
 

1 
 

Multiple behavioural mechanisms shape development in a highly social cichlid fish 1 

 2 

 3 

 4 

Isabela P. Harmona, Emily A. McCabea, Madeleine R. Verguna, Julia Weinsteinb, Hannah L. 5 

Gravesb, Deijah D. Bradleyc, Clare M. Boldta, June Leeb, Jessica M. Mauricea, Tessa K. 6 

Solomon-Lanea-c* 7 

 8 

aScripps College, Claremont, CA  9 

bClaremont McKenna College, Claremont, CA  10 

cPitzer College, Claremont, CA  11 

 12 

 13 

 14 

 15 

 16 

*Corresponding author 17 

Tessa Solomon-Lane 18 

W.M. Keck Science Department 19 

Scripps, Pitzer, and Claremont McKenna Colleges 20 

925 N. Mills Ave, Claremont, CA 91711, USA 21 

TSolomonLane@kecksci.claremont.edu 22 

+1 (909) 607-7857 23 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.04.14.536957doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536957


 

2 
 

ABSTRACT 24 

Early-life social experiences shape adult phenotype, yet the underlying behavioural mechanisms 25 

remain poorly understood. We manipulated early-life social experience in the highly social 26 

African cichlid fish Astatotilapia burtoni to investigate the effects on behaviour and 27 

neuroendocrine stress axis function. Juveniles experienced different numbers of early-life social 28 

partners in stable pairs (1 partner), stable groups (6 fish; 5 partners), and socialized pairs (a novel 29 

fish was exchanged every 5 days; 5 partners). Treatments differed in group size (groups vs. 30 

pairs) and stability (stable vs. socialized). We then measured behaviour in multiple contexts and 31 

collected water-borne cortisol. We found effects of treatment on behaviour across all assays: 32 

open field exploration, social cue investigation, dominant behaviour, and subordinate behaviour. 33 

Cortisol did not differ across treatments. Principal components (PC) analysis revealed robust co-34 

variation of behaviour across contexts, including with cortisol, to form behavioural syndromes 35 

sensitive to early-life social experience. PC1 (25.1%) differed by numbers of social partners: 36 

juveniles with more social partners were more active during the social cue investigation, spent 37 

less time in the territory, and were more interactive as dominants. Differences in PC5 (8.5%) 38 

were based on stability: socialized pairs were more dominant, spent less time in and around the 39 

territory, were more socially investigative, and had lower cortisol than stable groups or pairs. 40 

Behaviour observations in the home tanks provided further insights into the behavioural 41 

mechanisms underlying these effects. These results contribute to our understanding of how early-42 

life social experiences are accrued and exert strong, lasting effects on adult phenotype.          43 

 44 

Key words: Behavioural syndrome; Cortisol; Early-life experience; Early-life social effects; 45 

Ontogeny; Hypothalamic-pituitary-adrenal axis  46 
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INTRODUCTION 47 

 Early-life social environments and experiences are potent drivers of developmental 48 

plasticity for social species and, as a result, can have strong, long-term effects on organismal 49 

phenotype (Bateson, 2001; Bateson et al., 2004; Kuijper & Johnstone, 2019; Taborsky, 2017; 50 

Weaver, 2009). Early-life social effects have been documented across vertebrate taxa (e.g., 51 

Arnold & Taborsky, 2010; Bölting & von Engelhardt, 2017; Champagne & Curley, 2005; 52 

Moretz et al., 2007; Perkeybile & Bales, 2017; White et al., 2010), yet the specific attributes of 53 

early social environments and experiences that cause phenotypic changes are often unidentified 54 

(Kasumovic, 2013; Taborsky, 2016). Social interactions and stimuli can make up a substantial 55 

part of juvenile experience (Kohn, 2019). Depending on the species and group structure, early 56 

social interactions can involve parents (maternal, paternal, or biparental care) (Champagne & 57 

Curley, 2005; McClelland et al., 2011; Perkeybile et al., 2013), parental helpers (Arnold & 58 

Taborsky, 2010; Taborsky et al., 2012), siblings (Branchi et al., 2013; Buist et al., 2013; 59 

D’Andrea et al., 2007; Monclús et al., 2012), peers (Ahloy Dallaire & Mason, 2017; Bölting & 60 

von Engelhardt, 2017; Förster & Cords, 2005; Moretz et al., 2007; Weinstein et al., 2014), and 61 

other members of the group (Bray, Murray, et al., 2021; Förster & Cords, 2005; Jin et al., 2015), 62 

as well as observations of others interacting (Clay & de Waal, 2013; Desjardins et al., 2012; 63 

Oliveira et al., 1998). Identifying the specific, proximate causes—the behavioural mechanisms—64 

is critical to understanding how gene-by-environment interactions shape processes of 65 

developmental plasticity and behavioural developmental trajectories. Given the fitness and health 66 

consequences of social behaviour (Bennett et al., 2006; Meyer-Lindenberg & Tost, 2012; Silk, 67 

2007; Solomon-Lane et al., 2015; Wilson, 1980), the developmental origins of adult behavioural 68 

phenotype are particularly important to understand, including as a target for natural selection.  69 
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Manipulating the early social environment is a common approach to studying early-life 70 

social effects. For example, rearing animals in groups of different sizes and/or complexities often 71 

has significant effects on development and phenotype (reviewed in Taborsky, 2016). In ravens 72 

(Corvus corax), family size affected social attentiveness (Gallego-Abenza et al., 2022); in zebra 73 

finches (Taeniopygia guttata), rearing group size and age diversity of early-life flocks affected 74 

courtship and aggressive behaviour, as well as plumage development (Bölting & von Engelhardt, 75 

2017); in mice, communal nesting affected social skills and neuroendocrine function, with 76 

separate effects of maternal care and peer interactions (Branchi et al., 2009, 2013); and in 77 

Daffodil cichlids (Neolamprologus pulcher), the presence of parents and brood helpers increased 78 

social competence (Arnold & Taborsky, 2010; Taborsky et al., 2012). In general, larger social 79 

groups are more complex than smaller groups, and early exposure to social complexity tends to 80 

benefit social skills and competence (e.g., Branchi et al., 2009, 2013; Fischer et al., 2015; White 81 

et al., 2010). However, individuals accrue different social experiences, even within shared 82 

environments. For example, mouse pups in mixed-age, communal nests interact with siblings at 83 

varying rates and receive different levels of maternal care (Branchi et al., 2013); infant blue 84 

monkeys (Cercopithecus mitis stuhlmanni) receive varying rates of allomaternal care, and from 85 

different non-mothers in the group (Förster & Cords, 2005); immature male chimpanzees 86 

socially associate with adult males at different rates (Bray, Feldblum, et al., 2021); and young 87 

male long-tailed manakins occupy varied positions in the social network (McDonald, 2007). This 88 

variation can have long-term effects on social decision-making and behaviour (e.g., Branchi et 89 

al., 2013; Bray, Murray, et al., 2021; McDonald, 2007). Therefore, to identify the behavioural 90 

mechanisms underlying behavioural development, it is necessary to observe individuals in the 91 
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rearing environment and test mechanistic hypotheses directly by manipulating the quality and/or 92 

quantity of social experiences (Kasumovic, 2013; Taborsky, 2016). 93 

 Early social experiences exert long-term effects on organismal phenotype through 94 

persistent changes in underlying neural and neuroendocrine mechanisms (e.g., Antunes et al., 95 

2021; Branchi et al., 2013; Champagne & Curley, 2005; McClelland et al., 2011). The 96 

neuroendocrine stress axis, or hypothalamic-pituitary-adrenal (interrenal in fish; HPA/I) axis, is a 97 

highly-conserved mechanism underlying early-life effects, including social effects (Banerjee et 98 

al., 2012; Champagne & Curley, 2005; Crespi & Denver, 2005; Ensminger et al., 2018; Francis 99 

et al., 1999; Jonsson & Jonsson, 2014; McClelland et al., 2011; Taborsky, 2016). The HPA/I axis 100 

translates environmental conditions and experiences into coordinated physiological and 101 

behavioural responses through a neuroendocrine cascade that initiates in response to an 102 

environmental stressor. Detection of a stressor, which can include any external condition that 103 

disrupts or threatens to disrupt homeostasis, leads to the release of corticotropin-releasing factor 104 

