time is factored in. register file increases the branch misprediction penalty. Besides, a
Keywords: Register file architecture, dynamically-scheduled multi-cycle register file either requires multiple levels of bypassing,
processor, bypass logic, register file cache. which is one of the most time-critical components in current

microprocessors, or processor performance will be significantly

1 Introduction affected if only a single-level of bypassing is included.

In this paper we propose a register file architecture that can
Most current dynamically scheduled microprocessors have a RISC-achieve an IPC rate (instructions per cycle) much higher than a
like instruction set architecture, and therefore, the majority of multi-cycle file and close to a single-cycle file, but at the same time
instruction operands reside in the register file. The access time of it requires just a single level of bypass. The key idea is to have
the register file basically depends on both the number of registers multiple register banks with a heterogeneous architecture, such that
and the number of ports [8]. To achieve high performance, banks differ in number of registers, number of ports and thus,
microprocessor designers strive to increase the issue width.access time. We propose a run-time mechanism to allocate values
to registers which aims to keep the most critical values in the fast
banks, whereas the remaining values are held in slower banks.

We show that the proposed organization degrades IPC by

27th-_ Annual International Symposium on Computer 10% and 2% with respect to a one-cycle single-banked register file
Architecture (ISCA 2000), Vancouver, Canada, June 12-14, for SpeciInt95 and SpecFP95 respectively, assuming an infinite
2000 number of ports. However, when the register file cycle time is

factored in and the best configuration in terms of instruction

throughput (instruction per time unit) is chosen for each register file
architecture, the proposed architecture outperforms the single-
banked register file by 87% and 92% respectively. When compared
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Figure 1.  IPC for a varying number of physical registers. The
harmonic mean for SpecInt95 and SpecFP95 is
shown. (for this experiment we assume the
architectural parameter described in section 4.1, but 1l
a reorder buffer and an instruction queue of 256
entries).
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with a two-stage pipelined, single-banked register file with just one 5- SpecFPY5
level of bypass, the proposeq archltepture pro_wc_igs a 10% 5 1-cycle, 1-bypass level
(SpecInt95) and 4% (SpecFP95) increase in IPC for infinite number = 2-cycle, 2-bypass levels
of ports and a 9% (SpeclInt95) increase in instruction throughput for = 2-cycle, 1-bypass level
the best configuration. Moreover, the performance figures for the 4+
two-stage pipelined organization are optimistic since we assume
that the register access can be pipelined into two stages of the same
duration and without any inter-stage overhead.

The rest of this paper is organized as follows. Section 2
motivates this work by presenting some statistics about the impact g
of register file access time on processor performance and bypass
logic. Section 3 presents different multiple-banked architectures 21
and describes in detail the register file cache architecture, which is
the main contribution of this work. Performance statistics are
discussed in section 4. Section 5 outlines the related work and
finally, section 6 summarizes the main conclusions of this work.
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2. ImpaCt of the ReQISter File Architecture Figure 2:  IPC for a 1-cycle register file, a 2-cycle register file

The register file provides the source operands and stores the result: gnd a 2-cycle register file with just one level of

of most instructions. Dynamically scheduled processors rename at ypass.

run-time logical registers to physical registers such that each result

prodt_Jced b)_/ any ms;ructlon in-flight is allocated to a Q|fferent » The branch misprediction penalty is increased since branches

physical register. In this way, name dependences are eliminated and are resolved one cvcle later

instruction parallelism is increased. The cost of this technique is 4 '

that a large number of registers may be required. Figure 1 showsthe * The register pressure is increased since the time that

harmonic mean of the IPC of an 8-way issue processor with a instructions are in-flight is increased.

varying number of physical registers for the SpeciInt95 and

SpecFP95 benchmarks. Details about the evaluation frameworkcan  requires a connection from each result bus to each functional

be found in section 4.1. Across the whole paper we use the same unit input, if full bypass is implemented. This incurs

architectural parameters with the exception that in Figure 1 we significant complexity.

assume a reorder buffer and_ an in_struction queue of 256 entries in An alternative approach to reducing complexity, at the

order to evaluate larger register flles_. Note that the performance expense of a lower performance, is to keep just one level of bypass.

curves start to flatten beyond 128 registers. In this case, only the last level of bypass is kept in order to avoid
The previous experiment assumed a one-cycle latency for the ‘holes’ in the access to register data. In this context a hole refers to

register file. However, a register file with 128 registers and 16 read the fact that a value is available in a given cycle (from the bypass

ports and 8 write ports is unlikely to have such a low access time. network), then is not available in a subsequent cycle, and later on is

