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Abstract: This paper is devoted to the off-line multiple breaks detec-
tion for a general class of models. The observations are supposed to fit
a parametric causal process (such as classical models AR(∞), ARCH(∞)
or TARCH(∞)) with distinct parameters on multiple periods. The num-
ber and dates of breaks, and the different parameters on each period are
estimated using a quasi-likelihood contrast penalized by the number of dis-
tinct periods. For a convenient choice of the regularization parameter in the
penalty term, the consistency of the estimator is proved when the moment
order r of the process satisfies r ≥ 2. If r ≥ 4, the length of each approxi-
mative segment tends to infinity at the same rate as the length of the true
segment and the parameters estimators on each segment are asymptotically
normal. Compared to the existing literature, we added the fact that a de-
pendence is possible over distinct periods. To be robust to this dependence,
the chosen regularization parameter in the penalty term is larger than the
ones from BIC approach. We detail our results which notably improve the
existing ones for the AR(∞), ARCH(∞) and TARCH(∞) models. For the
practical applications (when n is not too large) we use a data-driven pro-
cedure based on the slope estimation to choose the penalty term. The pro-
cedure is implemented using the dynamic programming algorithm. It is an
O(n2) complexity algorithm that we apply on AR(1), AR(2), GARCH(1, 1)
and TARCH(1) processes and on the FTSE index data.
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1. Introduction

The breaks detection is a classical problem as well as in the statistic than in
the signal processing community. The first important result in this topic was
obtained by Page [20] in 1955 and real advances have been done during the
seventies, notably with the results of Hinkley (see for instance [12]) and the
break detection became a distinct and important area of research in statistic
(see the book of Basseville and Nikiforov [3] for a large overview).

Two approaches are generally considered for solving a problem of breaks
detection: an ’on-line’ approach leading to sequential estimation and an ’off-
line’ approach when the series of observations is complete. Concerning this last
approach, numerous results were obtained for independent random variables in
a parametric frame (see for instance Bai and Perron [1]). The case of the off-line
detection of multiple change-points in a parametric or semiparametric frame for
dependent variables or time series also provided an important literature. The
present paper is a new contribution to this problem.

In this paper, we consider the following change-point problem: for j =
1, 2, . . . ,K∗,

Xt = gθ∗

j
(ξt, Xt−1, Xt−2, . . .) for all t ∈ {t∗j−1 + 1, t∗j−1 + 2, . . . , t∗j} (1)
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where gθ is a parametric function satisfying assumptions detailed in Section 2,
(ξt)t∈Z be a sequence of centered independent and identically distributed (iid)
Rp-random vectors called the innovations, K∗ − 1 ∈ N is the unknown number
of the breaks, t∗0 = 0 < t∗1 < · · · < t∗K∗−1 < n = t∗K∗ with (t∗j )1≤j≤K∗−1 ∈ N

are the K∗ − 1 unknown dates of the breaks, θ∗j ∈ Θ ⊂ Rd for j = 1, . . . ,K∗

are the unknown parameters of the model. Note that the assumptions on gθ
are weaker enough for X to be for instance AR(∞), ARCH(∞), TARCH(∞),
ARMA-GARCH or bilinear processes on each period.

The aim of our statistical procedure is the estimation of the unknown param-
eters (K∗, (t∗j )1≤j≤K∗−1, (θ

∗
j )1≤j≤K∗) in the problem (1). In the literature, it is

generally supposed that X is a stationary process on each set {t∗j−1 + 1 . . . , t∗j}
and is independent on each {t∗i−1+1, . . . , t∗i } of the other {t∗k−1+1, . . . , t∗k}, k 6= i
(for instance in [18], [14] and [7]). Here the problem (1) does not induce such
assumptions and thus the framework is closer to the applications, see Remark 1
in [7].

In the problem of change-points detection, numerous papers were devoted to
the CUSUM procedure (see for instance Kokozska and Leipus [14] in the specific
case of ARCH(∞) processes). In Lavielle and Ludena [17] a “Whittle” contrast
is used for estimating the breaks dates in the spectral density of piecewise long-
memory processes (in a semi-parametric framework). Davis et al. [6] proposed
a likelihood ratio as the estimator of breaks for an AR(p) process. Lavielle
and Moulines [18] consider a general contrast using the mean square errors
for estimating the parameters. In Davis et al. [7], the criteria called Minimum
Description Length (MDL) is applied to a large class of nonlinear time series.

We consider here a semiparametric estimator based on a penalized contrast
(so-called penQLIK in the sequel) using the quasi-likelihood function. For usual
stationary time series, the conditional quasi-likelihood (so-called QLIK in the
sequel) is constructed as follow:

1. Assume the process (ξt)t∈Z is a Gaussian sequence and compute the con-
ditional likelihood (with respect to σ{X0, X−1, . . .}) based on the unob-
servable infinite realization of (Xt)t∈Z;

2. Approximate this computation for a sample (X1, . . . , Xn);
3. Apply this approximation even if the process of the innovations is not a

Gaussian sequence.

The quasi-maximum likelihood estimator (QMLE) obtained by maximizing the
QLIK has convincing asymptotic properties in the case of GARCH processes
(see Jeantheau [13], Berkes et al. [5], Franck and Zakoian [10]) or generalizations
of GARCH processes (see Mikosch and Straumann [22], Robinson and Zaffaroni
[21]). Bardet and Wintenberger [2] study the asymptotic normality of the QMLE
of θ applied to the class of models considered here. Thus, when K∗ is known, a
natural estimator of the parameter (t∗, θ∗) = ((t∗j )1≤j≤K∗−1, (θ

∗
j )1≤j≤K∗) for a

process satisfying (1) is the QMLE on every intervals [tj+1, . . . , tj+1] and every
parameters θj for 1 ≤ j ≤ K∗. However we consider here that K∗ is unknown
and such method cannot be directly used. The chosen solution is to penalize the
contrast by an additional term κnK, where the regularization parameters κn
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form an increasing sequence of real numbers (see the final expression of the pe-
nalized contrast in (4)). Such procedure of penalization was previously used for
instance by Yao [23] to estimate the number of change-points with the Schwarz
criterion and by Lavielle and Moulines [18]. Hence the minimization of the pe-
nalized contrast leads to an estimator (see (5)) of the parameters (K∗, t∗, θ∗).

Classical heuristics such as the BIC one lead to choose κn ∝ logn. In our
study, such penalties terms are excluded in some cases, when the models in (1)
are very dependent on their whole past, see Section 3 (and simulation results)
for more details. Roughly speaking, an explanation of this can be provided by
the simple relation:

penQLIK(K, t, θ) = QLIK(K, t, θ) + κnK

=
(
QLIK(K, t, θ)− Q̃LIK(K, t, θ)

)
+ Q̃LIK(K, t, θ) + κnK

where Q̃LIK is the conditional quasi-likelihood of a process following (1) except
that it is composed by stationary time series on each period which are indepen-
dent of the stationary processes defined on the other periods. Using moment

bounds we will prove in Section 6 that
∣∣QLIK(K, t, θ) − Q̃LIK(K, t, θ)

∣∣ =
OP (un) with un → ∞ and un/n → 0, where (un)n∈N depends on the Lip-

shitzian behavior of gθ. Since Q̃LIK(K, t, θ) ∼ C n a.s. when n → ∞ from
results obtained in [2], it is clear that the penalty term can play a role only
if κn >> un. Finally, we will show that under weak conditions on the model,
the regularization parameter κn ∝ √

n over-penalizes the number of breaks for
avoiding artificial breaks in cases of models very dependent on their whole past
(see Section 3 for details). Such a choice of κn is robust to the (possibly strong)
dependence.

The main results of the paper are the following: under Lipshitzian condition
on gθ and when the moments of order r ≥ 2 of the innovations and X are fi-
nite, the estimator

(
K̂n, (t̂j/n)1≤j≤K̂n−1, (θ̂j)1≤j≤K̂n

)
is consistent. If moreover

Lipshitzian conditions are also satisfied by the derivatives of gθ and if r ≥ 4,
then the convergence rate of (t̂j/n)1≤j≤K̂n−1 is OP (wn) for any sequence (wn)n

such that wn >> n−1 and a Central Limit Theorem (CLT) for (θ̂j)1≤j≤K̂n
with

a
√
n-convergence rate is established. These results are “optimal” in the sense

that the convergence rate is the same than in an independent setting.
After detailing the particular cases of AR(∞), ARCH(∞) and TARCH(∞)

satisfying the break-point problem (1), the estimator is applied to generated
trajectories of such time series. Two difficulties appeared. Firstly, the compu-
tation time was very long and exponentially increased with K. We solved this
problem by using a dynamic programming algorithm which is a O(n2) com-
plexity algorithm. We also considered only small length trajectories (n ≤ 2000).
Secondly, we obtained the consistency of the estimator of K∗ as a theoretical
result in all considered model regardless of their dependence properties when
κn ∝ √

n when n → ∞. We will see that for particular models such that
ARMA(p, q) or GARCH(p, q) a BIC-type penalty with κn ∝ logn is also possi-
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ble, but κn ∝ √
n ensures the convergence for a larger class of models (including

AR(∞), ARCH(∞) or TARCH(∞) processes).
However, for n not too large (for instance n = 1000) the choice of κn =

√
n

very often led to K̂n 6= K∗. Hence we chose to implement a data-driven pro-
cedure for estimating κn (denoted κ̂n in the sequel) using a slope estimation
method (see [4]), such procedure being nowadays often used in the model selec-
tion frame. In such a way, the results of simulations are clearly satisfying (see
Section 5). The estimation procedure is also applied to financial data and this
provides estimating dates of breaks corresponding with key dates of financial
crisis.

The following Section 2 is devoted to the assumptions and the study of the
existence of a nonstationary solution of the change point problem (1). The
definition of the estimator and its asymptotic properties are studied in Section 3.
The particular examples of AR(∞), ARCH(∞) and TARCH(∞) processes are
detailed in Section 4, while the concrete estimation procedure and numerical
applications are presented in Section 5. Finally, Section 6 contains the main
proofs.

2. Assumptions and existence of a non-stationary solution

2.1. Notation and assumptions

Let θ ∈ Rd and Mθ and fθ be real-valued measurable functions such that for
all (xi)i∈N ∈ RN, Mθ

(
(xi)i∈N

)
6= 0. In this paper, we consider a general class

MT (Mθ, fθ) of causal (non-anticipative) time series. Let T ⊂ Z and (ξt)t∈Z

be a sequence of centered independent and identically distributed (iid) random
variables called the innovations and satisfying var(ξ0) = 1. Define

Class MT (Mθ, fθ): The process X = (Xt)t∈Z belongs to MT (Mθ, fθ) if it sat-
isfies the relation:

Xt+1 =Mθ

(
(Xt−i)i∈N

)
ξt + fθ

(
(Xt−i)i∈N

)
for all t ∈ T . (2)

The existence and properties of these general affine processes were studied in
Bardet and Wintenberger [2] as a particular case of chains with infinite mem-
ory considered in Doukhan and Wintenberger [8]. Numerous classical real val-
ued time series are included in MZ(M, f): for instance AR(∞), ARCH(∞),
TARCH(∞), ARMA-GARCH or bilinear processes.

For obtaining conditions of existence of a process included in MT (Mθ, fθ)
first define the following different norms:

1. ‖ · ‖ applied to a vector denotes the Euclidean norm of the vector;
2. for any compact set K ⊆ Rd and for any g : K −→ Rd′

; ‖g‖K =
supθ∈K(‖g(θ)‖);

3. for all x = (x1, . . . , xK) ∈ RK , ‖x‖m = maxi=1,...,K |xi|;
4. if Y is a random vvector with finite r-order moments, we set ‖Y ‖r =

(E‖Y ‖r)1/r.
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Let Ψθ =Mθ, fθ and i = 0, 1, 2, then for any compact set K ⊆ Rd, define

Assumption Ai(Ψθ,K): Assume that ‖∂iΨθ(0)/∂θ
i‖K <∞ and there exists a

sequence of non-negative real numbers (α
(i)
k (Ψθ,K))k≥1 such that

∑∞

k=1 α
(i)
k ×

(Ψθ,K) <∞ satisfying

∥∥∥∂
iΨθ(x)

∂θi
− ∂iΨθ(y)

∂θi

∥∥∥
K
≤

∞∑

k=1

α
(i)
k (Ψθ,K)|xk − yk| for all x, y ∈ RN.

In the sequel we refer to the particular case called “ARCH-type process”, if
fθ = 0 and the following assumption holds on hθ =M2

θ :

Assumption Ai(hθ,K): Assume that fθ = 0, ‖∂ihθ(0)/∂θi‖K < ∞ and there

exists a sequence of non-negative real numbers (α
(i)
k (hθ,K))k≥1 satisfying∑∞

k=1 α
(i)
k (hθ,K) <∞ and

∥∥∥∂
ihθ(x)

∂θi
− ∂ihθ(y)

∂θi

∥∥∥
K
≤

∞∑

k=1

α
(i)
k (hθ,K)|x2k − y2k| for all x, y ∈ RN.

Now, for any i = 0, 1, 2 and any compact K ⊂ Rd, under Assumptions Ai(fθ,K)
and Ai(Mθ,K), denote:

β(i)(K) :=
∑

k≥1

β
(i)
k (K) where β

(i)
k (K) := α

(i)
k (fθ,K) + (E|ξ0|r)1/rα(i)

k (Mθ,K),

and under Assumption Ai(hθ,K)

β̃(i)(K) :=
∑

k≥1

β̃
(i)
k (K) where β̃

(i)
k (K) := (E|ξ0|r)2/rα(i)

k (hθ,K).

The dependence with respect to r of the coefficients β(i) and β̃(i) are omitted
for notational convenience. From now on let us fix Θ a compact subset of Rd

satisfying some contraction properties:

Assumption A: Assume there exists r ≥ 1 such that for all θ ∈ Θ either
A0(fθ, {θ}) and A0(Mθ, {θ}) hold with β(0)({θ}) < 1 either fθ = 0 and A0(hθ, {θ})
holds with β̃(0)({θ}) < 1.

From [2] we have:

Proposition 2.1. If θ ∈ Θ satisfies A for some r ≥ 1, there exists a unique
causal (non anticipative, i.e. Xt is independent of (ξi)i>t for t ∈ Z) solution X =
(Xt)t∈Z ∈ MZ(fθ,Mθ) which is stationary, ergodic and satisfies ‖X0

∥∥
r
<∞.

The assumption A is classical when studying the existence of stationary solution
of general models. For instance, Duflo [9] used such a Lipschitz-type inequality
to show the existence of Markov chains. The elements of the compact set Θ
satisfies one Lipschitz-type condition specified either for general causal models
either for ARCH-type models. This distinction is adequate as for ARCH-type
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models A0(hθ, {θ}) is less restrictive than A0(Mθ, {θ}). Remark that assumption
β̃(0)(θ) < 1 is optimal for the stationarity of order r ≥ 1 but not for the strict
stationarity of the solution of an ARCH-type model.