(CRF) from the hypothalamus. The pituitary responds to CRF with the release of 105 

adrenocorticotropic (ACTH) hormone, which signals for the adrenal (or interrenal) glands to 106 

release glucocorticoids (cortisol in fishes) into circulation (Denver, 2009; Lowry & Moore, 2006; 107 

Wendelaar Bonga, 1997). Early-life social experiences shape HPA/I axis function in multiple 108 

ways (Champagne & Curley, 2005; Francis et al., 1999; McClelland et al., 2011; Spencer, 2017; 109 

Taborsky, 2016; Turecki & Meaney, 2016). For example, peer-reared rhesus macaques (Macaca 110 

mulatta) had higher baseline and stress-induced levels of ACTH and cortisol, as well as a more 111 

reactive HPA axis, compared to maternal-reared juveniles (Stevens et al., 2009). Similarly, zebra 112 

finch chicks reared with only their fathers had hyperresponsive HPA axes, along with altered 113 

levels of neural glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) expression, 114 
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compared to biparental rearing (Banerjee et al., 2012). In N. pulcher cichlids, rearing with or 115 

without parents affected gr1 expression in the telencephalon (Nyman et al., 2018), and rearing 116 

with or without brood helpers altered neural crf and gr expression, as well as the ratio of mr to 117 

gr1 (Taborsky et al., 2013). The HPA/I axis is also an important source of individual variation in 118 

social behaviour (Boogert et al., 2014; Dettmer et al., 2017; Farine et al., 2015; Freeman et al., 119 

2021; Pryce et al., 2011; Reyes-Contreras et al., 2019; Sih, 2011) and health (e.g., Turecki & 120 

Meaney, 2016).     121 

 In this study, we used Burton’s Mouthbrooder (Astatotilapia burtoni), a highly social 122 

cichlid fish and model system in social neuroscience (Fernald & Maruska, 2012; Hofmann, 123 

2003; Stevenson et al., 2018), to investigate the behavioural mechanisms through which early-124 

life social experiences affect behaviour and HPI axis function. The vast majority of research on 125 

this species has focused on adults, which form mixed-sex, hierarchical social communities. 126 

Dominant males are colourful, territorial, and reproductively active. In contrast, subordinate 127 

males are drab in coloration, shoal with females, and are reproductively suppressed. Social status 128 

is socially-regulated, and males regularly transition between dominant and subordinate positions 129 

(Fernald & Maruska, 2012; Hofmann, 2003). Juveniles also form status relationships (Solomon-130 

Lane et al., 2022), and both juveniles and adults express a suite of highly-conserved social 131 

behaviours (Fernald & Hirata, 1979; Fernald & Maruska, 2012; Solomon-Lane et al., 2022; 132 

Weitekamp & Hofmann, 2017). Although sex and social status have strong effects on adult 133 

behaviour, individual variation persists, including in the frequency and quality of behavioural 134 

expression, such as aggression, territoriality, courtship, cooperation, reproductive behaviour, and 135 

maternal behaviour (Alward et al., 2021; Friesen et al., 2022; Fulmer et al., 2017; Kidd et al., 136 

2013; Maruska, Becker, et al., 2013; Renn et al., 2009; Weitekamp & Hofmann, 2017); tenure in 137 
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a dominant vs. subordinate role (Hofmann et al., 1999); female mate choice (Kidd et al., 2013); 138 

social learning (Rodriguez-Santiago et al., 2020); and cognition (Wallace & Hofmann, 2021). 139 

HPI axis function also varies among adults (Alcazar et al., 2016; Chen & Fernald, 2008; Clement 140 

et al., 2005; Dijkstra et al., 2017; Greenwood et al., 2003; Korzan et al., 2014; Maruska et al., 141 

2022) and is highly responsive to social context, such as social status and changes in status 142 

(Carpenter et al., 2014; Chen & Fernald, 2008; Clement et al., 2005; Fox et al., 1997; Huffman et 143 

al., 2015; Korzan et al., 2014; Maruska et al., 2022; Maruska, Zhang, et al., 2013; Parikh et al., 144 

2006), group social dynamics (Maguire et al., 2021), social habituation (Weitekamp & Hofmann, 145 

2017), and in response to an intruder (Alcazar et al., 2016; Weitekamp et al., 2017).   146 

 Developmental plasticity may be an important source of individual variation in behaviour 147 

and HPI axis function among adults (Fernald & Hirata, 1979; Fraley & Fernald, 1982; Solomon-148 

Lane & Hofmann, 2019). We have previously demonstrated early-life social effects in juvenile 149 

A. burtoni in response to early-life social group size. Juveniles reared in social groups (16 fish) 150 

developed to be more active, more socially interactive, and less submissive in a subordinate role 151 

compared to pair-reared juveniles. Whole brain gene expression related to HPI axis function was 152 

also altered, including elevated GR1a expression in group-reared animals and tight co-expression 153 

of candidate genes (including GR1a, GR1b, GR2, MR, and CRF) in pair-reared, but not group-154 

reared or isolated, juveniles (Solomon-Lane & Hofmann, 2019). Juveniles in the previous study 155 

were not observed in the rearing environment, and there are multiple, possible behavioural 156 

mechanisms responsible for these effects (Solomon-Lane & Hofmann, 2019; Taborsky, 2016). 157 

Individuals reared in larger and/or more complex groups may interact socially at higher rates, 158 

experience a greater diversity of types of social interaction (e.g., affiliative, aggressive, 159 

cooperative, etc.), gain experience in multiple social roles (e.g., dominant and subordinate, 160 
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younger and older) (Chase et al., 2022; Solomon-Lane et al., 2022; Williamson et al., 2016), 161 

have more social partners, have social partners of varied identities / traits (e.g., age, body size, 162 

life history stage diversity) (Arnold & Taborsky, 2010; Bölting & von Engelhardt, 2017; Branchi 163 

& Alleva, 2006; Taborsky et al., 2012; White et al., 2010), experience interactions involving 164 

more actors simultaneously (i.e., 3-way, or more, interactions), and learn indirectly by watching 165 

others (e.g., Desjardins et al., 2012; Oliveira et al., 1998)). For juvenile A. burtoni, group size 166 

and the relative body sizes of individuals affects social behaviour and group structure. For 167 

example, pairs and triads containing same-sized fish are less hierarchical (Solomon-Lane et al., 168 

2022).  169 

In this study, we tested the hypothesis that the number of social partners experienced by 170 

juvenile A. burtoni during early-life is a behavioural mechanism that shapes behavioural 171 

development and HPI axis signalling. The number of social partners is one clear way that groups 172 

and pairs differ (Solomon-Lane & Hofmann, 2019). There is also evidence from other species 173 

that this may be a meaningful attribute of social experience that varies across individuals. 174 

Assortative social interactions have been observed in a variety of species. For example, more 175 

socially interactive juvenile yellow-bellied marmots (Marmota flaviventris) had more novel 176 

social partners (Monclús et al., 2012); juvenile male geladas (Theropithecus gelada) had more 177 

novel play partners than juvenile females (Barale et al., 2015); juvenile rhesus macaques exhibit 178 

variation in the number of friendships initiated and reciprocated (Weinstein et al., 2014); and 179 

bold three-spined sticklebacks (Gasterosteus aculeatus) had a larger number of social contacts 180 

compared to shy fish (Pike et al., 2008). For juvenile A. burtoni in pairs and triads, individuals 181 

are not equally likely to initiate interactions (Solomon-Lane et al., 2022), suggesting that in 182 

larger, more naturalistic groups, social network connectivity may vary considerably, as it does in 183 
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adults (Maguire et al., 2021). Direct manipulations of social partner numbers can also affect 184 

social behavioural development. For example, juvenile male brown-headed cowbirds reared in 185 

dynamic flocks outcompeted males reared in stable flocks of the same size (White et al., 2010).  186 

To manipulate the number of social partners, we reared juveniles in stable pairs (2 fish, 1 187 

partner each), in stable groups (6 fish, 5 partners each), or in socialized pairs, in which one 188 

member of the pair was changed 5 times over the course of the ~1 month experiment (2 fish at a 189 

time in the pair, 5 total partners each) (Figure 1). This design also allowed us to compare the 190 

effects of group size (pair vs. group) and social stability (stable vs. socialized). We observed 191 

social interactions in the different rearing environments to quantify social experience and then 192 

tested the effects on individual social behaviour through a series of behaviour assays. We 193 

hypothesized that the number of social partners would be the strongest influence on behavioural 194 

phenotype. If the number of early-life social partners was an important behavioural mechanism 195 

underlying group- vs. pair-reared development in Solomon-Lane & Hofmann (2019), then in this 196 

study, we predict that juveniles from the stable groups and socialized pairs will be more active 197 

and socially interactive in novel social context, as well as less submissive in a subordinate role. 198 

