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Summary. Conventional analytic results do not reflect any source of uncertainty other than
random error, and as a result readers must rely on informal judgments regarding the effect of
possible biases. When standard errors are small these judgments often fail to capture sources
of uncertainty and their interactions adequately. Multiple-bias models provide alternatives that
allow one systematically to integrate major sources of uncertainty, and thus to provide better
input to research planning and policy analysis. Typically, the bias parameters in the model are
not identified by the analysis data and so the results depend completely on priors for those
parameters. A Bayesian analysis is then natural, but several alternatives based on sensitivity
analysis have appeared in the risk assessment and epidemiologic literature. Under some cir-
cumstances these methods approximate a Bayesian analysis and can be modified to do so even
better. These points are illustrated with a pooled analysis of case–control studies of residential
magnetic field exposure and childhood leukaemia, which highlights the diminishing value of
conventional studies conducted after the early 1990s. It is argued that multiple-bias modelling
should become part of the core training of anyone who will be entrusted with the analysis of
observational data, and should become standard procedure when random error is not the only
important source of uncertainty (as in meta-analysis and pooled analysis).
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1. Introduction

1.1. The problem
In their discussion of observational data analysis, Mosteller and Tukey (1977), page 328,
said standard errors ‘cannot be expected to show us the indeterminacies and uncertainties we
face’. More recently, a prize winning paper by Maclure and Schneeweiss (2001) described how
random error is but one component in a long sequence of distortive forces leading to epi-
demiologic observations and is often not the most important. Yet conventional analyses of
observational data in the health sciences (as reviewed, for example, in Rothman and Greenland
(1998), chapters 12–17) can be characterized by a two-step process that quantifies only random
error—

(a) employ frequentist statistical methods based on the following assumptions, which
may be grossly violated in the application but are not testable with the data under
analysis:
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(i) the study exposure is randomized within levels of controlled covariates (sometimes
replaced by a practically equivalent assumption of ‘no unmeasured confounders’ or
‘ignorability of treatment assignment’);

(ii) selection, participation and missing data are random within levels of controlled
covariates;

(iii) there is no measurement error (occasionally, an unrealistically restrictive error model
is used to make a correction, which can do more harm than good; see Wacholder
et al. (1993));

(b) address possible violations of assumptions (i)–(iii) with speculative discussions of how
each might have biased the statistical results. If they like the statistical results from the
first step, researchers will argue that these biases are inconsequential, rarely offering evi-
dence to that effect (Jurek et al., 2004). However if they dislike their results they may
focus on possible biases and may even write whole articles about them (e.g. Hatch et al.
(2000)).

In practice, the second step is often skipped or fails to address more than one or two assump-
tions (Jurek et al., 2004). The assumptions in the first step can be replaced by the slightly weaker
assumption that any biases from violations of (i)–(iii) cancel, but appeal to such cancellation
seems wishful thinking at best.

Paul Meier (personal communication) and others have defended conventional results (derived
under step (a)) as ‘best case’ scenarios that show the absolute minimum degree of uncer-
tainty that we should have after analysing the data. Unfortunately, the above assumptions are
far too optimistic, in that they produce misleadingly narrow interval estimates precisely when
caution is most needed (e.g. in meta-analyses and similar endeavours with potentially large pol-
icy impact, as illustrated below). Worse, the illusory precision of conventional results is rarely
addressed by more than intuitive judgments based on flawed heuristics; see Section 4.3.

Another defence is that conventional results merely quantify random error. This defence
overlooks the fact that such quantification is hypothetical and hence questionable when no
random sampling or randomization has been employed and no natural random mechanism
has been documented. Conventional (frequentist) statistics are still often touted as ‘objective’,
even though in observational epidemiology and social science they rarely meet any criterion for
objectivity (such as derivation from a mechanism that is known to be operative in the study).
This belief has resulted in an unhealthy obsession with random error in both statistical theory
and practice. A prime example, which is often lamented but still very much a problem, is the spe-
cial focus that most researchers give to ‘statistical significance’—a phrase whose very meaning
in observational studies is unclear, owing to the lack of justification for conventional sampling
distributions when random sampling and randomization are absent.

The present paper is about the formalization of the second step to free inferences from depen-
dence on the highly implausible assumptions that are used in the first step and the often mis-
leading intuitions that guide the second step. Although I limit the discussion to observational
studies, the bias problems that I discuss often if not usually arise in clinical trials, especially
when non-compliance or losses occur, and the methods described below can be brought to bear
on those problems.

1.2. An overview of solutions
An assessment of uncertainty due to questionable assumptions (uncertainty analysis) is an
essential part of inference. Formal assessments require a model with parameters that measure
departures from those assumptions. These parameters govern the bias in methods that rely
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on the original assumptions; hence I shall call the parameters bias parameters, the model for
departures a bias model and departures from a particular assumption a bias source.

Statistical literature on bias models remains fragmented; most of it deals with just one bias
source, and the bias model is often used only for a sensitivity analysis (which displays bias as a
function of the model parameters), although occasionally it becomes part of a Bayesian analysis.
In contrast, the literature on risk assessment and decision analysis has focused on accounting
for all major sources of uncertainty (Morgan and Henrion, 1990; Crouch et al., 1997; Vose,
2000; Draper et al., 2000). Most notable in the health sciences are the confidence profile method
(Eddy et al., 1992), which incorporates bias models into the likelihood function, analyses based
on non-ignorable non-response models with unknown bias parameters (Little and Rubin, 2002),
and Monte Carlo sensitivity analysis (MCSA), which samples bias parameters and then inverts
the bias model to provide a distribution of ‘bias-corrected’ estimates (Lash and Silliman, 2000;
Powell et al., 2001; Lash and Fink, 2003; Phillips, 2003; Greenland, 2003a, 2004a; Steenland
and Greenland, 2004).

1.3. Outline of paper
The next section gives some general theory for bias modelling that encompasses frequentist
(sensitivity analysis), Bayesian and MCSA approaches. The theory gives a formal perspective
on MCSA and suggests ways to bring it closer to posterior sampling. In particular, it opera-
tionalizes the sequential bias factor approach (Maclure and Schneeweiss, 2001) in a form that
approximates Gibbs sampling under certain conditions and explains the similarity of Bayes-
ian and MCSA results that are seen in published examples (Greenland, 2003a; Steenland and
Greenland, 2004). Section 3 analyses 14 studies of magnetic fields and childhood leukaemia,
extending a previous analysis (Greenland, 2003a) by adding new data, providing more detail in
illustration and extending the bias model to include classification error. Classification error is a
large source of uncertainty due to an absence of data on which to base priors, and due to the
extreme sensitivity of results over reasonable ranges for the bias parameters. Section 4 discusses
some problems in interpreting and objections to bias modelling exercises; it argues that many
of the criticisms apply with even more force to conventional analyses, and that the status of the
latter as expected and standard practice in observational research is unwarranted. That section
can be read without covering Sections 2 and 3, and I encourage readers who are uninterested
in details to skim those two sections and to focus on Section 4.

2. Some theory for observational statistics

2.1. Model expansion to include bias parameters
To review formal approaches to the bias problem, suppose that the objective is to make infer-
ences on a target parameter θ=θ.α/ of a population distribution parameterized by α, using an
observed data array A. Conventional inference employs a model L(A;α) for the distribution
of A given α and some background assumptions that are sufficient to identify θ from A, such
as ‘randomization of units to treatment’, ‘random sampling of observed units and of data on
those units’ and ‘no measurement error’ (step (a)(i)–(a)(iii) above). Most statistical methodol-
ogy concerns extensions of basic models, tests and estimators to complex sampling, allocation
and measurement structures. The identification of θ is retained by treating these structures as
known or as jointly identifiable with θ from A under the assumed model, making assumptions as
necessary to ensure identifiability (e.g. assumptions of ‘no unmeasured confounders’, ‘missing
at random’ and ‘ignorable non-response’).
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On the basis of assumptions about their operation, the effects of bias sources on L may be
modelled by using a bias parameter vector η, so that the data distribution is represented by
an expanded model L(A;α, η). Examples include most models for uncontrolled confounding
and response bias (such as non-ignorable treatment assignment models and non-response mod-
els with unknown parameters) (e.g. Leamer (1974, 1978), Rubin (1983), Copas and Li (1997),
Robins et al. (1999), Gelman et al. (2003), Little and Rubin (2002), Rosenbaum (2002) and
Greenland (2003a)). Typically, α is not even partially identified without information on η, in
that every distinct distribution in the family L.A;α, η) can be generated from a given α by find-
ing a suitable η, and a prior that is uniform in η leads to p.α|A/≈p.α/. Thus, inferences about
α are infinitely sensitive to η, and L.A;α, η) is uninformative for α (and hence θ) without prior
information on η. In the same manner, η is not identified without information on α, so that a
prior that is uniform in α leads to p.η|A/≈p.η/.

I shall consider only large sample behaviour. ‘Unbiased’ will be mean
√

n-consistent uni-
formly asymptotically unbiased normal, as is customary in much epidemiologic statistics. For
simplicity I shall assume that α fully specifies the population distribution, but the theory can be
extended to semiparametric models by using familiar modifications of likelihood (conditional,
partial, etc.). I shall also assume that any necessary regularity conditions hold, e.g. the joint
parameter space of (α, η) is the product of the marginal spaces of α and η, and all models and
functions are smooth in their arguments and parameters. Given these conditions, conventional
estimators of θ extend naturally to the expanded model. For example, suppose that θ̂η and ŝη are
the maximum likelihood estimator (MLE) of θ and its estimated standard error obtained from
L.A;α, η) when the bias parameter is fixed at a known value η. Under the models that are used
here, θ̂η is unbiased for θ and θ̂η ± 1:96ŝη is a large sample 95% confidence interval when the
model and value of η that are used in it are correct. Parameterizing L so that η=0 corresponds to
no bias, L.A;α, 0) then represents the conventional analysis distribution, θ̂0 is the conventional
estimator, E.θ̂0/−θ is its (asymptotic) bias and θ̂0 − θ̂η is its estimated bias given η.

2.2. Sensitivity analysis
Because η is unknown and not identified, the preceding results are of little use by themselves.
Sensitivity analyses display how statistics like θ̂η and derived confidence limits and P-values
vary with η. Epidemiologic examples date back at least to Cornfield et al. (1959), and since
then the methods have been extended to many settings (e.g. Eddy et al. (1992), Greenland
(1996), Copas and Li (1997), Copas (1999), Robins et al. (1999), Little and Rubin (2002) and
Rosenbaum (2002)). Yet sensitivity analysis remains uncommon in health and medical research
reports. This is not surprising, given the lack of motivation for its use and its relative unfamiliar-
ity: sensitivity analysis is mentioned in few journal instructions or statistics text-books. As with
informal discussions, those sensitivity analyses that are published rarely examine more than one
bias at a time and so overlook interactions, such as those that arise from covariate effects on
classification errors (Greenland and Robins, 1985; Flegal et al., 1991; Lash and Silliman, 2000).

To address this concern we can use a model L.A;α, η) that incorporates multiple bias sources;
indeed, my thesis is that realistic uncertainty analyses of observational data must do so. None-
the-less, the difficulty of examining a grid beyond three dimensions necessitates some sort of
summarization over the sensitivity results. If (as here) the net bias in the conventional estimator
θ̂0 is not constrained by the data, any reasonable summary will be determined entirely by the
choices of values for η and so will be arbitrarily sensitive to those choices (Greenland, 1998).
Furthermore, apparent data constraints on bias and hence on inference can depend entirely
on the structure of the data model and can disappear after only minor elaboration (Poole and
Greenland, 1997).
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These problems lead to another obstacle for the adoption of sensitivity analysis: its potential
for arbitrary or nihilistic output. In the present setting, for any preselected value θv for θ, we can
find a value for η that yields θ̂η =θv; thus, any output pattern can be produced by manipulating
η. Although an arbitrary or purely manipulative analysis (one that displays a pattern that is
preselected by the analyst) might be obvious in a simple case, it might not be so obvious with
multiple bias sources.

To summarize: sensitivity analysis only describes the dependence of statistics on η. η is often
of high dimension. The complexity of the dependence can render sensitivity analyses difficult
to present without drastic (and potentially misleading) simplifications. Furthermore, sensitivity
analysis may exclude no possible value for θ: results can be infinitely sensitive to η, and hence
without some constraint on η the analysis will only display this fact. The constraints chosen can
play a pivotal role in the appearance of the results, and informed choices essentially correspond
to a prior for η (Greenland, 1998, 2001a).

2.3. Bayesian analysis and Monte Carlo sensitivity analysis
One way to address the limits of sensitivity analysis is to specify explicitly a prior density p(α, η)
and base inferences for θ=θ.α/ on the marginal posterior

p.α|A/∝
∫

L.A;α, η/ p.α, η/ dη

(Leamer, 1974, 1978; Eddy et al., 1992; Graham, 2000; Little and Rubin, 2002; Gustafson,
2003; Greenland, 2001a, 2003a). To account for shared prior information (and the resulting
prior correlations) between components of η, the bias parameter η may itself be modelled as
a function of known covariates and unknown hyperparameters β, resulting in a hierarchical
bias model (Greenland, 2003a), as below. None-the-less, many health researchers reject formal
Bayesian methods as too difficult if not philosophically objectionable: analytic solutions for
p.θ|A/ involving just one bias source can appear formidable (Eddy et al., 1992; Graham, 2000;
Gustafson, 2003), and sampler convergence remains crucial yet extremely technical (Gelman
et al., 2003; Gustafson, 2003).

An easier alternative specifies only a marginal prior p.η) for the bias parameters, samples η
from this prior, computes θ̂η and ŝη from each sample and summarizes the resulting distribution
of θ̂η and of statistics derived from θ̂η and ŝη. The θ̂η that are generated by this MCSA have
various uses. The distribution of θ̂0 − θ̂η estimates the distribution of net bias under p.η), and the
distribution of θ̂η can be compared with the sampling distribution of θ̂0 to measure the relative
importance of bias uncertainty and random error. Standard errors shrink as data accumulate
and hence bias uncertainty grows in importance and eventually dominates uncertainty due to
random error. As will be illustrated, the comparison of bias uncertainty and random error can
reveal that the benefits of study replication diminish far below those indicated by conventional
power calculations, for the latter ignore bias uncertainty.

With modification, MCSA can also provide approximate posterior inferences. Suppose that,
for each η, θ̂η is approximately efficient (e.g. is the MLE), p.α|η/ is approximately uniform and
p.η|A/≈p.η/. We then have approximately p.α, η/∝p.η/ and

p.α|A, η/∝L.A;α, η/ p.α, η/=p.η|A/∝L.A;α, η/,

and

p.θ|A, η/∝
∫
θ.α/=θ

L.A;α, η/ dα
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with the latter approximately normal(θ̂η, ŝ2
η) (Gelman et al. (2003), chapter 4). Thus, the MCSA

procedure can be modified to approximate sampling from

p.θ|A/=
∫

p.θ|A, η/ p.η|A/dη

by

(a) drawing η from p(η)
(b) computing θ̂η and ŝ2

η, and
(c) redrawing θ̂η from a normal(θ̂η, ŝ2

η) distribution or (equivalently) adding a normal(0, ŝ2
η)

disturbance to θ̂η (Greenland, 2003a).