However, a two-cycle register file has some important implications available again (from the register file). Holes are undesirable since

for processor performance and complexity compared with a single- they would significantly increase the complexity of the issue logic.

cycle register file, as observed by Tullsen et al. [12]: Figure 2 shows the IPC for the whole SPEC95 benchmark
suite comparing three different architectures of the register file

« An extra level of bypass logic is required. Each bypass level



architectures: a) one-cycle latency and one level of bypass; b) tWo- o, cycles SpecInt95
cycle latency and two levels of bypass; and c) two-cycle latency ,,,_
with one level of bypass.

We can see that an additional cycle in the register file access 907

time slightly degrades performance when all additional bypasses g1
are implemented. Not surprisingly, performance significantly ;
decreases if only a single level of bypass is available. The impactis 707 |
higher for integer codes, due in part to their much higher branch i
misprediction rates. Moving from a two-cycle register file with one ;
bypass level to a two-cycle register file with two bypass levels 50/
produces an average increase in IPC of 20% for SpecInt95. A one- '
cycle register file results in an average speedup of 22%. Note that ~ |
all programs are significantly affected by the register file latency 304
and the number of bypass levels. For SpecFP95, the differences are

lower (6% and 7% respectively) but still quite significant. This =~ 20
results are consistent with the study of Tullsen et al. [12], who ;]
reported a less than 2% performance decrease when the register file

60 |
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latency increased from 1 to 2 cycles with two levels of bypass. L o S L LA L S L L L U B U £ E T
The register file optimizations proposed in this paper are also
based on the observation that a very small number of registers
would be required to keep the processor at its maximum throughput o, cycles SpecFP95
if they were more effectively managed. This is because many ;q,_
physical registers are “wasted” due to several reasons:
* Registers are allocated early in the pipeline (decode stage) to %07
keep track of dependences. However, they do not hold a value g /
until the instruction reaches the write-back stage. /
* Some registers hold values that will be used by later E
instructions that have not yet entered the instruction window. 60
« For reasons of simplicity, registers are released late. Instead of 5 ]
freeing a register as soon as its last consumer commits, it is
freed when the next instruction with the same logical 404
destination register commits. 304
* Some registers are never read since the value that they hold is Volbed 1 )
either supplied to its consumers through bypass paths or never 20 Tiivabda F;';L‘;ﬁ“n‘;‘mmn
read. 103
Figure 3 shows in solid lines the cumulative distribution of
the number of registers that contain a value that is the source 0OH‘f‘W‘“‘fu‘ﬂé"wgo"é:‘ééﬁﬂ‘é:‘éééa‘éég‘éém‘ééééé #registers

operand of at least one unexecuted instruction in the window. Only

average numbers for Specint95 and SpecFP95 are shown. Note thegigure 3:  Cumulative distribution of number of registers.
90% of the time about 4 and 5 registers are enough to hold such
values for integer and FP codes respectively. If the processorcomplexity of bypass logic. We propose to use a register file with
provided low latency in the access to these operands, performancenultiple banks to tackle these problems.

could not be degraded even if the remaining registers had a much A ltivle-banked ister fil hitect ists of
higher latency. In fact, the number of required registers may be multiple-banked register e architectureé consists o

even lower, since some of these operands may not be useful to anfeveral tpar?ks ﬁfb pfllysmalh reglstde_;fs W'tth ab het(;:roggrtleous
instruction at that time, since the instructions that consume them alreg.rf(‘?"’m'Z‘;jl |on.§ac f ant ma>:j tﬁve? ! ereg_ﬁnumtero reg;_s ersAa
waiting for other operands. The critical values are those that are Iiterent number of ports and theretore, a aifierent access tme.

source operands of an instruction in the window that has all its multiple-banked register file can have a single-level organization or

operands ready. The cumulative distribution of this measure is a multi-level organization, as shown in Figur(_e 4 for the particu_lar
shown in Figure 3 by means of a dashed line. Note that on average,c‘"’lse of two banks. In a single-level organization, each logical

the number of critical values is less than 4 (resp. less than 3) for register is mapped to a physical register in one of the_ banks. Al
90% of the time in SpecInt95 (resp. SpecFP95). banks can provide source operands to the functional units, and each

result is stored just in one of the banks. In a multi-level

. . . organization, only the uppermost level can directly provide source
3. A Multiple-Banked Register File operands to the functional units. A subset of registers in the lower
levels are cached in the upper levels depending on the expectations
of being required in the near future. Results are always written to
Ythe lowest level, which contains all the values, and optionally to
upper levels if they are expected to be useful in the near future.
Since this multi-level organization has many similarities with a
multi-level cache memory organization, we will also refer to it as a