Let θ ∈ Θ andX = (Xt)t∈Z a stationary solution included inMZ(fθ,Mθ). For
studying QMLE properties, it is convenient to assume the following assumptions:

Assumption D(Θ): ∃h > 0 such that infθ∈Θ(|hθ(x)|) ≥ h for all x ∈ RN.

Assumption Id(Θ): For all θ, θ′ ∈ Θ,

(
fθ(X0, X−1, . . .) = fθ′(X0, X−1, . . .) and

hθ(X0, X−1, . . .) = hθ′(X0, X−1, . . .) a.s.
)

⇒ θ = θ′.

Assumption Var(Θ): For all θ ∈ Θ, one of the families
(
∂fθ
∂θi (X0, X−1, . . .)

)
1≤i≤d

or
(
∂hθ

∂θi (X0, X−1, . . .)
)
1≤i≤d

is a.e. linearly independent.

Assumption D(Θ) will be required to define the QMLE, Id(Θ) to show the
consistence of the QMLE and Var(Θ) to show the asymptotic normality.

2.2. Existence of the solution to the change-point problem

Using the class MT (Mθ, fθ), the problem (1) of change-point detection can be
formulated as follows: assume that a trajectory (X1, . . . , Xn) of X = (Xt)t∈Z is
observed where

X ∈ MT∗

j
(Mθ∗

j
, fθ∗

j
) for all j = 1, . . . ,K∗, with (3)

• K∗ ∈ N∗, T ∗
j = {t∗j−1 +1, t∗j−1 +2, . . . , t∗j} with 0 < t∗1 < · · · < t∗K∗−1 < n,

t∗j ∈ N and by convention t∗0 = −∞ and t∗K∗ = ∞;

• θ∗j = (θ∗j,1, . . . , θ
∗
j, d) ∈ Θ ⊂ Rd for j = 1, . . . ,K∗.

Consider the problem (3). Then the past of X before the time t = 0 depends on
θ∗1 and the future after t = n depends on θ∗K∗ . The number K∗ − 1 of breaks,
the instants t∗1, . . . , t

∗
k∗−1 of breaks and parameters θ∗1 , . . . , θ

∗
K∗ are unknown.

Consider first the following notation.

Notation.

• For K ≥ 2, FK =
{
t = (t1, . . . tK−1) ; 0 < t1 < · · · < tK−1 < n

}
. In

particular, t∗ =
(
t∗1, . . . , t

∗
K∗−1

)
∈ FK∗ is the true vector of instants of

change;
• For K ∈ N∗ and t ∈ FK , Tk =

{
t ∈ Z, tk−1 < t ≤ tk

}
and nk = Card(Tk)

with 1 ≤ k ≤ K. In particular; T ∗
j =

{
t ∈ Z, t∗j−1 < t ≤ t∗j

}
and

n∗
j = Card(T ∗

j ) for 1 ≤ j ≤ K∗. For all 1 ≤ k ≤ K and 1 ≤ j ≤ K∗, let
nkj = Card(T ∗

j ∩ Tk);
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The following proposition establishes the existence of the non stationary solution
of the problem (3) and its moments properties.

Proposition 2.2. Consider the problem (3) with θ∗j ∈ Θ for all j = 1, . . . ,K∗,
Θ satisfying A for some r ≥ 1. Then

(i) there exists a solution X = (Xt)t∈Z of the model (3) and X is a causal
time series.

(ii) there exists a constant C > 0 such that for all t ∈ Z we have ‖Xt‖r ≤ C.

The problem (3) distinguishes the case t ∈ T ∗
1 = {1, . . . , t∗1} to the other

ones since it is easy to see that (Xt)t∈T∗

1
is a stationary process while (Xt)t>t∗

1

is not. However, all the results of this paper hold if (Xt)t∈T∗

1
is defined as the

other (Xt)t∈T∗

j
, j ≥ 2 (by defining a break in t = 0 setting Xt = 0 for t ≤ 0 for

instance).

3. The estimation procedure and the asymptotic behavior of the
estimator

3.1. The penalized QLIK contrast

The estimation procedure of the number of breaks K∗−1, the instants of breaks
t∗ and the parameters θ∗ is based on the minimum of a penalized QLIK contrast.

By definition, if X ∈ MT (fθ,Mθ) then the conditional (to the past val-
ues of X) mean and the variance are given by, respectively, fθ(Xs−1, . . .) and
hθ(Xs−1, . . .). Therefore, with the notation f s

θ = fθ
(
Xs−1, Xs−2 . . .

)
, M s

θ =

Mθ

(
Xs−1, Xs−2 . . .

)
and hsθ = M s

θ
2, we deduce the quasi-likelihood of X on a

period T :

Ln(T, θ) := −1

2

∑

s∈T

qs(θ) with qs(θ) :=
(Xs − f s

θ )
2

hsθ
+ log (hsθ) .

By convention, we set Ln(∅, θk) := 0. Since only X1, . . . , Xn are observed,
Ln(T, θ) cannot be computed because it depends on the past values (X−j)j∈N.
We approximate it by the QLIK criteria on a period T :

L̂n(T, θ) := −1

2

∑

s∈T

q̂s(θ) where q̂s(θ) :=

(
Xs − f̂ s

θ

)2

ĥsθ
+ log

(
ĥsθ
)

with f̂ t
θ = fθ

(
Xt−1, . . . , X1, u

)
, M̂ t

θ = Mθ

(
Xt−1, . . . , X1, u

)
and ĥtθ = (M̂ t

θ)
2 for

any deterministic sequence u = (un) with finitely many non-zero values.

Remark 3.1. For convenience, in the sequel we choose u = (un)n∈N with
un = 0 for all n ∈ N as in [10] or in [2]. Indeed, this choice has no effect on the
asymptotic behavior of estimators.
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Now, for any number of periods K ≥ 1, any instants of breaks t ∈ FK and
any parameters on each periods θ ∈ ΘK , the global QLIK contrast Ĵn is given
by the expression:

(QLIK) Ĵn(K, t, θ) := −2
K∑

k=1

L̂n(Tk, θk).

SinceK∗ has to be estimated, define the QLIK contrast penalized by the number
of periods, called penQLIK contrast, by

(penQLIK) J̃n(K, t, θ) := Ĵn(K, t, θ) + κnK (4)

where κn ≤ n is called the regularization parameter and will be fixed later.
Suppose that an upper bound Kmax > 0 of the number of periods is known.
Our estimator is defined as one of the minimizers of the penalized contrast:

(K̂n, t̂n, θ̂n) ∈ Argmin
1≤K≤Kmax

Argmin
(t,θ)∈FK×ΘK

(J̃n(K, t, θ)) and τ̂n =
t̂n
n
. (5)

As very often in model selection problems, the whole estimation procedure
deeply depends on the choice of the regularization parameters (κn). To be ro-
bust in possible dependence over distinct periods, the regularization parameters
(κn) have to be carefully chosen:

Assumption Hi (i = 0, 1, 2): For 0 ≤ p ≤ i, the assumptions Ap(fθ,Θ),
Ap(Mθ,Θ) (or respectively Ap(hθ,Θ)) hold and θ∗j ∈ Θ for all j = 1, . . . ,K∗, Θ
satisfying A for some r ≥ 1. Denoting c∗ > 0 a real number satisfying

c∗ = min
j=1,...,K∗

(
− log(β(0)(θ∗j ))/8

)
or resp. min

j=1,...,K∗

(
− log(β̃(0)(θ∗j ))/8

)

the regularization parameters (κn) used in (4) satisfy κn ∧ nκ−1
n → ∞ with

n→ ∞ and for all j = 1, . . .K∗:

∑

k≥2

κ
−(r/4∧1)
k

( ∑

ℓ≥kc∗/ log(k)

β
(p)
ℓ (Θ)

)(r/4∧1)

<∞ (6)

or resp.
∑

k≥2

κ
−(r/4∧1)
k

( ∑

ℓ≥kc∗/ log(k)

β̃
(p)
ℓ (Θ)

)(r/4∧1)

<∞. (7)

The assumption Hi is interesting as it links the decrease rate of the Lips-
chitz coefficients and the penalty term of (4). The classical BIC corresponds
to regularization parameters of the order of log(n). This choice is possible if
the Lipschitz coefficients decrease exponentially fast, which hold for all mod-
els M(fθ,Mθ) with finite order (see below). However, if the decrease of the
Lipschitz coefficients is polynomial only regularization parameters satisfying
κn >> log(n) satisfy Hi. Moreover, whatever the decay of the Lipschitzian co-
efficients, the estimation is more robust (with respect to the dependence over
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distinct segments) for the largest regularization parameter. More precisely, con-
sider the following two paradigmatic examples for which (κn) satisfies conditions
(7) (also used in [16]):

(1) geometric case: if α
(i)
ℓ (fθ,Θ) + α

(i)
ℓ (Mθ,Θ) + α

(i)
ℓ (hθ,Θ) = O(aℓ) with

0 ≤ a < 1, then any choice of regularization parameters (κn) such that
κn → ∞ and κn = o(n), satisfy (7) (for instance κn of order log n as in
the BIC approach).

(2) Riemanian case: if α
(i)
ℓ (fθ,Θ) + α

(i)
ℓ (Mθ,Θ) + α

(i)
ℓ (hθ,Θ) = O(ℓ−γ) with

γ > 1,
• if γ > 1 + (1 ∨ 4r−1), then any choice of (κn) such that κn → ∞ and
κn = o(n) satisfy (7).
• if (1 ∨ 4r−1) < γ ≤ 1 + (1 ∨ 4r−1), then any choice of (κn) such that

O(κn) = n1−γ+(1∨4r−1)(logn)δ with δ > γ − 1+ (1∨ 4r−1) and κn = o(n)
can be chosen. However any of these choices satisfy κn >> logn.

Remark 3.2. The sequence (δn) with δn := nc∗/ logn appearing in (7) is the
size of “small” blocks that are excluded from the original observations to deal
with the possible dependence between period. It is the theoretically size below
which we do not distinguish the breaks due to the dependence. This size depends
on the real model and is unknown.

3.2. Consistency of the estimators

For establishing the consistency, we add the couple of following classical as-
sumptions in the problem of break detection:

Assumption B: minj=1,...,K∗−1 ‖θ∗j+1 − θ∗j ‖ > 0.

Furthermore, the distance between instants of breaks cannot be too small:

Assumption C: there exists a vector τ∗ = (τ∗1 , . . . , τ
∗
K∗−1) with 0 < τ∗1 < · · · <

τ∗K∗−1 < 1 called the vector of breaks such that for j = 1, . . . ,K∗, t∗j = [nτ∗j ]
(where [x] is the floor of x). The is called the vector of breaks.

Even if the length of T ∗
j has asymptotically the same order than n, the

dependence with respect to n of t∗j , tk, T
∗
j and Tk are omitted for notational

convenience.

Remark 3.3. The assumption C implies that the length of each segment tends
to infinity at the same rate as n. We will introduce a size un << n which
represents the lower bound on the accuracy of the approximation of the lengths
of the segments. This minimum size is needed for the numerical computation
of the criteria. For the ARMA and GARCH model, un = O((log n)δ) can be
chosen for 1 ≤ δ ≤ 2.

We are now ready to prove the consistency of the penalized QLIK contrast:
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Theorem 3.1. Assume that D(Θ), Id(Θ), B, C and H0 are satisfied with r ≥ 2.
If Kmax ≥ K∗ then:

(K̂n, τ̂n, θ̂n)
P−→

n→∞
(K∗, τ∗, θ∗).

Note that if K∗ is known, we can relax the assumptions for the consistency
by taking κn = 1 for all n as the penalty term in (4) does not matter. If K∗

is unknown and r = 2, then a robust choice to any geometric or Riemanian
dependence is κn ∝ n/ logn. However, such large regularization parameters
always over-penalized in practice.

3.3. Rates of convergence of the estimators

To state the rates of convergence of the estimators τ̂n and θ̂n, we need to
work under stronger moment and regularity assumptions. By convention, if the
vectors t̂n and t∗ do not have the same length, complete the shorter of the 2
vectors with n before computing the norm ‖̂tn − t∗‖m.

Theorem 3.2. Assume that D(Θ), Id(Θ), B, C and H2 are satisfied with r ≥ 4.
If Kmax ≥ K∗ then the sequence (‖̂tn−t∗‖m)n>1 is uniformly tight in probability,
i.e.

lim
δ→∞

lim
n→∞

P(‖̂tn − t∗‖m > δ) = 0. (8)

This theorem induces that w−1
n ‖̂tn−t∗‖m

P→ 0 for any sequence (wn)n such that
wn → ∞ and therefore ‖̂tn − t∗‖m = oP (wn): the convergence rate is arbitrary
close to OP (1). This is the same convergence rate as in the case where (Xt)t
is a sequence of independent r.v. (see for instance [1]). Such convergence rate
was already reached in the frame of piecewise linear regression with innovations
satisfying a mixing property in [18].

Let us turn now to the convergence rate of the estimator of parameters θ∗j .

By convention if K̂n < K∗, set T̂j = T̂K̂n
for j ∈ {K̂n, . . . ,K

∗}. Then,
Theorem 3.3. Assume that D(Θ), Id(Θ), B, C and H2 are satisfied with r ≥ 4

and κn = O(
√
n). Then if θ∗j ∈

◦

Θ for all j = 1, . . . ,K∗, we have

√
n∗
j

(
θ̂n(T̂j)− θ∗j

) D−→
n→∞

Nd

(
0, F (θ∗j )

−1G(θ∗j )F (θ
∗
j )

−1
)
, (9)

where, using q0,j defined in (12), the matrix F and G are such that

(F (θ∗j ))k,l = E
(∂2q0,j(θ∗j )

∂θk∂θl

)
and (G(θ∗j ))k,l = E

(∂q0,j(θ∗j )
∂θk

∂q0,j(θ
∗
j )

∂θl

)
. (10)

In Theorem 3.3, a condition on the rate of convergence of κn is added. The
most robust choice for the regularization parameter corresponds to κn ∝ √

n
as it corresponds to the most general problem (3) (see above). However, by
assumption H2 it excludes models with finite moments r ≥ 4 satisfying: ℓ−γ =
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O(α
(i)
ℓ (fθ,Θ) + α

(i)
ℓ (Mθ,Θ)) or ℓ−γ = α

(i)
ℓ (hθ,Θ)) with 1 < γ ≤ 3/2 for some

i = 0, 1, 2. For these models the consistency for τ̂n holds but we do not get any

rate of convergence for θ̂n.

4. Some examples

4.1. AR(∞) models

Consider AR(∞) with K∗ − 1 breaks defined by the equation:

Xt =
∑

k≥1

φk(θ
∗
j )Xt−k + ξt, t∗j−1 < t ≤ t∗j , j = 1, . . . ,K∗.