If η partitions into ηk that are estimable given α and the remaining components η−k, the algo-
rithm generalizes to arbitrary p.α, η) by cycling among p.α|A, η/ and the p.ηk|A,α, η−k), draw-
ing from an approximate normal distribution at each step, whence it can be seen as a large sample
approximation to Gibbs sampling.

To avoid normal approximations, some researchers resample the data as well as η at each
trial (Lash and Fink, 2003). Naı̈ve resampling (i.e. bootstrapping from the empirical data dis-
tribution) does, however, have its own small sample problems (Efron and Tibshirani, 1993); for
example, in tabular data it leaves empty observed cells as 0s and so will never visit some points
in the support of the sampling distribution. To remove these 0s, we may resample the data from
a smoothed table, then smooth each resample with the same procedure as that used to smooth
the original data.

2.4. Some useful specializations for discrete data
Suppose now that A represents a count vector for a multiway cross-classification of the data.
Conventional approaches model A with a distribution L{A; E.A;α/} that depends on the pop-
ulation parameters only through the expected counts E.A;α). Suppressing α in the notation,
one extension takes Eη ≡E.A;α, η/, with E0 =E.A;α, 0/ the counts expected in the absence of
bias, so that the expanded model can be written L.A; Eη). Note that Eη is an estimable quantity
even though η and E0 are not separately identified. For example, with no constraint on η or E0,
the multinomial MLE of Eη is the observed A. Hence we can model Eη directly, as will be done
below for smoothing purposes.

For some models, Eη =Gη.E0/ where the ‘bias function’ Gη is a family of mappings indexed
by η and G0 is the identity; θ̂η may then be taken as the MLE of θ from L{A; Gη.E0/}. These
models can be especially simple. For example, if the only bias source is non-response and ηR is the
vector of log-response-rates within cells of the observed cross-classification, Eη =Gη.E0;ηR/=
diag{exp.ηR/}E0;ηR thus becomes a log-linear offset to the conventional model for E0, and θ̂η
is the MLE from the offset model for Eη. Confounding can also be represented by a log-linear
offset ηC which can be added to the response–bias offset, although this offset is a non-linear func-
tion of unmeasured covariate effects (see the example below); in that case Eη=Gη.E0;η/=BηE0
where Bη =diag{exp.ηC +ηR/} (Greenland, 2003a).

Next, suppose that qij is the probability that a unit will be classified in cell i of A given that
it should be in cell j. With Q the matrix of qij and ηM = vec.Q/, one model for confound-
ing and non-response followed by misclassification would be Eη = Gη.E0;η/ = BηE0 where
Bη=Q diag{exp.ηC +ηR/}. Alternatively, suppose that pij is the probability that a unit should
be in cell i given that it is classified in cell j; with P the matrix of pij and ηM = vec.P/ we have
Eη =Gη.E0;η/=BηE0 where Bη =P−1 diag{exp.ηC +ηR/}.
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Without validation data identifying P, acceptable assumptions or priors about misclassifi-
cation more often concern Q than P, as below. An important difference between the Q- and
P-models is that A is informative for Q even without information about α; hence use of Q may
lead to p.η|A/ �= p.η/. For example, a non-zero observed cell i implies that qij > 0 for some
j; further assumptions can lead to stronger constraints on Q. In contrast, A alone does not
constrain P. Thus, the above arguments for MCSA as an approximation to posterior sampling
do not strictly apply under the Q-model unless the support of the prior p.Q/ falls within the
identified bounds.

2.5. Sequential correction
If Gη is invertible, a ‘bias-corrected’ estimator θ̂0η of θ can be obtained by applying a conven-
tional estimator θ̂0 to the ‘corrected data’ F.A;η/≡G−1

η .A/, where F.A; 0/=A (Lash and Fink,
2003). θ̂0η is an unbiased estimator of θ given that η and the model are correct, but the ‘standard
error’ ŝ0η for θ̂0η that is obtained by applying a conventional variance estimator to F.A;η) is
not generally valid (see below).

F.A;η) is typically derived from separate correction formulae in conventional sensitivity anal-
yses (Rothman and Greenland (1998), chapter 19). There are many formulae FC.·;ηC/, FR.·;ηR/

and FM.·;ηM/ that correct for confounding, response bias and misclassification. For example,
with ηR the vector of log-response-rates, a correction that adjusts the relative frequencies for
non-response is FR.A;ηR/=diag{exp.c−ηR/}A, where c is a log-normalizing-constant vector
to preserve A-margins that are fixed by design. With P and Q as above, correction formulae for
misclassification include FM.A;ηM/ = PA and FM.A;ηM/ = Q−1A; these formulae automati-
cally preserve fixed margins if (as is often the case) misclassification can only occur within the
strata that are defined by those margins, for then pij =qij =0 when i and j are in different strata,
and hence P and Q are block diagonal when the indices are ordered by stratum.

Use of the observed counts in the formulae corresponds to using Eη=A, which is a saturated
model for Eη. Some formulae (like that based on Q) can yield impossible (e.g. negative) corrected
counts for certain values of η, especially if 0s are present in A, which lead to breakdown (division
by 0) or wild behaviour of θ̂0η. These problems can often be avoided by preliminary smoothing of
A to remove non-structural 0s, e.g. by averaging A with a model-fitted count (which generalizes
adding a constant to each cell (Bishop et al. (1975), chapter 12, and Good (1983), section 9.4),
or by replacing A with a count that is expected under a nearly saturated model that preserves
data patterns regardless of the statistical significance of the patterns (Greenland, 2004b).

Formulae can be applied in sequence to correct multiple biases, although the order of cor-
rections is important if the formulae do not commute (Greenland, 1996). One can imagine
each correction moving a step from the biased data back to the unbiased structure, as if
hypothetically ‘unwrapping the truth from the data package’. For example, suppose that the
data generation process is one in which causal effects (including effects of unmeasured con-
founders) generate population associations, subjects are sampled in a manner that is subject
to non-response and finally the responding subjects are classified subject to error. This chron-
ology suggests that we should correct misclassification first, then non-response, and then
uncontrolled confounding. With η= .ηC, ηR, ηM/, the resulting bias-corrected counts F.A;η)
are FC[FR{FM.A;ηM/;ηR};ηC]. If the bias model is Eη = BηE0, we have F.A;η/ = B−1

η A; for
example, under the Q-model above,

B−1
η =diag{exp.c−ηC −ηR/}Q−1:

The sequential correction approach can be simpler both conceptually and computationally
than fully Bayesian or likelihood-based sensitivity approaches. We just plug the sampled bias
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parameters (ηC, ηR, ηM/ into their respective formulae, apply the resulting corrections in proper
sequence and compute θ̂0η from the resulting F.A;η/, possibly replacing A by a smoothed count.
If θ̂0 has a closed form (e.g. a Mantel–Haenszel estimator) then θ̂0η will also be of closed form,
resulting in a very rapid Monte Carlo procedure. In some examples such as that below, con-
founding and response bias corrections simplify to division of conventional stratum-specific
odds ratio estimates by independent bias factors free of the data, leading to an even simpler
and more rapid procedure. Finally, as with Bayesian analyses, in some simple cases the entire
MCSA distribution has a closed form approximation (Greenland, 2001a).

2.6. Sequential correction and posterior sampling
The earlier arguments for MCSA as approximate posterior sampling hinge on the use of the
MLE or an equivalent θ̂η derived under the expanded model L.A; Eη) and so do not extend
to the use of θ̂0η. Suppose that under the conventional model θ̂0 is asymptotically equivalent
to θ.α̂/, where α̂ is an inverse variance weighted least squares estimator of α from a regression
of A on the classification axes, e.g. as when α comprises log-linear model parameters and θ̂0 is
the conventional MLE of a log-odds ratio. Then, if η=0, θ̂0 is asymptotically efficient and first
order equivalent to the conventional MLE. Because θ̂0η treats F.A;η/ as the observed counts,
however, when η �=0 the implicit weights are no longer the correct inverse variances and θ̂0η is
no longer efficient.

As an example, using maximum likelihood log-linear Poisson regression, the weight matrix
for ln{F.A;η/} which is implicit in θ̂0η is W0η =diag{F.Eη;η/}. The asymptotic inverse covari-
ance matrix for ln{F.A;η/} is, however,

Wη ={D′
η diag.Eη/Dη}−1

where Dη = @[ln{F.Eη;η/}]=@Eη. If F.A;η/ = B−1
η A, then D−1

η = Bη diag.E0/ and hence Wη =
Bη diag.E2

0=Eη/B
′
η �= W0η = diag.B−1

η Eη/ = diag.E0/ unless Bη is the identity. Furthermore,
when Bη is diagonal (as when only confounding and response bias are corrected), Wη reduces
to diag(Eη), the weight matrix for the uncorrected regression, rather than to W0η.

Because W0η does simplify to Wη when η=0, the sequential estimator using θ̂0η can be viewed
as an approximation to the MLE θ̂η in a neighbourhood of η=0. The Monte Carlo distribution
of θ̂0η over p.η/ might thus be reasonably expected to approximate that of the MLE θ̂η if p.η)
is centred on zero and is not too dispersed. Alternatively, if θ̂0η has an explicit weighted form,
we could just estimate Wη directly and use that to compute θ̂0η. Unfortunately, after misclassifi-
cation correction, Wη is not diagonal, does not readily simplify along with the bias corrections
and must be recomputed for each η. To avoid these problems, we could just use the diagonal
matrix of uncorrected weights, which under the models that are used here would approximate
the correct weights in a neighbourhood of ηM = 0 rather than just η= 0. In examples based
on the data below and with similar priors, the latter estimator augmented by a normal(0,ŝ2

0)
disturbance very closely approximated posterior distributions (Greenland, 2003a), so only this
modified sequential approach will be illustrated.

3. Magnetic fields and childhood leukaemia

3.1. The data
The example data in Table 1 are taken from a pooled analysis of 12 pre-1999 case–control studies
of residential magnetic fields and childhood leukaemia (Greenland, Sheppard, Kaune, Poole
and Kelsh, 2000), plus two additional studies unpublished at the time that the analysis was done
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Table 1. Summary data from 14 case–control studies of magnetic fields and childhood leukaemia

Reference Country Number of Number of Odds ratio
cases controls (95% limits)

>3 mG Total >3 mG Total

Coghill et al. (1996) England 1 56 0 56 ∞
Dockerty et al. (1998) New Zealand 3 87 0 82 ∞
Feychting and Ahlbom (1993) Sweden† 6 38 22 554 4.53 (1.72,12.0)
Kabuto (2003) Japan 11 312 13 603 1.66 (0.73,3.75)
Linet et al. (1997) USA‡ 42 638 28 620 1.49 (0.91,2.44)
London et al. (1991) USA‡ 17 162 10 143 1.56 (0.69,3.53)
McBride et al. (1999) Canada‡ 14 297 11 329 1.43 (0.64,3.20)
Michaelis et al. (1998) Germany 6 176 6 414 2.40 (0.76,7.55)
Olsen (1993) Denmark† 3 833 3 1666 2.00 (0.40,9.95)
Savitz et al. (1988) USA‡ 3 36 5 198 3.51 (0.80,15.4)
Tomenius (1986) Sweden 3 153 9 698 1.53 (0.41,5.72)
Tynes and Haldorsen (1997) Norway† 0 148 31 2004 0
UK Childhood Cancer Study UK§ 5 1057 3 1053 1.66 (0.40,6.98)

Investigators (1999)
Verkasalo et al. (1993) Finland† 1 32 5 320 2.03 (0.23,18.0)

Totals§§ 115 4025 146 8740 1.69 (1.28,2.23)

†Calculated fields (the others are direct measurement).
‡120 V–60 Hz systems (the others are 220 V–50 Hz).
§Comparison of >4 mG versus �2 mG, excluding 16 cases and 20 controls at 2–4 mG.
§§The final column is the MLE of the common odds ratio (lower P =0:0001; homogeneity P =0:24).

(Kabuto, 2003; UK Childhood Cancer Study Investigators, 1999). Because the UK childhood
cancer study did not supply individual data, its estimate compares the published categories of
greater than 4 mG versus less than or equal to 2 mG. It is included here on the basis of several con-
siderations. First, it appears to be sufficiently consistent with the remainder to pool. Second, a
reanalysis of the pre-1999 studies using the cut point at 4 mG changed the pooled estimate by only
5% (Greenland, Sheppard, Kaune, Poole and Kelsh, 2000), suggesting that the use of 4 rather
than 3 mG is of little importance (apart from increasing instability). Third, as will be discussed
further, the classifications are at best a surrogate for a true unknown measure, and there are other
measurement differences among the studies of potentially much greater importance. Fourth, as
with most of the previous studies, covariate adjustment had almost no effect on the estimates.

Two other recent studies were excluded. Green et al. (1999) presented only analyses based on
quartile categories, resulting in upper cut points of only 1.3–1.5 mG. This study was excluded
because the use of such low cut points strongly influenced estimates from earlier studies (Green-
land, Sheppard, Kaune, Poole and Kelsh, 2000); it did, however, report positive associations on
contrasting the top and bottom quartiles. Schüz et al. (2001) had only three highly exposed cases;
this study was excluded because of evidence of severe upward bias (twofold or threefold, with
odds ratios from 5 to 11) in the reported estimates due to sparse data (Greenland, Schwartzbaum
and Finkle, 2000), and because of insufficient reporting of raw data to allow further evaluation.

3.2. A conventional analysis
Leukaemia is a very rare disease and the usual justifications for interpreting the observed odds
ratios as rate ratio estimates apply (Rothman and Greenland (1998), chapter 7). The odds ratios
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are remarkably consistent across studies (homogeneity P =0:24), and the pooled MLE suggests
a 70% higher leukaemia rate among children with estimated average exposure above 3 mG.
Much like the ML results in Table 1, a Mantel–Haenszel analysis produces an estimated odds
ratio for the field–leukaemia association of 1.68, with 95% confidence limits of (1.27, 2.22) and
a lower deviance P-value of 0.0001. Adding study-specific random effects, the usual moment-
based overdispersion estimates are 0 owing to the homogeneity, leaving the summary odds ratio
and limits virtually unchanged. Under a model with a common rate ratio Ω across the under-
lying study populations, no bias and a uniform prior for θ= ln.Ω/, the lower P-value can be
interpreted as p.θ < 0|A/, the posterior probability that θ < 0.

The association is not explained or modified by any known study characteristic or feature of
the available data. The results are unchanged by using finer categories (e.g. contrasting greater
than 3 mG versus less than or equal to 1 mG) or continuous field measurements, and there is
no evidence of publication bias (Greenland, Sheppard, Kaune, Poole and Kelsh, 2000). None-
the-less, taking the statistics in Table 1 as unbiased for the field effect is equivalent to assuming
that each study reported an experiment in which children were randomized to known residen-
tial field levels, were never switched from their initial assignment and were followed until either
leukaemia, selection as a control or random censoring occurred.