To test the hypothesis that early-life social experience affects HPI axis signalling, we collected 199 

water-borne cortisol following the individual behaviour assays. By investigating specific 200 

behavioural mechanisms underlying behavioural development and neuroendocrine function, this 201 

research can provide insights into developmental plasticity processes and uncover the origins of 202 

adult phenotype. 203 

 204 

METHODS 205 

Animals 206 
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The juvenile A. burtoni used in this experiment were bred in the laboratory. The breeding 207 

adults are a laboratory population that descended ~65-70 generations from a wild caught stock 208 

from Lake Tanganyika (Fernald & Hirata, 1977). The adults are housed in naturalistic, mixed-209 

sex breeding communities. Dominant males court females to lay eggs in his territory, after which 210 

she immediately scoops up the eggs into her mouth, where the male fertilizes them. The 211 

developing larvae are brooded in the female’s buccal cavity for ~14 days before being released. 212 

In the wild, and under some laboratory conditions, females display maternal behaviour by 213 

guarding their offspring for 10 days or more after initially releasing the free-swimming fry from 214 

her mouth (Renn et al., 2009).  215 

In this study, 86 fry were removed from the buccal cavities of 7 mothers approximately 216 

5-7 days after fertilization. We selected fry at this early developmental stage before overt social 217 

interactions occurred (Fraley & Fernald, 1982) to ensure that the scope of our experiment 218 

captured meaningful social experience as early as possible during development. Individual 219 

broods were then placed in shallow water in a petri dish, and a digital image was taken with a 220 

ruler for scale. ImageJ was used to measure standard length (SL, mm) (Schneider et al., 2012), 221 

from the tip of the jaw to the caudal peduncle. Broods ranged in size from 4-21 fry (mean: 12.43 222 

± 2.84 fry, median: 15), and fry size ranged from 4.59-8.13 mm SL (mean: 5.96 ± 0.095 mm, 223 

median: 5.81 mm). See Supplemental Table 1 for mean, median, minimum, and maximum SL of 224 

fry per brood. All 7 broods were then placed briefly (~30 min) in a common bucket to intermix. 225 

Given their developmental stage, social interactions were highly unlikely to occur, but visual, 226 

chemosensory, and tactile social sensory cues were likely exchanged. We used a hand net to 227 

remove individuals from the bucket and haphazardly assigned them to different home tanks and 228 

treatment groups (stable groups, socialized pairs, or stable pairs; see below for descriptions). 229 
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Methylene blue was added to the water to reduce the incidence of fungal infection during this 230 

time. After 7 days, we confirmed visually that the fry were all mobile and their yolks had been 231 

fully absorbed. The sex ratio of fish in this experiment is not known because sex cannot be 232 

determined anatomically until reproductive maturation. The sex ratio of A. burtoni broods (a 233 

laboratory population descended from wild-caught fish) is approximately 1:1 (Heule et al., 234 

2014).  235 

 236 

Early-life social experiences 237 

 Fry were reared for 32 or 35 days (depending on the behavioural test day, see below) in 238 

one of three conditions to manipulate early-life social experience: stable groups of 6 fish (n=6 239 

groups), stable pairs of 2 fish (n=7 pairs), and socialized pairs of 2 fish (n=8 pairs) (Figure 1). 240 

These treatment groups were designed to manipulate the number of early-life social partners. In 241 

the stable groups, every individual had 5 social partners. In the stable pairs, every individual had 242 

1 social partner. In the socialized pairs, 1 individual was removed from the tank using a hand net 243 

every 5 days and was replaced with a novel partner. The fish that was removed was transferred to 244 

another socialized pair tank with a novel partner. The social exchanges began on experimental 245 

day 12 (all fry were sufficiently mature on day 7, followed by 5 days with the first social 246 

partner). After a total of 4 exchanges, each of the fish in the socialized pairs were exposed to a 247 

total of 5 social partners, the same number of partners that each individual experienced in the 248 

stable groups. However, the size of the social group for socialized pairs was always 2 fish, the 249 

same as in the stable pairs. As a control, on the day that fish in the socialized pairs were 250 

transferred, we used a hand net to remove one fish from each of the stable pairs and stable 251 
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groups. That fish was immediately returned to the same home tank so that group membership in 252 

the stable pairs and stable groups was consistent.   253 

 Stable and socialized pairs were housed in small acrylic tanks (23 × 15 × 15 cm), while 254 

the stable groups were housed in larger acrylic tanks (30 x 20 x 17 cm). One small terracotta pot 255 

(5 cm at the widest diameter) was placed in each tank, and an air stone was used to keep the 256 

water oxygenated. There was no substrate on the bottom of the tank. White plastic dividers were 257 

placed outside of the tanks to prevent visual contact between tanks. The fish were maintained on 258 

a 12:12 light:dark schedule at 24°C, and they were fed Hikari Middle Larval Stage Plankton 259 

(Pentair Aquatic Eco-Systems, Cary, NC) once a day. We mixed 0.015 g of fish food in 200 mL 260 

of water. The mixture was actively stirred, and a transfer pipette was used to add 1 mL to the 261 

pairs and 3 mL to the groups.  262 

 263 

Tagging individual fish 264 

 To track individuals as they developed over the course of the experiment, we tagged 265 

every fish following the first rotation in the socialized pairs. We waited until this time so the fish 266 

would be slightly bigger, as their very small size is a challenge for existing tagging methods 267 

(Lotrich & Meredith, 1974; Solomon-Lane & Hofmann, 2018; Thresher & Gronell, 1978). We 268 

first lightly anesthetized each fry in 0.03 g MS-222 / L aquarium water (buffered with sodium 269 

bicarbonate to pH 7.0 –7.5). They were then removed from the water and placed on a wet paper 270 

towel. We placed a small amount of Alcian Blue (Fisher Scientific, Pittsburgh, PA) powder onto 271 

the dorsal muscle of the fish and perforated the surface of the fish using a pulled capillary tube 272 

micropipette. This method of tattooing allowed the ink to seep into the tissue of the fish. We 273 

used different tag locations (left or right; anterior, middle, or posterior regions) on the dorsal 274 
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muscle to differentiate individuals in the same tank. In the socialized pairs, tagging was 275 

sufficient in most tanks to identify and move the same individual each time. The persistence of 276 

the tag varied, and in the best cases, it remained visible for 3 weeks. If the tags were not visible 277 

in the socialized pair, the smaller individual was moved.  278 

 279 

Survival and number of early-life social partners  280 

 The tagging procedure had an 85% survival rate. Fish that did not survive tagging or that 281 

died at another point in the experiment were replaced with a fish of similar size and age, selected 282 

from a community tank. The replacement fish were not included in the individual behaviour 283 

assays conducted at the end of the experimental rearing period (see below). We tracked the exact 284 

number of social partners for each experimental tank. All fish in the socialized pairs had 5 social 285 

partners. Stable group fish had an average of 6.43 ± 0.14 social partners. Stable pair fish had an 286 

average of 1.2 ± 0.13 social partners. In our analyses, we consider the treatment groups as 287 

categorical, although there is limited variation in the number of social partners (Supplemental 288 

Figure 1).  289 

 290 

Behavioural Observations  291 

Home tanks: We recorded social behaviour in the home tanks twice during the rearing period, on 292 

days 20 and 25 of the experiment, at the same time of day. Cameras (Warrior 4.0, Security 293 

Camera Warehouse, Asheville, NC) were positioned above the tanks, and with the tank lids 294 

removed, all areas of the tank were visible except under the terracotta pot. Using Solomon Coder 295 

(www.solomoncoder.com), 10 minutes of video was scored for approaches and displacements. 296 

Approaches were counted anytime one fish swam directly towards any part of another fish, 297 
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within 3 body lengths. Approaches can range from affiliative to aggressive, and the response of 298 

the approached fish provides insight into the degree of agonism. If the approached fish swam 299 

away in any direction, it was scored as a displacement, which is an indication that the approach 300 

was aggressive. Because the identification tags were not visible on the video, we counted the 301 

total number of social interactions (approaches, displacements) for the group or pair. We also 302 

quantified the number of times a fish entered the terracotta pot territory, defined as at least 50% 303 

of a fish’s body crossing into / under the pot. Exiting the territory was highly correlated with 304 

entering the territory (p<0.0001, r2=0.97); therefore, we only present data for entering. To 305 

measure social grouping, we captured screenshots from the video every 30 s for a total of 20 time 306 

points. Distance was measured between every dyad, from a focal point in the centre of the head, 307 

using ImageJ (Schneider et al., 2012). The researchers scoring these behaviours were unaware of 308 

the treatment of the pairs (socialized vs. stable), but the stable groups were easily recognizable. 309 