This is the problem (3) with models MT∗

i
(fθ,Mθ) where fθ(x1, . . .) =

∑
k≥1 ×

φk(θ)xk andMθ ≡ 1. Assume that Θ is a compact set such that
∑

k≥1 ‖φk(θ)‖Θ <
1. Thus Θ = Θ for any r ≥ 1 satisfying E|ξ0|r < ∞. Then Assumptions D(Θ)

and A0(fθ,Θ) hold automatically with h = 1 and α
(0)
k (fθ,Θ) = ‖φk(θ)‖Θ. Then,

• Assume that Id(Θ) holds and that there exists r ≥ 2 such that E|ξ0|r <∞.
If there exists γ > 1 ∨ 4r−1 such that ‖φk(θ)‖Θ = O(k−γ) for all k ≥ 1,

the choice κn = n/ logn ensures the strong consistency of (K̂n, τ̂n, θ̂n).
• Moreover, if E|ξ0|4 < ∞, γ > 3/2 and φk twice differentiable satisfying
‖φ′k(θ)‖Θ = O(k−γ) and ‖φ′′k(θ)‖Θ = O(k−γ), the choice κn =

√
n ensures

the convergence (8) of t̂n and the CLT (9) satisfied by θ̂n(T̂j) for all j.

Note that this problem of change detection was considered by Davis et al. in
[6] but moments r > 4 are required. In Davis et al. [7], the same problem
for another break model for AR processes is studied. However, in both these
papers, the process is supposed to be independent from one block to another
and stationary on each block.

4.2. ARCH(∞) models

Consider an ARCH(∞) model with K∗ − 1 breaks defined by:

Xt =
(
ψ0(θ

∗
j ) +

∞∑

k=1

ψk(θ
∗
j )X

2
t−k

)1/2
ξt, t∗j−1 < t ≤ t∗j , j = 1, . . . ,K∗,

where (ψk(θ))k≥0 is a sequence of positive real numbers and E(ξ20) = 1. Note
that hθ((xk)k∈N) = ψ0(θ) +

∑∞

k=1 ψk(θ)x
2
k and fθ = 0. Assume that Θ is

a compact set such that
∑

k≥1 ‖ψk(θ)‖Θ < 1, then Θ(2) = Θ. Assume that
infθ∈Θ ψ0(θ) > 0 which ensures that D(Θ) and Id(Θ) hold.

• If there exists γ > 2 such that ‖ψk(θ)‖Θ = O(k−γ) for all k ≥ 1, then

the choice of κn = n/ logn leads to the consistency of (K̂n, τ̂n, θ̂n) when
θ∗j ∈ Θ for all j.
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• Moreover, if E|ξ0|4 <∞, Θ(4) is a compact set such s θ∗j ∈
◦

Θ(4) for all j,
and if ψk is a twice differentiable function satisfying ‖ψ′

k(θ)‖Θ = O(k−γ)
and ‖ψ′′

k (θ)‖Θ = O(k−γ) with γ > 3/2, then the choice of κn =
√
n ensures

the convergence (8) and the CLT (9) satisfied by θ̂n(T̂j) for all j.

This problem of break detection was already studied by Kokoszka and Leipus
in [14] but they obtained the consistency of their procedure under stronger
assumptions.

Example 1. Let us detail the GARCH(p, q) model with K∗− 1 breaks defined
by:

Xt = σt ξt, σ
2
t = a∗0,j+

q∑

k=1

a∗k,jX
2
t−k+

p∑

k=1

b∗k,jσ
2
t−k t∗j−1 < t ≤ t∗j , j = 1, . . . ,K∗

with E(ξ20) = 1. Assume that for any θ = (a0, . . . , aq, b1, . . . , bp) ∈ Θ then
ak ≥ 0, bk ≥ 0 and

∑p
k=1 bk < 1. Then, there exists (see Nelson and Cao

[19]) a nonnegative sequence (ψk(θ))k such that σ2
t = ψ0(θ)+

∑
k≥1 ψk(θ)X

2
t−k.

Remark that this sequence is twice differentiable with respect to θ and that its
derivatives are exponentially decreasing. Moreover for any θ ∈ Θ,

∑
k≥1 ψk(θ) ≤(∑q

k=1 ak
)
/
(
1−∑p

k=1 bk
)
and

Θ =

{
θ ∈ Θ , (E|ξ0|r)2/r

q∑

k=1

ak +

p∑

k=1

bk < 1

}
.

Then if
∑q

k=1 a
∗
k,j+

∑p
k=1 b

∗
k,j < 1 for all j (case r ≥ 2), our estimation procedure

associated with a regularization parameter κnK for any 1 << κn << n is
consistent. Moreover, if (E|ξ0|4)1/2

∑q
k=1 a

∗
k,j +

∑p
k=1 b

∗
k,j < 1 for all j, then

our procedure with a regularization parameter 1 << κn = O(
√
n) allows the

same rates of convergence than in the case where (Xt) are independent random
variables. For example, a BIC-type regularization parameter κn ∝ logn as in
[7] can be chosen in this case.

4.3. Estimates breaks in TARCH(∞) model

Consider a TARCH(∞) model with breaks defined by:

Xt = σt ξt, σt = b0(θ
∗
j ) +

∑

k≥1

(
b+k (θ

∗
j )max(Xt−k, 0)− b−k (θ

∗
j )min(Xt−k, 0)

)
,

with t∗j−1 < t ≤ t∗j , j = 1, . . . ,K∗, where (b+k )k≥0, (b
−
k )k≥0 are sequences of posi-

tive real numbers satisfying ‖b0(θ)‖Θ > 0 and
∑

k≥1 max(‖b+k (θ)‖Θ, ‖b−k (θ)‖Θ) <
∞. Then fθ = 0 and (A0(Mθ,Θ)) holds with α

(0)
k (Mθ,Θ) = max(‖b+k (θ)‖Θ,

‖b−k (θ)‖Θ)

• Assume ‖ξ0‖1/rr
∑

k≥1 max(‖b+k (θ)‖Θ, ‖b−k (θ)‖Θ) < 1 for r ≥ 2. If there

exists γ > 1 ∨ 4r−1 such that max(‖b+k (θ)‖Θ, ‖b−k (θ)‖Θ) = O(k−γ) for all
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k ≥ 1, then κn = n/ logn leads to the consistency of (K̂n, τ̂n, θ̂n) when
θ∗j ∈ Θ(2) for all j.

• Moreover, if E|ξ0|4 < ∞ and b+k , b
−
k are twice differentiable satisfying

‖∂b+k (θ)/∂θ‖Θ = O(k−γ) and ‖∂2b+k (θ)/∂θ2‖Θ = O(k−γ) with γ > 3/2
(the same for b−k ), then κn =

√
n ensures the convergence (8) and the

CLT (9) satisfied by θ̂n(T̂j) for all j (with θ∗j ∈
◦

Θ(4)).

To our knowledge, these results are the first one concerning the change detection
for TARCH(∞).

5. Some simulations results

The procedure is implemented on the R software (developed by the CRAN
project). Since we proceed with not so large samples (n ≤ 2000), the consistency

of K̂n is often not obtained for the most robust theoretical choice of κn =
√
n.

As a consequence, for numerical applications, we chose a data-driven procedure
for computing the regularization parameter κn. Thus, κn is calibrated using the
slope estimation procedure of Baudry et al. [4]. Once obtained the regulariza-
tion parameter κn, the dynamic programming algorithm (see [15]) is used to
minimize the criteria. Remark that we could also use the genetic algorithm and
the approximated likelihood of [7] to speed up the procedure.

5.1. The slope estimation procedure

The heuristic of the procedure is that the criteria (here QLIK) is a linear trans-
formation of the penalties (here the number of periods K) for the most complex
models (with K close to Kmax). This slope should be close to −κn/2. This pro-
cedure has already been used in [4] for breaks detection in an i.i.d. context. We
adapt it to the case of dependence (details are omitted for the common part
with the iid case and we refer the interested reader to [4]).

By construction, the procedure is very sensitive to the choice of Kmax as only
complex models are used to estimate the slope. As discussed in the Remark 3.3,
we only consider periods of length larger than un and we can a priori fix Kmax

smaller than [n/un]. Therefore, the slope estimation procedure consider only the
linear part of −QLIK with K ≤ Kmax. The concrete procedure (see examples
below) is:

1. For each 1 ≤ K ≤ Kmax, draw (K,−mint,θQLIK(K))1≤K≤Kmax
. Then

compute the slope of the linear part: this slope is κ̂n/2.
2. Using κn = κ̂n, draw (K,mint,θ penQLIK(K))1≤K≤Kmax

. This curve has

a global minimum at K̂n.

5.2. Implementation details

We assume that the regularization parameter is known (for instance κn = κ̂n,
κn = logn or κn =

√
n). In this section, we give more details on how to com-
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pute K̂n and the optimal configuration of the breaks by using the dynamic
programming algorithm. The basic idea of this algorithm is that: for a given
1 ≤ K ≤ Kmax, if (t1, . . . , tK−1, t) is an optimal configuration of X1, . . . , Xt into
K segments, then (t1, . . . , tK−1) is an optimal configuration of X1, . . . , XtK−1

into K − 1 segments.
For 1 ≤ i ≤ l ≤ n, denote Ti,l = {i, i + 1, . . . , l} and let ML be the upper

triangular matrix of dimension n×n withMLi,l = L̂(Ti,l, θ̂n(Ti,l)) for i ≤ l. The

estimated number of segment K̂n and the corresponding optimal configuration
can be obtained as follow:

1. Let C be an upper triangular matrix of dimension Kmax × n. For 1 ≤
K ≤ Kmax and K ≤ t ≤ n, CK,t will be the minimum penalized criteria of
X1, . . . , Xt into K segments. Therefore, for t = 1, . . . , n C1,t = −2ML1,t+
κn and the relation CK+1,t = minK≤l≤t−1(CK,l − 2MLl+1,t + κn) is sat-

isfied. Hence, K̂n = Argmin1≤K≤Kmax
(CK,n).

2. Let Z be an upper triangular matrix of dimension (Kmax−1)×n. For 1 ≤
K ≤ (Kmax−1) and K+1 ≤ t ≤ n, ZK,t will be the Kth potential break-
point ofX1, . . . , Xt. Therefore, the relation ZK,t = ArgminK≤l≤t−1(CK,l−
2MLl+1,t + κn) is satisfied for K = 1, . . . ,Kmax − 1 and the break-point

are obtained as follow: set t̂K̂n
= n, t̂1 = 1 and for K = K̂n − 1, . . . , 2,

t̂K = ZK,t̂K+1
.

Note that the above procedure requires O(n2) operations, instead of O(nKmax)
if the standard procedure is used.

Remark 5.1. The minimum description length (MDL in the sequel) criterion
(see [7]) is defined in our setting by:

MDL(K, t, θ) := log+(K − 1) +K logn+
d

2

K∑

k=1

lognk −
K∑

k=1

L̂n(Tk, θk)

where log+(x) = 0 if x ≤ 1 and log+(x) = log x if x > 1. We can also write:

MDL(K, t, θ) = M̃DL(K, t, θ) +K logn

where

M̃DL(K, t, θ) = −
K∑

k=1

(
L̂n(Tk, θk)−

d

2
lognk − log+(k − 1) + log+(k − 2)

)
.

Hence, the MDL criterion can be seen as a penalized criterion and the dynamic
programming algorithm described above can be used to find the optimal con-
figuration.

5.3. Results of simulations

AR(1) models: we consider the problem (3) for a AR(1):

Xt = θ∗j Xt−1 + ξt ∀t ∈ Tj , ∀j ∈ {1, . . . ,K∗}.
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Fig 1. The curve of −mint,θ QLIK for 1 ≤ K ≤ Kmax for AR(1) process in scenario A4.
The solid line represents the linear part of this curve with slope κ̂n/2 = 3.47 when n = 500
and κ̂n/2 = 4.90 when n = 1000

For n = 500 and n = 1000, we generate a sample (X1, . . . , Xn) in the following
situations:

• scenario A0: θ
∗(1) = 0.5 is constant (K∗ = 1);

• scenario A1: θ
∗(1) = 0.5 changes to θ∗(2) = 0.2 at t∗ = 0.5n (K∗ = 2);

• scenario A2: θ
∗(1) = 0.7 changes to θ∗(2) = 0.9 at t∗ = 0.5n (K∗ = 2);

• scenario A3: θ
∗(1) = 0.5 changes to θ∗(2) = 0.3 at t∗1 = 0.3n which

changes to θ∗(3) = 0.7 at t∗2 = 0.7n (K∗ = 3);
• scenario A4: θ

∗(1) = 0.7 changes to θ∗(2) = 0.9 at t∗1 = 0.3n which
changes to θ∗(3) = 0.6 at t∗2 = 0.7n (K∗ = 3).

The regularization parameter is chosen by using the slope estimation presented
above (Subsection 5.1). Figure 1 represents the slope of the linear part of the
−QLIK criteria (minimized in (t, θ)) in scenario A4 for n = 500 and n = 1000.
Thus, by referring to the Figure 1 we obtain κ̂n ≈ 7.0 for n = 500 and κ̂n ≈ 9.8
for n = 1000.

We are going to minimize the penQLIK in (K, t, θ), with 1 ≤ K ≤ Kmax

and κn = κ̂n. Figure 2 represents the points (K,mint,θ penQLIK(K)) for 1 ≤
K ≤ Kmax = 10.

One can easily read on the Figure 2, the estimated values K̂n = 4 for n = 500
and K̂n = 3 for n = 1000 (the estimated number of break is K̂n− 1). Moreover,
the estimated instants of break are t̂n = (146, 228, 357) (t∗ = (150, 350)) for
n = 500 and t̂n = (282, 687) (t∗ = (300, 700)) for n = 1000. Figure 3 shows the
estimated break points for the trajectories (n = 500 and n = 1000) for AR(1)
processes following scenario A4 with two changes.

Now, 100 independent replications of a AR(1) process are generated following
the scenarios A0-A4. For each replication, the estimated number of segments is
computed using QLIK criteria with κn = κ̂n, κn = logn, κn =

√
n and using

MDL procedure and Table 1 indicates the proportions of number of replications
(frequencies) where the true number of breaks is achieved following the scenarios
A0-A4.
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Fig 2. The graph(K,mint,θ penQLIK(K)) for 1 ≤ K ≤ Kmax = 10 for AR(1) in sce-
nario A4.
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Fig 3. The estimated of breakpoints for a trajectory of AR(1) process in scenario A4. The
solid lines represent the estimated break instants and the dotted lines represent the true ones.

For the replications of scenario A4, where the true number of break is fitted
(K̂n = 3), the average of the estimated parameters are computed and shown in
Table 2.