Put another way, the statistics in Table 1 ignore every source of uncertainty other than random
error, including

(a) possible uncontrolled shared causes (confounders) of field exposure and leukaemia,
(b) possible uncontrolled associations of exposure and disease with selection and participa-

tion (sampling and response biases) and
(c) magnetic field measurement errors.

Regarding (a), several confounders have been suggested (especially social factors) but there are
fewer data on most of these factors than on magnetic fields, and their estimated associations with
leukaemia are mostly less than that observed for magnetic fields (to account for the association
a factor must by itself have a much stronger association with leukaemia) (Langholz, 2001; Brain
et al., 2003). Regarding (b), data suggest that there has been control selection bias in several
studies that used direct field measurement (Hatch et al., 2000; Electric Power Research Institute,
2003). Regarding (c), no one doubts that measurement errors must be large. Unfortunately there
is no reference measure (‘gold standard’) for calibration or validation of the measures, in part
because no-one knows what an aetiologically relevant magnetic field exposure would be (if one
exists). There is only a ‘surrogacy’ hypothesis that the known covariate, contact current, is the
‘true’ (aetiologically relevant) exposure that is responsible for the observed associations (Kavet
and Zaffanella, 2002; Brain et al., 2003), and that magnetic fields are simply an indirect measure
of this covariate. Studies are under way to address this hypothesis.

3.3. Initial simplifications
Because of the great uncertainty about the bias sources, the inferential situation is very complex
and several defensible simplifications will be made. One simplification restricts attention to the
dichotomization of field measurements at 3 mG, which greatly eases specification. It was sug-
gested by the repeated observation of almost no field–leukaemia association below 3 mG and
was justified by the small changes in conventional statistics that were obtained from a continu-
ous or more finely categorized exposure model (Greenland, Sheppard, Kaune, Poole and Kelsh,
2000; Kabuto, 2003; UK Childhood Cancer Study Investigators, 1999).

Of the three covariates that were uniformly defined and measured on most subjects (study
source, age and sex), only study source (modelled as an indicator vector S) is used here. On
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prior grounds, age and sex among preschool children should be weakly related or unrelated
to the exposure and the disease; for example, as noted at least 300 years ago, the sex ratio of
births is highly invariant across all factors (Stigler, 1986); also, the rate of leukaemia is only
20% higher among males than females (Brain et al., 2003). Thus, since nearly all the subjects
are preschool children, it appears that age and sex can be ignored, and the data conform closely to
this expectation; for example, Table 4 of Greenland, Sheppard, Kaune, Poole and Kelsh (2000)
shows the small changes in conventional statistics on age–sex adjustment, and adjustment also
has little effect in the later studies (Kabuto, 2003; UK Childhood Cancer Study Investigators,
1999). With one exception (London et al., 1991), race is nearly homogeneous within studies and
so is automatically controlled by including S in the models. If further covariate modelling were
desired, however, one would expand the vector S to include other covariates.

Misclassification, non-response and confounding are the bias sources that are believed impor-
tant by most investigators in this area and will be the only sources that we model. Another source
which is often important is publication bias (Copas, 1999), but in the present context such bias
is thought to be highly unlikely because of the great public interest in null results (Greenland,
Sheppard, Kaune, Poole and Kelsh, 2000). The parameters of the three modelled sources will
be given independent priors, so that the full prior covariance matrix is block diagonal with three
blocks. This block independence greatly simplifies specification of the prior; misclassification
effects on prior information about non-response and confounding will not be considered.

As in almost all the sensitivity analysis literature, confounding will be modelled via a latent
variable U such that the US conditional field–leukaemia association is unconfounded, i.e. con-
ditioning on U removes any confounding that is left after conditioning on S and induces no
other confounding. As discussed in Appendix A, the existence of such a sufficient U is guaran-
teed under certain causal models, and in special cases this U may have as few as three levels. Two
practical simplifications are made here: U is further reduced to a binary variable, and the US
conditional field–leukaemia odds ratios are assumed homogeneous across U given S. These sim-
plifications greatly ease specification of the prior, do not constrain the amount of confounding
in the conventional estimate and appear to have little effect on the results (Greenland, 2003a).

With the above simplifications the classification axes (study variables) are the study, exposure
and disease, coded by S, the row vector of all 14 study indicators, X , the indicator of field mea-
surement in the top category, and Y , the leukaemia indicator. The observed data vector A com-
prises the 14.22/=56 SXY counts of cases and controls in each field category. Define the study
level indicators D1 ≡1 if a study used direct (compared with calculated) field measurements and
V1 ≡1 if a study was of 120 V–60 Hz (compared with 220 V–50 Hz) systems. D1 and V1 also code
study location: V1 =1 codes North American studies, and D1 =0 for all Nordic countries except
for the study of Tomenius (1986) (Table 1). Finally, let D ≡ .D1, 1 −D1/ and V ≡ .V1, 1 −V1/.
D and V are functions of S, so S contains all the covariate data that are used here.

3.4. Preliminary estimation of uncorrected parameters
As mentioned earlier, certain sequential estimators break down with zero cell counts. Prelim-
inary smoothing eliminates such counts and has theoretical advantages as well (Bishop et al.,
1975; Good, 1983). To minimize alteration of data patterns, the observed count vector A is
replaced by a ‘semi-Bayes’ estimate of Eη (Greenland, 2004b), which averages A (the counts
that are expected under a saturated model, regressing X on YS) with those that are expected
under a highly saturated model that eliminates 0s, a logistic regression of X on Y , S, YD1 and
YV1. The Eη-estimates that are used here are penalized likelihood fitted values from a mixed
effects logistic regression with fixed effects Y , S, YD1 and YV1 and normal(0,σ2) logit residuals
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(random effects), where σ= ln.20/=2.1:96/=0:764. This estimated Eη is an iterative refinement
of averaging the empirical logits (weighted by their inverse empirical variances, with zero weights
for undefined logits) with the fixed effects predicted logits (weighted by 1/σ2); see Greenland
(2001b) for a more general example and description of the fitting method. The σ2-value implies
that each exposure odds falls within a 20-fold range of the fixed effects prediction with 95%
probability, which is a very weak restriction compared with the fixed-effects-only model. The
resulting estimated Eη are very modestly shrunk from A towards the fixed effects predictions:
the largest absolute change in a count is 1.01, the mean absolute change is 0.31, the Mantel–
Haenszel statistics are unchanged to the third decimal place and the patterns among study-
specific odds ratios (e.g. orderings) are unchanged. This data-structured smoothing should be
contrasted with adding a constant to each cell, which is equivalent to averaging observed counts
with those fitted from an intercept-only model (Bishop et al. (1975), chapter 12).

The uncorrected study-specific odds ratios are now the S-specific smoothed sample odds
ratios

ωXY .s/≡E11sE00s=E10sE01s

where Exys is the smoothed count (the estimated Eη-component) at X = x, Y = y and S = s. θ̂0
will be the logarithm of the Mantel–Haenszel weighted average of the ωXY .s/ over the studies:

ωMH0 =∑
s

ws ωXY .s/=w+,

where ws =E10sE01s=ΣxyExys and w+ =Σsws; ŝ2
0 will be the standard error estimate of ln(ωMH0)

of Robins et al. (1999) (Rothman and Greenland (1998), page 272). In light of the above dis-
cussion regarding efficient weighting, the uncorrected weights ws will be used throughout; this
fixed weighting over MCSA trials also avoids adding study reweighting effects to bias correction
effects in the distribution of corrected estimates.

An alternative that is often used in meta-analysis, the weighted least squares (Woolf) esti-
mator, averages ln{ωXY .s/} by using approximate inverse variance weights .ΣxyE−1

xys/
−1 and so

(given η= 0) is first order efficient for the common odds ratio ω. In contrast, ωMH0 is efficient
only when ω= 1, although it is only slightly inefficient in realistic examples with ω �= 1 and
exhibits much better behaviour than other estimators when the data are sparse (Breslow, 1981).

3.5. Classification error
X will be treated as a misclassified version of a single ‘true’ (but latent) exposure indicator
T. Misclassification correction converts the S-specific smoothed sample XY proportions into
fitted values for the sample TY odds ratios ωTY .s/,

ωTY .s/≡ p.T =1|Y =1, s/=p.T =0|Y =1, s/

p.T =1|Y =0, s/=p.T =0|Y =0, s/
, .1/

where p is used to denote sample probability (expected sample proportion). This conversion
requires information on the TX -relationship. Typical prior information concerns the values of
the error rates p.X=x|T =1−x, y, s/. Let "0 ≡p.X=0|T =1, y, s/ and "1 ≡p.X=1|T =0, y, s/,
leaving the dependence on Y and S implicit; then "0 and "1 are the false negative rates and false
positive rates and 1−"0 =p.X=1|T =1, y, s/ and 1−"1 =p.X=0|T =0, y, s/ are the sensitivity
and specificity of X as a measure of T. Within Q, the "x and 1 − "x are the qij within blocks
defined by S and Y ; qij =0 outside those blocks.

It will be assumed that the error rates satisfy the weak condition "x < p.X = x|T = x, y, s/.
The quantity p.X = x|y, s/ is then an identifiable upper bound on "x, and the low exposure
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prevalences that are seen in Table 1 and in surveys imply that the "1 cannot be very large. This
does not imply that X is probably correct; for example, we may still have (and often do have)
p.T =1|X=1, y, s/ < p.T =0|X=1, y, s/ if the true exposure prevalence p.T =1|y, s/ is small.
All the studies sought to use identical measurement protocols on cases and controls, and in
all the studies very high values for "x (especially "1) are implausible. Hence it will be further
assumed that within studies the same bound applies to cases and controls, and that this upper
bound has a user-specified maximum mx across studies:

"x < m.x, s/≡min{p.X=x|Y =1, s/, p.X=x|Y =0, s/, mx}: .2/

This condition is much weaker than the common assumption that the "x do not vary with
Y (error ‘non-differential’ with respect to Y ), although the "x will be given a very high within-
study between-Y correlation. The smoothed data estimates of the p.X=x|y, s/ will be used to
estimate the m.x, s/.

The Q correction formula (applied to sample expected counts) is equivalent to the standard
conversion formula

p.T =x|y, s/= p.X=x|y, s/− "x

1− "0 − "1
.3/

(Rothman and Greenland (1998), chapter 19), which is positive under the above constraints.
The sample TY odds ratio at S = s then simplifies to

ωTY .s/= {p.X=1|Y =1, s/− "1}={p.X=0|Y =1, s/− "0}
{p.X=1|Y =0, s/− "1}={p.X=0|Y =0, s/− "0}

: .4/

Corrections are computed by replacing the p.X=x|y, s/ by the smoothed sample proportions
E1ys=ΣxExys, specifying a model for the "x, and then sampling the model coefficients from a
joint prior distribution. At each sampling, the "x are computed from the model; the corrected
sample odds ratios are then computed from the resulting "x.

There is no quantitative prior information on the error rates. A few studies measured sub-
sets of subjects with different techniques, but the differences in results are highly unstable and
there is no evidence on which technique provides a more accurate measure of a true ‘high expo-
sure’ indicator T. None-the-less, everyone expects considerable heterogeneity in the error rates.
Direct and calculated measurements (distinguished by D) are vastly different procedures. North
American and European power systems (distinguished by V ) differ in ways that could affect
error rates. Because measurement protocols varied greatly across studies, other between-study
differences in error rates should also be expected.

The hierarchical misclassification (M) model will thus regress the error rates "x on S as well
as D and V , with Y included to allow for possible differentiality of errors:

ηM.x|y, s/≡ ln["x={m.x, s/− "x}]

=σM{βMx + sβMSx +dβMDx +vβMVx + .y, 1−y/βMYx} .5/

for x = 0, 1, where ηM.x|y, s/ is the logit of the error rate "x rescaled to the {0, m.x, s/} range
of the rate. The model intercepts βMx have variances τ2

Mx . The remaining β-coefficients (βMSx,
βMDx, βMVx, βMYx) represent the dependence of the "x on the second-stage (group level) covari-
ates S, D, V and Y , and are taken as independent bivariate column vectors whose components
are independent with variances (τ2) such that τ2

Mx + τ2
MSx + τ2

MDx + τ2
MYx = 1. The coefficient

scale factor σM is a known constant which is introduced solely to make the coefficient variances
sum to 1, a feature that eases numerical translation of prior correlations between the ηM into
the variance components τ2.
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Let βM denote the vector of all the unknowns (the β) in the error model, and let ωTY (s;βM) be
the study-specific corrected odds ratio that is obtained by substituting this model into ωTY (s).
To reflect the lack of information for ordering the "x, I gave all the βM-components zero means
and for convenience gave them normal distributions. To reflect that most of the expected het-
erogeneity of the "x is attributed to the type of measurement and study protocol, I assigned
τ2-values to produce a simple but plausible prior correlation structure among the ηM.x|y, s/:
with s1 and s0 coding distinct studies (distinct values of S) I wanted correlations of ηM.x|1, s1/

with ηM.x|0, s0/ ranging from small (0.30) among studies that share neither D nor V to large
(0.70) among studies that share both D and V. Within studies, I wanted a nearly perfect case–
control correlation (0.95) of ηM.x|1, s/ with ηM.x|0, s/; non-differentiality would correspond
to perfect correlation, which is equivalent to dropping Y from the model. Because there are
arguments for positive and negative correlations of the error rates when T = 1 compared with
when T = 0, the ηM.1|y, s/ were left uncorrelated with the ηM.0|y, s/; to induce a correlation
we could introduce components that are shared between the coefficients for these two logits.
By back-calculation, these choices require τ2

Mx = τ2
MVx = τ2

MYx = 0:09 and τ2
MDx = 0:31, leaving

τ2
MSx =0:42.

Unlike with non-response and confounding, there are no data on which to ground the scale
factors and maximum upper bounds mx for the "x. Hence the scale factor σM was set to 2, which
makes each "x nearly uniform on its support. The mx are the most arbitrary and so will be the
focus of a small meta-sensitivity analysis, followed by an analysis in which they are treated as
unknown bias parameters.

3.6. Non-response
Let R.t, y, s/ be the response rate among population members with T = t, Y =y and S = s. The
sample probabilities p are related to the population probabilities P by

p.t0|y, s/=P.t0|y, s/ R.t0, y, s/
/∑

t
P.t|y, s/ R.t, y, s/, .6/

where the sum is over all possible values of T . The response bias factors are then

BR.s/≡ R.T =1, Y =1, s/=R.T =0, Y =1, s/

R.T =1, Y =0, s/=R.T =0, Y =0, s/
, .7/

and hence the population TY odds ratios

ΩTY .s/≡ P.T =1|Y =1, s/=P.T =0|Y =1, s/

P.T =1|Y =0, s/=P.T =0|Y =0, s/
= P.Y =1|T =1, s/=P.Y =0|T =1, s/

P.Y =1|T =0, s/=P.Y =0|T =0, s/
.8/

can be obtained from the sample TY odds ratios by ΩTY .s/=ωTY .s/=BR.s/.
Variables that may have important relationships to the response include continent (coded

by V ) and idiosyncrasies of the study design and location (coded by S). D has an expected
relationship to the response supported by data on X : direct measures (D1 = 1) require entry
to private property, leading to a low response among controls (Y =0) and among the exposed
(Hatch et al., 2000); in contrast, there is high prior probability that studies with calculated fields
(D1 =0) have little or no response bias. Hence the model that is used here is

ηR.s/≡ ln{BR.s/}=σRD.βR + sβRS +dβRD +vβRV / .9/

where the β-coefficients represent the dependence of BR on the second-stage (group level) co-
variates S, D and V. The variance of the intercept βR is denoted τ2

R, and the factor coefficients
βRS , βRD and βRV are taken as independent bivariate column vectors whose components are
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independent with variances (τ2/ such that τ2
R + τ2

RS + τ2
RD + τ2

RV = 1. The scale factor σRD is
treated as known but will depend on D.