For behaviour and distance, we analysed the raw values (behaviours per minute and distance), as 310 

well as scaled these values to account for differences in group size (behaviours per minute 311 

divided by 2 for the pairs and divided by 6 for the groups) and tank size (distance divided by the 312 

hypotenuse of the tank) among treatments.  313 

 314 

Individual Behaviour Assays: After the 32 or 35-day rearing period, we measured individual 315 

behaviour in a series of assays, including open field exploration, social cue investigation, 316 

dominant behaviour, and subordinate behaviour. Every fish in the socialized (final sample size: 317 

n=9) and stable pairs (final sample size: n=10) was included in the individual assays. Three of 318 

the 6 fish from each stable group were selected randomly to be included in the individual assays 319 

using a random number generator (final sample size: n=14). The procedures have been described 320 
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previously in detail (Solomon-Lane & Hofmann, 2019). Briefly, these assays (or similar) are 321 

used across species to assess different elements of behavioural phenotype, including behaviours 322 

affected by early-life social experience (Sih, 2011; Sih et al., 2015; Solomon-Lane & Hofmann, 323 

2019; Taborsky, 2016). The open field exploration is used to assess locomotion and anxiety-like 324 

behaviours (e.g., Cachat et al., 2010; Prut & Belzung, 2003). The social cue investigation is used 325 

as a measure of social motivation or preference (e.g., Bonuti & Morato, 2018; Moy et al., 2004). 326 

The dominant and subordinate behaviour assays are used to assess how the focal fish behaves 327 

when in the position to be dominant or subordinate. In social groups, including for juvenile A. 328 

burtoni (Solomon-Lane et al., 2022), most individuals will be subordinate to some group 329 

members and dominant over others at a given time (e.g., Chase et al., 2022). Social status also 330 

changes over a lifetime (Fernald & Maruska, 2012; Hofmann, 2003).  331 

 The behavioural assays took place in novel experimental aquaria, which were the same 332 

size as the pairs’ home tanks (3.27 L, 23 × 15 × 15 cm). Cameras recorded behaviour from 333 

above, and all areas of the tank were visible except under the terracotta pot. A permanent marker 334 

was used to delineate different zones (Figure 1B): a territory zone that contained a small 335 

terracotta pot, a close zone, a far zone, and an investigate zone where the social cue was placed 336 

for the social cue investigation assay. Each assay lasted for 30 min. The focal fish was alone in 337 

the tank for the open field exploration (minutes 20-30 were analysed). For the social cue 338 

investigation, a live, novel cue fish inside of a 20 mL glass vial was placed in the investigate 339 

zone (see placement in Figure 1B, minutes 2-12 were analysed). In the open field and social cue 340 

assays, we recorded the number of times a fish entered a zone and how long it spent there. After 341 

removing the vial and cue fish, a free-swimming, novel fish that was smaller than the focal fish 342 

was added to the tank to assess dominant behaviour (minutes 2-12 were analysed). After 343 
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removing the small fish, a free-swimming novel fish larger than the focal was added to assess 344 

subordinate behaviour (minutes 2-12 were analysed). In the dominant and subordinate behaviour 345 

assays, we scored approaches and displacements. The researchers scoring these behaviours were 346 

unaware of the treatment of the focal fish.  347 

 From the approaches and displacements in the dominant and subordinate behaviour 348 

assays, we calculated two additional social measures using the compete package in R (Curley, 349 

2016). First, we calculated an adjusted version of David’s Score, which is a dominance index. 350 

Rather than categorizing all social interactions as a one-dimensional “win” or “loss,” we 351 

incorporated both approaches and displacements, such that the agonistic outcome of individual i 352 

in interaction with another individual j is the number of times that i displaces j, divided by the 353 

total number of interactions (approaches) between i and j (i.e., i displaces j / (i approaches j + j 354 

approaches i)). The rest of the calculations were done as described in Gammell et al. (2003). See 355 

the Supplemental Information in Solomon-Lane et al. (2022) for the R code. Second, we 356 

calculated directional consistency index (DCI) to assess whether patterns of approaching in the 357 

dyads are reciprocal, from perfectly reciprocal (0) to unidirectional (1). We also used the 358 

compete package to run a randomization test to determine if the directionality was significantly 359 

more asymmetrical (unidirectional) than expected by chance (Leiva et al., 2008).   360 

 361 

Water-borne cortisol 362 

 Following the individual behaviour assays, we collected water-borne hormone samples. 363 

This is a non-invasive method of quantifying steroid hormones, and values strongly correlate 364 

with circulating hormone levels (Kidd et al., 2010). We chose cortisol, as HPI axis function is 365 

often affected by early-life experience (e.g., Champagne & Curley, 2005; Taborsky et al., 2013) 366 
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and cortisol can correlate with behaviour and behavioural syndromes (e.g., Koolhaas et al., 367 

1999). Focal fish were placed individually in clean glass vials filled with 15 mL of clean 368 

aquarium water for 2 hrs. Visual barriers were placed around the vials to limit disturbances to the 369 

fish during the collection. After two hours, fish were removed from the vial using a hand net 370 

rinsed in clean aquarium water, and samples were frozen at 4°C until processing. Hormones were 371 

extracted from the water samples using 3 cc Sep-Pak Vac C18 columns (Water Associates, 372 

Milford, MA). Columns were first primed by passing 2 mL methanol through the columns twice, 373 

being careful not to let the columns run dry. This was followed by running 2 mL ultrapure water 374 

through the columns twice. The thawed samples were then passed through the columns from the 375 

sample vials using the vacuum pump. Ultrapure water (2 mL twice) was then passed through the 376 

columns again, followed by 5 min of the vacuum to dry the columns. Finally, the hormone 377 

samples were eluted into 13 x 100 borosilicate test tubes by passing 2 mL methanol through the 378 

columns twice. The vacuum was used again to dry the columns. The sample in methanol was 379 

then evaporated under a gentle stream of nitrogen at 37°C and resuspended to a volume of 200 380 

μL per sample (5% EtOH and 95% ELISA buffer). Resuspended samples were shaken on a 381 

multitube vortex for 1 hr before being stored at -20°C. Before measuring cortisol, samples were 382 

thawed and shaken again on the multitube vortex for 1 hr. ELISAs were completed according to 383 

the supplier’s instructions (Cayman Chemical, Ann Arbor, Michigan). 384 

 Cortisol data are presented here as pg hormone per mL sample volume per hr sample 385 

collection per g body weight. During hormone collection, fish excrete hormones into the water 386 

through their gills, urine, and faeces. The gills of larger fish have a larger surface area compared 387 

to smaller fish, thus body size can influence water-borne hormone levels. Fish size was measured 388 

following the collection of water-borne hormones. Mass was measured on an analytical balance, 389 
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and SL was measured using ImageJ (Schneider et al., 2012) from digital images with a rule for 390 

scale. We calculated the condition index as Fulton’s K, which estimates expected mass as SL3. 391 

We used the mass and SL of 400 laboratory A. burtoni across a range of ages and sizes to 392 

empirically calculate expected mass as: mass=0.00002*SL3.02 (Stevenson & Woods, 2006).       393 

 394 

Ethical Note 395 

All research was done in compliance with the Institutional Animal Care and use Committee 396 

(IACUC Protocol # 19-001). We used non-invasive approaches when possible, such as collecting 397 

water-borne hormones, and we used a tested and effective anaesthetic (MS-222) for tagging to 398 

minimize stress and pain. We took steps to minimize stress throughout the experiment, including 399 

limiting handling time to less than 2 min when measuring size or transferring between tanks. A 400 

total of 76 juvenile A. burtoni were included in this study, and fish were returned to community 401 

tanks at the end of the experiment.   402 

 403 

Statistical Analyses 404 

All statistical analyses were conducted using R Studio (R version 4.2.1) (RStudio Team, 405 