AR(2) models: we consider the problem (3) for a AR(2):

Xt = φ∗1(j)Xt−1 + φ∗2(j)Xt−2 + ξt ∀t ∈ Tj, ∀j ∈ {1, . . . ,K∗}.
Denote θ∗(j) = (φ∗1(j), φ

∗
2(j)). For n = 500 and n = 1000, we generate a sample

(X1, . . . , Xn) in the following situations:

• scenario B0: θ
∗(1) = (0.4, 0.3) is constant (K∗ = 1);

• scenario B1: θ
∗(1) = (0.4, 0.3) changes to θ∗(2) = (0.1, 0.3) at t∗ = 0.5n

(K∗ = 2);
• scenario B2: θ

∗(1) = (0.4, 0.3) changes to θ∗(2) = (0.2, 0.5) at t∗ = 0.5n
(K∗ = 2);

• scenario B3: θ
∗(1) = (0.4, 0.3) changes to θ∗(2) = (0.6, 0.1) at t∗ = 0.5n

(K∗ = 2).
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Table 1

Frequencies of the number of breaks estimated after 100 replications for AR(1) process
following scenarios A0-A4

Model K̂n = K∗ K̂n < K∗ K̂n > K∗

scenario A0 n = 500 κn = κ̂n 0.74 0.00 0.26
(K∗ = 1) κn = logn 0.50 0.00 0.50

κn =
√
n 0.94 0.00 0.06

MDL 0.95 0.00 0.05
n = 1000 κn = κ̂n 0.81 0.00 0.20

κn = logn 0.43 0.00 0.57
κn =

√
n 1.00 0.00 0.00

MDL 0.97 0.00 0.03
scenario A1 n = 500 κn = κ̂n 0.52 0.06 0.42
(K∗ = 2) κn = logn 0.40 0.04 0.56

κn =
√
n 0.23 0.77 0.00

MDL 0.44 0.56 0.00
n = 1000 κn = κ̂n 0.78 0.00 0.22

κn = logn 0.40 0.00 0.60
κn =

√
n 0.38 0.62 0.00

MDL 0.87 0.13 0.00
scenario A2 n = 500 κn = κ̂n 0.48 0.00 0.52
(K∗ = 2) κn = logn 0.17 0.00 0.83

κn =
√
n 0.29 0.71 0.00

MDL 0.56 0.44 0.00
n = 1000 κn = κ̂n 0.76 0.00 0.24

κn = logn 0.06 0.00 0.94
κn =

√
n 0.57 0.43 0.00

MDL 0.89 0.07 0.04
scenario A3 n = 500 κn = κ̂n 0.45 0.32 0.23
(K∗ = 3) κn = logn 0.37 0.26 0.37

κn =
√
n 0.00 1.00 0.00

MDL 0.01 0.99 0.00
n = 1000 κn = κ̂n 0.61 0.13 0.26

κn = logn 0.39 0.00 0.61
κn =

√
n 0.00 1.00 0.00

MDL 0.20 0.80 0.00
scenario A4 n = 500 κn = κ̂n 0.53 0.12 0.35
(K∗ = 3) κn = logn 0.28 0.06 0.66

κn =
√
n 0.04 0.96 0.00

MDL 0.09 0.91 0.00
n = 1000 κn = κ̂n 0.75 0.00 0.25

κn = logn 0.12 0.00 0.88
κn =

√
n 0.06 0.94 0.00

MDL 0.54 0.46 0.00

100 independent replications of a AR(2) process are generated following the
scenarios B0-B3. It is evaluated the performance of the procedure using QLIK
criteria with κn = κ̂n, κn = logn, κn =

√
n and the one of MDL procedure.

Table 3 indicates the proportions of number of replications (frequencies) where
the true number of breaks is achieved following the scenarios B0-B3.

GARCH(1,1) models: we consider examples of problem (3) when X is a
GARCH(1, 1) process on each period:

Xt = σtZt, σ2
t = a∗0(j)+ a∗1(j)X

2
t + b∗1(j)σ

2
t ∀t ∈ T ∗

j , ∀j ∈ {1, . . . ,K∗}.
(11)
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Table 2

The estimated parameters for the replications of AR(1) processes following A4 satisfying

K̂n = 3 = K∗ (two changes estimated)

scenario Mean ± s.d. Mean Mean

A4 τ̂1 τ̂2 ‖τ̂n − τ∗‖ θ̂(j), j = 1, 2, 3

n = 500 κn = κ̂n 0.310 ± 0.078 0.719 ± 0.049 0.070 0.668 ; 0.894 ; 0.571
κn = logn 0.308 ± 0.064 0.718 ± 0.049 0.065 0.666 ; 0.898 ; 0.567
κn =

√
n 0.323 ± 0.037 0.678 ± 0.016 0.045 0.600 ; 0.935 ; 0.561

MDL 0.316 ± 0.044 0.680 ± 0.013 0.042 0.637 ; 0.926 ; 0.577
n = 1000 κn = κ̂n 0.297 ± 0.078 0.691 ± 0.025 0.063 0.694 ; 0.894 ; 0.613

κn = logn 0.317 ± 0.038 0.710 ± 0.033 0.045 0.708 ; 0.874 ; 0.598
κn =

√
n 0.341 ± 0.078 0.714 ± 0.023 0.046 0.640 ; 0.905 ; 0.528

MDL 0.340 ± 0.085 0.702 ± 0.029 0.062 0.676 ; 0.911 ; 0.586

Table 3

Frequencies of the number of breaks estimated after 100 replications for AR(2) process
following scenarios B0-B3

Model K̂n = K∗ K̂n < K∗ K̂n > K∗

scenario B0 n = 500 κn = κ̂n 0.61 0.00 0.39
(K∗ = 1) κn = logn 0.08 0.00 0.92

κn =
√
n 0.94 0.00 0.06

MDL 0.92 0.00 0.08
n = 1000 κn = κ̂n 0.79 0.00 0.21

κn = logn 0.06 0.00 0.94
κn =

√
n 0.98 0.00 0.02

MDL 0.97 0.00 0.03

scenario B1 n = 500 κn = κ̂n 0.63 0.04 0.33
(K∗ = 2) κn = logn 0.15 0.00 0.85

κn =
√
n 0.37 0.63 0.00

MDL 0.38 0.62 0.00
n = 1000 κn = κ̂n 0.83 0.00 0.17

κn = logn 0.03 0.00 0.97
κn =

√
n 0.60 0.40 0.00

MDL 0.85 0.15 0.00

scenario B2 n = 500 κn = κ̂n 0.57 0.15 0.28
(K∗ = 2) κn = logn 0.09 0.01 0.90

κn =
√
n 0.10 0.90 0.00

MDL 0.11 0.89 0.00
n = 1000 κn = κ̂n 0.78 0.08 0.14

κn = logn 0.05 0.00 0.95
κn =

√
n 0.17 0.83 0.00

MDL 0.24 0.76 0.00

scenario B3 n = 500 κn = κ̂n 0.41 0.25 0.34
(K∗ = 3) κn = logn 0.08 0.03 0.89

κn =
√
n 0.07 0.93 0.00

MDL 0.08 0.92 0.00
n = 1000 κn = κ̂n 0.75 0.08 0.17

κn = logn 0.03 0.00 0.97
κn =

√
n 0.19 0.81 0.00

MDL 0.22 0.78 0.00
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Fig 4. A GARCH(1, 1) process with 2 breaks (K∗ = 3) following the scenario G4. The solid
lines represent the estimated break instants and the dotted lines represent the true ones.

Thus θ∗ = (a∗0, a
∗
1, b

∗
1). For n = 500 and n = 1000, we generate (X1, . . . , Xn) in

the following situation:

• scenario G0: θ
∗(1) = (0.5, 0.2, 0.2) is constant (K∗ = 1);

• scenario G1: θ
∗(1) = (0.5, 0.2, 0.2) changes to θ∗(2) = (0.5, 0.2, 0.6) at

t∗ = 0.5n (K∗ = 2);
• scenario G2: θ

∗(1) = (0.5, 0.6, 0.2) changes to θ∗(2) = (1, 0.6, 0.2) at
t∗ = 0.5n (K∗ = 2);

• scenario G3: θ
∗(1) = (0.5, 0.2, 0.2) changes to θ∗(2) = (0.5, 0.2, 0.0) at

t∗1 = 0.3n which changes to θ∗(3) = (0.1, 0.2, 0.0) at t∗2 = 0.7n (K∗ = 3);
• scenario G4: θ

∗(1) = (0.5, 0.6, 0.2) changes to θ∗(2) = (1, 0.6, 0.2) (at
t∗1 = 0.3n) which changes to θ∗(3) = (1, 0.2, 0.2) at t∗2 = 0.7n (K∗ = 3).

Figure 4 shows an example of scenario G4 where one break is fitted with κ̂n ≈
12.7 for n = 500 and two breaks with κ̂n ≈ 18.3 for n = 1000; we obtain,
t̂n = 168 (while t∗ = (150, 350)) for n = 500 and t̂n = (307, 725) (while t∗ =
(300, 700)) for n = 1000.

Now, 100 independent replications of GARCH(1, 1) processes are generated
following the scenarios G0-G4. For each replication, the estimated number of
segment is computed using QLIK criteria with κn = κ̂n, κn = logn, κn =

√
n

and using MDL procedure and Table 4 indicates the proportions of replications
(frequencies) when the true number of breaks is achieved following the scenarios
G0-G4.

For the replications of the scenario G2, when the true number of break is
fitted (K̂n = 2 = K∗), the average of the estimated parameters are computed
and shown in Table 5.

Finally, recall that in [7], the process is stationary on each segment and
assumed to be independent from a segment to another. Davis et al. (2008) used
the genetic algorithm to approximate the optimal values of the MDL criteria.
We consider three of their scenarios with n = 1000 for GARCH(1, 1) processes:

• scenario A: θ∗(1) = (0.4, 0.1, 0.5) is constant (K∗ = 1);
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Table 4

Frequencies of the number of breaks estimated after 100 replications for GARCH(1, 1)
processes following the scenarios G0-G4

Model K̂n = K∗ K̂n < K∗ K̂n > K∗

scenario G0 n = 500 κn = κ̂n 0.44 0.00 0.56
(K∗ = 1) κn = logn 0.00 0.00 1.00

κn =
√
n 0.58 0.00 0.42

MDL 0.51 0.00 0.49
n = 1000 κn = κ̂n 0.60 0.00 0.40

κn = logn 0.00 0.00 1.00
κn =

√
n 0.75 0.00 0.25

MDL 0.63 0.00 0.37
scenario G1 n = 500 κn = κ̂n 0.42 0.12 0.46
(K∗ = 2) κn = logn 0.00 0.00 1.00

κn =
√
n 0.52 0.05 0.00

MDL 0.55 0.35 0.10
n = 1000 κn = κ̂n 0.65 0.00 0.35

κn = logn 0.00 0.00 1.00
κn =

√
n 0.74 0.10 0.00

MDL 0.67 0.09 0.24
scenario G2 n = 500 κn = κ̂n 0.52 0.20 0.28
(K∗ = 2) κn = logn 0.00 0.00 1.00

κn =
√
n 0.39 0.44 0.17

MDL 0.44 0.40 0.16
n = 1000 κn = κ̂n 0.56 0.10 0.34

κn = logn 0.00 0.00 1.00
κn =

√
n 0.42 0.48 0.10

MDL 0.57 0.31 0.12
scenario G3 n = 500 κn = κ̂n 0.41 0.28 0.31
(K∗ = 3) κn = logn 0.00 0.00 1.00

κn =
√
n 0.40 0.60 0.00

MDL 0.53 0.39 0.08
n = 1000 κn = κ̂n 0.70 0.26 0.04

κn = logn 0.00 0.00 1.00
κn =

√
n 0.43 0.57 0.00

MDL 0.59 0.37 0.04
scenario G4 n = 500 κn = κ̂n 0.30 0.55 0.15
(K∗ = 3) κn = logn 0.00 0.00 1.00

κn =
√
n 0.08 0.90 0.02

MDL 0.16 0.77 0.07
n = 1000 κn = κ̂n 0.53 0.29 0.18

κn = logn 0.00 0.00 1.00
κn =

√
n 0.10 0.90 0.00

MDL 0.27 0.66 0.07

• scenario C: θ∗(1) = (0.4, 0.1, 0.5) changes to θ∗(2) = (0.4, 0.1, 0.6) at
t∗ = 0.5n (K∗ = 2);

• scenario J: θ∗(1) = (0.1, 0.1, 0.8) changes to θ∗(2) = (0.5, 0.1, 0.8) at
t∗ = 0.5n (K∗ = 2).

Table 6 shows the results obtained with our penQLIK method with κn = κ̂n,
κn = logn, κn =

√
n and the results of the MDL procedure (obtained after 500

replications) taken in Table I of [7].
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Table 5

The estimated parameters for the replications of GARCH(1, 1) processes following the

scenario G2 and satisfying K̂n = 2 = K∗ (one break fitted)

Mean ± s.d. Mean Mean

Model n τ̂ |τ̂ − τ∗| θ̂(j), j = 1, 2

scenario G2 n = 500 κn = κ̂n 0.428 ± 0.245 0.176 (0.489, 0.513, 0.202)
(1.027, 0.560, 0.220)

κn = logn NA NA NA
κn =

√
n 0.297 ± 0.260 0.253 (0.374, 0.376, 0.234)

(1.026, 0.606, 0.182)
MDL 0.372 ± 0.275 0.222 (0.439, 0.437, 0.203)

(0.980, 0.579, 0.224)
n = 1000 κn = κ̂n 0.466 ± 0.130 0.058 (0.455, 0.528, 0.201)

(1.038, 0.595, 0.186)
κn = logn NA NA NA
κn =

√
n 0.302 ± 0.266 0.215 (0.276, 0.395, 0.354)

(1.033, 0.582, 0.182)
MDL 0.469 ± 0.133 0.059 (0.455, 0.528, 0.201)

(1.052, 0.597, 0.181)

Table 6

Frequencies of the number of breaks estimated after 100 replications for GARCH(1, 1)
processes with n = 1000 following the scenarios A, C and J of Davis et al. (2008) [7]. The

results of MDL procedure were taken in Table I of [7]

Model K̂ = 1 K̂ = 2 K̂ ≥ 3
(no break) (one break) (more than 2 breaks )

scenario A κn = κ̂n 0.560 0.390 0.050
(K∗ = 1) κn = logn 0.000 0.000 1.000

κn =
√
n 0.600 0.390 0.010

MDL 0.958 0.042 0.000
scenario C κn = κ̂n 0.290 0.550 0.160
(K∗ = 2) κn = logn 0.000 0.000 1.000

κn =
√
n 0.770 0.330 0.000

MDL 0.804 0.192 0.004
scenario J κn = κ̂n 0.050 0.630 0.320
(K∗ = 2) κn = logn 0.000 0.000 1.000

κn =
√
n 0.280 0.620 0.100

MDL 0.008 0.952 0.040

Conclusion of simulations for AR(1), AR(2) and GARCH(1, 1) pro-
cesses: The results of QLIK criteria with κ̂n and

√
n penalty show that the

probability P(K̂n = K∗) increases as n increases in all scenarios as it can be
deduced from the theory. This is not the case for log n penalty (see for instance
the scenario A2). Comparing the results of scenarios A1 and A2 (or scenarios
A3 and A4), the BIC penalty (κn = logn) under-penalizes the number of breaks
when the process is sufficiently dependent on its own past. More dependent the
process, larger the probability to fit the true number of breaks with

√
n or κ̂n

penalty (except in the case G2 for
√
n penalty). However in the case of two

breaks, the
√
n penalty over-penalizes the number of breaks contrarily with κ̂n

penalty which provides the best results as well for AR(1) as for GARCH(1, 1)
processes.
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For the scenarios A1-A4, the change in the parameter induces a change in
the variance of the stationary solution of the model. In these cases, the Table 1
shows that the MDL procedure provides satisfactory results when there is one
break in the model. But this procedure is not really efficient in the case of two
breaks (see scenarios A3 and A4). In Table 3, we also consider two scenarios
(B2 and B3) of AR(2) process where there is a change in the parameters but the
variances of the stationary solutions are very close. As can be seen, the penalty
κ̂n still works well whereas the MDL procedure provides poor results. Moreover,
the Table 6 shows that, the MDL procedure provides sometimes excellent results
(scenarios A and J), but also very weak result (scenario C).

