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Abstract

Multiple bus networks (MBN) connect processors via buses. This dissertation ad

dresses issues related to running binary-tree algorithms on MBNs. These algorithms 

are of a fundamental nature, and reduce inputs at leaves of a  binary tree to a result 

a t the root. We study the relationships between running time, degree (maximum 

number of connections per processor) and loading (maximum number of connections 

per bus). We also investigate fault-tolerance, meshes enhanced with MBNs, and VLSI 

layouts for binary-tree MBNs.

We prove th a t the loading of optimal-time, degree-2, binary-tree MBNs is non

constant. In establishing this result, we derive three loading lower bounds f2(Vn), 

fi(n^) and ^ (n ^ )>  each tighter than  the previous one. We also show tha t if the 

degree is increased to 3, then the loading can be a constant. A constant loading 

degree-2 MBN exists, if the algorithm is allowed to run slower than the optimal.

We introduce a new enhanced mesh architecture (employing binary-tree MBNs) 

tha t captures features of all existing enhanced meshes. This architecture is more flexi

ble, allowing all existing enhanced mesh results to be ported to a more implementable 

platform.

We present two methods for im parting tolerance to  bus and processor faults in 

binary-tree MBNs. One of the methods is general, and can be used with any MBN and 

for both processor and bus faults. A key feature of this method is tha t it perm its the 

network designer to designate a set of buses as “unim portant” and consider all faulty

x
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buses as unimportant. This minimizes the impact of faulty elements on the MBN. 

The second method is specific to bus faults in binary-tree MBNs, whose features it 

exploits to produce faster solutions.

We also derive a series of results tha t distill the lower bound on the perimeter 

layout area of optimal-time, binary-tree MBNs to a single conjecture. Based on this 

we believe that optimal-time, binary-tree MBNs require no less area than a balanced 

tree topology even though such MBNs can reuse buses over various steps of the 

algorithm.

xi
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Chapter 1

Introduction

In a parallel processing system, the interprocessor communication network plays a 

very important role. In this dissertation, we deal with one class of such networks 

called multiple bus networks (MBNs). An MBN consists of a set of processors and 

a set of buses, with each processor connected to a t least one bus. Any processor 

connected to a bus can access the bus. However, the bus can convey only one piece 

of information at a time.

MBNs have several advantages over traditional point-to-point networks (such as 

the ring, mesh, torus and hypercube). In a point-to-point network, each communi

cation link is dedicated to a pair of processors. In an MBN, on the other hand, the 

communication medium (bus) is shared among several processors and could, there

fore, be used more efficiently. This sharing of the communication medium also allows 

for a graceful degradation of performance in the presence of faults. Because the 

communication medium is shared, MBNs lend themselves to easy broadcasting. An 

MBN can be used to emulate several point-to-point topologies or set of interconnec

tion functions [26, 27, 33, 47, 48] as each bus could serve as a communication link 

between different processor pairs at different times. An MBN is representative of 

any hypergraph based system [6], and a bus can be viewed as an abstraction of any

1
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2

shared resource, for example a  memory module in shared memory systems, or a  trans

mission frequency in systems with frequency division multiplexing (such as wireless 

[18, 22, 35, 52, 61] and optical [5, 20, 65]). Therefore, this work may find applicability 

in other settings as well.

Traditionally, MBNs have been used in an asynchronous environment with rela

tively few processors. Most of this work has been on analyzing data  throughput of 

multiprocessor systems under various traffic models, arbitration schemes, and rela

tionship between numbers of processors/buses [12, 14, 21, 28, 32, 36, 55, 56, 66, 94]. 

Work also exists on variations on the basic MBN model [9, 16, 37, 39, 43, 53, 90] and 

on the pattern  of connections between processors and buses [12, 31, 39, 42, 54, 81]. 

Traditionally, MBNs have been used in asynchronous systems with a  small number of 

processors partly  because of the fact that physical loading due to capacitive coupling 

limits the number of connections to a bus. In an optical bus, loading is caused by a 

receiver on the bus drawing some of the available power, thus limiting the number of 

receivers that can be connected to the bus. The asynchronous bus model also requires 

a complex arbitration scheme to resolve bus contention.