2022). Results were considered significant at the p<0.05 level, and averages ± standard error of 406 

the mean are included in the text. The boxes of the box and whisker plots show the median and 407 

the first and third quartiles. The whiskers extend to the largest and smallest observations within 408 

or equal to 1.5 times the interquartile range. To test for the effects of early-life social experience, 409 

we compared body size and condition index; behaviour in the home tank rearing environments 410 

(total behaviours per minute and behaviours per fish per minute); spatial distancing in the home 411 

tank rearing environments (raw distance and scaled to account for the different sized aquaria for 412 
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pairs vs. groups); behaviour in the open field exploration and social cue investigation (frequency 413 

entering and time in the territory, close, far, and investigate zones); social behaviour 414 

(approaches, displacements, approaches received, submissions) and status (David’s score, DCI) 415 

in the dominant and subordinate assays; cortisol; and principal components (see below, PCs 1-5) 416 

across fish reared in the stable groups, socialized pairs, or stable pairs. For data that met the 417 

assumptions of parametric statistics, we used one-way ANOVAs. The cortisol data were log 418 

transformed first to meet the assumption of normal distribution. Post hoc analysis of significant 419 

ANOVA results was calculated using Tukey HSD tests. For data that did not meet the 420 

assumptions of parametric statistics, we used non-parametric Kruskal-Wallis tests, and Dunn’s 421 

tests with Bonferroni correction were used for post hoc analysis of significant results. Eta 422 

squared is reported for the effect size of both the one-way ANVOAs and Kruskal-Wallis tests 423 

(small effect: 0 < η2 < 0.01; moderate: 0.01 < η2 < 0.06; large: 0.06 < η2). We used Principal 424 

Components Analysis (PCA) to identify how behaviour in the open field exploration, social cue 425 

investigation, dominance behaviour assay, subordinate behaviour assay, and cortisol clustered.  426 

 427 

RESULTS 428 

Body size and condition 429 

To determine whether early-life experience in a stable group, socialized pair, or stable 430 

pair affected body size and condition, we compared SL, mass, and condition index across 431 

treatment groups. We found that mass differed significantly across treatment groups (χ22=6.39, 432 

p=0.041, 𝜂2=0.15; Supplemental Figure 2A). Post hoc analysis showed juveniles reared in stable 433 

pairs were significantly heavier than those from stable groups (p=0.036). There were no 434 

significant differences in mass between stable groups and socialized pairs (p=0.63) or between 435 
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stable pairs and socialized pairs (p=0.82). There were no significant treatment differences in SL 436 

(F2,30=2.15, p=0.14; Supplemental Figure 2B). Because we found an effect of rearing experience 437 

on mass, but not SL, we also asked whether condition index was affected by treatment. We 438 

found no significant treatment differences in condition index (F2,30=0.45, p=0.62, Supplemental 439 

Figure 2C). Mass was also positively correlated with water-borne cortisol levels (p=0.017, 440 

r2=0.15, Supplemental Figure 2D); therefore, we corrected for body size in the cortisol analyses 441 

below.  442 

 443 

Home tank social behaviour 444 

 We observed juveniles in the stable groups, socialized pairs, and stable pairs to 445 

understand the differences in social experience and environment among the rearing treatments. 446 

Unsurprisingly, there were significantly more approaches and displacements in groups compared 447 

to pairs (both stable and socialized), and there were significantly more entrances to the territory 448 

in groups compared to stable pairs (Figure 2A). There were no differences in efficiency (Figure 449 

2B). There were also no differences in rates of behavioural interactions per fish. Mean dyad 450 

distance was significantly larger in groups than pairs (Figure 2C), but interestingly, the minimum 451 

dyad distance was significantly smaller in groups than socialized pairs (Figure 2D). There were 452 

no treatment differences in mean dyad distance when scaled for tank size. Statistics are reported 453 

in Table 1 and Supplemental Table 2.  454 

 455 

Open field exploration and social cue investigation 456 

 For the open field exploration and social cue investigation, we compared across treatment 457 

groups for the frequency of entering each zone of the tank, as well as time spent in each zone.  458 
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Statistics are reported in Table 2 (Supplemental Figure 3). Overall, we found for the open field 459 

exploration that fish from the socialized pairs entered the territory zone significantly more 460 

frequently than stable pair fish, and fish from the stable groups spent significantly more time in 461 

the far zone than stable pair fish. In the social cue investigation, we found that social group fish 462 

entered the far zone significantly more frequently and spent significantly more time in the 463 

territory and far zones, than fish reared in stable pairs.  464 

 465 

Dominance and Subordinate Assays 466 

 To determine whether rearing experience affected social behaviour and status, we 467 

quantified patterns of social interaction between the focal fish and a novel social partner (cue 468 

fish). Because relative physical size often affects dominant and subordinate social dynamics for 469 

juveniles (Solomon-Lane et al., 2022), pairing the focal fish with a smaller fish (dominance 470 

assay) presented the focal fish with the opportunity to express social behaviours as the dominant. 471 

In pairing the focal fish with a larger fish (subordinate assay), the focal fish can express social 472 

behaviours as the subordinate. We found significant differences in social behaviour and status in 473 

both the dominance and subordinate assays (statistics reported in Table 3, Figure 3). In the 474 

dominance assay, socialized pair fish approached and displaced significantly more than stable 475 

pair fish, and their David’s Scores were significantly higher than both stable pair and stable 476 

group fish. In the subordinate assay, socialized pair fish received significantly more approaches 477 

than stable pair fish from the larger cue fish with which they were paired. Socialized pairs with 478 

their cue fish also had significantly lower directional consistency than stable group or stable pair 479 

fish.      480 

 481 
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Cortisol 482 

 Following the behaviour assays, we collected water-borne cortisol to determine whether 483 

hormone levels were affected by rearing experience and/or associated with behavioural 484 

phenotype (see PCA below). We found there were no significant differences in cortisol across 485 

treatments (F2,29=2.30, p=0.12, Figure 4).  486 

 487 

Integrative analysis of behaviour, social status, and cortisol 488 

 Given the treatment differences we identified across the open field exploration, social cue 489 

investigation, dominance assay, and subordinate assay, we next used PCA to integrate across 490 

assays. This allowed us to identify subsets of factors that together contribute to juvenile 491 

phenotype and test if suites of factors—principal components (PCs)—differed significantly 492 

across treatment groups. To determine which variables to include from the open field exploration 493 

and social cue investigation (time and frequency in the territory, close, far, and investigate 494 

zones), we ran an initial PCA with just these variables. Examining the vector plot for PC1 with 495 

PC2 (Supplemental Figure 4), we found that nearly all of the open field exploration measures 496 

were strongly aligned with the same measure in the social cue investigation (i.e., the vectors for 497 

open field and social cue time in the territory zone are identical). The exceptions were for time 498 

spent in the far and investigate zones. Therefore, to avoid unnecessary replication, we chose to 499 

include all of the variables from the social cue investigation, in addition to time spent in the far 500 

and investigate zones during the open field exploration. From the dominant and subordinate 501 

assays, we included approaches, displacements, approaches received, submissions, and David’s 502 

score. Finally, we included cortisol.  503 
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 Here, we focused on the first 5 PCs, which together explain 76.6% of the variation in the 504 

data (Figure 5A). We found significant effects of rearing experience on PC1 (25.1%) and PC5 505 

(8.48%). For PC1, stable pairs were significantly higher than stable groups, and there was a trend 506 

for stable pairs to be higher than socialized pairs (p=0.063) (Figure 5B). Behaviours from the 507 

dominant behaviour assay and the social cue investigation assay loaded strongly on PC1. 508 

Approaches and displacements when in a dominant social role; time in and frequency entering 509 

the far and investigate zones during the social cue investigation; and frequency entering the close 510 

zone during the social cue investigation loaded strongly in the same direction. Time spent in the 511 

territory zone during the social cue investigation loaded strongly in the opposite direction. For 512 

PC5, socialized pairs were significantly higher than both stable groups and stable pairs (Figure 513 

5C). David’s Score from the dominance assay and time in the investigate zone during the social 514 

cue investigation loaded strongly together in the same direction. In the opposite direction, 515 

submissions as a dominant; cortisol; time and frequency in the close zone during the social cue 516 

investigation; and the frequency entering the territory zone during the social cue investigation 517 

loaded strongly together. Statistics for the PC1-PC5 treatment comparisons are in Table 4 (also 518 

see Supplemental Figure 5). 519 

 520 

DISCUSSION 521 

We investigated the effects of early-life social experience, in the first month of life, on 522 

social behaviour and neuroendocrine stress axis function in juvenile A. burtoni. We tested the 523 

hypothesis that the number of novel social partners experienced during early-life is a behavioural 524 

mechanism driving variation in development. In manipulating the number of social partners, our 525 

experimental treatment groups—stable groups, socialized pairs, and stable pairs—also varied in 526 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.04.14.536957doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.14.536957