Finally, one can see that if the κ̂n penalty does not always provide the best
results, its results in all scenarios remain satisfactory, in the sense that in all
considered scenarios, the estimated probability to fit the true number of break
is greater than 0.50 for n = 1000. The use of our method with κ̂n is clearly
the best possible trade-off for one break models. In the case of two breaks, the
κ̂n penalty provides best results. Contrary to the MDL procedure, the QLIK
criteria with κ̂n penalty works well in the AR models even when the changes
in the parameters does not induce a change in the variance of the stationary
solution. For all these reasons, we recommend to use our procedure with the
penalty term κn = κ̂n.

TARCH(1) models: we consider an example of problem (3) where X is a
TARCH(1) with one change: ∀t ∈ Tj, j = 1, 2 = K∗,

Xt = σt ξt, σt = b∗0(j) + b+∗
1 (j)max(Xt−1, 0)− b−∗

1 (j)min(Xt−1, 0).

The vector of parameter is θ∗ = (b∗0, b
+∗
1 , b−∗

1 ). Here we assume that the number
of breaks is known, i.e. K = K∗ = 2 but the break instant t∗ and parameters
θ∗ are unknown. For n = 1000 and n = 2000, we generate 100 independent
replications of (X1, . . . , Xn) with parameters θ∗(1) = (0.01, 0.05, 0.04) for t ≤
t∗ = 0.4n and θ∗(2) = (0.01, 0.05, 0.1) for t > t∗. Table 5 provides the sample
mean and the standard deviation of τ̂n, the sample mean of the error |τ̂n − τ∗|
and the sample means of θ̂n(1) and θ̂n(2).

We can see that the results obtained for AR(1) and GARCH(1, 1) models
are much better than those obtained for TARCH(1) process even when K∗ is
known and K∗ = 2 instead of K∗ = 3. This is explained by the fact that this
model provides an asymmetric function of the past observations. Thus, some
asymmetric effects can be confused with breaks.

Table 7

The estimated parameters for a TARCH(1) process with one break from 100 independent
replications. The parameter θ∗(1) = (0.01, 0.05, 0.04) changes to θ∗(2) = (0.01, 0.05, 0.1) at

t∗ = 0.4n

Mean τ̂n± s.d. Mean |τ̂n − τ∗| Mean θ̂(1) Mean θ̂(2)

n = 1000 0.436 ± 0.126 0.093 (0.056, 0.071, 0.044) (0.067, 0.057, 0.103)

n = 2000 0.419 ± 0.063 0.044 (0.059, 0.052, 0.051) (0.066, 0.061, 0.098)
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Fig 5. Example of a the trajectory of TARCH(1) with one change (the red line represents the
estimated break instant and the dotted line represents the true one).
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Fig 6. The log-ratios of the closing daily price of the FTSE index. The vertical red lines
represent the estimated instant of breaks.

However, Table 5 shows that the change is correctly detected and the decay
rate of the error |τ̂n − τ∗| is confirmed. Figure 5 presents an example of such
TARCH(1) process with one break.

5.4. Application to financial data: FTSE index analysis

Now we apply our detection of changes methodology to the series of the log-
returns of the closing values of the FTSE index: the share index of the 100 most
highly capitalized UK companies listed on the London Stock Exchange, with the
aim of investigating whether and how any detected breakpoints correspond to
the milestones of the recent financial crisis. This is a trajectory composed with
n = 1428 observations ranging from 27 July 2005 to 18 March 2011, i.e. roughly
6 trading years and uploaded from Yahoo finance (see Figure 6). We studied
the log-ratio of the closing daily prices. Remark that we completely treat the
period studied in [11].
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Fig 7. The right plot represents the values of the parameters. The black line represents the
values of µ, the red line of a0, the green line of a1 and the blue line of b1. The left plot
corresponds to the squared log-returns and the fitted volatilities, in blue with estimations over
the whole sequence, in red with breaks.

The penQLIK contrast is applied for a GARCH(1, 1) model (see (11) for a
formal definition). The slope estimation procedure applied with un = [n/(4 ∗
log(n))] = 49 and Kmax = 25 returns the values κ̂ ≈ 15 and K̂ = 4, i.e. three
breaks t̂1 = 499, t̂2 = 792 and t̂3 = 853. These values are close to the three
breaks obtained in [11]:

t̂1 = 499, corresponding to 16 July 2007. From Wikipedia: “During the week of
July 16, 2007, Bear Stearns disclosed that the two subprime hedge funds
had lost nearly all of their value amid a rapid decline in the market for
subprime mortgages.”

t̂2 = 792, corresponding to 11 September 2008. FromWikipedia “On September
15, 2008, Lehman Brothers filed for Chapter 11 bankruptcy protection
following the massive exodus of most of its clients, drastic losses in its
stock, and devaluation of its assets by credit rating agencies”.

t̂3 = 853, corresponding to the 5 December 2008. From Wikipedia “In the final
quarter of 2008, the financial crisis saw the G-20 group of major economies
assume a new significance as a focus of economic and financial crisis man-
agement.”

Remark that our first two breaks are closer to the events identified in [11] than
their own breaks. Analyzing the estimated values of coefficients (see Figure 7),
breaks are due to changes of the coefficients a1 and b1 in the GARCH(1, 1) model
(11). There is no break for the mean µ and the a0 coefficients, valued close to
0. Next, we compare the fitted volatilities of the parameters estimations over
the whole sequence and within the 4 periods. The third period, corresponding
to a change of the value of the parameter a1 (a1(3) is not significantly different
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from 0), leads to an estimated volatility satisfying the recurrence equation σt ≈
a0(3)+b1(3)σt−1. In this period of high volatility, the estimated volatilities have
different behaviors whether we take the break into account or not.

6. Proofs of the main results

In the sequel C denotes a positive constant whom value may differ from one
inequality to another and (vn) is a sequence such that vn = n/κn for all n ≥ 1.

6.1. Proof of Proposition 2.2

(i) It is clear that {Xt, t ≤ t∗1} exists and is causal, stationary with finite mo-
ments of order r (see [2]). Therefore, X is defined by induction as follows:

Xt :=Mθ∗

j
(Xt−1, Xt−2, . . .)ξt + fθ∗

j
(Xt−1, Xt−2, . . .), ∀t ∈ T ∗

j ; j = 2, . . .K∗.

Thus,Xt is independent on (ξj)j>t and it suffices to prove (ii) which immediately
leads existence of moments.

(ii) Let us first consider the general case when A0(fθ, {θ}) and A0(Mθ, {θ})
hold with β(0)(θ) < 1. As in [8] we remark that

‖Xt‖r ≤
‖Zt∗j ,1

‖r
1− β(0)(θ∗1)

for t ≤ t∗1, with Zt,j := Mθ∗

j
(0, 0, . . .)ξt + fθ∗

j
(0, 0, . . .) for all j = 1, . . . ,K∗.

Assume that there exists Cr,t <∞ such that Cr,t = supi<t ‖Xi‖r. We will prove
that Cr,t+1 <∞ and by induction that Cr,t <∞ for any t ≤ 0. Let t ∈ T ∗

j , then

|Xt−Zt,j| ≤ |Mθ∗

j
(Xt−1, . . .)−Mθ∗

j
(0, 0, . . .)||ξt|+ |fθ∗

j
(Xt−1, . . .)−fθ∗

j
(0, 0, . . .)|.

We obtain for all t, by independence of (ξj)j>t and Xt:

‖Xt − Zt‖r ≤ ‖Mθ∗

j
(Xt−1, . . .)−Mθ∗

j
(0, 0, . . .)‖r‖ξt‖r

+ ‖fθ∗

j
(Xt−1, . . .)− fθ∗

j
(0, 0, . . .)‖r.

Then, we have:

‖Mθ∗

j
(Xt−1, . . .)−Mθ∗

j
(0, 0, . . .)‖r ≤

∞∑

i=1

α
(0)
i (Mθ∗

j
, θ∗j )‖Xt−i‖r

≤ Cr,t

∞∑

i=1

α
(0)
i (Mθ∗

j
, θ∗j ),

‖fθ∗

j
(Xt−1, . . .)− fθ∗

j
(0, 0, . . .)‖r ≤

∞∑

i=1

α
(0)
i (fθ∗

j
, θ∗j )‖Xt−i‖r

≤ Cr,t

∞∑

i=1

α
(0)
i (fθ∗

j
, θ∗j ).
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We deduce that

‖Xt‖r ≤ ‖Zt,j‖r+Cr,t

(
∞∑

i=1

α
(0)
i (fθ∗

j
, {θ∗j }) + (E‖ξ0‖r)1/r

∞∑

i=1

α
(0)
i (Mθ∗

j
, {θ∗j})

)
.

Thus, ‖Xt‖r < ∞ and Cr,t+1 < ∞. As (ξt) is iid, remark that ‖Zt,j‖r =
‖Z0,j‖r =: ‖Zj‖r. For any i ≤ t, we obtain similarly that ‖Xi‖r ≤ ‖Zj‖r +
Cr,iβ

(0)(θ∗j ) ≤ ‖Zj‖r +Cr,t+1β
(0)(θ∗j ) since Cr,i ≤ Cr,t+1 <∞. Thus, by defini-

tion of Cr,t+1 = supi≤t ‖Xt‖r we obtain

Cr,t+1 ≤ max
1≤j≤K∗

{
‖Zt,j‖r + Cr,t+1β

(0)(θ∗j )
}
.

The Proposition is established with C = max1≤j≤K∗ ‖Zt,j‖r/(1− β(0)(θ∗j )).

In the ARCH-type case when fθ = 0 and A0(hθ, {θ}) holds with β̃(0)(θ) < 1,
we follow the same reasoning than previously starting from the inequality

‖X2
t − (Mθ∗

j
(0, 0, . . .)ξt)

2‖r/2 ≤ ‖hθ∗

j
(Xt−1, . . .)− hθ∗

j
(0, 0, . . .)‖r/2‖ξ2t ‖r/2.

We obtain the desired result with C = max1≤j≤K∗ ‖Mθ∗

j
(0, 0, . . .) ξ0‖r/√

1− β̃(0)(θ∗j ) in this case.

6.2. Some preliminary result

The following technical lemma is useful in the sequel:

Lemma 6.1. Suppose that θ∗j ∈ Θ for j = 1, . . . ,K∗, Θ satisfying A with r ≥ 2
and under the assumptions A0(fθ,Θ), A0(Mθ,Θ) (or A0(hθ,Θ)) and D(Θ),
then there exists C > 0 such that

for all t ∈ Z, E
(
sup
θ∈Θ

∣∣qt(θ)
∣∣
)
≤ C.

Proof. Using the inequality (a+ b)2 ≤ 2(a2 + b2), we have for all t ∈ Z:

∥∥f t
θ

∥∥2
Θ

≤ 2
(∥∥f t

θ − fθ(0, . . .)
∥∥2
Θ
+
∥∥fθ(0, . . .)

∥∥2
Θ

)

≤ 2
((∑

i≥1

α
(0)
i (fθ,Θ)

)
·
∑

i≥1

α
(0)
i (fθ,Θ)|Xt−i|2 +

∥∥fθ(0, . . .)
∥∥2
Θ

)
,

therefore

E
∥∥f t

θ

∥∥2
Θ
≤ 2
(
C
(∑

i≥1

α
(0)
i (fθ,Θ)

)2
+
∥∥fθ(0, . . .)

∥∥2
Θ

)
.

Thus E
∥∥f t

θ‖2Θ ≤ C for all t ∈ Z and similarly E(‖htθ‖Θ) = E(‖M t
θ‖2Θ) ≤ C. Yet,

under assumption (D(Θ)), we have: |qt(θ)| ≤ 1
h |Xt − f t

θ|2 + | log(htθ)| and using

inequality log x ≤ x− 1 for all x > 0, it follows:

| log(htθ)| =
∣∣∣ log(h) + log(

htθ
h
)
∣∣∣ ≤ 1 + | log(h)|+ 1

h
htθ.
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Finally, we have for all t ∈ Z:

E
(
sup
θ∈Θ

|qt(θ)|
)

≤ 1 + | log h|+ 1

h

(
E‖htθ‖Θ + 2E|Xt|2 + 2E‖f t

θ‖2Θ
)
≤ C.

6.3. Comparison with stationary solutions

In the following, we assume that θ∗j ∈ Θ for all j = 1, . . . ,K∗, Θ satisfying A
with r ≥ 1. It comes from [2] that the equation

Xt,j =Mθ∗

j

(
(Xt−k,j)k∈N∗

)
· ξt + fθ∗

j

(
(Xt−k,j)k∈N∗

)
for all t ∈ Z

has r order stationary solution
(
Xt,j

)
t∈Z

for any j = 1, . . . ,K∗. Then

Lemma 6.2. Assume that the assumptions A0(fθ,Θ), A0(Mθ,Θ) (or A0(hθ,Θ))
hold and that θ∗j ∈ Θ for j = 1, . . . ,K∗, Θ satisfying A for r ≥ 2. Then:

1. Xt = Xt,1 for all t ≤ t∗1;
2. There exists C > 0 such that for any j ∈ {2, . . . ,K∗}, for all t ∈ T ∗

j ,

‖Xt −Xt,j‖r ≤ C
(

inf
1≤p≤t−t∗j−1

{
β(0)(θ∗j )

(t−t∗j−1)/p +
∑

i≥p

β
(0)
i (θ∗j )

})

‖X2
t −X2

t,j‖r/2 ≤ C
(

inf
1≤p≤t−t∗j−1

{
β̃(0)(θ∗j )

(t−t∗j−1)/p +
∑

i≥p

β̃
(0)
i (θ∗j )

})
.