Now let βR denote the vector of all unknowns (β) in this specification, and BR.s;βR) the
response bias model that is obtained by substituting the specification into the bias factor BR.s/.
To reflect lack of information on response bias sources apart from measurement type, I gave all
βR-components mean 0, except that component 1 of βRD was given mean ln(1.2)/σRD on the
basis of the elevated non-response among exposed controls that was observed by Hatch et al.
(2000) and others (Electric Power Research Institute, 2003). For convenience I gave the compo-
nents normal distributions. To reflect the high prior correlation for non-response across studies,
I assigned τ2-values to produce ηR.s/ correlations ranging from moderate (0.60) between studies
with different D and V to very high (0.90) between studies with the same D and V ; these are
produced by τ2

R = τ2
RD = 0:36 and τ2

RV = 0:09, leaving τ2
RS = 0:19. To reflect the greater uncer-

tainty about the amount of response bias in studies with direct measurement, I specified prior
50th, 5th and 95th percentiles for BR.s/ of 1.20, 0.90 and 1.60 (widely dispersed around 1.2)
when D1 = 1, and prior 50th, 5th and 95th percentiles for BR.s/ of 1.00, 0.91 and 1.10 (con-
centrated around 1) when D1 =0. These percentiles result from assigning σRD = ln.1:33/=1:645
when D1 =1 and σRD = ln.1:10/=1:645 when D1 =0.

3.7. Confounding
Let

ΩU.s/≡P.U =1|T =Y =0, s/=P.U =0|T =Y =0, s/

be the population odds of the latent confounder U among unexposed non-cases (which com-
pose over 95% of populations in this example), let ΩTU.y, s/ be the (population) TU odds ratio
given YS, let ΩTY .u, s/ be the TY odds ratio given US and let ΩUY .t, s/ be the UY odds ratio
given TS. As mentioned earlier, I assumed that there is no three-way TUY -interaction given S,
so that these S-specific odds ratios are constant over T , U and Y respectively. The change in
the S-specific TY odds ratio from ignoring U is then BC.s/≡ΩTY .s/=ΩTY .u, s/.

Given disease rarity, BC.s/ is also the degree of TY -confounding by U (bias from ignoring
U ) when S = s. The correction formula is thus ΩTY .u, s/=ΩTY .s/=BC.s/, where

BC.s/= {ΩTU.y, s/ ΩUY .t, s/ ΩU.s/+1}{ΩU.s/+1}
{ΩTU.y, s/ ΩU.s/+1}{ΩUY .t, s/ ΩU.s/+1} .10/

(Yanagawa, 1984). By analogy with response bias we could model ln{BC.s/} directly (Robins
et al., 1999). None-the-less, typical prior information refers instead to the odds ratios in equa-
tion (10) and considers those parameters a priori independent, which makes it easier to model
the Ω directly. The models that are used here are

ηTU.s/≡ ln{ΩTU.s/}=σT .βT + sβTS +dβTD +vβTV /, .11/

ηU.s/≡ ln{ΩU.s/}=σU.βU + sβUS +dβUD +vβUV /, .12/

ηUY .s/≡ ln{ΩUY .s/}=σY .βY + sβYS +dβYD +vβYV /: .13/

As with the earlier models, for convenience the linear predictors are rescaled by specified factors
σT ,σU and σY so that the variances (τ2) of their random (β-) components sum to 1.

Let βC be the vector of all the β in these three formulae, and let BC.s;βC) be the confounding
model that is obtained by substituting the specification into the bias factor BC.s/. The prior that
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is used here is intended to address vague suggestions that some sort of biologically and physically
independent leukaemia risk factor may be associated with fields. To reflect the lack of informa-
tion on specific confounding sources, I gave all βC-components mean 0 and for convenience
gave them normal distributions. Effects of unmeasured factors on leukaemia (parameterized
by the ηUY ) would be heavily determined by human cancer biology, which is expected to vary
little with location, although the distribution of those factors could easily vary. In contrast, the
associations of those factors with fields (ηTU ) and even more the background prevalences of
those factors (whose logits are the ηU ) would be heavily affected by local conditions such as
wiring practices. Hence, I assigned τ2-values to produce higher correlations between the ηUY .s/

than between the ηTU.s/, and higher correlations between the ηTU.s/ than between the ηU.s/.
For ηUY .s/ the correlations ranged from 0.85 between studies that share neither D nor V to 0.95
between studies that share both D and V , produced by τ2

Y =0:72 and τ2
YD =τ2

YV =0:09; for ηTU.s/

the correlations ranged from 0.60 between studies that share neither D nor V to 0.90 between
studies that share both D and V , produced by τ2

T = τ2
TD = 0:36 and τ2

TV = 0:09; and for ηU.s/

the correlations ranged from 0.50 between studies that share neither D nor V to 0.70 between
studies that share both D and V , produced by τ2

U =0:25 and τ2
UD = τ2

UV =0:12.
The scale factors were based on results of Langholz (2001), who studied 13 factors associated

with household wiring in a survey by Bracken et al. (1998). Those data exhibited factor preva-
lences from very low to very high, so σU was set to 2 to produce a nearly uniform distribution
for Pr(U =1|x, y, s). The same data also exhibited odds ratios as high as 5.3, which suggests that
σT = ln.6/=1:645 is reasonable (because this choice makes 6.0 the 95th percentile of the ωTU.s/

distribution). There are no analogous data on which to base σY , although general observations
on the size of composite effects in cancer epidemiology suggest that the symmetrical choice
σY =σT = ln.6/=1:645 is reasonable.

3.8. Results from single corrections
The results in Table 2 are based on 250000 trials for each case and so have Monte Carlo 95%
limits within the level of precision that is displayed; hence I shall refer to the observed propor-
tions as probabilities. Before combining corrections, it is instructive to see the effect of each
one alone. As a reference point, the first row of Table 2 provides percentiles of the estimated
sampling distribution of the uncorrected estimate

ωMH0 =∑
s

ws ωXY .s/=w+,

which is the distribution of estimates corrected for random error only by drawing a normal(0, ŝ2
0)

error and subtracting it from ln(ωMH0) (Greenland, 2003a). From the ‘proportion <1’ column,
there is only a 0.01% chance that the random error in the original summary estimate exceeds
ωMH0 (i.e. that random error alone could have moved the summary from less than or equal to
1 to ωMH0).

In an analogous fashion, the second row provides percentiles of estimates Σsws ωXY .s/=BR.s;
βR/w+ corrected for non-response only. Under the above prior, non-response is a much larger
source of uncertainty than random error; for example it yields a 5% probability that the net
response bias equals or exceeds the observed ωMH0 (i.e. that non-response alone could have
moved the summary from less than or equal to 1 to ωMH0). The third row gives percentiles of
the estimates Σsws ωXY .s/=BC.s;βC/w+ corrected for confounding only. Under the above prior,
confounding uncertainty is similar to uncertainty due to random error; for example, there is
only a 0.2% probability that the net confounding equals or exceeds ωMH0 (i.e. that confounding
alone could have moved the summary from less than or equal to 1 to ωMH0).
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Table 2. Percentiles of corrected Mantel–Haenszel odds ratios from multiple-bias analy-
ses of 250000 trials each, with different maximum upper bounds m0 and m1 for the false
negative rates ε0 �p.X D0jT D1, y, s/ and false positive rates ε1 �p.X D1jT D0, y, s/

Factors corrected for 2.5th 50th 97.5th Proportion Proportion
percentile percentile percentile <1 <1.27

Random error only† 1.27 1.68 2.22 0.0001 0.025
Response bias only 0.94 1.45 2.28 0.05 0.29
Confounding only 1.32 1.69 2.33 0.002 0.019

m0 = 0.05, m1 = 0.01
Classification only 1.55 2.07 7.81 <0:0005 <0:0005
All bias sources‡ 1.01 1.90 7.32 0.023 0.12
All plus random error§ 0.95 1.91 7.50 0.036 0.14

m0 = 0.05, m1 = 0.05
Classification only 1.24 3.63 46.7 0.003 0.031
All bias sources‡ 0.96 3.26 42.6 0.031 0.089
All plus random error§ 0.92 3.27 43.2 0.037 0.095

m0 = 0.25, m1 =0.01
Classification only 1.72 2.04 6.95 <0:0005 <0:0005
All bias sources‡ 1.06 1.90 6.59 0.015 0.10
All plus random error§ 0.99 1.91 6.73 0.027 0.12

m0 = 0.25, m1 = 0.05
Classification only 1.41 3.45 41.3 <0:0005 0.008
All bias sources‡ 1.06 3.11 38.1 0.017 0.068
All plus random error§ 1.01 3.14 38.6 0.023 0.077

m0, m1 random§§
Classification only 1.42 2.92 35.1 0.001 0.011
All bias sources‡ 1.04 2.67 32.0 0.019 0.077
All plus random error§ 0.99 2.70 32.5 0.026 0.088

†Lower 95% limit, point estimate, upper 95% limit and lower P-value from a Mantel–Haenszel
analysis.
‡Correcting for bias from misclassification, non-response and confounding.
§Adding estimated normal random error (from the first row) to the distribution with all biases.
§§m0 and m1 logit normal(0, 4) on (0.025,0.40) and (0.005,0.105) respectively (roughly uniform
on their support).

The first rows of the next four blocks in Table 2 provide percentiles of the estimates
Σsws ωTY .s/=w+, corrected for misclassification only, under some reasonable pairs for the maxi-
mum bounds mx of the "x across studies. With m0 =0:05 and m1 =0:01 (which forces "0 < 0:05
and "1 < 0:01 in all studies), the above specification results in a probability of less than 0.05%
that the misclassification bias equalled or exceeded ωMH0 (i.e. that misclassification alone could
have shifted the summary estimate from less than or equal to 1 to ωMH0). Increasing m1 alone
to 0.05 increases this probability to 0.3%, but then increasing m0 to 0.25 reduces the probability
to below 0.05% again. In all cases, however, it appears improbable that misclassification alone
moved the summary from 1 or less to ωMH0.

It may seem paradoxical that increasing classification error bounds can reduce the probabil-
ity of bias exceeding ωMH0. With ‘nearly’ non-differential misclassification, however, the bias
that is produced by the misclassification is on average towards 1, in accord with the idea that
non-differential exposure measurement error that is independent across units attenuates the
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observed association. As a result, the correction to the observed positive association must on
average be upwards, and so (as can be seen in Table 2) the corrected estimates are distributed
mostly above ωMH0, regardless of the bounds. The behaviour of the lower tail of the distribution
is more complex, however. First, note that when m0 = m1 = 0 there is no misclassification (all
"x = 0), and so the probability that the classification correction exceeds ωMH0 is 0. As the mx

increase from 0 the "x can vary more widely, and hence the dispersion of the corrected esti-
mates initially expands as the location shifts upwards. The dispersion and location change in a
highly non-linear fashion and have opposing effects on the lower tail percentiles. The dispersion
can increase more rapidly than the location and thus increase the probability that the correc-
tion exceeds ωMH0 (for example, compare the results for m0 = 0:01 and m1 = 0:05 with those
for m0 = m1 = 0:05) but can also decline as the range of misclassification rates increases and
thus reduce the probability that the correction exceeds ωMH0 (for example, compare the results
for m0 = 0:25 and m1 = 0:05 with those for m0 =m1 = 0:05). These phenomena can be further
explained algebraically but for brevity I omit the details.

3.9. Combined corrections, and subsequent inferences
Let β= .βC,βR,βM/. Table 2 provides the percentiles of the multiple-corrected estimates

ΩTY .β/=∑
s

ws ωTY .s;βM/=BC.s;βC/BR.s;βR/w+

for different mx-pairs. It also gives percentiles after including log-normal random error at each
draw of β, i.e. percentiles of ΩTY .β/exp.Z/ where Z is normal(0, ŝ2

0). We can now look at features
of the distribution of the corrected estimates without and with correction for random error and
compare these results with those of the conventional analysis (which accounts only for random
error). Uncertainty about the TY -effect due to uncertainty about classification error is sensitive
to the mx, especially to the false positive bound m1 (which is unsurprising, given the low preva-
lence of exposure). For example, with random error included, the probability that the corrected
estimate falls below 1 (i.e. that bias plus random error explain the observed association) is 3.6%
for the first pair of mx but 2.3% for the last pair. The results are also sensitive to the form of the
"x-distributions within their support (which are not shown). These features should temper any
conclusions about the TY -effect that might be drawn from the conventional results.

Uncertainty about appropriate bounds suggests adding the mx to the model as hyperprior
parameters. As an example, the final set of results in Table 2 comes from sampling m0 and
m1 from logit–normal(0,4) distributions rescaled to (0.025,0.40) and (0.005,0.105) respectively,
which are close to uniform on these intervals. The net result of this extension is an averaging
of the fixed mx results over the range of the mx in the sensitivity analysis. Similar results can be
obtained by making σM unknown with a prior.

Given the prior, the results in Table 2 might be taken as favouring the hypothesis of a leukaemo-
genic effect of magnetic fields or a close correlate for which they are a surrogate. None-the-less,
no agreement about the existence of an effect (let alone its size) could be forced by the data
without more precise knowledge of the classification errors. Classification error is the largest
source of uncertainty because (unlike non-response and confounding) there are simply no rele-
vant data or theory from which to develop a precise prior for ηM. Even if that information were
available, uncertainty that is due to non-response is comparable with uncertainty that is due to
random error, and so the overall uncertainty would remain high even if enormous studies with
perfect measurements (which will never exist) were added to the analysis. The only positive note
is that confounding alone seems to be of lesser importance than other biases, given the prior
information that is used here.
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Finally, before the earliest studies little credibility was given to the hypothesis that residential
fields cause leukaemia. Thus, if we added a substantively justified prior for θ to the specification,
the final distributions would be shifted towards the null because such a prior is concentrated
near the null (Greenland, 2003b).

4. Discussion

4.1. Model forms
As in most conventional analyses, I have not addressed uncertainty about model forms; I used
log-linear and logistic models with normal random effects only for tractability and to enforce
range restrictions. This source of uncertainty could be included by adding parameters to index
the model form (as is done in Bayesian model averaging), although that would greatly increase
the complexity of the bias model and the priors.