 

24 
 

social group size (pairs vs. group) and group stability (socialized vs. stable). We present strong 527 

evidence for early-life social effects on juvenile social behaviour, consistent with previous 528 

studies in this species (Fernald & Hirata, 1979; Fraley & Fernald, 1982; Solomon-Lane & 529 

Hofmann, 2019). In particular, our results support two behavioural mechanisms: the number of 530 

social partners and social stability. Although early-life social effects are widely documented 531 

across social species, the specific attributes of social experience that affect the mechanisms and 532 

trajectory of developmental plasticity are not typically identified (Kasumovic, 2013; Taborsky, 533 

2016). The social interactions and social spacing we observed in the home tanks also provide 534 

insights into how social environments vary within and across treatments and may shape the 535 

experiences individuals accrue during development. Causation at this level is needed because it 536 

is these environmental elements that interact with genes dynamically over development to 537 

influence plasticity and the emergence of adult phenotype (Kasumovic, 2013; Taborsky, 2016, 538 

2017). Overall, it is likely that multiple behavioural mechanisms contribute and interact to shape 539 

development (e.g., Branchi et al., 2013) and adult phenotype.  540 

 We found that manipulating early-life social experience affected behaviour across 541 

multiple contexts, including the open field exploration, social cue investigation, dominant 542 

behaviour assay, and subordinate behaviour assay. Principal components analysis revealed that 543 

these effects were correlated across contexts. Principal component 1 (25.1%) and PC5 (8.5%), 544 

which both differed significantly across treatment groups, had behaviours from multiple assays 545 

that loaded strongly. These results support our previous finding that juvenile A. burtoni 546 

behaviour can form a syndrome, and an individual’s position along the syndrome continuum is 547 

sensitive to early-life social experience (Solomon-Lane & Hofmann, 2019). A syndrome is a 548 

population-level measure in which rank-order differences between individuals are correlated 549 
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across contexts and/or over time (Bell, 2007). Behavioural syndromes have been identified 550 

across species and can indicate consistency in individual behaviour across contexts and/or over 551 

time (Bell, 2007; Sih, Bell, & Johnson, 2004; Sih, Bell, Johnson, et al., 2004). The PC1 552 

syndrome included approaches and displacements in the dominance assay loading strongly in the 553 

same direction with time in and frequency entering the investigate and far zones, and frequency 554 

entering the close zone, during the social cue investigation. Time in the territory zone during the 555 

social cue investigation loaded in the opposite direction. This syndrome is highly similar to the 556 

one we identified after rearing juvenile A. burtoni in pairs or social groups of 16 fish (Solomon-557 

Lane & Hofmann, 2019). 558 

The treatment differences in PC1 are most consistent with an effect of the number of 559 

social partners. Stable pairs had significantly higher PC1 values compared to stable groups, and 560 

there was a strong trend to be higher than socialized pairs (p=0.063). There were no differences 561 

between stable groups and socialized pairs. Juveniles that experienced more social partners 562 

during early-life were more active during the social cue investigation, spent less time in the 563 

territory in the presence of a social cue, and were more socially interactive in a dominant social 564 

role. The direction of this effect is also the same as in our previous study: group-reared juveniles 565 

were more active and socially interactive than pair-reared juveniles (Solomon-Lane & Hofmann, 566 

2019). This suggests that social experiences resulting from more novel partners may be an 567 

important behavioural mechanism underlying the effect of group size. Syndromes involving 568 

activity and social interaction are common across species (e.g., Conrad et al., 2011; Näslund & 569 

Johnsson, 2016) and may also be related to bold-shy and proactive-reactive behaviours (Bell, 570 

2007; Conrad et al., 2011; Groothuis & Carere, 2005; Koolhaas et al., 1999; Sih, Bell, Johnson, 571 

et al., 2004).  572 
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It is not yet known how variable the number of social partners is for juvenile A. burtoni in 573 

the wild or in larger, more naturalistic laboratory social groups. Evidence from a diversity of 574 

other species suggests there can be considerable individual variation. In many species, siblings 575 

(and parents) are the most proximate—and sometimes the only—early-life social contacts. The 576 

number of offspring produced can vary both among individuals and within individuals across 577 

reproductive bouts / over time. Within a group or population, individuals can also vary in the size 578 

and makeup of their social network or niche (Barale et al., 2015; Beirão-Campos et al., 2016; 579 

Branchi et al., 2013; Croft et al., 2005; Förster & Cords, 2005; Maguire et al., 2021; Monclús et 580 

al., 2012; Pike et al., 2008; Saltz et al., 2016; Weinstein et al., 2014; Weinstein & Capitanio, 581 

2008, 2008). For juveniles, this can have long-term, phenotypic effects (Branchi et al., 2013; 582 

Monclús et al., 2012; Weinstein et al., 2014; Weinstein & Capitanio, 2008). Socialization 583 

strategies are also used by humans with animals, such as working dogs (Gfrerer et al., 2018), 584 

family dogs (Howell et al., 2015), and livestock like piglets (Morgan et al., 2014; Salazar et al., 585 

2018). Although many studies have manipulated the number of early-life social partners as a 586 

consequence of group size, group size could exert independent or interacting effects on 587 

phenotype. In studies that also controlled for group size, brown-headed cowbirds (Molothrus 588 

ater) were housed in stable or dynamic flocks, in which flock members were exchanged multiple 589 

times with novel birds. Dynamic flock males had more variable social networks over time, larger 590 

signing networks, and outcompeted stable flock males in mating opportunities (White et al., 591 

2010). When housing conditions were later reversed, the new dynamic flock males still had 592 

higher reproductive success, which was achieved via changes in social strategy (Gersick et al., 593 

2012). For juvenile A. burtoni in pairs and triads, individuals are not equally likely to initiate 594 

interactions. Both group size and relative body size influenced social group structure (Solomon-595 
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Lane et al., 2022). This suggests that, like adults (Maguire et al., 2021), social network position 596 

and connectivity may vary considerably across individuals, with consequences for 597 

developmental plasticity and behavioural development.  598 

 The treatment differences in PC5 (8.5%) support an effect of early-life social stability. 599 

Socialized pairs had significantly higher PC5 values than stable groups and stable pairs, which 600 

were not different from each other. David’s score in the dominance behaviour assay loaded in the 601 

same direction as time in the investigate zone during the social cue investigation. Submissions in 602 

the dominance behaviour assay, frequency entering the territory zone in the social cue 603 

investigation, time in and frequency entering the close zone in the social cue investigation, and 604 

water-borne cortisol loaded together in the opposite direction. Socialized pairs were more 605 

dominant in the dominance behaviour assay, spent less time in and near the territory zone, spent 606 

more time in the investigate zone, and had lower cortisol levels than stable groups or pairs. This 607 

suite of behaviours for PC5 shares multiple similarities with the PC1 syndrome, suggesting these 608 

syndromes may not be independent of each other. Dominance behaviour is represented as high 609 

rates of approaching and displacing on PC1 and as the opposing loadings of David’s score 610 

(indication of dominant status) and submissions (indication of subordinate status) on PC5. 611 

Dominant juvenile A. burtoni approach and displace at significantly higher rates than 612 

subordinates (Solomon-Lane et al., 2022). For PC5, being in or near the territory zone, with less 613 

time in the investigate zone, was associated with low status when given the opportunity to be 614 

dominant. This is mirrored on PC1 by the negative association between being in the territory 615 

zone and approaching and displacing in the dominance behaviour assay. The relative dominance 616 

of juveniles from the socialized pairs is also consistent with having significantly lower 617 

directional consistency (i.e., more agonistically symmetrical) in the subordinate behaviour assay. 618 
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In our previous study, group-reared juveniles were less submissive in a subordinate role than 619 

pair-reared juveniles (Solomon-Lane & Hofmann, 2019). It is possible this was not the case for 620 

stable group juveniles in this study due to group size differences (6 fish vs. 16 fish).  621 