Proof. 1. It is obvious from the definition of X .
2. Let j ∈ {2, . . . ,K∗}, we proceed by induction on t ∈ T ∗

j .
First consider the general case where A0(fθ, {θ}) and A0(Mθ, {θ}) hold with

β(0)(θ) < 1. By Proposition 2.2, there exists Cr ≥ 0 such that ‖Xt −Xt,j‖r ≤
‖Xt‖r + ‖Xt,j‖r ≤ C + max1≤j≤K∗ ‖X0,j‖r ≤ Cr for all j = 1, . . . ,K∗ and
t ∈ Z. For 1 ≤ p ≤ t − t∗j−1 let uℓ := supt∗j−1

+ℓp≤i≤t∗j
‖Xi − Xi,j‖r. Then

‖Xt −Xt,j‖r ≤ u[(t−t∗j−1
)/p] and for any t ≤ i ≤ t∗j :

‖Xi −Xi,j‖r ≤
∑

k≥1

β
(0)
k (θ∗j )‖Xi−k −Xi−k,j‖r

≤
p∑

k=1

β
(0)
k (θ∗j )‖Xi−k −Xi−k,j‖r + Cr

∑

k>p

β
(0)
k (θ∗j )

≤ β(0)(θ∗j )u[(t−t∗j−1
)/p]−1 + Cr

∑

k>p

β
(0)
k (θ∗j ).

Similarly, it is easy to show that for all 1 ≤ ℓ ≤ [(t− t∗j−1)/p] we have

uℓ ≤ β(0)(θ∗j )uℓ−1 + Cr

∑

k>p

β
(0)
k (θ∗j ).
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Denote a = β(0)(θ∗j ) < 1, b = Cr

∑
k>p β

(0)
k (θ∗j ) such that uℓ ≤ auℓ−1 + b.

Considering w0 = u0 and wl = awℓ−1+b, then wℓ = aℓw0+b(1−aℓ−1)/(1−a) ≤
aℓw0 + b/(1− a). Since u0 ≤ Cr by definition and uℓ ≤ wℓ for any ℓ, we have:

uℓ ≤ aℓu0 +
b

1− a
≤
(
β(0)(θ∗j )

)ℓ
Cr +

Cr

1− β(0)(θ∗j )

∑

k>p

β
(0)
k (θ∗j )

≤ Cr

1− β(0)(θ∗j )

(
β(0)(θ∗j )

)ℓ
+
∑

k>p

β
(0)
k (θ∗j )

)
.

Thus for all 1 ≤ p ≤ t− t∗j−1

‖Xt −Xt,j‖r ≤ β(0)(θ∗j )u[(t−t∗j−1
)/p]−1 + Cr

∑

k>p

β
(0)
k (θ∗j )

≤ C
(
β(0)(θ∗j )

(t−t∗j−1)/p +
∑

i≥p

β
(0)
i (θ∗j )

)

and Lemma 6.2 is proved.
In the ARCH-type case when fθ = 0 and A0(hθ, {θ}) holds with β̃(0)(θ) < 1,

we follow the same reasoning than previously starting from the inequality

‖X2
i −X2

i,j‖r/2 ≤
∑

k≥1

β̃
(0)
k (θ∗j )‖X2

i−k −X2
i−k,j‖r/2.

For all j = 1, . . . ,K∗ and t ∈ Z, by Proposition 2.2, ‖X2
i −X2

i,j‖r/2 ≤ C2
r and

therefore
ũℓ ≤ β̃(0)(θ∗j )ũℓ−1 + C2

r

∑

k>p

β̃
(0)
k (θ∗j )

for ũℓ = supt∗j−1
+ℓp≤i≤t∗j

‖X2
i −X2

i,j‖r/2 and Lemma 6.2 is proved.

6.4. The asymptotic behavior of the likelihood

For the process
(
Xt,j

)
t∈T∗

j , j=1,...,K∗
, for any j ∈ {1, . . . ,K∗} and s ∈ T ∗

j denote:

qs,j(θ) :=

(
Xs,j − f s,j

θ

)2

hs,jθ

+ log
(
hs,jθ

)
(12)

with f s,j
θ := fθ(Xs−1,j , Xs−2,j , . . .), M

s,j
θ :=Mθ(Xs−1,j , Xs−2,j , . . .) and h

s,j
θ :=

(M s,j
θ )2. For any T ⊂ T ∗

j , denote

Ln,j(T, θ) := −1

2

∑

s∈T

qs,j(θ)

the likelihood of the jth stationary model computed on T .
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Lemma 6.3. Assume that D(Θ) holds.

1. If the assumption H0 with r ≥ 2 holds then for all j = 1, . . . ,K∗:

vn∗

j

n∗
j

∥∥Ln

(
T ∗
j , θ
)
− Ln,j

(
T ∗
j , θ
)∥∥

Θ

a.s.−→
n→∞

0.

2. For i = 1, 2, if the assumption Hi with r ≥ 4 holds then for all j =
1, . . . ,K∗:

vn∗

j

n∗
j

∥∥∥
∂iLn

(
T ∗
j , θ
)

∂θi
−
∂iLn,j

(
T ∗
j , θ
)

∂θi

∥∥∥
Θ

a.s.−→
n→∞

0.

Proof. 1-) For any θ ∈ Θ,

∣∣∣ 1
n∗
j

Ln

(
T ∗
j , θ
)
− 1

n∗
j

Ln,j

(
T ∗
j , θ
)∣∣∣ ≤ 1

n∗
j

n∗

j∑

k=1

|qt∗
j−1

+k(θ)− qt∗
j−1

+k,j(θ)|.

Then:

vn∗

j

∥∥∥ 1

n∗
j

Ln

(
T ∗
j , θ
)
− 1

n∗
j

Ln,j

(
T ∗
j , θ
)∥∥∥

Θ
≤
vn∗

j

n∗
j

n∗

j∑

k=1

‖qt∗
j−1

+k(θ)− qt∗
j−1

+k,j(θ)‖Θ.

By Corollary 1 of Kounias and Weng [16], with r ≤ 4 and no loss of generality,
the proof of Lemma 6.3 1-) is achieved if

∑

k≥1

(vk
k

)r/4
E
(
‖qt∗j−1

+k(θ)− qt∗j−1
+k,j(θ)‖r/4Θ

)
<∞. (13)

Let us prove (13). For any θ ∈ Θ, we have:

|qs(θ)− qs,j(θ)| ≤
1

h2
|Xs − f s

θ |2|hsθ − hs,jθ |

+
1

h

(
|X2

s −X2
s,j |+ |f s

θ −f s,j
θ ||f s

θ +f
s,j
θ +2Xs|+2|f s,j

θ ||Xs−Xs,j|+ |hsθ−hs,jθ |
)
.

(14)

First consider the general case with A0(fθ, {θ}) and A0(Mθ, {θ}) hold and
β(0)(θ) < 1:

‖qs(θ)− qs,j(θ)‖Θ ≤ C
(
1 + |Xs,j |+ |Xs|2 + ‖f s,j

θ ‖Θ + ‖f s
θ‖2Θ

)

×
(
|Xs −Xs,j |+ ‖f s

θ − f s,j
θ ‖Θ + ‖hsθ − hs,jθ ‖Θ

)
,

and by Cauchy-Schwartz Inequality,

(E‖qs(θ)− qs,j(θ)‖r/4Θ )2 ≤ CE
[(
1 + |Xs,j |+ |Xs|2 + ‖f s,j

θ ‖Θ + ‖f s
θ‖2Θ

)r/2]

× E
[(
|Xs −Xs,j|+ ‖f s

θ − f s,j
θ ‖Θ + ‖hsθ − hs,jθ ‖Θ

)r/2]
.



Multiple breaks detection 465

Using Proposition (2.2) and the argument of the proof of Lemma (6.1) we claim
that E|Xs|r ≤ C, E‖f s

θ‖rΘ ≤ C and that E‖f s,j
θ ‖rΘ ≤ C. Thus:

(E‖qs(θ)−qs,j(θ)‖r/4Θ )2 ≤ C
(
E|Xs−Xs,j|r/2+E‖f s

θ−f s,j
θ ‖r/2Θ +E‖hsθ−hs,jθ ‖r/2Θ

)
.

(15)
Since r/2 ≥ 1, we will use the Lr/2 norm. By Lemma 6.2:

‖Xs −Xs,j‖r/2 ≤ ‖Xs −Xs,j‖r ≤ C inf
1≤p≤k

{
β(0)(θ∗j )

k/p +
∑

i≥p

β
(0)
i (θ∗j )

}

≤ C inf
1≤p≤k/2

{
β(0)(θ∗j )

k/(2p) +
∑

i≥p

β
(0)
i (θ∗j )

}
.

=⇒ E|Xs −Xs,j |r/2 ≤ C
(

inf
1≤p≤k

{
β(0)(θ∗j )

k/p +
∑

i≥p

β
(0)
i (θ∗j )

})r/2
. (16)

Moreover, as (A0(Mθ,Θ)) holds, we have:

‖‖hsθ − hs,jθ ‖Θ‖r/2 ≤ C
∑

i≥1

α
(0)
i (Mθ,Θ)‖Xs−i −Xs−i,j‖r. (17)

From (17) we obtain:

∥∥‖hsθ − hs,jθ ‖Θ
∥∥
r/2

≤ C
( k/2−1∑

i=1

α
(0)
i (Mθ,Θ)‖Xs−i −Xs−i,j‖r

+
∑

i≥k/2

α
(0)
i (Mθ,Θ)‖Xs−i −Xs−i,j‖r

)
.

For all s ≥ t∗j−1 and 1 ≤ i ≤ k/2 − 1, then s − i > t∗j−1, s − i > k/2 and by
Lemma 6.2:

‖Xs−i −Xs−i,j‖r ≤ C inf
1≤p≤k−i

{
β(0)(θ∗j )

(k−i)/p +
∑

i≥p

β
(0)
i (θ∗j )

}

≤ C inf
1≤p≤k/2

{
β(0)(θ∗j )

k/(2p) +
∑

i≥p

β
(0)
i (θ∗j )

}

Thus, we can find C > 0 not depending on s such that:

E‖hsθ − hs,jθ ‖r/2Θ

≤ C
(

inf
1≤p≤k/2

{
β(0)(θ∗j )

k/(2p) +
∑

i≥p

β
(0)
i (θ∗j )

}
+
∑

i≥k/2

α
(0)
i (Mθ,Θ)

)r/2
. (18)

Similarly, we obtain:

E‖f s
θ − f s,j

θ ‖r/2Θ

≤ C
(

inf
1≤p≤k/2

{
β(0)(θ∗j )

k/(2p) +
∑

i≥p

β
(0)
i (θ∗j )

}
+
∑

i≥k/2

α
(0)
i (fθ,Θ)

)r/2
. (19)



466 J.-M. Bardet et al.

Relations (15), (16), (18) et (19) give (the same inequality holds with hθ replaced
by Mθ):

E ‖qs(θ)− qs,j(θ)‖r/4Θ ≤ C
[(

inf
1≤p≤k/2

{
β(0)(θ∗j )

k/(2p) +
∑

i≥p

β
(0)
i (θ∗j )

})r/4

+
( ∑

i≥k/2

α
(0)
i (fθ,Θ)

)r/4
+
( ∑

i≥k/2

α
(0)
i (Mθ,Θ)

)r/4]
. (20)

By definition uk = kc∗/ log(k) (≤ k/2 for large value of k) satisfies the relation

∑

k≥1

(vk
k

)r/4(
β(0)(θ∗j )

)rk/8uk <∞.

Choosing p = uk in (20) we obtain:

∑

k≥1

(vk
k

)r/4
E
(
‖qt∗j−1

+k(θ) − qt∗j−1
+k,j(θ)‖r/4Θ

)

≤
∑

k≥1

(vk
k

)r/4(
β(0)(θ∗j )

)rk/8uk +
∑

k≥1

(vk
k

)r/4( ∑

i≥uk

β
(0)
i (θ∗j )

)r/4

+
∑

k≥1

(vk
k

)r/4( ∑

i≥k/2

(
α
(0)
i (fθ,Θ) + α

(0)
i (Mθ,Θ)

))r/4
.

This bound is finite by assumption and therefore (13) is established.
In the ARCH-type case when fθ = 0 and A0(hθ, {θ}) holds with β̃(0)(θ)< 1,

we follow the same reasoning than previously remarking that (14) has the sim-
plified form:

|qs(θ)− qs,j(θ)| ≤
1

h2
X2

s |hsθ − hs,jθ |+ 1

h
|X2

s −X2
s,j |+

1

h
|hsθ − hs,jθ |.

Then

(E‖qs(θ)− qs,j(θ)‖r/4Θ )2 ≤ CE
[(
|X2

s −X2
s,j |+ ‖hsθ − hs,jθ ‖Θ

)r/2]
.

As ‖‖hsθ − hs,jθ ‖Θ‖r/2 ≤ C
∑
i≥1

α
(0)
i (hθ,Θ)‖X2

s−i − X2
s−i,j‖r/2 we derive from

Lemma 6.2,

E ‖qs(θ)− qs,j(θ)‖r/4Θ ≤ C
[(

inf
1≤p≤k/2

{
β̃(0)(θ∗j )

k/(2p) +
∑

i≥p

β̃
(0)
i (θ∗j )

})r/4

+
( ∑

i≥k/2

α
(0)
i (hθ,Θ)

)r/4]
.

We easily conclude to the result by choosing p = uk as above.



Multiple breaks detection 467

2-) We detail the proof for one order derivation in the general case where
A0(fθ, {θ}) and A0(Mθ, {θ}) hold with β(0)(θ) < 1. The proofs of the other
cases follow the same reasoning.

Let j ∈ {1, . . . ,K∗} and i = 1, . . . , d, we have:

vn∗

j

n∗
j

∥∥∥
∂Ln(T

∗
j , θ)

∂θi
−
∂Ln,j(T

∗
j , θ)

∂θi

∥∥∥
Θ
≤
vn∗

j

n∗
j

n∗

j∑

k=1

∥∥∥
∂qt∗j−1

+k(θ)

∂θi
−
∂qt∗j−1

+k,j(θ)

∂θi

∥∥∥
Θ
.

As previously, using Corollary 1 of [16], when r ≤ 4 with no loss of generality,
Lemma 6.3 2-) will be established if

∑

k≥1

(vk
k

)r/4
E
(∥∥∥
∂qt∗j−1

+k(θ)

∂θi
−
∂qt∗j−1

+k,j(θ)

∂θi

∥∥∥
r/4

Θ

)
<∞. (21)

For any s ≥ t∗j−1 denote k = s− t∗j−1. For any θ ∈ Θ, we have:

∂qs(θ)

∂θi
= −2

(Xs − f s
θ )

hsθ

∂f s
θ

∂θi
− (Xs − f s

θ )
2

(hsθ)
2

∂hsθ
∂θi

+
1

hsθ

∂hsθ
∂θi

∂qs,j(θ)

∂θi
= −2

(Xs,j − f s,j
θ )

hs,jθ

∂f s,j
θ

∂θi
− (Xs,j − f s,j

θ )2

(hs,jθ )2
∂hs,jθ

∂θi
+

1

hs,jθ

∂hs,jθ

∂θi
.