The main conclusion from the previous section is that a processor
needs many physical registers but a very small number are actuall
required from a register file at a given moment. Moreover, register
file access time has a significant impact on the performance and
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Figure 4.  Multiple-banked register file architectures.

register file cacheln this paper, we focus on this register file With non-bypasgaching, we still cache some values whose
architecture. first use does not occur for many cycles because they may be source
operands of instructions whose other operands take a long time to

A register file cache can have a bank at the upper level that b duced. In thi X ) in th
has many ports but few registers, which may result in a single-cycle e produced. In this case, we are wasting a precious space in the
uppermost level to store a value that is not needed for many cycles.

access time. Banks at the lower levels have many more registers_l_h d poli h . . d tackles thi bl b
and a somewhat lower number of ports, which may result in an | "€ Second policy we have investigated tackles this problem by

increased latency. However, it requires the same bypass logic as é:aching Just those results th".it are source operands for an instruction
monolithic register file with one-cycle latency, since source that is not yet issued, but which now has all operands ready. In such

operands are always provided by the uppermost level cases we can be sure the value will be required soon, but will not be

) available via the bypass logic. We refer to this policyraady
When results are produced they are cached in upper levels,caching.

based on heuristics described below. In addition, there is a prefetch
mechanism that moves values from lower to upper levels of the

hierarchy. Note that data is never moved from upper to lower levels

since registers are written only once, and the lowest level is always
written.

Orthogonal to these two caching policies we have
investigated two fetching mechanisms. The first one wefetth-
on-demand.In this policy, registers from the lower level are
brought down to the upper level whenever an instruction has all its
o ] ) operands ready and some of them are in the lowest level (provided

The approach to deciding which values are cached in the that the bus between both levels is available). This policy is very
upper level of the hierarchy is a critical issue. Like in cache conservative since it brings to the uppermost levels only those
memories, a criterion based on locality seems appropriate, that is,operands that are ready to be used. However, it may delay the
upper levels should contain those values that are more likely to beexecution of some instructions for several cycles, since after
accessed in the near future. However, the locality properties of jgentifying a ready instruction with some operands in the lower
registers and memory are very different. First of all, registers have |eyel, these operands must be read from that level, then written into
a much lower temporal re-use. In fact, most physical registers arethe upper level, and then read from there to be issued.
read only once, and there is even a significant percentage that are
never read. Spatial locality is also rare, since physical register
allocation and register references are not correlated at all.

A more aggressive fetching mechanism could prefetch the
values before they are required. Like in cache memories,
) o ) ) prefetching must be carefully implemented to prevent premature or
We need then different criteria to predict which values are ynnecessary fetching from polluting the upper levels. In general,
most likely to be accessed in the near future. We propose a cachingprefetching can be implemented by software or hardware schemes.
policy based on the observation that most register values are read aj, this paper we focus on the latter. For cache memories, hardware
most once. We have observed that this happens for 88% of theprefetching is based on predicting the addresses of future references
values generated by the Specint95 and 85% of the FP registerpefore they are known. For a register file cache, prefetching can
values produced by SpecFP95. For a two-level organization, oneexploit knowledge about the instructions in-flight. In fact, the
option is to cache only those results that are not read from the rename and issue logic of a conventional processor can identify all
bypass logic. These values will be written in both register banks, the operand communications between the instructions in the

whereas bypassed values are written only in the lowest bank. Weyjindow. Therefore, the processor knows some of the future access
refer to this policy ason-bypassaching. to the register file.