The most striking difference for PC5 is the involvement of cortisol. We found no 622 

treatment differences in water-borne cortisol levels, and PC5 was the only PC on which cortisol 623 

loaded strongly. Higher cortisol was associated with lower social status, less exploratory 624 

behaviour, and more time in the territory away from the novel cue fish. This suite of behaviours 625 

with cortisol resembles previously identified syndromes (Réale et al., 2007), such as the pace-of-626 

life syndrome (Careau & Garland, 2012) and coping styles (Koolhaas et al., 1999). A “fast” 627 

pace-of-life is associated with increased activity, exploration, boldness, and aggressiveness, 628 

along with one or more traits from the slow-fast metabolic continuum (Careau & Garland, 2012). 629 

Coping styles are an integrative phenotype in which a behavioural syndrome aligns with stress 630 

physiology (Koolhaas et al., 1999). Coping styles have been observed across species (Alfonso et 631 

al., 2019; Conrad et al., 2011; Øverli et al., 2007) and are sensitive to early-life effects (Sih, 632 

2011). Behaviourally, proactive copers are more active, aggressive, and bold compared to 633 

reactive copers. In response to stress, proactive copers have higher sympathetic reactivity and 634 

lower HPA/I activity (Koolhaas et al., 1999). Whether socialized pairs (this study) or group-635 

reared juveniles (Solomon-Lane & Hofmann, 2019) exhibit a fast-pace-life or are proactive 636 

copers are hypotheses that should be tested directly. The association between high cortisol and 637 

low status is consistent with previous studies of juvenile A. burtoni, which showed higher whole 638 

brain GR1a and GR1b expression, and lower GR2 and MR expression, in fish with higher 639 

dominance scores (Solomon-Lane et al., 2022). Efficient negative feedback may be mediated, in 640 

part, by GR1 expression, leading to lower cortisol levels (Solomon-Lane & Hofmann 2019). The 641 
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relationship between adult A. burtoni status and cortisol varies across studies and can be elevated 642 

in subordinates (Maruska et al., 2022). Adult A. burtoni do not appear to form coping styles 643 

(Butler et al., 2018), and this suite of behaviour is not always correlated with stress 644 

responsiveness across species (e.g., Thomson et al., 2011). Overall, early-life exposure to social 645 

complexity tends to benefit social competence and skills, whereas social instability tends to have 646 

lasting, negative phenotypic effects, such as elevated HPA/I axis activity, weight loss, elevated 647 

aggression, and decreased activity (Kohn, 2019). This suggests that exchanging members of the 648 

pair in the socialized treatment may not have been perceived as instability, potentially because of 649 

the predictable schedule (Kohn, 2019). An alternative explanation is that familiarity played a role 650 

in the treatment differences between socialized pairs vs. stable groups and pairs. The dominant 651 

and subordinate assays were highly similar to the way we socialized the pairs, and familiarity 652 

with the assay could lead to appearing more active, interactive, and dominant. Future studies can 653 

test these potential behavioural mechanisms directly.  654 

We observed fish in their rearing environments to gain insights into the specific social 655 

experiences and social sensory cues, or proximate behavioural mechanisms, responsible for 656 

early-life social effects (Taborsky, 2016). Unsurprisingly rates of behaviour were higher in the 657 

stable groups compared to the pairs. Rates of behaviour per fish did not differ across treatment 658 

groups, and there were no differences in total agonistic efficiency. These data confirm that a 659 

group (compared to pair) social environment has more opportunities for social experiences, such 660 

as direct involvement in an interaction and observations of others interacting (Desjardins et al., 661 

2012; Oliveira et al., 1998). The mean distance between dyads was also significantly larger in 662 

stable groups than the pairs, and although the tank was larger for groups, the smallest dyad 663 

distance was significantly smaller in groups than social pairs. There were no differences across 664 
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treatments when scaled for the size of the tank. We were unable to identify and track individuals 665 

because the ink tags were not visible on video. As a result, we could not quantify individual 666 

social experience, social status, social network position, or spatial position, which we 667 

hypothesize are causally related to behavioural development and phenotype (Kasumovic, 2013; 668 

Taborsky, 2016). The evidence that social interactions are assortative within groups is 669 

overwhelming across species (e.g., Chase et al., 2022; Croft et al., 2005, 2009; Pike et al., 2008; 670 

Williamson et al., 2016), and juvenile A. burtoni form social status relationships and nuanced 671 

social structures (Solomon-Lane et al., 2022). Therefore, we expect social status experience and 672 

the degree of agonistic asymmetry across social partners to be particularly important for 673 

behavioural development. In addition to its role as an indicator of social relationships, spatial 674 

proximity may also affect social sensory cue perception and communication, for example, via 675 

mechanosensory and chemosensory cues (e.g., in adult A. burtoni, Butler & Maruska, 2016; 676 

Nikonov et al., 2017) that could be stronger for fish in closer proximity.   677 

Overall, our work demonstrates that multiple behavioural mechanisms—the number of 678 

early-life social partners and social stability or familiarity—affect juvenile A. burtoni 679 

development and phenotype, including integrated behavioural and neuroendocrine traits. In 680 

addition to manipulating social experience directly, we observed juveniles in their rearing 681 

environments, which are necessary steps towards understanding the social experiences accrued 682 

during development and the mechanisms by which early experiences exert long-term and 683 

disproportionately strong effects on adult phenotype (Buist et al., 2013; Jonsson & Jonsson, 684 

2014; Kasumovic, 2013; Taborsky, 2016, 2017). Although the simplistic social contexts we used 685 

in this study are unlikely to reflect the dynamics of f larger, more complex groups found in 686 

nature (Chase et al., 2003), we expect that these behavioural mechanisms, and potentially 687 
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others—acting additively or synergistically—will also be influential in more naturalistic 688 

contexts. Testing the hypotheses we generated here will be key to uncovering the behavioural 689 

mechanisms of developmental plasticity and phenotype, as well as the role of neuroendocrine 690 

stress axis function, in A. burtoni and other social species.  691 
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 1153 

 1154 

TABLES 1155 

Table 1: Treatment differences in social behaviour and distances between dyads in the stable 1156 

group, socialized pair, and stable pair home tanks.   1157 

Behaviour / measure DF Test Statistic p-value Effect size Post hoc / direction of effect 

Approaches 2, 38 F=11.46 0.00013 0.38 
Stable group > social. pair: p<0.0001 
Stable group > stable pair: p=0.0061 

Social. pair vs. stable pair: p=0.41 

Displacements 2, 37 F=11.37 0.00014 0.38 
Stable group > social. pair: p<0.0001 

Stable group > stable pair: p=0.02 
Social. pair vs. stable pair: p=0.21 

Efficiency 2 χ2=1.06 0.59   

Into territory 2 χ2=10.81 0.0045 0.23 
Stable group > stable pair: p=0.0037 

Stable group > social. pair: p=0.071 
Social. pair vs. stable pair: p=0.75 

Mean dyad distance 2, 46 F=13.62 <0.0001 0.37 
Stable group > stable pair: p<0.0001 
Stable group > social. pair: p<0.0001 

Social. pair vs. stable pair: p=0.92 

Minimum dyad 
distance 2 χ2=7.49 0.0025 0.12 

Stable group > social. pair: p=0.021 
Stable group > stable pair: p=0.085 
Social. pair vs. stable pair: p=1.0 

Results of one-way ANOVAs (F) or nonparametric Kruskal-Wallis tests (χ2). Eta-squared is 1158 

reported for effect sizes. Significant results in bold. Tukey HSD tests were used for post hoc 1159 

analysis of significant ANOVA results. Dunn’s tests were used for post hoc analysis of 1160 

significant Kruskal-Wallis results.   1161 
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Table 2: Treatment differences in the frequency entering and time spent in tank zones during the 1162 

open field exploration and social cue investigation.  1163 

Tank Zones / 
measure DF Test Statistic p-value Effect size Post hoc / direction of effect 

Open Field Exploration 

Territory 
(Frequency) 2,30 F=3.70 0.037 0.2 

Social. pair > stable pair: p=0.037 
Social. pair vs. stable group: p=0.1 
Stable group vs. stable pair: p=0.77 