In my experience, many users of statistics think that their results do not depend on the form
of their model because they use categorized variables or purely tabular analyses. None-the-
less, the justification and performance of categorical and tabular statistics depend on implicit
regression models; for example, the tabular Cochran–Mantel trend test that is popular in epi-
demiology is the score test of the slope parameter in a logistic model with binomial errors, and
it can be quite misleading when that model form poorly approximates reality (Maclure and
Greenland, 1992). Such issues are ordinarily addressed by model diagnostics; on expansion to
include bias parameters, however, the model forms (as well as their parameters) are not identi-
fied. Thus, in bias modelling the model form is an integral component of the prior specification,
rather than a structure that is selected with guidance from the data, as most statistical research
treats it.

4.2. Some problems in interpretation
Analysts sometimes conclude that the combination of bias and random error is sufficient to
explain an elevated estimate if a plausible value or distribution of η could by itself produce a
value that is as high as the conventional lower confidence limit; similarly, some analysts call
inference about the null sensitive to hidden bias if a plausible value for η could make the two-
sided P = 0:05. These interpretations are misleading because they do not coherently integrate
the uncertainties regarding bias and random error. In particular, they suggest that the bias prior
makes the null more probable than it actually does. Consider Table 2: the correct probability
(under the prior) that the combination of bias and random error equal or exceed the observed
association (ωMH0) is the ‘proportion < 1’ in the ‘all plus random error’ row. This probability is
always much smaller than the corresponding probability that bias alone could have produced
an elevation that is as high or higher than the conventional lower limit (the ‘proportion < 1.27’
in the ‘all bias sources’ row). Given a positive observed association, the use of the lower limit or
P =0:05 as the criterion for evaluating bias sensitivity implicitly assumes that the random error
is improbably positive (at least as positive as the difference between the point estimate and the
lower limit, an event with only 2.5% probability). These criteria are thus biased in favour of the
null hypothesis.

Other analysts report percentiles from MCSA as frequentist statistics; for example, in sum-
marizing the distribution of corrected estimates, they may present the percentage below the
null value as a one-sided lower P-value and refer to the 2.5th and 97.5th percentiles as 95%
confidence limits. None-the-less, because the distributions of these summaries have a heavily
subjective prior component p(η), conventional frequentist interpretations are unjustified (Green-
land, 2001a).
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4.3. Metasensitivity and objections to bias modelling
Bayesian and MCSA outputs depend completely on the prior p.η), which suggests that a meta-
sensitivity analysis of the dependence is essential. Moving in this direction reintroduces the
problem of basic sensitivity analysis, however: given the limitless possibilities for p(η), a thor-
ough metasensitivity analysis would only illustrate how various conclusions can be reached. A
conclusion about the target θ, however, would require constraints on the p(η). These constraints
would constitute a subjective prior on priors (a hyperprior); incorporating them into the anal-
ysis would produce a subjective average of results over the hyperprior, as in the final block of
Table 2. This result would itself be subject to concerns about sensitivity to the hyperprior, which
would continue on into an infinite regress.

This regress is as unnecessary as it is impractical. Multiple-bias modelling can be treated as
a project to discover and exhibit a prior that is arguably reasonable or defensible (in that it is
consistent with known facts and established theory), and that leads to borderline conclusive
results according to some operative criterion (e.g. a posterior probability for the null of 0.025)
(Greenland, 2003a). Such a prior can help to show why the data cannot force agreement between
all reasonable observers: defensible perturbations to such a prior can make the results appear
moderately inconclusive or moderately conclusive, as the results in Table 2 do when evaluated
against a two-sided 0.05-criterion (a criterion that is used in laws and precedents in the USA;
see Greenland (2001a)). As an example, in the year following the publication of Greenland,
Sheppard, Kaune, Poole and Kelsh (2000) one official of the California State Department
of Health publicly asserted, with near certainty, that fields caused childhood leukaemia; this
assertion fed demands on the Public Utilities Commission to impose very costly interven-
tions to reduce field levels at schools and homes. Multiple-bias modelling can counter-
balance such overconfident assessments of ambiguous evidence and provide more realistic
inputs for decision makers (whose decisions will be guided by cost–benefit as well as evidential
concerns).

The unlimited nature of metasensitivity may cause some to label bias modelling as a futile
exercise. These objections correctly note that, for most topics in which bias modelling might be
worthwhile, it would only show how all of an observed association can be plausibly attributed
to bias and random error. This objection is no fault of bias modelling, however, but it instead
reflects the weakness of available evidence. The demonstration of this weakness is worthwhile
if not imperative in many cases, as above.

Metasensitivity has also led to charges that the quantification of uncertainty that is achieved
under bias modelling is spurious. There is, however, nothing spurious about the quantification if
the prior approximates the views of the analyst, for then the output gives the analyst an idea what
his or her posterior bets about the value of θ should be. From a more broad perspective, charges
of spurious precision embody a double standard relative to the status quo: the apparently precise
quantification of uncertainty that is offered by conventional analysis is far more spurious than
that from bias modelling. Within health sciences, at least, I believe that most researchers fail
to grasp how poorly conventional analyses capture uncertainty, and they fail to compensate
sufficiently for these deficits. Intuitive discussions of bias often rely on flawed heuristics, such
as ‘non-differential misclassification introduces a bias toward the null in virtually every study’
(Rothman (1986), page 88). Such flawed heuristics ignore the effects of bias uncertainty, effects
which are revealed by an exercise in bias modelling (see Section 3.8). A recent sample survey of
the epidemiologic literature revealed that most papers do not even deploy flawed heuristics but
instead dismiss biases as unlikely to be important, or else simply fail to mention the problems
(Jurek et al., 2004). In the rare case that sensitivity analysis is added, it is almost never coherently
combined with the assessment of random error.
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Another objection is that possible biases are always omitted from modelling. That is true, but
the inevitable omission of some bias sources cannot justify the omission of all (which is what
conventional analyses do) any more than the inevitable failure to apprehend all murderers can
justify ignoring all the murderers who can be apprehended. The inevitability of omissions does
suggest that no analysis can do more than to provide a lower bound on the uncertainty that
we should have in light of the data and a prior. None-the-less, bias modelling can provide less
misleadingly optimistic bounds than can conventional analysis.

4.4. Bias analysis versus better data?
Some recommend that formal bias analysis should be eschewed in favour of improving measure-
ment, response and covariate data. This recommendation is a non sequitur and is often wildly
impractical. Bias modelling and collection of better data are not mutually exclusive, although
bias modelling is often the only feasible option. Exhortations ‘just to collect better data’ are
especially empty when (as in the example) we can neither identify a gold standard measurement
nor force subjects to participate or to submit to better measurements (which tax co-operation
of subjects). Even when we can envision a way to collect better data, decisions must often be
made immediately and so can only be based on currently available data; as in the example, it
may be essential to model those data fully to counter naı̈ve judgments.

‘Collect better data’ becomes a relevant slogan when it is feasible to do so. Multiple-bias mod-
elling is then a useful ally in making clear that the added value of more observations of previous
quality (e.g. case–control studies with unknown and possibly large amounts of bias) is much
less than conventional statistical formulae convey (Eddy et al., 1992). Conventional standard
errors shrink to 0 as the number of observations increases, and total uncertainty approaches the
combined bias uncertainty. At some point, mere replication or enlargement of observational
studies is not cost effective, and innovations to reduce bias are essential. This point is passed
when random error contributes a minority share to total uncertainty. In the example, three
more studies of magnetic fields and childhood leukaemia have been published since completion
of the pooling project, but none controlled the biases that are described above. Hence, adding
these studies has little effect on the final uncertainty distributions; in fact, adding a study with
no random error (infinite sample size) but the same bias uncertainty would have little effect.

Most would agree that proposals to confirm or test previous results should include effective
safeguards to reduce sources of bias that were suspected in earlier findings, or at least should
supply validation data that could provide usefully precise estimates of bias parameters. But
the cost of such improvements may be prohibitive. Decisions about funding should also involve
considerations of research value (Eddy et al., 1992); the high cost of doing a very informative
study may not justify the usual claim that ‘more research is needed’ (Phillips, 2001). When the
cost of better data is prohibitive, multiple-bias analysis of existing data may become the best
feasible option.

4.5. Concluding remarks
Extreme sensitivity of results to the priors is inevitable and unsurprising, given the many uniden-
tified parameters in realistic bias models. It reflects an irreducible core of uncertainty about the
mechanisms generating non-experimental observations (Leamer, 1978; Rubin, 1983). Unfor-
tunately, this core uncertainty is hidden by adherence to identified models. It is more honest
instead to bring uncertainty to the fore and to attempt to discover which parameters contribute
most to the final uncertainty. Such discovery can help to guide research planning by focusing
resources on reducing the largest sources of uncertainty. Those sources are not necessarily the
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largest sources of bias, but rather are the sources that are most poorly determined by prior
information.

Compared with conventional analysis, multiple-bias modelling better captures uncertainty
about effects but requires the specification of a much larger model and demands far more
subject-matter knowledge. It also requires much more presentation space and more effort by
the reader. Its key advantages may only make it more unappealing: if conducted and presented
properly, it depicts how, in the absence of experimental evidence, effects of interest are identified
by prior distributions for bias sources rather than by data. It thus belies methods that claim to
‘let the data speak for themselves’: without external inputs, observational data say nothing at all
about causal effects. In many settings it also shows that only indefensibly precise (overconfident)
priors can produce firm conclusions, and that conventional methods produce definitive looking
results only because they assign probability 1 to the extremely implausible assumption of no
bias (η=0).

Multiple-bias modelling can be superfluous when conventional standard errors make clear
that substantive inferences are unwarranted, as when only a few small studies are available. It
may, however, be essential when an analysis purports to draw causal inferences from obser-
vational data, when bias uncertainty is comparable with random error or when decisions with
costly consequences must be made on the basis of the available evidence (Eddy et al., 1992). I thus
argue that bias modelling should become part of the core training of scientists and statisticians
who are entrusted with the analysis of observational data. For research planning and allocation,
multiple-bias modelling can show when conventional approaches to reducing uncertainty, such
as increasing the sample size or replicating studies, have become inefficient (in the magnetic field
controversy, this point was reached with studies published in the mid-1990s). To be worthwhile
after that point, further studies must give estimates that are more precise and unbiased than
previous estimates or else must give precise estimates of biases. When improved studies are pro-
hibitively expensive, multiple-bias modelling may be the best option for decision-making input.
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Appendix A

‘Unconfounded’ and ‘confounding’ have been formalized in various ways (Greenland et al., 1999); for
the present exposition the precise definition is unimportant as long as it implies that there is a U such
that the true causal effect of T on Y can be identified from P.T , Y |S, U/. This U may be a compound
of other variables. Existence can be shown under various causal models. For example, under a directed
acyclic graphical model for causation, all confounding can be traced to common causes of T and Y , and
hence such a U will exist if (as here) S is unaffected by T or Y (Pearl (2000), chapter 6). Existence is also
guaranteed under a potential outcome model for the effect of T on Y , for U can then be taken as the
potential outcome vector (Frangakis and Rubin, 2002). In the present analysis, with binary T , any suffi-
cient multidimensional U can be reduced to a sufficient univariate summary; for example, the propensity
score P.T = 1|S, U/ is such a summary. This score is usually categorized and five levels are often deemed
adequate (Rosenbaum, 2002); if the range of the score is very restricted or the relationship of (S, U) to T or Y
is weak, fewer levels may be needed, although more may be needed if the relationship of (S, U) to T and Y is
very strong. Note that, under a deterministic monotone effect model for a binary Y , the potential outcome
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vector U = .Y1, Y0/ has only three possible levels: (0,0), (1,1) and at most one of (1,0) or (0,1) (Angrist
et al., 1996).
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Discussion on the paper by Greenland

John Copas (University of Warwick, Coventry)
It is a pleasure to welcome Professor Greenland to the Society and to propose the vote of thanks for his
interesting paper. Most of the work that is reviewed in the paper is published in the epidemiological litera-
ture, which is not widely read by statisticians working in other areas. But the central problems of response
bias, measurement error and confounding rear their ugly heads in many and probably most applications of
statistics, not just in the areas that are usually associated with epidemiology. This is therefore an important
topic for all of us.

We are so used to using conventional statistical methods which convert information about a sample S
into a conclusion C about the population that we all too easily forget the essential impossibility of arguing
from the particular to the general. Such induction is only possible if we make assumptions A, i.e. statistical
inference is .S, A/→C and not S →C. Fisher was the first to show that, if we can choose how to obtain
S, then we can do so in such a way that A is self-evident, in the sense that the randomization that we
have actually used to obtain S also gives us the probability space from which we can obtain C. If everyone
agrees on the truth of A then there is no need to mention it explicitly. But in all other cases honesty requires
us to emphasize that C depends on A as well as on S, and failure to do so is an abuse of our subject. Every
day the media invite us to believe claims like ‘studies show that if you eat Corn Flakes for breakfast you are
twice as likely to . . .’. No doubt S is observational, and A is some absurd assumption of randomization.
If A is not mentioned how can we assess it? If the conclusion is unbelievable, then what is discredited is
not A, as it should be, but statistics, and hence statisticians. I welcome Professor Greenland’s paper for his
clear discussion of these issues.

The late George Barnard, in one of these discussion meetings, once remarked ‘We statisticians spend
too much time trying to find sensible answers to silly questions’. What question can we ask from Table 2?
We see that the upper ends of the intervals for the odds ratio θ vary very widely across the different settings
for (m0, m1), but from Professor Greenland’s discussion there seems no very clear reason for preferring
any one setting over any other. So, if the question is ‘how big is the risk’, then perhaps we should follow
Barnard and answer ‘the quality of the data is not sufficiently good for us to make any sensible estimate’.
But, if the question is ‘do we have clear evidence that there is a risk’, we note the remarkable finding that
the lower ends of the intervals are all near the null value, even including the setting m0 =m1 =0 if we take
this from the ‘response-bias-only’ figures. If we can show that this happens for all reasonable attempts to
model these biases, then we have a non-silly question, and the answer is no. This would be an important
and perhaps the only convincing analysis of these data.

Professor Greenland argues that sources of bias should be modelled simultaneously and not one by one,
as is usually done. Approximating this in terms of sequential transformations on the expected cell counts
is an attractive simplification, both conceptually and computationally. So it is a pity that the example does
not demonstrate the force of his argument, at least as far as bias is concerned. If we think of each source
of bias as adjusting the estimate up or down by a certain factor, and assume that these factors are additive
on the log-scale, then we can use the 50% points in the single bias rows of Table 2 to predict the 50% points
for the combined bias rows. This gives adjusted values that are very close to the 50% points calculated for
the multiple-bias models.
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For a sensitivity analysis to be useful, it is surely necessary that the assumptions which drive the differ-
ent conclusions are sufficiently transparent that they can be communicated. Even to a statistical audience,
Professor Greenland’s bias models have taken several pages to explain and involve various approximations
whose validity is not always clear, at least to me. Any attempt to model these bias processes explicitly is
bound to be complicated, contentious and arbitrary. Is there a simpler approach?