Thus, using |a1b1c1−a2b2c2| ≤ |a1−a2||b2||c2|+ |b1−b2||a1||c2|+ |c1−c2||a1||b1|,

∥∥∥∂qs(θ)
∂θi

− ∂qs,j(θ)

∂θi

∥∥∥
Θ
≤ 2
( 1

h2
‖hsθ − hs,jθ ‖Θ‖Xs,j − f s,j

θ ‖Θ
∥∥∥∂f

s,j
θ

∂θi

∥∥∥
Θ

+
1

h
(|Xs −Xs,j |+ ‖f s

θ − f s,j
θ ‖Θ)

∥∥∥∂f
s,j
θ

∂θi

∥∥∥
Θ
+

1

h

∥∥∥∂f
s
θ

∂θi
− ∂fs,j

θ

∂θi

∥∥∥
Θ
‖Xs − f s

θ‖Θ
)

+
2

h3
‖hsθ − hs,jθ ‖Θ‖Xs,j − f s,j

θ ‖2Θ
∥∥∥∂h

s,j
θ

∂θi

∥∥∥
Θ

+
1

h
(|Xs −Xs,j |+ ‖f s

θ − f s,j
θ ‖Θ)(|Xs +Xs,j |+ ‖f s

θ + f s,j
θ ‖Θ)

∥∥∥∂f
s,j
θ

∂θi

∥∥∥
Θ

+
1

h2

∥∥∥∂h
s
θ

∂θi
− ∂hs,jθ

∂θi

∥∥∥
Θ
‖Xs − f s

θ‖2Θ +
1

h2
‖hsθ − hs,jθ ‖Θ

∥∥∥∂h
s,j
θ

∂θi

∥∥∥
Θ

+
1

h

∥∥∥∂h
s
θ

∂θi
− ∂hs,jθ

∂θi

∥∥∥
Θ
.
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So for all s ≥ t∗j−1 it holds:

∥∥∂qs(θ)
∂θi

− ∂qs,j(θ)

∂θi

∥∥
Θ
≤ C

(
1 + |Xs|2 + |Xs,j|2 + ‖f s

θ‖2Θ + ‖f s,j
θ ‖2Θ +

∥∥∂f
s
θ

∂θi

∥∥2
Θ

+
∥∥∂f

s,j
θ

∂θi

∥∥2
Θ
+
∥∥∂h

s
θ

∂θi

∥∥2
Θ
+
∥∥∂h

s,j
θ

∂θi

∥∥2
Θ

)

×
(
|Xs −Xs,j |+ ‖f s

θ − f s,j
θ ‖Θ + ‖hsθ − hs,jθ ‖Θ

+
∥∥∂f

s
θ

∂θi
− ∂f s,j

θ

∂θi

∥∥
Θ
+
∥∥∥∂h

s
θ

∂θi
− ∂hs,jθ

∂θi

∥∥∥
Θ

)
.

Since the processes admits finite moments of order r, by Cauchy-Schwartz In-
equality:

(
E
∥∥∂qs(θ)

∂θi
− ∂qs,j(θ)

∂θi

∥∥r/4
Θ

)2
≤C
(
E|Xs −Xs,j|r/2 + E(‖f s

θ − f s,j
θ ‖r/2Θ )

+ E(‖hsθ − hs,jθ ‖r/2Θ ) + E
∥∥∂f

s
θ

∂θi
− ∂f s,j

θ

∂θi

∥∥r/2
Θ

+ E
∥∥∂h

s
θ

∂θi
− ∂hs,jθ

∂θi

∥∥r/2
Θ

)
.

As (A0(Mθ,Θ)) and (A1(Mθ,Θ)) hold necessarily in this case, with the argu-
ments of the proof of 1-), for all s ≥ t∗j−1,

E
∥∥∂qs(θ)

∂θi
− ∂qs,j(θ)

∂θi

∥∥r/4
Θ

≤ C
[(

inf
1≤p≤k/2

{
β(0)(θ∗j )

k/(2p)

+
∑

i≥p

β
(0)
i (θ∗j )

})r/4
+
( ∑

i≥k/2

α
(0)
i (fθ,Θ)

)r/4
+
( ∑

i≥k/2

α
(0)
i (Mθ,Θ)

)r/4

+
( ∑

i≥k/2

α
(1)
i (fθ,Θ)

)r/4
+
( ∑

i≥k/2

α
(1)
i (Mθ,Θ)

)r/4]

Choosing p = uk = kc∗/ log(k), we show (as in proof of 1-) ) that:

∑

k≥1

(vk
k

)r/4
E
(∥∥∥
∂qt∗j−1

+k(θ)

∂θi
−
∂qt∗j−1

+k,j(θ)

∂θi

∥∥∥
r/4

Θ

)
<∞.

Therefore (21) is proved and Lemma 6.3 2-) also.

6.5. Consistency when the breaks are known

When the breaks are known, we can choose vn = 1 for all n; in (4), the penalty
term does not matter at all.

Proposition 6.1. For all j = 1, . . . ,K∗, under the assumptions of Lemma 6.3
1-) with vn = 1 for all n, if the assumption Id(Θ) holds then

θ̂n(T
∗
j )

a.s.−→
n→∞

θ∗j .
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Proof. Let us first give the following useful corollary of Lemma 6.3

Corollary 6.1. i-) under the assumptions of Lemma 6.3 1-) we have:

∥∥∥ 1

n∗
j

L̂n

(
T ∗
j , θ
)
− Lj(θ)

∥∥∥
Θ

a.s.−→
n→∞

0 with Lj(θ) = −1

2
E (q0,j(θ)) .

ii-) Under assumptions of Lemma 6.3 2-) we have:

∥∥∥ 1

n∗
j

∂iL̂n(T
∗
j , θ)

∂θi
− ∂iLj(θ)

∂θi

∥∥∥
Θ

a.s.−→
n→∞

0 with
∂iLj(θ)

∂θi
= −1

2
E

(
∂iq0,j(θ)

∂θi

)
.

We conclude the proof of Proposition 6.1 using Lj(θ) = − 1
2E (q0,j(θ)) has

a unique maximum in θ∗j (see [13]). From the almost sure convergence of the
quasi-likelihood in i-) of Corollary 6.1, it comes:

θ̂n(T
∗
j ) = Argmax

θ∈Θ

(
1

n∗
j

L̂n

(
T ∗
j , θ
)
)

a.s.−→
n→∞

θ∗j .

Proof of Corollary 6.1. Note that the proof of Lemma 6.3 can be repeated by
replacing Ln by the quasi-likelihood L̂n. Thus, we obtain for i = 0, 1, 2,

vn∗

j

n∗
j

∥∥∥∥∥
∂iL̂n

(
T ∗
j , θ
)

∂θi
−
∂iLn,j

(
T ∗
j , θ
)

∂θi

∥∥∥∥∥
Θ

−→
n→∞

0. (22)

i-) Let j ∈ 1, . . . ,K∗. From [2], we have:

∥∥∥ 1

n∗
j

Ln,j

(
T ∗
j , θ
)
− Lj(θ)

∥∥∥
Θ

a.s.−→
n→∞

0.

Using (22), the convergence to the limit likelihood follows.

ii-) From Lemma 4 and Theorem 1 of [2],
∥∥ 1
n∗

j

∂iLn,j(T
∗

j ,θ)

∂θi − ∂iLj(θ)
∂θi

∥∥
Θ

a.s.−→
n→∞

0

for i = 1, 2 and we conclude from (22).

6.6. Proof of Theorem 3.1

This proof is divided into two parts. In part (1) K∗ is assumed to be known

and we show (τ̂n, θ̂n)
P−→

n→∞
(τ∗, θ∗). In part (2), K∗ is unknown and we show

K̂n
P−→

n→∞
K∗ which ends the proof of Theorem 3.1.

Part (1). Assume that K∗ is known and denote for any t ∈ FK∗ :

În(t) := Ĵn(K
∗, t, θ̂n(t)) = −2

K∗∑

k=1

K∗∑

j=1

L̂n

(
Tk ∩ T ∗

j , θ̂n(Tk)
)
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It comes that t̂n = Argmint∈FK∗
(În(t)). We show that τ̂n

P−→
n→∞

τ∗ as it implies

θ̂n(T̂n,j) − θ̂n(T
∗
j )

P−→
n→∞

0 and from Proposition 6.1 θ̂n(T̂n,j)
P−→

n→∞
θ∗j for all

j = 1, . . . ,K∗. Without loss of generality, assume that K∗ = 2 and let (un)
be a sequence of positive integers satisfying un → ∞, un/n → 0 and for some
0 < η < 1

Vη,un
= { t ∈ Z/ |t− t∗| > ηn ; un ≤ t ≤ n− un },

Wη,un
= { t ∈ Z/ |t− t∗| > ηn ; 0 < t < un or n− un < t ≤ n }.

Asymptotically, we have P(‖τ̂n − τ∗‖m > η) ≃ P(|t̂n − t∗| > ηn). But

P(|t̂n − t∗| > ηn) ≤ P
(
t̂n ∈ Vη,un

)
+ P

(
t̂n ∈ Wη,un

)

≤ P
(

min
t∈Vη,un

(În(t)− În(t
∗)) ≤ 0

)

+P
(

min
t∈Wη,un

(În(t)− În(t
∗)) ≤ 0

)

we show with similar arguments that these two probabilities tend to 0. We only
detail below the proof of P(mint∈Vη,un

(În(t)− În(t
∗)) ≤ 0) → 0 for shortness.

Let t ∈ Vη,un
satisfying t∗ ≤ t (with no loss of generality), then T1 ∩ T ∗

1 =
T ∗
1 , T2 ∩ T ∗

1 = ∅ and T2 ∩ T ∗
2 = T2. We decompose:

În(t)− În(t
∗) = 2

(
L̂n(T

∗
1 , θ̂n(T

∗
1 ))− L̂n(T

∗
1 , θ̂n(T1)) + L̂n(T1 ∩ T ∗

2 , θ̂n(T
∗
2 ))

− L̂n(T1 ∩ T ∗
2 , θ̂n(T1)) + L̂n(T2, θ̂n(T

∗
2 ))− L̂n(T2, θ̂n(T2))

)
. (23)

As #T ∗
1 = t∗, #(T1∩T ∗

2 ) = t−t∗, #T2 = n−t ≥ un, each term tends to ∞ with
n. Using Proposition 6.1 and Corollary 6.1, we get the following convergence,
uniformly on Vη,un

,

θ̂n(T
∗
1 )

a.s.−→
n→∞

θ∗1 , θ̂n(T
∗
2 )

a.s.−→
n→∞

θ∗2 , θ̂n(T2)
a.s.−→

n→∞
θ∗2

and
∥∥∥
L̂n

(
T ∗
1 , θ
)

n
− τ∗1L1(θ)

∥∥∥
Θ

a.s.−→
n→∞

0,
∥∥∥
L̂n

(
T1 ∩ T ∗

2 , θ
)

t− t∗
− L2(θ)

∥∥∥
Θ

a.s.−→
n→∞

0,

and
∥∥∥
L̂n

(
T2, θ

)

n− t
− L2(θ)

∥∥∥
Θ

a.s.−→
n→∞

0.

For any ε > 0, there exists an integer N0 such that for any n > N0,

∥∥∥
L̂n

(
T ∗
1 , θ
)

n
− τ∗1L1(θ)

∥∥∥
Θ
<
ε

6
,
∥∥∥
L̂n

(
T1 ∩ T ∗

2 , θ
)

t− t∗
− L2(θ)

∥∥∥
Θ
<
ε

6
,

∣∣∣
L̂n

(
T ∗
1 , θ̂n(T

∗
1 )
)

n
− τ∗1L1(θ

∗
1)
∣∣∣ < ε

6
,
∣∣∣
L̂n

(
T1 ∩ T ∗

2 , θ̂n(T
∗
2 )
)

t− t∗
− L2(θ

∗
2)
∣∣∣ < ε

6

and
n− t

n

∣∣∣ L̂n(T2, θ̂n(T
∗
2 ))− L̂n(T2, θ̂n(T2))

n− t

∣∣∣ < ε

6
.
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Thus, for n > N0,

τ∗1L1(θ
∗
1)− τ∗1L1(θ̂n(T1)) = τ∗1L1(θ

∗
1)−

L̂n

(
T ∗
1 , θ̂n(T

∗
1 )
)

n
+
L̂n

(
T ∗
1 , θ̂n(T

∗
1 )
)

n

− L̂n

(
T ∗
1 , θ̂n(T1)

)

n
+
L̂n

(
T ∗
1 , θ̂n(T1)

)

n
− τ∗1L1(θ̂n(T1))

≤ ε

6
+
L̂n

(
T ∗
1 , θ̂n(T

∗
1 )
)

n
− L̂n

(
T ∗
1 , θ̂n(T1)

)

n
+
ε

6
.

Then,

L̂n

(
T ∗
1 , θ̂n(T

∗
1 )
)

n
− L̂n

(
T ∗
1 , θ̂n(T1)

)

n
> τ∗1

(
L1(θ

∗
1)− L1(θ̂n(T1))

)
− ε

3
. (24)

Similarly, for n > N0:

L̂n

(
T1 ∩ T ∗

2 , θ̂n(T
∗
2 )
)

n
− L̂n

(
T1 ∩ T ∗

2 , θ̂n(T1)
)

n
> η

(
L2(θ

∗
2)− L2(θ̂n(T1))

)
− ε

3
.

(25)

Finally, for n > N0,

L̂n(T2, θ̂n(T
∗
2 ))− L̂n(T2, θ̂n(T2))

n
> −ε

6
, (26)

and from (23) and inequalities (24), (25) and (26) we obtain uniformly in t and
for n > N0:

În(t)− În(t
∗)

n
> τ∗1

(
L1(θ

∗
1)− L1(θ̂n(T1))

)
+ η
(
L2(θ

∗
2)− L2(θ̂n(T1))

)
− 5

6
ε.

Since θ∗1 6= θ∗2 , let V1, V2 be two open neighborhoods and disjoint of θ∗1 and θ∗2
respectively,

δi := Inf
θ∈Vc

i

(
Li(θ

∗
i )− Li(θ)

)
> 0 for i = 1, 2,

since the function θ 7→ Lj(θ) has a strict maximum in θ∗j (see [13]). With
ε = min(τ∗1 δ1, ηδ2), we get

• if θ̂n(T1) ∈ V1 i.e. θ̂n(T1) ∈ Vc
2 , then

În(t)−În(t
∗)

n > ηδ2 − 5
6ε ≥ ε

6 ;

• If θ̂n(T1) /∈ V1 i.e. θ̂n(T1) ∈ Vc
1 , then

În(t)−În(t
∗)

n > τ∗1 δ1 − 5
6ε ≥ ε

6 .

In any case we prove that În(t) − În(t
∗) > ε

6n for n > N0 and all t ∈ Vη,un
.

It implies that P(mint∈Vη,un
(În(t) − În(t

∗)) ≤ 0) −→
n→∞

0 and we show similarly

P(mint∈Wη,un
(În(t)− În(t∗)) ≤ 0)−→

n→∞
0. It follows directly that P(‖τ̂n−τ∗‖m >

η) −→
n→∞

0 for all η > 0.
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Part (2). Now K∗ is unknown. For K ≥ 2, x = (x1, . . . , xK−1) ∈ RK−1,
y = (y1, . . . , yK∗−1) ∈ RK∗−1, denote

‖x− y‖∞ = max
1≤j≤K∗−1

min
1≤k≤K−1

|xk − yj |.