In this dissertation we primarily consider a synchronous bus model, though most 

results apply to asynchronous MBNs as well. Technological advances have made it 

feasible to connect more loads on a bus. This, in turn, makes fine-grained synchronous 

MBNs (with a large number of processors) possible. The synchronous environment 

also removes the need for arbitration. Feldman et al. [29] recently proposed an optical 

slab waveguide bus capable of connecting a large number of processors a t very high 

da ta  rates. Qiao and Melhem [70] proposed a communication scheme called time- 

division source-oriented multiplexing (TDSM) for synchronous optical buses th a t can 

be used for large systems. Their method takes advantage of unidirectional propaga
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3

tion and predictable delay of optical fibers to achieve reliable communication among 

a large number of processors. Lin et al. [51] have proposed “precharged” buses to 

facilitate concurrent broadcasts.

Much work on synchronous MBNs has centered around topologies (primarily the 

two-dimensional mesh) enhanced with buses (for example [1, 4, 10, 17, 19, 64, 69, 71, 

75]). There has also been some work on running algorithm classes and implementing 

interconnection functions [2, 23, 24, 25, 26, 40, 46, 47, 50, 63, 83, 85]. Another 

class of MBNs th a t uses synchronous buses is reconfigurable models, that allow the 

connection pattern  between processors to change dynamically (Nakano [59] provides 

an extensive bibliography). Under current technological constraints, however, fixed 

connection MBNs, such as those considered in this work, are easier to implement 

than reconfigurable networks. Commercially available field programmable gate arrays 

(FPGAs) have also been proposed as reconfigurable com putational platforms [34, 41, 

58, 74, 88, 91, 92]. The programmable interconnections between “configurable logic 

blocks” in FPGAs show some features of MBNs in th a t they are often implemented 

as wires with taps (buses) [89, 93].

In this dissertation we address various issues related to running a well-known 

class of algorithms called binary-tree algorithms on MBNs. (Other researchers have 

also studied algorithm classes on MBNs and other networks [2, 40, 47, 62, 63, 73, 

82].) A binary-tree algorithm reduces N  inputs to a single result. The computation 

performed by such an algorithm can be represented as a balanced binary tree with 

the inputs at the leaves and the result a t the root. Several fundamental algorithms 

involving semigroup operations and prefix computations such as maximum/minimum, 

parity, polynomial evaluation and barrier synchronization can be implemented as 

binary-tree algorithms. Binary-tree algorithms require a  rich communication pattern,
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so a network suitable for running binary-tree algorithm is likely to be suitable for 

many other applications as well. Because of the fundamental nature of binary-tree 

algorithms, a dedicated hardware module to  run these algorithms could aid solution to 

a large number of problems. Any insights gained by studying binary-tree algorithms 

will be useful in designing such modules. In the past, binary-tree algorithms and 

MBNs for them have been in setting of enhanced meshes [1, 4, 10, 19, 64, 69, 75, 76]. 

Other work on binary-tree MBNs addresses issues such as design, fault-tolerance and 

VLSI layouts [2, 25, 26, 27, 57, 63, 83, 84, 85].

1.1 MBNs and Binary-Tree Algorithms

In this section we present a broad picture of the issues related to MBNs running 

binary-tree algorithms (or “binary tree MBNs”). An N  x  M  Multiple Bus Network 

MBN has N  processors and M  buses. Each processor is connected to a subset of 

the set of buses. Two processors may communicate in one unit of time, provided 

they are connected to a common bus. However, the bus may carry only one piece of 

information on it a t any given point in time. Two important parameters of an MBN 

are its degree (maximum number of buses connected to a processor) and loading 

(maximum number of processors connected to a bus). These parameters determine 

the cost and implementability of the MBN. A large degree requires a processor to 

have a large number of input/output ports, while a large loading can reduce the data  

rate of the system.

One direction of research on MBNs considers a given pattern of interconnections 

between processors and buses and investigates the capabilities of the resulting MBN 

architecture. Often this takes the form of emulating other architectures (for example 

[26, 27, 40]) or developing algorithms on models ([52, 60, 61]); the enhanced mesh
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results cited earlier also fall in this c a te g o ry  The second direction considers the 

problem of designing an MBN suited to a particular interconnection requirement. 

This dissertation and others [48, 57, 63] represent work in this direction.

As mentioned earlier, degree and loading are im portant considerations for MBNs. 