My suggestion is to turn the problem back to front and first to ask whether we can define a parameter
η which is interpretable in the context of the data, and which, in some sense, reflects the scope of the bias-
ing process. For example, in assessing publication bias, we could define η to be the unknown number of
unpublished papers. If we can formulate a suitable η then, at least in principle, we can replace the explicit
modelling by a ‘worst case’ argument. Subject-matter knowledge is still essential, as Professor Greenland
emphasizes. But, instead of high dimensional priors on nuisance parameters, we could rely on informed
judgment about plausible values of η: hence the need for η to be interpretable.

The naı̈ve analysis is tantamount to fitting a model f.x, y, s, z; θ/, where z is an additional random vari-
able defined by the kind of bias that we are considering. For the three sources of bias discussed, z would be
a binary response indicator, a true exposure, or a latent confounder. What we observe is a sample from the
derived distribution fOBS.x, y, s; θ/, the naı̈ve ignorability assumption in f ensuring that θ is identifiable.
For response bias fOBS is the conditional distribution given z=1 or is simply the marginal distribution of
the data in the other two cases.

The distribution fOBS defines a score function u.x, y, s; θ/. However, the ignorability assumptions behind
fOBS are almost certainly false, so we imagine that the real distribution is g.x, y, s/, say. Our chosen η is
now a functional of g, η.g/, say. Then the bias bounds are

θ−
η = inf

g
[θ : Eg{u.x, y, s; θ/}=0, η.g/=η], .14/

θ+
η = sup

g
[θ : Eg{u.x, y, s; θ/}=0, η.g/=η]: .15/

Geometrically, we are holding η.g/ fixed and finding the extreme projections of g onto f. For the sensitivity
analysis we just estimate θ from the crude analysis and plot these quantities against η.

This approach is explored in two recent references: Copas and Jackson (2004) for publication bias and
Copas and Eguchi (2001) for missing data and confounding. It would be interesting to see whether this
approach can be extended to cover the more complicated set-up which we have here.

This paper has raised some very challenging questions, with an impressive discussion of a major issue
in public health. It gives me great pleasure to propose the vote of thanks.

David R. Jones (University of Leicester)
This is a very stimulating paper about the very important (and relatively neglected) issue of dealing with
bias in analysis and interpretation of observational data. This problem of bias in observational studies,
and almost inadequate analytical responses to it, has a long history. With some imagination, Shakespeare
can be held to have made several arguably relevant comments (although admittedly in different contexts),
including ‘. . . with assays of bias, by indirections find directions out’, and ‘Bias and thwart, not answer-
ing the aim’ (Crystal and Crystal, 2002). Much more directly, this paper draws on Eddy’s confidence
profile ideas of bias modelling (Eddy et al., 1992), seeking to account explicitly for all major sources of
uncertainty, as in risk assessment and comprehensive decision analysis. The exposition of the problem is
clear here, and the two-step characterization of the conventional (epidemiological) approach to analysis,
and the selection bias that is often inherent in implementation of Section 1.1, point (b), will be a skewer
through many epidemiologists’ hearts.

The author argues that multiple-bias modelling should be part of the core training of analysts of obser-
vational data. I agree of course that major improvements in approach are needed, but questions about the
feasibility of such training are focused for me by the introductory Masters course in statistical methods
for epidemiology that I shall be teaching next week. Our students should (I think!) be able to cope with
the more technical statistical aspects. However, although this paper—in particular the example—demon-
strates the potential for fuller, quantified analyses of bias in capable hands, it does not give a general,
operational specification. Not all epidemiological hands are as capable across the wide range of statistical
confidence and understanding of the application area that is required by the approach.

Perhaps in recognition of this, at the end of Section 1, readers who are ‘uninterested in details’ are
encouraged to skim the theory (Section 2) and the magnetic fields and leukaemia example (Section 3). I
suspect that many epidemiologists would indeed skip (not just skim) the theory and start with the example.
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So, can we move in any way towards wider implementation? In particular, how can the example be gen-
eralized in practice? The specification of sensitivity analyses and/or priors is bespoke; how to decide what
is ‘major’ in ‘accounting for all major sources of uncertainty’ is demonstrated in the example but not
in general. In Section 2.2 the potential which sensitivity analyses offer for nihilism, through finding an η
that yields any preselected value for θ, is indicated. As manipulation may indeed not be obvious when
there are multiple-bias sources, the approach is not sufficiently transparent to allay such concerns in all
applications.

I suggest that we could start to extend the paper by seeking to draw up guidelines for minimal good
practice. These might include attempts to parallel the use of sceptical and enthusiastic priors in trial con-
texts (Spiegelhalter et al., 1994). Although their derivation in an observational study context will be less
straightforward, it could usefully draw on another possible feature of the guidelines: presentation of a sys-
tematic review of evidence relating to distribution of η in other studies as the basis of a more transparent
indication of the source of the analyst’s prior, so as partially to prevent the covert selectivity of approach
that is outlined in Section 1.1, point (b). This systematic review will not necessarily include the same stud-
ies as a review of outcomes. An adequate analysis in any particular example will need to move beyond
the inevitably arbitrary guideline specifications; the guidelines are proposed simply as a starting-point for
relatively inexperienced analysts.

As the author indicates, adoption of his approach will require greater resources for both analysis and
presentation, though the latter should be relatively easily accommodated by supplementary use of the Web.
There are also hints towards expected value of information approaches in determining the next step in
research in the area of interest (Claxton, 1999). The message that ignoring bias uncertainty in conventional
power calculations overestimates benefits of study replication is anyway important for research prioriti-
zation decisions even if less formal methods are used. Multiple-bias modelling, or performing another
conventional epidemiological study, will not always prove to be the best buy; sometimes more radical
choices, such as invoking Mendelian randomization, using genetic markers of exposure propensity to
‘eliminate’ confounding (Davey Smith and Ebrahim, 2003), will be possible and preferable.

In summary, this paper does not of course solve all the problems of bias in the analysis and inference of
observational studies; in particular it is not easy to see how to apply the approach generally. However, it
does provide a stimulating starting-point for a very necessary development of better future practice. With
further apologies to Shakespeare I could say that I come not to ‘bury’ Sander but to praise him, and with
great pleasure I second the vote of thanks.

The vote of thanks was passed by acclamation.

David Spiegelhalter (Medical Research Council Biostatistics Unit, Cambridge)
This paper reveals an admirable effort to broaden sensitivity analysis beyond its usual unrealistically lim-
ited boundaries. The author appears keen to avoid a full likelihood or Bayesian approach, presumably with
the feeling that epidemiologists will feel more comfortable with a sequence of adjustments to the standard
Mantel–Haenszel point estimates. But I wonder whether perhaps a ‘full probability model’ would be both
conceptually and computationally simpler.

Fig. 1 shows a graphical model constructed in the ‘causal’ (in a loose sense) direction, revealing how
an underlying ‘true’ odds ratio of primary interest is steadily modified by problems of measurement and
design, until finally giving rise to the observed counts.

Each of the model assumptions that are assumed by the author can be placed within this frame-
work: the only additional component is a random-study effect instead of the conditional Mantel–Haenszel
analysis.

Such a model appears conceptually straightforward and moreover is readily implementable in freely
available software such as WinBUGS: my colleague Ken Rice will report the considerable insights that
are revealed by using such a model to reanalyse the author’s example. A full probability model allows
access to the whole range of likelihood-based techniques for model criticism and comparison, implemen-
tation of proper prior distributions and appropriate interval estimates with full allowance for parameter
uncertainty.

In many areas of statistics there are arguments between those who prefer full probability models (perhaps
labelled ‘generative’ or ‘causal’), with those who prefer statistical procedures applied directly to data (e.g.
generalized estimating equations, robust methods and classification and regression trees). In technologi-
cal problems such as machine learning, with defined objectives of prediction or classification, procedural
approaches may outperform models and be preferable: see, for example, Breiman (2001) for an excellent
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Fig. 1. Graphical model showing how an underlying true odds ratio is modified by the processes that were
identified by Greenland

discussion of these issues. But I would question whether this necessarily holds in epidemiology, where we
are presumably trying to gain understanding of the effects of whatever underlying process generated the
observed data. I would therefore welcome the author’s opinion on the role of full probability models in
epidemiology.

Kenneth Rice (Medical Research Council Biostatistics Unit, Cambridge)
The author expressly aims to approximate a Bayesian analysis optimally. However, by carefully carry-
ing out a full Bayesian analysis, pertinent analytical issues can be identified and addressed explicitly. My
comments concern clarification of how the paper’s method implicitly deals with such issues.

Suppose, for simplicity, that we assume only classification error, at fixed rates "0 and "1. Then a reason-
able-looking Bayesian model for the author’s example is

Xys ∼binomial.nys, θys/, y =0, 1, s=1, . . . , 14,

θys = "0θ
Å
ys + .1− "1/.1−θÅys/, y =0, 1, s=1, . . . , 14,

logit.θÅys/=µs +y log.ψ/, y =0, 1, s=1, . . . , 14,

expit.µs/∼U.0, 1/, s=1, . . . , 14,

log.ψ/∼U.−3, 3/:

The only extra assumptions are of a flat prior on log.ψ/, covering reasonable values, and independent flat
priors on the ‘true’ exposure probability for controls.

This choice of ‘base-line’ seems innocuous, but one might reasonably have used flat priors on the case
exposure probabilities, alternatively defining

logit.θÅys/=µs + .y −1/ log.ψ/, y =0, 1, s=1, . . . , 14,

above. In Fig. 2 we see that this trivial change can have a massive effect on the posterior. An explanation
follows, but the choice of prior clearly matters. What choice of prior is the author aiming to approximate?

(The imputed priors on ‘non-base-line’ exposure probabilities have peaks near 0 and 1. Also, for large
negative values of µs, optimal support for θÅ0s =θÅ1s =0 comes with large negative value of log.ψ/. The two
parameterizations bias the analysis towards this extreme by different amounts. We could instead find a
compromise between them (Smith et al., 1995), but more theoretically appealling resolutions exist (Rice,
2004).)

The prior on ψ is a related concern. Given such rare exposures, if we entertain misclassification rates of
5% (suggested by Sections 3.5 and 3.8) then the observed data give non-trivial support to underlying true
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data with many zero counts—including where no controls are exposed. Hence for all values out to ψ=0
or ψ=∞ the likelihood remains above 0, and this forces the prior and posterior to have identically shaped
‘tails’, which in turn makes the posterior’s moments and quantiles very sensitive to the ψ-prior. This is
well known for completely unidentifiable models (Paulino et al., 2003) but also impacts in this rather less
special case (Rice, 2003). The problem is particularly acute if the likelihood’s maximum lies at an extreme
value, which is quite possible with realistic data sets.

The author’s method needs no prior for ψ, but his ‘semi-Bayes’ smoothing technique effectively does
the same job, stopping corrected counts Eη from becoming close to or below 0—indeed the smoothing
parameter σ is justified by considering the variance of prior beliefs. I would therefore welcome an ‘epi-
demiologist-friendly’ interpretation of this parameter directly in terms of the exposure probabilities, and
some idea of whether and when the analysis will be sensitive to its value.

Ben Armstrong (London School of Hygiene and Tropical Medicine)
The paper presented by Professor Greenland proposes methods to bring more formal and more numerical
reasoning to bear on a problem—bias in observational studies—which has to date typically been addressed
by using less formal, less quantitative approaches. The potential benefits of such a move—improved clarity
in assumptions and in conclusions—are easily seen by us statisticians. However, the explicit models that
clarify for us can obscure for non-statisticians. We should avoid discounting important insights on bias
from such scientists. I have some suggestions that might help to avoid such a schism between statisti-
cians and non-statisticians developing if, as I hope, methods such as these become more popular among
statisticians.

(a) The formal method should be presented as an extension of a conventional sensitivity analysis, with
presentation of the posterior distribution of the effect measure preceded by graphs of the depen-
dence of the effect measure on a range of values of the ‘bias’ parameters. This clarifies the role and
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influence of the prior distribution of the bias parameters and provides an aid to understanding for
people who are unfamiliar with the approach.

(b) The method should run in parallel with rather than replace less formal discussions of potential
effects of bias.

(c) Priority should be given to (the minority of?) situations where less formal arguments are clearly
insufficient. In particular, I suspect that this will be where no one source of bias can be argued infor-
mally to predominate. Where there is one predominant source of bias, informal reasoning sometimes
accompanied by conventional sensitivity analysis will often be adequate.

Professor Greenland chose his example well, as one in which potential biases dominate uncertainty, and
it is not obvious that one source of bias predominates. However, even here parallel informal reasoning can
reach quite far, motivate the modelling and reassure model sceptics.

Finally, I wonder whether formal modelling can ever incorporate all the issues that are important for
a conclusion. My prime candidate for consideration in Professor Greenland’s example is his choice of
focus on exposures above one cut point—3 mG. Professor Greenland appears to acknowledge that part
of the reason for the focus is that this dichotomy yields the strongest evidence for association. This weighs
quite heavily—but informally—on my personal post-Greenland probability that magnetic fields cause
leukaemia.

Stephen Senn (University of Glasgow)
I think that there may be more that can be said for conventional analyses than Professor Greenland is
willing to admit. Suppose that a meta-analyst is ambitious to carry out an analysis along the lines that are
suggested in this stimulating paper and suppose that he or she is given a choice: either to be provided with
conventional frequentist analyses of the original data, study by study, or to be provided with multiple-
bias-adjusted analyses of these individual studies. It seems to me that the task of our would-be summarizer
will be much easier if given the former rather than the latter. In fact, it is an irony, which George Barnard
for one was wont to point out, that the last thing you want as raw input as a Bayesian is Bayesian posteriors
unless they happen to be your own.

In fact, if they are not, you get in a terrible mess. You need to date-stamp all analyses and to make it
clear what has and has not been included in any report of them. To make an analogy, sometimes, when
you ask for the accounts you just want them item by item, even if the entries are not entirely reliable,
rather than having some accountant’s assesssment of current liquidity (Senn, 2000). Of course, if we fol-
low this thought to the bitter end we come to the depressing conclusion that there is no such thing as
public statistical analysis, the only things worth communicating are data but maybe frequentist point esti-
mates and standard errors provide a useful compromise between unusable posteriors and overwhelming
detail.

This is not to say that we should not welcome Professor Greenland’s proposals. It is an all-too-frequent
mistake to imagine that a conventional statistical analysis delivers with it an automatic recommendation
for action. The paper here shows that much more may be needed before decisions can be taken.

James Carpenter and Mike Kenward (London School of Hygiene and Tropical Medicine)
It occurs to us that perhaps the problem that is tackled in this stimulating paper is equivalent to data
coarsening (Heitjan and Rubin, 1991), a framework which includes missing observations, transcription
errors, measurement errors and so forth. We agree with the author that, in such cases, it is always advisable
to assess the sensitivity of the conclusions to the modelling assumptions, especially the ignorability of the
coarsening mechanism.