We propose the following prefetching scheme that exploits
this predictability of register references. Whenever an instruction is
issued, it brings to the uppermost level of the hierarchy the other
source operand of the first instruction that uses the result of the
current one. For instance, in the following code (already renamed):

(1) pl=p2+p3

(2) p4 =p3+pb6

(3) p7 =pl+p8
when instruction (1) is issued, a prefetch of regigi@is issued. In
this way, part of the latency of bringirgg to the uppermost level

of the hierarchy can be overlapped with the execution of instruction
(1). We refer to this prefetching schemepesfetch-first-pair

o ready caching + fetch-on-demand
o non-bypass caching + fetch-on-demand
& ready caching + prefetch-first-pair
= non-bypass caching + prefetch-first-pair
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4. Performance Evaluation
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4.1. Experimental Framework SpecFPI5
o ready caching + fetch-on-demand
o non-bypass caching + fetch-on-demand
& ready caching + prefetch-first-pair
= non-bypass caching + prefetch-first-pair

The performance of the proposed register file architecture has been
evaluated through a cycle-level simulator of a dynamically-
scheduled superscalar processor and an analytical model of the area
and access time of the register file.

The processor simulator models a 6-stage pipeline 37
(instruction fetch; decode and rename; read operands; execute;o
write-back; commit). Each stage takes one cycle except for the read—
and execute stages, which can take several cycles depending on the
instruction and the particular architecture. The main features of the

microarchitecture are described in Table 1.
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Fetch width 8 instructions (up to 1 taken branch)

Figure 5:  IPC for different register file cache architectures.

64KB, 2-way set-associative, 64 byte ling

I-cache 1 cycle hit time, 6 cycle miss time

at the upper level. The upper level has a fully-associative
organization with a pseudo-LRU replacement. The aim of this
experimental evaluation is to analyze the effect of register file
bandwidth, at each level, on area and performance.

Branch predictor| Gshare with 64K entries

Instruction

window size 128 entries

The analytical models of the area and access time are
described in [4]. The area model measures the araa imits and

Functional units

6 Simple int (1); 3 int mult/div (2 for mult

(latency in

and 14 for div); 4 simple FP (2); 2 FP di
brackets)

(14); 4 load/store

=Y

Load/store queu 64 entries with store-load forwarding

8-way out-of-order issue
loads may execute when prior store
addresses are known

128 int/ 128 FP

Issue mechanism

Physical register

[

64KB, 2-way set-associative, 64 byte ling
1 cycle hit time, write-back, 6-cycle miss

Deache time if not dirty, 8-cycle miss time if dirty,
up to 16 outstanding misses
Commit width 8 instructions

Table 1: Processor microarchitectural parameters

is generic for different technological processes. The access time
model is an extension of the CACTI model [16]. The model is
configured with the technology parameters corresponding to a
process withh=0.5 um. This is somewhat old for current designs
but is the most aggressive configuration that we have available.
However, we have always compared different architectures
assuming the sama, and the performance gains are always
reported as speedups relative to a base architecture.

Our experiments used the complete Spec95 benchmark suite.
Programs were compiled with the Compag/Alpha compiler using
04 and -O5 optimization flags for integer and FP codes
respectively. The resulting programs were simulated for 100
million instructions, after skipping the initialization part.

4.2. Performance results

We first evaluated the performance of the register file cache for an
unlimited number of ports. In fact, the number of ports for

Based on the results presented in Section 2, our experimentsmaximum performance is bounded by the number of instructions

use 128 physical registers at the lower level with a 16-register cache.

that can simultaneously issue and complete. Figure 5 shows the IPC
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Figure 6:  Register file cache versus a single bank with a single level of bypass.
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Figure 7 Register file cache versus a single bank with full bypass.

(instructions committed per cycle) for four register file
configurations that arise from combining the two caching policies
and the two fetch strategies presented in the previous section.
Results show thaton-bypassaching outperformseadycaching

by 3% and 2% for integer and FP programs respectively ribime
bypasgolicy is also much easier to implement, since identifying
which values are not bypassed is straightforward. The second
conclusion of this graph is that the proposed prefetching scheme
is only effective for a few programs: it provides significant speed-

their performance characteristics differ significantly. In general,
integer codes are more sensitive to register file latency than the FP
codes. For integer codes, the register file cache has 10% higher
IPC than the conventional two-cycle register file, on average. For
FP codes the average benefit is 4%. Note that the register file
cache exhibits significant speed-ups for almost all Spec95
programs. The IPC of the register file cache is still 10% and 2%
lower than that of a one-cycle register file for integer and FP
codes respectively, which suggests that further research on
ups formgrid , fpppp , andwave5 and slight improvements for caching and fetching policies may be worthwhile. However, when
ijpeg ,apsi andapplu . However, it is important to point out the cycle time is factored in, the register file cache outperforms
that these figures refer to register files with an unrestricted the one-cycle register file as shown below.
ban_dwidt_h. we will lately .ShOW that fo_r a limited number of Figure 7 compares the IPC of the register file cache with
register file ports the benefits of prefetching are more noticeable. o+ o o single bank with a two-cycle access time and full bypass.
Figure 6 compares the IPC of the best register file cache We can observe that the IPC of the register file cache is lower than
configuration fon-bypassaching with prefetch-first-pair) with that of the conventional register file (8% and 2% on average for
that of a single-banked register file with a single level of bypass integer and FP codes respectively). However, the register file
and an access time of either 1 or 2 cycles. These three