Clearly, the MBN should also be evaluated on how well it provides the interconnec

tion requirements in question; this would consider issues such as number of hops and 

congestion on buses. Constructing an “optimal” MBN to run a given set of intercon

nection functions is a non-trivial task. Kulasinghe and El-Amawy [46] showed that 

the general problem of designing an optimal interconnecting network for a given set 

of interconnection functions is NP-Hard. The criteria they used for measuring the 

cost is the of number of buses and interfaces (connections between processors and 

buses). They showed [47] tha t this problem can be solved in polynomial time for 

certain “symmetric” interconnections, and presented a methodology for such imple

mentations. Though such symmetries exist in interconnection topologies, it is not 

the case for many algorithm classes. Moreover, their analysis does not address the 

interplay between speed, degree and loading of the MBN.

W ith a single bus, the solution is simple as the only possibility is to connect all 

processors to the bus; this approach is used in most enhanced meshes and traditional 

multiprocessor systems. This method has the disadvantage of high loading and bus 

contention, limiting the size of the network. At the other extreme, all the processors 

could be connected to all buses. The Broadcast Communication Model (BCM) [60, 61] 

adopts this approach. This increases the loading and degree, and consequently, the 

cost of the MBN.

Thus an intermediate solution (that connects each processor to a subset of buses) is 

im portant. Optimal MBNs for binary-tree algorithms are particularly challenging to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

design. On one hand, for an N  input algorithm the MBN needs sufficient bandwidth 

to sustain 0(iV) simultaneous communications; the lower (near leaf) levels of the 

tree involve a large number of simultaneous communications. On the other hand, 

because of its similarity to a binary tree the  MBN should be fairly sparse. Thus, a 

small num ber of connections needs to be distributed over a large number of buses, 

lowering the acceptable values for both degree and loading. Most previous results 

have completely ignored degree and loading, or have reduced one at the expense of the 

other. For example Vaidyanathan and Padm anabhan [85] have proposed an iV-input 

binary-tree algorithm that runs optimally in log N  steps. Though the degree of this 

MBN is 2, its loading is 0 (log  N ). On the other hand, Ragavendra [71] proposed 

a mesh with a hierarchy of broadcast buses in each row and column. For a given 

param eter k, this MBN has a  loading k, but the degree of O ( ^ y ) -  Thus if the 

degree is small, the loading is large and vice versa. In this dissertation we construct 

an MBN tha t runs binary-tree algorithms optimally and which has both constant 

degree and loading. We now describe results of this dissertation in more detail.

1.2 Scope of the Dissertation

Because of its fundamental nature, binary-tree algorithms have been studied in al

most all facets of computing. As mentioned earlier, most previous work on binary-tree 

MBNs has focused on enhanced mesh architectures. Very little work has been done 

on identifying fundamental properties of binary-tree MBNs and to establish relation

ships between running time, loading and the degree. In Chapter 3, we study these 

relationships, and establish lower-bounds on degree-2, binary-tree MBNs. We iden

tify two im portant mappings and establish th a t it is essential to have a mapping 

called indirect mapping to achieve low loading. We do this by establishing a series of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

lower bounds on loading, each one tighter than the previous bound. Specifically, for 

a 2n-input, optimal-time, binary-tree MBN we first prove the loading to be fi(x/w)- 

We then improve this bound to f2(na) by deriving some additional results. Finally 

the lower bound is further tightened to by refining the method used to count

connections on buses. (The lower bound restriction requires the MBN to have at 

least 2"-1 buses.) These lower bound results (and indeed most other results of this 

work) are general and apply to any binary-tree MBN satisfying the conditions of the 

problem, rather than  a given MBN instance. Although a degree of 2 necessitates non

constant loading, this is not the case for degree 3. We construct a binary-tree MBN 

called the Tree MBN that has degree 3 and loading 3, which is the best possible.

Also in Chapter 3 we investigate trade-offs between the loading and running time. 

We show that if the running time is allowed to increase by a factor of 2, then a 

degree-2, binary-tree MBN with constant loading exists. We establish tha t if the 

additional time (beyond the optimal) used by the MBN is t, and if the largest problem 

that can be solved on a degree-2, loading- L, optimal-time MBN has size 2t(-L), then 

We present an example of a degree-2, loading-4, (2n—3)-step binary-tree 

MBN that matches this bound for constant L.