Greenland presents an elegant framework to tackle this problem when the data form a multiway con-
tingency table. In effect, a series of imputations are performed under a non-ignorable data coarsening
mechanism.

However, we conjecture that a more general approach is to recast the problem as ‘missing not at random
multiple imputation’, and to approximate draws as follows. Write the data Y , consisting of coarsened and
uncoarsened (correctly observed) observations, as Y = .YC, YO/. Our aim is assess the sensitivity of esti-
mates of EYC |YO θ.YC, YO/ to non-ignorable coarsening mechanisms. Approximate draws from the posterior
of this distribution can be obtained as follows:

(a) draw YC|YO under an ignorable data mechanism and
(b) calculate the probability of seeing these data under the coarsening mechanism (which depends on

YC), and then draw from a uniform distribution in [0, 1] to decide whether to accept this draw.
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This is closely related to using a weighted bootstrap (Smith and Gelfand, 1992) and has a couple of
potential advantages:

(a) the modelling framework is no longer limited to count data and
(b) inference uses Rubin’s rules for combining multiply imputed data sets.

Further, if the main analysis uses an ignorable data model, then a ‘non-ignorable’ weight can be calculated
for each unit. A weighted version of the statistic of interest could then be calculated, with a sandwich
estimate of variance. This approach has the attraction that

(i) weighted analyses can be done in most statistical packages,
(ii) ignorable imputations can be done semiautomatically in a variety of packages and
(iii) the model for coarsening can often be readily written down.

Alternatively, if data are categorical and only a small proportion are coarsened, a more direct assessment
of sensitivity can be obtained from looking directly at the likelihood, which can in some settings reduce
to examining worst–best scenarios. See Raab and Donnelly (1999), Molenberghs et al. (2001) and Verzilli
and Carpenter (2002).

Prior information for non-ignorable models is often contentious. Useful progress can sometimes be
made by eliciting priors from experts, or consumers, of research. For a discussion of this approach in the
context of clinical trials, see White et al. (2004).

Bianca De Stavola and Dorothea Nitsch (London School of Hygiene and Tropical Medicine)
Professor Greenland’s drive for an explicit modelling of the biases affecting epidemiological studies is
extremely welcome. As practitioners, however, we have concerns about our ability to apply and interpret
multibias modelling.

The study that is discussed in the paper is a pooled analysis of 14 case–control studies, where Y is a binary
variable identifying the cases, X a binary indicator of magnetic field exposure and S the study identifiers
(Fig. 3). A Mantel–Haenszel statistic could be used to obtain a weighted summary of the study-specific
effects and therefore control for the confounding effect of S. Alternatively, as suggested by Professor
Greenland, a more realistic model would recognize that X might be only a proxy for the true exposure T ,
that the study participants are likely to be a biased subset of the population of interest and that S is not
the only confounder. In other words it would include submodels to represent measurement error, selection
(and response) bias and the unaccounted confounders (Fig. 4).

The forms that are taken by each of these submodels, plus the range of values that are allowed for their
parameters, are crucial to the results and should be guided by subject-matter considerations. However,
there are aspects of the Monte Carlo sensitivity analysis strategy that is suggested by Professor Greenland
that should be generalizable. This is where we wish to have some clarifications.

X
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Fig. 3. Standard model for an outcome Y , an exposure X and a confounder S
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(a) The example focuses on a pooled analysis. Could it be equally applied to data from a single study? Or
should we adopt such complex sensitivity analyses only when information is available from several
studies so that assumptions are more believable?

(b) Is the sequential correction that is recommended in the paper only applicable to discrete data (i.e.
binary Y and X and categorical S)? The general Monte Carlo sensitivity analysis that is described
in Section 2.3 seems impractical for metric exposures (and/or outcomes), unless we adopt a fully
Bayesian approach. However should one be advised to attempt multibias modelling only after
dichotomizing a metric exposure? But would that not lead itself to misclassification bias (Flegal
et al., 1991)?

(c) The assumption that all the intercepts in the bias models have mean 0 may be too restrictive, espe-
cially for the logit of the latent confounder among the non-exposed non-cases (equation (12)): has
Professor Greenland considered sensitivity analyses for the means of their distributions?

D. Nitsch and B. De Stavola (London School of Hygiene and Tropical Medicine)
As applied statisticians we fully support Greenland’s drive for a structured quantification of bias due to
systematic errors in epidemiologic studies, such as confounding, selection bias and measurement error or
misclassification. In the current paper it might be worth mentioning that before even considering doing
such multiple-bias modelling a satisfactory directed acyclic graph should be drawn (an example is given in
Fig. 5 (Greenland et al., 1999)). This helps to understand the data generation process and leads to the iden-
tification of possible sources of bias. Owing to the case–control design, the sampling of the study subjects
is according to the full arrows, whereas the usual argument with respect to causality or confounding is in
the direction of the broken arrows. S, D and V are all related by separate functions to the latent variables
T (the true measurement), Ymiss,obs (observed and missing cases or controls) and U (the confounder) which
are denoted by ovals. For simplicity additional arrows between S, D and V and these latent quantities
have been omitted.

The current application is designed to deal with systematic errors that might affect a pooled analysis
of case–control studies using only binary variables. In other situations the problem of misclassification of
exposure might be solved by prior information, in contrast with non-response where a sensitivity analysis
might be more important. Is it right to assume that the proposed data unwrapping process changes for
cohort studies (adjust for differential non-response; then misclassification; then confounding) and that
then the sensitivity analysis can be carried out in a similar way, assuming a differential non-response?
How might multiple imputation solve the problem with respect to this question? Would this extension in
the latter setting allow for additionally dealing with continuous variables?

Is our understanding of the ‘bias in favour of the null hypothesis’ (near the end of the first paragraph
of Section 4.2) right in the sense that by using sensitivity analysis we try to reject findings that favour the
alternative hypothesis? Would an a priori formalization of the effect sizes that we wish to confirm or reject
help? Computation of such prespecified equivalence ‘bands’ (the proportion of an effect of a given range)
might yield information of interest and avoids such a bias in favour of the null hypothesis.

Using a weighted Mantel–Haenszel average to summarize study results uses uncorrected weights. As
noted in Section 2.6, the more the bias parameters move away from zero, the less efficient the W0η-weighted
bias-corrected estimator is. Did we understand correctly that this was the reason for using the original
weights that are derived from the smoothed table frequencies? If there is an assumed high rate of mis-
classiflcation, must these weights be amended to the assumed relationship between the true exposure T
and outcome Y after adjusting for misclassiflcation of study results?
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Fig. 5. Path diagram for Greenland’s multiple-bias model
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Colin R. Muirhead (National Radiological Protection Board, Chilton)
I would like to echo the comments made by Dr Armstrong, namely that epidemiologists often attempt to
assess the effect of various potential sources of bias, albeit not using the formal modelling approach that
is described in this paper. The conclusions from the magnetic fields and childhood leukaemia example
that are presented here appear to be similar to those reached in a report by an Advisory Group on Non-
ionising Radiation (2001), chaired by Sir Richard Doll, which used a more traditional epidemiological
approach. It would be interesting to know of practical situations in which multiple-bias modelling and the
usual epidemiological approaches to assessing the effect of bias produce substantially different conclusions
and—in such instances—to understand why this is the case. (Publication of these comments is copyright
of the National Radiological Protection Board).

Jim Hodges (University of Minnesota, Minneapolis)
Professor Greenland has belled a nasty cat with a sober, concrete paper. Not so long ago, a paper like
this would have elicited a strong majority vote—from statisticians, at least—that the author was evil,
stupid or both. Such a view was often rationalized by using a distinction, pungently expressed by Fisher,
between restrained, disinterested utterances appropriate to science (i.e. along the lines of a conventional
analysis) and the grubbier utterances of mere decision makers. This paper refutes that old rationale with
two arguments. First, we technicians can hardly wash our hands of biases and trust decision makers to
weigh them subtly, but nor can we dispose of them with our customary bit of ‘arm waving’. A second
and less familiar argument is that bias analysis has important implications for allocating research resour-
ces, and it is often not sufficiently good simply to do more of what we can easily sell to our statistical
colleagues.

Another way to view this paper is that it realizes a theory of statistics in application, as distinct from the
idealized theories of statistics that are considered in the defunct branch of our field called ‘Foundations
of statistics’. A theory of statistics in application acknowledges that statistical reality is messy but asserts
that we have some powerful tools to deal with the mess and that we are obligated to use them for urgent
substantive questions. In this sense Greenland’s paper is a fitting companion to the observational study
work of Don Rubin, Paul Holland, Jamie Robins, Susan Murphy and others.

N. T. Longford (SNTL, Leicester)
The paper is a well-aimed indictment on the ubiquitous practice of applying text-book methods in settings
that deviate substantially from the text-book assumptions of good representation, perfect measurement,
subjects’ full co-operation and the like. I am surprised that the paper makes no reference to the literature
on nuisance parameters, and a new term, bias parameters, is used instead. The problem that is addressed
is estimation of a target parameter vector θ in the presence of a nuisance parameter vector ξ; the current
practice sets ξ to a default value, and Greenland’s proposal uses a prior for ξ.

Notwithstanding the integrity of the approach, a less sympathetic reader may feel short changed by the
paper because information about the bias parameters is contained solely in the prior distributions, and
their specification is usually not particularly scientific—we cannot capture the relevant information with
much precision or credibility. Ignoring the uncertainty about the prior leads to an error that cannot be
practically taken care of by hyperpriors. Priors cannot replace information or overcome the difficulties of
eliciting it, especially in several dimensions.

An alternative can be motivated by Longford (2001). A small number of extreme scenarios, values
of ξ that are judged to be on the borderline of what could occur in reality, are specified. The efficiency
of the estimator that is optimal for the default setting is then assessed for each of these extreme sce-
narios as a form of sensitivity analysis (the author’s objections granted), or the estimator that is opti-
mal for an extreme setting is assessed for the default and the other extreme settings. In this way, the
low mean-squared error at the default setting is traded off for improved estimation at (some) extreme
settings.

The paper focuses on asymptotics, where model selection is not a problem. For finite samples, submodels
of the ‘true’ model may yield more efficient estimators because their bias may be small in relation to the
variance reduction. This is a poorly explored area that may offer the current practice a weak justification
in small samples.

Finally, I want to point out that the studies in the meta-analysis should themselves be regarded as a
sample from a population of settings (time and country in particular). Given no formal sampling from
these settings, the pooled estimator has an unknown bias that should also be associated with one or several
nuisance parameters.
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Andrew Gelman (Columbia University, New York)
Accounting for bias in causal inference is hard work, and Greenland’s paper provides a theoretical struc-
ture and an application to epidemiology. I would like to add a small point regarding sensitivity analysis,
which typically involves extra parameters that cannot be estimated from data and thus must be swept over
some range of possibilities.

Bias models are similar to non-ignorable missing data models in that by their nature they are commonly
non-identifiable from the observed data likelihood. When bias or non-ignorable missingness parameters
are identified, it is usually a weak identification that is highly sensitive to distributional assumptions or
selection mechanisms that are themselves not identifiable from data (e.g. Heckman (1979)).

Although the extra parameters cannot really be estimated, we can sometimes establish how much they
can reasonably vary by examining their implication for an unbiased experiment. We illustrate with a
simple example from Abayomi et al. (2004).

Fig. 6 shows hypothetical data of heights of boys in a school, measured when the basketball team (rep-
resenting 20% of the population) is away. The distribution of the observed data is skewed, and various
models can be imagined to impute the missing data. Missingness can be at random or can depend on
unobserved data (Rubin, 1976). The graphs in Fig. 6 show distributions that were estimated from three
models:

(a) reproducing the skewed distribution with a model with missingness completely at random,
(b) filling in a normal distribution with a model with missingness not at random in which taller students

are less likely to be sampled and
(c) estimating a more extreme model with missingness not at random in which the underlying com-

plete-data distribution turns out to be bimodal.

The data alone do not distinguish between the three models of Fig. 6. And, in fact, one could imagine
model (a) being appropriate (if basketball players had the same height distribution as the other boys) or
model (b) being appropriate (with an approximate normal distribution for all the boys). Model (c) seems
less plausible, as it would correspond to a peculiar distribution for the complete data that would be seen
without any selection bias. Thus it seems unnecessary, in considering a sensitivity analysis, to consider
models as extreme as (c). This idea differs from the ‘device of imaginary results’ (Good, 1950) in that we
are considering completed data—i.e. imputed data combined with observed data—rather than imaginary
data simulated from the model alone.

This example illustrates that parameters that cannot be estimated can still be bounded by examining
implied complete-data distributions. Such bounds could be considered as a form of informally specified
prior information allowing sensitivity analysis to remain within a plausible range.

The following contributions were received in writing after the meeting.

y[obs]

(a) (b) (c)

60 65 70 75 80 85

y[obs]

60 65 70 75 80 85

y[obs]

60 65 70 75 80 85

Fig. 6. Hypothetical example of data not missing at random—heights of male students from a school, mea-
sured when the basketball team was away: estimates of the distribution of the entire population of male
students fitted under the three models (a) data missing completely at random, (b) data not missing at random
(model 1) and (c) data not missing at random (model 2), with models 1 and 2 allowing taller students to be
more likely to be missing; the distribution in (b) looks reasonable whereas the distribution in (c) is implausi-
ble—it is difficult to believe that the complete data are actually bimodal; this example illustrates that some
aspects of missing data models, although theoretically untestable, can be bounded
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David Draper (University of California, Santa Cruz)
I am in great sympathy with the aims of this work. However difficult it is to imagine that analyses of this
type will become routine, it should be even more difficult for us to imagine that the right way forward is
to perpetuate the status quo, in which sources of uncertainty other than random error are quantitatively
ignored. In Draper (1995) (also see Holland (1989)) I referred to the need to estimate judgmentally ‘a var-
iance component for nonexchangeability’ between the observed units in an observational study and units
in the population of real scientific interest, and a variance component for the effects of unmeasured con-
founders; here Greenland has essentially provided a method for judgmentally quantifying these variance
components.

I have two additional remarks on the paper.

(a) The author is not clear on what, precisely, he would report to policy makers by way of conclusions
on the effects of electromagnetic field exposure on childhood leukaemia from his Table 2. We have 18
different interval estimates, with median odds ratios ranging from 1.45 to 3.63; what does Greenland
suggest we should conclude?

(b) Since the techniques of this paper are based on prior distributions that are unmodified by data in
the analytic journey from prior to posterior, it might appear that the only evaluation possible of
results such as those of Table 2 is process based: do the assumptions seem reasonable?

But here are two outcome-based ideas for evaluation of multiple-bias modelling on which Greenland might
wish to comment:

(i) if the fields of medicine and epidemiology were to keep a public database of observed biases, by
comparing the results of randomized controlled trials and observational studies designed to answer
the same questions, then the prior distributions in Greenland’s approach could in principle be based
on past data instead of being entirely judgmental;

(ii) one way (albeit slow) to validate the methods of this paper externally is to regard results such as
Table 2 as attempts to predict accepted scientific truth k years in the future (for some value of k like
5 or 10) when better data are available (see Leonhardt (2001), based on Pocock and Spiegelhalter
(1992), for a nice example of this); we can then wait k years and see, for example, whether the
currently accepted odds ratio for electromagnetic field exposure in the year 2005 + k is closer to 1.68
(the median in the first row in Table 2) or 2.70 (the median in the last row).