cache requires a much simpler bypass network (a single level).
architectures all have the same bypass hardware complexity, but
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Figure 8:  Performance for a varying area cost.

When the number of ports is varied, the different
configurations provide different levels of performance as well as
different implementation costs. Figure 8 compares the
performance of the three register file architectures with a single
level of bypass (one-cycle single-banked, two-cycle single-
banked, register file cache). Performance is shown as IPC relative
to the IPC of the one-cycle single-banked with an unlimited
number of ports. For each particular area cost (in 28Knits) the
best configuration in terms of number of read and write ports has
been shown. In fact, for each register file architecture we have
analyzed all possible combinations of number of read and write
ports. Then, we have eliminated those configurations for which
there is another configuration of the same register file architecture
that has lower area and higher IPC. We can observe that the
register file cache offers a significant speed-up over the two-cycle
single-banked architecture, especially for integer programs, and
its performance is close to that of the one-cycle single-banked
architecture, especially for FP programs, for the whole range of
area cost.

For some particular programs suchragrid , hydro2d
andvortex , the register file cache outperforms, in some cases,
the one-cycle single-banked configuration with the same area.
This is because for a given area cost, the register file cache can
have a larger number of ports in the uppermost level at the
expense of a lower number of ports in the lowest level.

Performance is ultimately determined by execution time.
When the number of instructions and the cycle time does not vary,
execution time is proportional to 1/IPC. In our experiments, the
number of instructions of a given program is fixed but the cycle
time depends on the register file access time, which in turn
depends on its number of ports. Thus, when alterations to the
micro-architecture are critical to cycle time, one must combine
predicted cycles with simulated IPC values to obtain a more
realistic model of expected performance.

Figure 9 compares the performance of the register file
cache with that of a single-banked register file assuming that the
register file access time determines the cycle time of the
processor. For the single-banked configuration with 2-cycle

access time, we have assumed that the processor cycle time is half
the register file cycle time (i. e., we suppose that the register file
can be pipelined into two stages of equal duration and without any
inter-stage overhead, which is somewhat optimistic). We have
chosen four different configurations that represent different costs
in terms of area, as described in Table 2. For each area cost, the
optimal number of ports for each architecture has been chosen.
The area of the single-banked architectures and the register file
cache are very similar for each configuration, although they are
not exactly the same since it is impossible to find configurations
with identical area due to their differing architectures.
Performance is measured as instruction throughput (instructions
committed per time unit) relative to the throughput of a one-cycle
single-banked architecture with configuration C1.

We can see in Figure 9 that performance increases as the
area rises, up to a certain point where a further increase in area
degrades performance, This point is reached when an increase in
cycle time is not offset by the boost in IPC provided by a larger
number of ports. If we choose the best configuration for each
architecture we can see that the speed-up of the register file cache
over the single-banked architecture is very high, averaging 87%
for SpecInt95 and 92% for SpecFP95. Comparing the register file
cache with the two-cycle single-banked architecture, we observe
an average speed-up of 9% for SpeciInt95 and about the same
performance for SpecFP95. However, note that the figures for the
two-cycle single-banked architecture are optimistic as
commented above.

5.

The organization and management of the register file has been
extensively researched in the past. However, there are very few
proposals based on a multiple-banked organization for a single
cluster architecture.

Related work

A two-level register file organization was implemented in
the Cray-1 [10]. The Cray-1 processor had 8 first-level and 64
second-level registers for addresses (referred to as A and B
registers respectively) and the same organization for scalars



Speclnt95

relativeinstruction throughput
relativeinstruction throughput

0-! L 0-

c1
Figure 9:

c2 Cc3 c4 C1 c2

architectures are described in Table 2.