Close (Frequency) 2,30 F=3.30 0.051   

Far (Frequency) 2 χ2=4.97 0.083   

Investigate 
(Frequency) 2 χ2=3.51 0.17   

Territory (Time) 2 χ2=4.34 0.11   

Close (Time) 2 χ2=0.34 0.84   

Far (Time) 2 χ2=7.47 0.024 0.18 
Stable group > stable pair: p=0.032 

Stable group vs. social. pair: 0.16 
Social. pair vs. stable pair: p=1.0 

Investigate (Time) 2 χ2=2.13 0.35   

Social Cue Investigation 

Territory 
(Frequency) 2 χ2=0.76 0.69   

Close (Frequency) 2 χ2=1.51 0.47   

Far (Frequency) 2 χ2=6.60 0.037 0.15 
Stable group > stable pair: p=0.036 

Stable group vs. social. pair: 0.40 
Social. pair vs. stable pair: p=1.0 

Investigate 
(Frequency) 2 χ2=4.49 0.11   

Territory (Time) 2 χ2=6.36 0.042 0.15 
Stable pair > stable group: p=0.042 

Stable group vs. social. pair: 0.39 
Social. pair vs. stable pair: p=1.0 

Close (Time) 2 χ2=2.19 0.33   

Far (Time) 2 χ2=7.93 0.019 0.20 
Stable group > stable pair: p=0.019 

Stable group vs. social. pair: 0.25 
Social. pair vs. stable pair: p=1.0 

Investigate (Time) 2 χ2=5.00 0.082   

Results of one-way ANOVAs (F) or nonparametric Kruskal-Wallis tests (χ2). Eta-squared is 1164 

reported for effect sizes. Significant results in bold. Tukey HSD tests were used for post hoc 1165 
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analysis of significant ANOVA results. Dunn’s tests were used for post hoc analysis of 1166 

significant Kruskal-Wallis results.   1167 
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Table 3: Treatment differences in social behaviour and status in the dominant and subordinate 1168 

behaviour assays.  1169 

Assay / Behaviour DF χ2 p-value Effect size Post hoc / direction of effect 

Dominant Behaviour Assay 

Approaches 2 8.71 0.013 0.22 
Social. pair > stable pair: p=0.01 

Social. pair vs. stable group: p=0.16 
Stable group vs. stable pair: p=0.57 

Displacements 2 7.62 0.022 0.19 
Social. pair > stable pair: p=0.02 

Social. pair vs. stable group: p=0.16 
Stable group vs. stable pair: p=0.85 

Approaches Received 2 5.44 0.066   

Submissions 2 4.63 0.099   

David’s Score 2 8.48 0.014 0.22 
Social. pair > stable pair: p=0.043 

Social. pair > stable group: p=0.022 
Stable group vs. stable pair: p=1.0 

Directional 
consistency (App.) 2 3.89 0.14   

Subordinate Behaviour Assay 

Approaches 2 5.23 0.073   

Displacements 2 2.69 0.26   

Approaches Received 2 6.13 0.047 0.14 
Social. pair > stable pair: p=0.042 
Social. pair vs. stable group: p=0.73 
Stable group vs. stable pair: p=0.38 

Submissions 2 4.05 0.13   

Focal efficiency 2 1.38 0.50   

Directional 
consistency (App.) 2 13.22 0.0014 0.37 

Social. pair < stable pair: p=0.0038 
Social. pair < stable group: p=0.004 

Stable group vs. stable pair: p=1.0 

Results of Kruskal-Wallis tests (χ2). Eta-squared is reported for effect sizes. Significant results in 1170 

bold. Dunn’s tests were used for post hoc analysis of significant results.   1171 
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Table 4: Treatment differences for principal components (PC) 1-5.  1172 
Principal component 

(% variation) DF Test Statistic p-value Effect size Post hoc / direction of effect 

PC1 (25.1%) 2,28 F=4.19 0.026 0.23 
Stable pair > stable group: p=0.032 

Stable pair > social. pair: p=0.063 
Stable group vs. social. pair: p=1.0 

PC2 (18.2%) 2,28 F=1.82 0.18   

PC3 (14.3%) 2,28 F=0.97 0.39   

PC4 (10.5%) 2 χ2=2.69 0.26   

PC5 (8.5%) 2,28 F=6.62 0.0044 0.32 
Social. pair > stable group: p=0.0036 

Social. pair > stable pair: p=0.036 
Stable group vs. stable pair: p=0.75 

Results of one-way ANOVAs (F) or nonparametric Kruskal-Wallis tests (χ2) for PC1-PC5. 1173 

Percentages indicate the variance explained. Eta-squared is reported for effect sizes. Significant 1174 

results in bold. Tukey HSD tests were used for post hoc analysis of significant ANOVA results. 1175 

Dunn’s tests were used for post hoc analysis of significant Kruskal-Wallis results.   1176 
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FIGURES 1177 

Figure 1: A) Juvenile fish were reared in stable groups (n=6, 6 fish each), stable pairs (n=6, 2 1178 

fish each), or socialized pairs (n=9, 2 fish each). Every 5 days in the socialized pairs, one fish of 1179 

the pair was removed, and a novel juvenile was introduced. The novel juvenile came from a 1180 

different socialized pair, and the removed juvenile became the novel partner for a socialized pair. 1181 

This was repeated 5 times so that socialized fish had a total of 5 social partners – equal to the 1182 

stable group fish. One fish per stable group and pair was also removed from their tank with a 1183 

hand net as a control. This fish was immediately returned to its home tank. B) After 26 days in 1184 

these rearing environments, individual juvenile behaviour was quantified in a novel experimental 1185 

tank. The tank contained a terracotta pot shard, and black lines (drawn in permanent marker) 1186 

divided the tank into four zones: territory, close, far, and investigate. In the open field 1187 

exploration, the focal fish was alone in the tank. In the social cue investigation, a small juvenile 1188 

cue fish inside of a scintillation vial was placed in the circle in the investigate zone. In the 1189 

dominance assay, a freely-swimming novel cue fish (smaller than the focal) was added to the 1190 

tank. In the subordinate assay, a freely-swimming novel cue fish (larger than the focal) was 1191 

added to the tank. C) In the dominance and subordinate assay, we quantified the number of 1192 

approaches, where one fish swims within three body lengths directly towards any part of another 1193 

fish. If the approached fish swam away in any direction, it was counted as a displacement. 1194 
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Figure 2: Social behaviour and distances in the stable groups, socialized pairs, and stable pairs. 1216 

A) Frequency of social approaches, displacements, and times entering the territory / terracotta 1217 

pot in the rearing environments. B) Total agonistic efficiency (total displacements / total 1218 

approaches). C) Distance between all dyads of fish was measured twice for each tank (20 time 1219 

points each, 40 total time points). Mean distance between dyads was then calculated per tank 1220 

(each data point is the mean for one tank). The maximum distance lines are the lengths of the 1221 

diagonal along the bottom of the tanks. D) The minimum distance recorded between a dyad 1222 

across all time points. *p < 0.05, **p < 0.01, ***p<0.001.   1223 
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Figure 3: Social measures from the dominant (A-C) and subordinate (D-F) behaviour assays. A) 1253 

Social approaches (App.), displacements (Displ.), approaches received (App. Rec.), and 1254 

submissions (Submit) in the dominance behaviour assay. B) Focal fish David’s score in the 1255 

dominance behaviour assay. C) Directional consistency (calculated based on approaches) in the 1256 

dominance behaviour assay. Filled triangles indicate directionality was significantly greater than 1257 

zero. Empty triangles indicate pairs were not significantly directional. D) Social behaviour in the 1258 

subordinate behaviour assay. B) Focal fish David’s score in the subordinate behaviour assay. C) 1259 

Directional consistency (calculated based on approaches) in the subordinate behaviour assay. 1260 

*p<0.05. 1261 
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Figure 4: Focal fish water-borne cortisol (pg/mL/hr), corrected for body mass (g). Log 1277 

transformed data are shown.   1278 
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Figure 5: Principal components analysis (PCA) of cortisol and behaviour—including open field 1301 

(OF) time in the far and investigate zones; social cue (SC) time in and frequency entering the 1302 

territory, close, far, and investigate zones; and dominant and subordinate behaviour assay 1303 

approaches (App.), displacements (Displ.), approaches received (App. Rec.), submissions, and 1304 

David’s Score. A) A heatmap of eigenvalues showing the PCA variables that load on PC1 1305 

(25.1%), PC2 (18.2%), PC3 (14.3%), PC4 (10.5%), and PC5 (8.5%). Numerical values are 1306 

shown for variables stronger than ±0.25. Rows are hierarchically clustered. B) Treatment 1307 

differences in PC1. C) Treatment differences in PC5. Percentages refer to the amount of variance 1308 

explained by that PC. *p<0.05. **p<0.01. 1309 
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