Paul Gustafson and Lawrence McCandless (University of British Columbia, Vancouver)
We congratulate Professor Greenland for a compelling discussion of a difficult problem. Modelling bias
from misclassification, non-response and unobserved confounding simultaneously is a daunting task. Yet
such efforts seem vital for the credible analysis of observational data.

We like Professor Greenland’s interpretation of Monte Carlo sensitivity analysis (MCSA) as an approx-
imation to a Bayesian analysis, and we agree that often, but not always, this approximation will be good.
Echoing his comments about misclassification, Gustafson (2005) considers misclassification and measure-
ment error scenarios where the posterior marginal distribution of bias parameters can differ from the prior
distribution, so the MCSA answer may differ from the Bayesian answer.

One potential objection to the overall approach is that the actual and nominal frequentist coverage
of interval estimates cannot agree in the face of non-identified models. Those with such objections may
be comforted by a reminder that the Bayesian coverage of intervals will still be satisfactory, i.e. actual
and nominal coverage of Bayesian intervals (perhaps approximated by MCSA) will agree for a hypo-
thetical sequence of studies in which nature generates study data by first sampling parameters from the
prior distribution and then sampling data given parameters. Neither identifiability nor large samples are
required for this agreement, so long as nature and the investigator use the same prior distribution. Thus
one way to shed light on the ‘sturdiness’ of multiple-bias modelling (again either Bayesian or the MCSA
approximation thereof) is to study how badly the agreement breaks down when nature and the inves-
tigator use different priors. In the context of unobserved confounding, this is taken up by McCandless
(2004).

The comment in Section 4.4 that at some point replication and enlargement of observational studies
cease to be cost effective is interesting, and should be eye opening to epidemiologists. We envision an
approach for quantifying this idea in a design context. One tool may be the decomposition of mean-
squared error for a posterior mean in a non-identified model that is considered by Gustafson (2005). This
involves a squared bias term which does not fall off with sample size and a variance term which does. One
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could choose a sample size which is just sufficiently large to make the variance small compared with the
squared bias (in an a priori expected sense), thereby conserving resources for further studies of different
exposure–disease relationships. Also related is the interesting work of Rahme et al. (2000) and Dendukuri
et al. (2004), who studied sample size criteria when model non-identifiability due to misclassification is
acknowledged.

Donald B. Rubin (Harvard University, Cambridge)
Professor Greenland’s paper is a welcome addition to the literature on causal inference in observational
studies. The history of using the Bayesian paradigm to incorporate non-sampling sources of uncertainty
has several relatively early examples, including Mosteller and Wallace (1954), Box and Tiao (1973) and
Rubin (1977). Although none of these specifically addressed causal inference, Rubin (1978), section 4.2,
does address the sensitivity of Bayesian causal inference when faced with non-ignorable data assignment
mechanisms.

Greenland emphasizes the multiple sources of bias that are typically present in real world studies and
the consequential futility of conducting simple sensitivity analyses to all sources simultaneously. This crit-
icism also applies to analyses that provide large sample bounds for estimates. Although the technical work
can be interesting (e.g. Manski (l990)) and the idea has a long history in statistics, going back at least
to Cochran (1953) in the context of survey non-response, Cochran’s conclusion seems equally true in the
context of observational studies:

‘With a continuous variate, the only bounds that can be assigned with certainty are often so wide as to
be useless’.

This last paragraph relates to, what I believe is, a somewhat misguided focus in much of current statistical
education on methods for the analysis of existing data, whether Bayesian or frequentist, to the exclusion
of education on the use of creative designs for the collection of relevant data. I think that Greenland’s
wisdom in Section 4 may be misread by some as supporting this tendency, even though one of the crucial
products of such analyses must be the exposure of which sources of uncertainty are crucial, with accom-
panying suggestions for what sorts of cost-effective data could reduce this uncertainty. As Box (1976)
noted, science progresses through a series of iterations, with the analysis of one data set leading to the
design of the next data collection effort, and the field of statistics should serve both enterprises. For
example, we should consider not only what sort of data could be relevant to the science (e.g. from other
species) but also what sort of data could inform us about the non-ignorable data assignment mechanisms
that are operating in the existing studies (e.g. research on the reasons why people move to certain locations
in Greenland’s example).

I agree with Greenland that the formal consideration of sources of inferential uncertainty, beyond sam-
pling uncertainty, should become part of the training of those who deal with the analysis of existing data
or the collection of future data, especially when used for causal inference.

The author replied later, in writing, as follows.

I thank the discussants for their comments, and regret that I do not have space to address them all.

Bias analysis versus informal bias assessment
No-one disagrees that bias problems are vital, yet some question formal approaches. Bias analysis has a
long history (e.g. Berkson (1946)) but has never taken root in basic statistics teaching and hence is uncom-
mon in health science reports. In the USA, at least, appeals to reform epidemiologic statistics have failed
because many health scientists cannot stomach quantitative reasoning beyond a 23-table, and because of
arguments that conventional methods are adequate, that biases should be handled informally (even as
random error is handled with absurd precision) and that miniscule and simplistic ‘validation’ studies fully
address biases.

In large scale decisions, statistics serves as an input to informal judgments. The key question is, what
inputs are needed? Muirhead mentions that an illustrious panel used only conventional inputs to reach
conclusions that were in accord with my formal analysis. Unfortunately, some health officials in the USA
were not in accord. Illustrious panels are unavailable for most issues, and informal bias assessments some-
times fail spectacularly. Formal analyses can check informal assessments and reveal complexities that are
otherwise overlooked. And, unlike with informal assessments, one can derive formal conditions under
which formal assessments will yield valid answers.
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Draper asks how we should evaluate our assessment methods in practice. Randomized trials are often
taken as a gold standard, but they are usually infeasible (as in my example). Furthermore, their treatments
and subjects rarely approximate natural exposures or populations, and hence trial results are easily dis-
missed, as Lawlor et al. (2004a, b) lament in studies of nutrients and of oestrogen replacement. Regardless,
trials are costly and tardy tests of informal assessments based on conventional analyses; recent history
suggests that more economical and rapid correctives are needed.

By 1981, leading researchers focused on β-carotene as responsible for the lower cancer incidence that is
seen among people with high fruit and vegetable consumption (Peto et al., 1981). Their judgments did not
formally account for the stupendous correlations between dietary intakes and their measurement errors,
and the compound error induced by computing nutrient intakes from dietary measures. Application of
multiple-bias analysis to the observational evidence favouring such nutrients would have rendered the
evidence far less compelling. Even simple sensitivity analyses revealed the trial designs as unjustifiable,
banking too heavily on β-carotene as the key preventive nutrient (I raised this point as an observer at a
trial planning meeting in 1984; it was politely dismissed).

In 1990, informal assessments from certain authorities combined with overwhelmingly significant con-
ventional results (Stampfer and Colditz, 1991) won US Food and Drug Administration approval to label
oestrogens preventive for heart disease, despite pleas from others for randomized trial evidence (Lawlor
et al., 2004b). Subsequent trials found no benefit and possible harm, suggesting that people died as a result
of the prevailing informal assessments. Some authorities still maintain that the observational results are
correct, but the trials at least call into question the certitude of the original judgments (Petitti, 2004). If the
Food and Drug Administration had demanded formal bias analysis as it demands statistical significance,
the label approval could not have been justified.

As long as statistical methods for randomized studies remain the standard that is taught and accepted
for observational studies, with ‘statistical significance’ (a randomization P under 0.05) the centre-piece
of inference, the field of statistics should bear partial blame for the consequences of incorrect informal
assessments. If bias analysis is not incorporated into basic teaching and regulatory evaluation, its use will
remain patchwork ‘ad hockeries’ carried out by a brave few or, worse, it will continue to be neglected in
favour of muddled intuitive arguments and ever more elaborate treatments of random error (whose distri-
bution in epidemiologic studies is as hypothetical as any prior). To paraphrase Draper: although difficult
to imagine the methods that I discussed are suitable for mass consumption (I doubt they are), it should be
more difficult to imagine that the right way forward is to continue conventional practice.

Bias analyses developed because in many contexts (including those of greatest policy importance) bias
can be more important than random error. The distributions that they produce are their message. In the
example those are too dispersed ever to be contradicted, which tells policy makers that no definitive infer-
ence should be drawn from such studies. In other settings they may show their worth by encompassing
trial results, something that conventional intervals did not do in the nutrient and oestrogen controversies.
Whether they encompass future opinions seems less relevant, especially if those opinions are formed to
defend past opinions.

Sensitivity analysis versus Bayesian analysis
I agree with Copas’s description of the logical problem of inference, although we diverge on preferred
solutions. He and Longford suggest examining extreme scenarios, wishing to avoid the complication,
contention and arbitrariness of high dimensional priors. My arguments against the adequacy of these
sensitivity analyses apply unchanged. Sensitivity analysis is computationally simpler but does not avoid
arbitrariness and contentious subjectivity; after all, who decides what are ‘worst cases’, ‘extremes’ or
‘plausible values’ of bias parameters? Projections collapse over high dimensional phenomena; they do not
account for uncertainties or information about these phenomena.

Still, sensitivity analysis is a vast improvement over conventional analysis. Why then should we go
further?: because, to paraphrase Rubin’s quote from Cochran, with multiple-bias parameters, the only
bounds that can be assigned with certainty will be so wide as to be useless. With unlimited sensitiv-
ity, using boundary points for extremes only shows that anything is possible. Less extreme worst case
analysis amounts to using a prior that is concentrated at two implausible points, with nothing
between. This prior is held by no-one and is unduly pessimistic in situations that are already plagued
by uncertainties. Sensitivity analysis says nothing without context to explain what constitutes sensitiv-
ity. It helps by forcing construction of a bias model, but that model must be coupled with priors to make
any inference. Given that inferences will be drawn, we either use explicit priors or else follow fre-
quentist tradition and pretend that the priors are not there (which results in the use of implicit absurd
priors).
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Sensitivity to priors
Rice rightly emphasizes the extreme sensitivity of results to priors, as is inevitable when target parameters
are not identified. We must become accustomed to and constantly underscore these facts: absent random-
ization, every causal inference depends entirely on priors, and what seems reasonable to one may seem
unreasonable to another. Consider Rice’s comment, with its implied prior case–control symmetry: ‘one
might reasonably have used flat priors on the case probabilities’ instead of for the control probabilities.
The controls stand in for the exposure experience of the entire population before the occurrence of disease
(Rothman and Greenland (1998), chapter 7), whereas the cases arise from this experience and the highly
selective force of leukaemia incidence. Scientific priors must account for causal (and response and mea-
surement) ordering; thus, absent case series data, priors for cases should be induced by population and
effect priors, rendering prior symmetry unreasonable (Greenland, 2001).

With unlimited sensitivity, the best that we can do is to display the priors we tried, facilitating criticism.
If the priors are compatible with existing data or accepted theory, the most that we can say is ‘here are
posteriors from some currently reasonable priors’. Reasonable priors may conflict; hence so may reason-
able posteriors. We can, however, reject unreasonable priors and their results. If randomization and perfect
measurement are unreasonable priors for the data, then conventional analyses are unreasonable because
they use these priors.

Of course, the status of ‘reasonable’ is subjective and may change given new results or new criticisms.
Hence priors play the role of theories in falsificationist philosophy always tentative and highly disposable.
This view violates rigid Bayesian philosophy; instead, it treats Bayesian analysis as a device to organize
current information coherently, facilitating deductions from that information (Good, 1983).

Other issues
Several misunderstandings occurred. Armstrong thought that the 3 mG cut point was chosen for ‘giving
the strongest evidence’. That is incorrect; it was not picked to maximize some statistic, but rather because
global summaries are fairly insensitive to the choice and there is no evidence of an association below that
point. Rice thought that I aimed ‘to approximate a Bayesian analysis optimally’ but I was only aiming
to make Monte Carlo sensitivity analysis (MCSA) better approximate Bayesian analysis. Like Spiegelhal-
ter I prefer fully Bayesian computations over MCSA. None-the-less, MCSA has greater intuitive appeal
for non-statistician epidemiologists and so has taken users away from Bayes in epidemiology and risk
assessment.

Longford commented that bias parameters are nuisance parameters. The converse is not true, however;
in the example, the Y =1 probabilities are nuisance parameters but not bias parameters. Draper and Long-
ford implied that the prior distributions that I used were ‘entirely judgmental’, yet in Sections 3.6 and 3.7
I described how priors for confounder–field associations and selection bias were based on actual surveys.
More generally, there are many epidemiologic studies that could supply information on bias parameters.
None-the-less, there will always be gaps in data that must be filled by speculation, as with the example
confounder–disease and misclassification priors. Multiple-bias analysis can help to identify gaps in most
urgent need of filling. In the example the gaps are so large that further studies like those reviewed are a
waste of funds; such studies continue to be done, however, and there will be no trial to staunch them.

De Stavola and Nitsch ask many important questions. Whether one study or several, bias analysis
seems unnecessary when confidence intervals exclude only implausible values, and it seems most needed
to evaluate claims that the data mandate action. Correction factors are not limited to discrete data; any
correction method that is based on second-stage (‘validation’) data can be used by sampling validation
data from a prior. The bias–intercept means are prior means when all prior covariates are 0—they require
subject-matter choice. In cohort studies, the bias that is created by base-line non-response is confounding
(indeed, in econometrics ‘selection bias’ means confounding). The cohort analogue of differential case–
control response is differential drop-out; measurements come before drop-out but may precede or follow
the response (e.g. records versus interviews). Diagrams clarify bias ordering and thus help to determine
correction ordering. Output distributions estimate posterior probabilities of any interval (decision) hypoth-
esis; conversely, we can see what sort of priors yield a fixed posterior probability (e.g. 0.95) for a given
interval hypothesis such as ‘θ>0’, as in conventional Bayesian analyses (Matthews, 2001). The uncorrected
weights are used in MCSA to approximate Bayes analysis better; if misclassification is very high, however,
fully Bayesian analysis is advisable (Gustafson, 2003).

Carpenter and Kenward note that MCSA could be subsumed under multiple imputation. I agree
and elsewhere have encouraged imputation approaches (Cole et al., 2005; Fox et al., 2005); there are, how-
ever, problems with ‘Rubin’s rules’ for combining multiple imputations (Robins and Wang, 2000). Rice
questioned the smoothing parameter σ2. It is a prior variance on the log-odds of X=1; the example results
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are insensitive to σ2 because the prior is dominated by large counts, but sensitivity would arise when all
counts are small (small samples imply sensitivity even for identified parameters). Finally, I admit to Senn
that conventional estimates are helpful if viewed as quick data summaries and nothing more. I always
provide them, but when allowed I also provide multiway data tables. Anyone can do their own analysis
using the data presented in my paper; those are all the data that I used and are superior to conventional
statistics as input for future analyses.
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