SpecFP95

== 1-cycle
== non-bypass caching + prefetch-first-pair
= 2-cycle, 1-bypass

C3 C4

Performance of different register file architectures when the access time is factored in. The different

one-cycle single-banked two-cycle single-banked register file cache
upperm
conf. cycle cycle cycle ost I?g/\\//ee?t
Area ti)r/n e R W Area ti)r/n e R 1w Area ti)r/n A level B
(10K A?) (10K A?) (10K A?)
R W w
C1l 10921 4.71 3 2 10921 2.35 3 2 10593 2.45 3 2 2 2
C2 15070 4.98 3 3 15070 2.49 B K 15487 2.56 4 3 3 2
C3 18855 5.22 4 3 18855 2.61 1 3 20524 2.6[1 4 4 4 2
C4 24163 5.48 4 4 24163 2.74 1 4 25294 2.6/7 4 4 4 3

Table 2: Number of read (R) write (W) ports of each configuration. For the register file cache, number of buses (B) between the two
levels are also specified. Each bus implies a read port in the lowest level and an additional write port in the uppermost level.

(referred to as S and T respectively). Data movement between the
first and second levels was done completely under software
control by means of explicit instructions. Another hierarchical
register file that is very similar to the Cray-1 organization was
proposed in [11].

A replicated multiple-banked organization is a well-known
technique to reduce the number of ports of each bank. This
approach is used for instance by the Alpha 21264 microprocessor
[3]. The integer unit of this processor has a two-bank register file
with a one-level organization (both banks can feed the functional
units) and full replication of registers. Each functional unit can be
fed only by one of the banks and the results are always written in
both, with a one-cycle delay for the non-local bank.

A multiple-banked register file organization was also
proposed in [15]. This is a one-level organization with two read

and one write ports per bank. Register allocation was done at the
end of the execution in order to avoid conflicts in the write ports.

The non-consistent dual-register file [5] is a two-bank
organization for VLIW architectures with partial replication of
registers. It is a one-level organization with homogeneous banks,
in which the allocation of registers to banks was done by the
compiler.

The Sack [6] is a one-level two-bank architecture with
heterogeneous organization (different number of ports) and no
replication, which was proposed again for VLIW architectures.
The allocation of registers to banks was done at compile-time.

A two-level register file organization for a windowed
register file of an in-order issue processor was proposed in [1]. In
this case, the uppermost level stored a small number of register
windows, including the active one, whereas the lowest level held
the remaining windows. Overflow/underflow in the uppermost



level (due to a call/return respectively) was handled by halting the 8.
processor and using a special mechanism to transfer an entire
window to/from the lowest level. The idea of caching a subset of the [1]
registers in a fast bank was also proposed in [17]. That paper
presented some statistics about the hit rate of such a cache assuming
that every result was cached under an LRU replacement policy.
They also derived some performance implications for an in-order (2]
processor based on some simple analytical models.

Several partitioned register file organizations for media
processing were proposed in [9]. That work presents a taxonomy of
partitioned register file architectures across three axes. Register
files can be split along the data-parallel axis resulting in a SIMD [3]
organization, or along the instruction-level parallel axis resulting in
a distributed register file organization, or along the memory [4]
hierarchy axis resulting in a hierarchical organization. They
concluded that partitioned register file organizations reduce area,
delay, and power dissipation in comparison to the tradicional
central register file organization.

This paper is the first work, to the best of our knowledge, that
proposes a register file cache for a dynamically scheduled proce350|[5]
and evaluates it with respect to other single-banked architectures
with different levels of bypass. It also proposes a prefetching
scheme for a register file cache.

6. Conclusions [6]

This paper tackles the problem of the increasing impact on
performance of the register file access time. The proposed solution

is based on a multiple-banked register file architecture. Among the
different multiple-banked organizations outlined in this paper we [7]
focus on a two-level organization that we call a register file cache.
This organization allows a low latency register access and a single
level of bypass, whilst supporting a large number of physical
registers. (8]

A multiple-banked register file architecture allows for a
heterogeneous organization in which some banks have a higher
bandwidth and/or lower latency than others. The effectiveness of
the caching and fetching policies is critical to performance. In this
paper we have proposed two caching policies and a prefetching[9]
scheme.

We have shown that the register file cache outperforms a
non-pipelined single-banked architecture with the same bypass
complexity by 87% and 92% for SpecInt95 and SpecFP95 [10]
respectively.

Different caching and prefetching policies as well as their
extension to the one-level organization are currently being [11]
investigated.
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