The following Lemma follows directly from Part (1) and the definition of ‖·‖∞:

Lemma 6.4. Let K ≥ 1, (̂tn, θ̂n) obtained by the minimization of Ĵn(t, θ) on

FK×ΘK and τ̂n = t̂n/n. Under assumptions of Theorem 3.1, ‖τ̂n−τ∗‖∞
P−→

n→+∞

0 if K ≥ K∗.

Now we use the following Lemma 6.5 which is proved below (see also [18]):

Lemma 6.5. Under the assumptions of Lemma 6.3 i-), for any K ≥ 2, there
exists CK > 0 such that:

∀(t, θ) ∈ FK ×ΘK , en(t, θ) = 2
K∗∑

j=1

K∑

k=1

nkj

n
(Lj(θ

∗
j )−Lj(θk)) ≥

CK

n
‖t− t∗‖∞.

Continue with the proof of Part (2) shared in two parts, i.e. we show that

P(K̂n = K) −→
n→+∞

0 for K < K∗ and K∗ < K ≤ Kmax separately. In any case,

we have

P(K̂n = K) ≤ P
(

inf
(t,θ)∈FK×ΘK

(J̃n(K, t, θ)) ≤ J̃n(K
∗, t∗, θ∗)

)

≤ P
(

inf
(t,θ)∈FK×ΘK

(Ĵn(K, t, θ)− Ĵn(K
∗, t∗, θ∗)) ≤ n

vn
(K∗ −K).

)
.

(27)

i-) For K < K∗, we decompose Ĵn(K, t, θ) − Ĵn(K
∗, t∗, θ∗) = n(dn(t, θ) +

en(t, θ)) where en is defined in Lemma 6.5 and

dn(t, θ) = 2




K∗∑

j=1

n∗
j

n

( L̂n(T
∗
j , θ

∗
j )

n∗
j

− Lj(θ
∗
j )
)

+
K∑

k=1

K∗∑

j=1

nkj

n

(
Lj(θk)−

L̂n(T
∗
j ∩ Tk, θk)
nkj

)

 .

It comes from the relation (27) that:

P(K̂n = K) ≤ P
(

inf
(t,θ)∈FK×ΘK

(dn(t, θ) + en(t, θ)) ≤
1

vn
(K∗ −K)

)
. (28)

Corollary 6.1 ensures that dn(t, θ)) → 0 a.s. and uniformly on FK × ΘK .
By Lemma 6.5, there exists CK > 0 such that en(t, θ) ≥ CK‖t− t∗‖∞/n
for all (t, θ) ∈ FK × ΘK . But, since K < K∗, for any t ∈ FK , we have
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‖t − t∗‖∞/n = ‖τ − τ∗‖∞ ≥ min1≤j≤K∗(τ∗j − τ∗j−1)/2 that is positive

by assumption. Then en(t, θ) > 0 for all (t, θ) ∈ FK × ΘK and since

1/vn −→
n→∞

0, we deduce from (28) that P(K̂n = K) −→
n→∞

0.

ii-) Now let K∗ < K ≤ Kmax. From (28) and the Markov Inequality we have:

P(K̂n = K) ≤ P
(
Ĵn(K, t̂n, θ̂n)− Ĵn(K

∗, t∗, θ∗) +
n

vn
(K −K∗) ≤ 0

)

≤ P
(
|Ĵn(K, t̂n, θ̂n)− Ĵn(K

∗, t∗, θ∗)| ≥ n

vn

)

≤ vn
n
E|Ĵn(K, t̂n, θ̂n)− Ĵn(K

∗, t∗, θ∗)|. (29)

Denote t̂n = (t̂n,1, . . . , t̂n,K). By Lemma 6.4, there exists some subset
{kj , 1 ≤ j ≤ K∗−1} of {1, . . . ,K−1} such that for any j = 1, . . . ,K∗−1,
t̂n,kj

/n→ τ∗j . Denoting k0 = 0 and kK∗ = K, we have:

Ĵn(K, t̂n, θ̂n)− Ĵn(K
∗, t∗, θ∗) = 2

( K∗∑

j=1

L̂n(T
∗
j , θ

∗
j )−

K∑

k=1

L̂n(T̂n,k, θ̂n,k)
)

= 2

K∗∑

j=1

[
L̂n(T

∗
j , θ

∗
j )−

kj∑

k=kj−1+1

L̂n(T̂n,k, θ̂n,k)
]

and from (29) we deduce that:

P(K̂n = K) ≤ 2vn
n

K∗∑

j=1

E

∣∣∣L̂n(T
∗
j , θ

∗
j )−

kj∑

k=kj−1+1

L̂n(T̂n,k, θ̂n,k)
∣∣∣

≤ C

K∗∑

j=1

vn∗

j

n∗
j

E

∣∣∣L̂n(T
∗
j , θ

∗
j )−

kj∑

k=kj−1+1

L̂n(T̂n,k, θ̂n,k)
∣∣∣.

Since for any j = 1, . . . ,K∗ − 1, it comes easily from the proof of Lemma
6.3 that

vn∗

j

n∗
j

E

∣∣∣L̂n(T
∗
j , θ

∗
j )−

kj∑

k=kj−1+1

L̂n(T̂n,k, θ̂n,k)
∣∣∣ −→
n→∞

0,

and therefore P(K̂n = K) −→
n→∞

0.

Proof of Lemma 6.5. LetK ≥ 1 and consider the real function υ define on Θ×Θ
by:

υ(θ, θ′) =

{
min

1≤j≤K∗

[max(Lj(θ
∗
j )− Lj(θ), Lj(θ

∗
j )− Lj(θ

′))] if θ 6= θ′

0 if θ = θ′.
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The function υ has positive values and υ(θ, θ′) = 0 if and only if θ = θ′ since
the function θ 7→ Lj(θ) has a strict maximum in θ∗j (see [13]). By Lemma 3.3 of
[17], there exists Cθ∗ > 0 such that for any (t, θ) ∈ FK ×ΘK

K∗∑

j=1

K∑

k=1

nkj

n
υ(θk, θ

∗
j ) ≥

Cθ∗

n
‖t− t∗‖∞.

Moreover, for any j = 1, . . . ,K∗ and θ ∈ Θ, Lj(θ
∗
j ) − Lj(θ) ≥ υ(θ, θ∗j ) and

denoting CK = 2Cθ∗ the result follows immediately.

6.7. Proof of Theorem 3.2

Assume with no loss of generality that K∗ = 2. Denote (un)n a sequence sat-
isfying un −→

n→∞
∞, un/n−→

n→∞
0 and P(|̂tn − t∗| > un) −→

n→∞
0 (for example

un = n
√
max(E|τ̂n − τ∗|, n−1)). For δ > 0, as we have

P(|̂tn − t∗| > δ) ≤ P(δ < |̂tn − t∗| ≤ un) + P(|̂tn − t∗|m > un)

it suffices to show that lim
δ→∞

lim
n→∞

P(δ < |t̂n − t∗| ≤ un) = 0.

Denote Vδ,un
= { t ∈ Z/ δ < |t− t∗| ≤ un }. Then,

P(δ < |t̂n − t∗| ≤ un) ≤ P
(

min
t∈Vδ,un

(În(t)− În(t
∗)) ≤ 0

)
.

Let t ∈ Vδ,un
(for example t ≥ t∗). With the notation of the proof of Theorem

3.1, we have L̂n(T
∗
1 , θ̂n(T

∗
1 )) ≥ L̂n(T

∗
1 , θ̂n(T1)) and from (23) we obtain:

În(t)− În(t
∗)

t− t∗
≥ 2

t− t∗

(
L̂n(T1 ∩ T ∗

2 , θ̂n(T
∗
2 ))− L̂n(T1 ∩ T ∗

2 , θ̂n(T1))

+ L̂n(T2, θ̂n(T
∗
2 ))− L̂n(T2, θ̂n(T2))

)
.

We conclude in two steps:

i-) We show that 1
t−t∗

(
L̂n(T1 ∩ T ∗

2 , θ̂n(T
∗
2 )) − L̂n(T1 ∩ T ∗

2 , θ̂n(T1))
)
> 0 for

n large enough. Then L̂n(T1,θ)
n = t∗

n
L̂n(T

∗

1 ,θ)
t∗ + t−t∗

n
L̂n(T1∩T∗

2 ,θ)
t−t∗ and since

t−t∗

n ≤ un

n −→
n→∞

0 and

θ̂n(T1) = Argmax
θ∈Θ

(
1

n
L̂n

(
T1, θ

)) a.s.−→
n,δ→∞

θ∗1 .

It comes that 1
t−t∗

(
L̂n(T1 ∩ T ∗

2 , θ̂n(T
∗
2 ))− L̂n(T1 ∩ T ∗

2 , θ̂n(T1))
)
converges

a.s. and uniformly on Vδ,un
to L2(θ

∗
2)− L2(θ

∗
1) > 0.
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ii-) We show that 1
t−t∗

(
L̂n(T2, θ̂n(T

∗
2 )) − L̂n(T2, θ̂n(T2))

) a.s.−→
n,δ→∞

0. For large

value of n, we remark that θ̂n(T2) ∈
◦

Θ so that ∂L̂n(T2, θ̂n(T2))/∂θ =

0. The mean value theorem on ∂L̂n/∂θi for any i = 1, . . . , d gives the

existence of θ̃n,i ∈ [θ̂n(T2), θ̂n(T
∗
2 )] such that:

0 =
∂L̂n(T2, θ̂n(T

∗
2 ))

∂θi
+
∂2L̂n(T2, θ̃n,i)

∂θ∂θi
(θ̂n(T2))− θ̂n(T

∗
2 )) (30)

where for a, b ∈ Rd , [a, b] = {(1−λ)a+λb; λ ∈ [0, 1]}. Using the equalities

L̂n(T
∗
2 , θ) = L̂n(T1 ∩ T ∗

2 , θ) + L̂n(T2, θ) and ∂L̂n(T
∗
2 , θ̂n(T

∗
2 ))/∂θ = 0, it

comes from (30):

∂L̂n(T1 ∩ T ∗
2 , θ̂n(T

∗
2 ))

∂θi
=
∂2L̂n(T2, θ̃n,i)

∂θ∂θi
(θ̂n(T2))−θ̂n(T ∗

2 )), ∀i = 1, . . . , d,

and it follows:

1

t− t∗
∂L̂n(T1 ∩ T ∗

2 , θ̂n(T
∗
2 ))

∂θ
=
n− t

t− t∗
An · (θ̂n(T2)− θ̂n(T

∗
2 )) (31)

with An :=
(

1
n−t

∂2L̂n(T2,θ̃n,i)
∂θ∂θi

)
1≤i≤d

. Corollary 6.1 ii-) gives that:

1

t− t∗
∂L̂n(T1 ∩ T ∗

2 , θ̂n(T
∗
2 ))

∂θ

a.s.−→
n,δ→∞

∂L2(θ
∗
2)

∂θ
= 0

and An
a.s.−→

n,δ→∞
− 1

2E
(∂2q0,2(θ

∗

2 )
∂θ2

)
. Under assumption (Var), E

(∂2q0,2(θ
∗

2)
∂θ2

)

is a nonsingular matrix (see [2]). Then, we deduce from (31) that

n− t

t− t∗
(θ̂n(T2)− θ̂n(T

∗
2 ))

a.s.−→
n,δ→∞

0. (32)

We conclude by the Taylor expansion on L̂n that gives

1

t− t∗
|L̂n(T2, θ̂n(T2))− L̂n(T2, θ̂n(T

∗
2 ))|

≤ 1

2(t− t∗)
‖θ̂n(T2))− θ̂n(T

∗
2 )‖2sup

θ∈Θ

∥∥∥∂
2L̂n(T2, θ)

∂θ2

∥∥∥→ 0 a.s.

6.8. Proof of Theorem 3.3

First,
(
θ̂n(T̂j)−θ∗j

)
=
(
θ̂n(T̂j)− θ̂n(T ∗

j )
)
+
(
θ̂n(T

∗
j )−θ∗j

)
for any j ∈ {1, . . . ,K∗}.

By Theorem 3.2 it comes t̂j − t∗j = oP (log(n)). Using relation (32), we obtain:

θ̂n(T̂j) − θ̂n(T
∗
j ) = oP (

log(n)
n ). Hence,

√
n∗
j

(
θ̂n(T̂j) − θ̂n(T

∗
j )
) P−→

n→∞
0 and it
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suffices to show that
√
n∗
j

(
θ̂n(T

∗
j ) − θ∗j

) D−→
n→∞

Nd

(
0, F (θ∗j )

−1G(θ∗j )F (θ
∗
j )

−1
)
to

conclude.

For large value of n, θ̂n(T
∗
j ) ∈

◦

Θ. By the mean value theorem, there exists

(θ̃n,k)1≤k≤d ∈ [θ̂n(T
∗
j ), θ

∗
j ] such that

∂Ln(T
∗
j , θ̂n(T

∗
j ))

∂θk
=
∂Ln(T

∗
j , θ

∗
j )

∂θk
+
∂2Ln(T

∗
j , θ̃n,k)

∂θ∂θk
(θ̂n(T

∗
j )− θ∗j ). (33)

Let Fn = −2
(

1
n∗

j

∂2Ln(T
∗

j ,θ̃n,k)

∂θ∂θk

)
1≤k≤d

. By Lemma 6.3 and Corollary 6.1, Fn
a.s.−→

n→∞

F (θ∗j ) (where F (θ
∗
j ) is defined by (10)). But, under (Var), F (θ∗j ) is a non singular

matrix (see [2]). Thus, for n large enough, Fn is invertible and (33) gives

√
n∗
j

(
θ̂n(T

∗
j )− θ∗j

)
= −2F−1

n

[ 1√
n
∗

j

(∂Ln(T
∗
j , θ̂n(T

∗
j ))

∂θ
−
∂Ln(T

∗
j , θ

∗
j )

∂θ

)]
.

As in proof of Lemma 3 of [2], it is now easy to show that:

1√
n∗
j

∂Ln(T
∗
j , θ

∗
j )

∂θ

D−→
n→∞

Nd

(
0, G(θ∗j )

)

where G(θ∗j ) is given by (10). Thus, since ∂L̂n(T
∗
j , θ̂n(T

∗
j ))/∂θ = 0, we have:

1√
n∗
j

∂Ln(T
∗
j , θ̂n(T

∗
j ))

∂θ
=

1√
n∗
j

(∂Ln(T
∗
j , θ̂n(T

∗
j ))

∂θ
−
∂L̂n(T

∗
j , θ̂n(T

∗
j ))

∂θ

)
a.s.−→

n→∞
0.

We conclude using Lemma 6.3 and the fact that 1/
√
n = O(vn/n).
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