Chapter 4 explores the idea of using binary-tree MBNs to enhance meshes. Here 

we show that an architecture using multiple buses has significant advantages over 

traditional enhanced meshes tha t employ single-bus networks to connect processor 

sets. We also study buses with segment switches (each of which can break a bus into 

two) and use it to reduce the loading. Other parameters of the proposed architecture 

can be selected for various trade-offs between the cost and performance. (Performance 

measures include running time, degree, loading, VLSI area and the aspect ratio; many 

exiting architectures require highly elongated rectangular layouts that are difficult to
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implement on a chip.) The architecture we propose improves on all previous results 

in at least one of the measures. It provides more choices to the network designer 

than any other architecture in the literature. Tables 4.1 and 4.2 (pages 73 and 82) 

summarize the results of this chapter.

In Chapter 5 we study methods for imparting fault tolerance to binary-tree MBNs. 

This complements the use of binary-tree MBNs as building blocks for general-purpose 

computing platforms (described in Chapter 4). Redundant connections can also be 

used to increase the yield for chips with binary-tree MBNs. In Chapter 5, we present 

two methods for constructing fault tolerant MBNs from any given binary-tree MBN. 

One of these methods (replication) is a general method th a t can be applied to pro

cessor and bus faults on any type of MBN. The other method (recursive scheduling) 

exploits features particular to binary-tree MBNs to produce better results, but han

dles only bus-faults. The general results of this chapter are too involved to state here; 

we state results for some particular cases instead. Replication constructs a binary- 

tree MBN that requires at most 5 extra steps, even if half the buses fail. Also, even 

if half the processors fail, the number of the extra steps required is at most 2.

In Chapter 6 we investigate the VLSI area required for optimal-time, binary-tree 

MBNs. The corresponding problem for the balanced tree topology is well studied [80]. 

The binary-tree algorithm is different from a balanced tree topology in that only one 

level of the tree is active (or used) in any step of a binary-tree algorithm. Therefore, 

binary-tree MBNs can reuse the same buses or wires at different levels. This is not 

possible in a balanced tree topology, where all edges could be active simultaneously. 

This raises the possibility that the VLSI area for a binary-tree MBN is less than that 

required for a balanced tree topology. We specifically consider the “perimeter layout” 

case where all the processors of the MBN are laid out on the periphery of the layout;
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allowing the processors to be placed in the interior can trivially use a solution for 

the balanced tree topology. Our work on this topic leads us to conjecture that the 

perimeter area required for optimal-time iV-input binary-tree MBNs is Q (N lo g N ). 

Simulations seem to indicate that this conjecture is true.

1.3 Contribution of this Work

This dissertation studies various facets of running binary-tree algorithms on MBNs, 

providing a be tter understanding of the abilities and lim itations of binary-tree MBNs. 

Most of our results are general in nature, applicable to any binary-tree MBN rather 

than particular cases. Many of these results extend to A:-ary tree algorithms (for 

k > 2) as well.

Chapter 3 establishes im portant relationships between key parameters, namely 

running time, loading and degree. We develop a novel accounting scheme to keep track 

of the connections on a bus. It is possible that this method of counting connections 

may be useful in other algorithms as well. We also identify two mappings (called direct 

and indirect) of binary-tree algorithms on MBNs that impact the loading and degree of 

binary-tree MBNs. We show tha t indirect mapping is essential to achieving constant 

loading. Considering tha t indirect mapping increases the amount of communication, 

this result is rather counter-intuitive. Equally surprising is the result of Section 3.7 

that shows th a t by increasing the running time by a constant factor, loading can be 

reduced by a non-constant factor.

In Chapter 4 we provide a general framework for connecting processors in a 2- 

dimensional mesh that, among other things, captures all the features of previous 

enhanced-mesh architectures but with a more realistic loading. Thus, our work pro

vides the means to automatically translate all existing algorithms on enhanced meshes
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to  a more implementable platform. In addition, our approach affords much more flex

ibility to the network designer than traditional methods.

The contribution of Chapter 5 is in providing a framework that adds redundancy 

in a controlled manner to convert any binary-tree MBN to one that is resilient to 

processor and bus faults. In particular, one of the methods, replication, works for 

any MBN (not just binary-tree MBNs) and uses an approach to rename elements and 

convert faulty components into ones th a t have the least impact on performance.

Although Chapter 6 does not derive a lower bound on the area, it distills the 

argument to a  single conjecture. It also develops some satellite results (such as an 

8-processor, optimal-time MBN with “one layer” of buses) th a t may have independent 

significance.

1.4 Organization of the Dissertation

In the next chapter we discuss some preliminary ideas and introduce some definitions. 

Chapter 3 deals with loading, running time and degree trade-offs. In Chapter 4 we 

describe meshes enhanced with binary-tree MBNs. C hapter 5 deals with fault-tolerant 

MBNs. In Chapter 6 we describe the basis of our conjecture on the lower bound of 

the area required for a “perimeter layout” of optim al-time binary-tree MBNs. Finally 

in Chapter 7 we summarize this work, and identify areas for future research.
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Chapter 2

Preliminaries

In this chapter we discuss some basic ideas used in the rest of the dissertation. We 

define binary-tree algorithms in Section 2.1 and multiple bus networks (MBNs) in 

Section 2.2. In Section 2.3 we discuss issues related to  running binary-tree algorithms 

on MBNs. In particular, Section 2.3.1 identifies two types of mappings of MBN pro

cessors to “nodes” of binary-tree algorithms. These mappings are im portant factors, 

determining the loading of MBNs that run binary-tree algorithms. Finally, in Sec

tion 2.4, we prove that an MBN running a binary-tree algorithm can also perform 

prefix computations in the same order of time.

2.1 Binary Tree Algorithms

A binary-tree algorithm, Bin{n), reduces 2n inputs to a single result. The computation 

performed by a binary-tree algorithm can be represented as a complete binary tree. 

For integer n  >  1, and any associative binary operation o, a binary-tree algorithm, 

B in(n ) accepts N  = 2n inputs ao, oi, • • •, a ^ - i  at the leaves of a complete binary 

tree (denoted by F (n))  and produces one output, ao o a i  o • • • o a /y _ i, at the root of 

T in ) .  The algorithm proceeds level by level from the leaves to the root, applying the

11
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0
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3

(a): An 8 x 4  MBN

3) level 3

level 2

level 1

© level 0

(b): JF(3

®  (£

Figure 2.1: Running Bin (3) on an 8 x 4 MBN

operation o at each internal node to the partial results a t its children. Figure 2.1(b) 

shows ^ (3 ); the numbers associated with nodes and edges are explained later.

The tree T{n) has n  levels, and at level i  (where 0 <  i  < n), there are 2n -/ nodes. 

Clearly, Bin(n) can be used to apply a semigroup operation on a set of 2" inputs. 

Any network tha t runs Bin(n) in T(n) steps can also be used to perform a prefix 

computation on 2n inputs in 0(T(ri)) steps (see Section 2.4). It must be noted that 

Bin{n) is a  description of a class of algorithms, rather than the solution to a particular 

problem (such as a reduction operation) th a t can be implemented as a binary-tree 

algorithm. Thus Bin(n) requires at least n  steps as the height of .F(n) is n; on the 

other hand, particular reduction problems such as finding the OR of N  bits can be 

solved on some models in 0 (1 ) time [51, 77]. To run Bin(n) on a network with 2n 

processors, each of the 2n+l — 1 nodes of T {n )  is mapped to one of the 2” processors of
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the network (Figure 2.1(b)). We elaborate further on running binary-tree algorithms 

on MBNs in Section 2.3.

2.2 Multiple Bus Networks

An N  x M  Multiple Bus Network (M BN ) has N  processors and M  buses. Each 

processor is connected to a subset of the set of buses. Figure 2.2(a) shows a 16 x 8 

MBN. Two processors connected to  the same bus can communicate with each other 

in one unit of time. A bus can carry only one piece of information a t any given point 

in time.

The number of buses to which a processor is connected is called the degree o f the 

processor. The largest of the degrees of all processors is called the degree o f the MBN. 

The number of processors connected to a bus is called the loading o f the bus. The 

largest of the loadings of all the buses is called the loading o f the MBN. The MBN 

of Figure 2.1(a) has a degree of 2 and a loading of 4, while tha t of Figure 2.2(a) has 

a degree of 2 and a loading of 5. The degree and loading are im portant parameters 

tha t determine the cost, speed of operation and implementability of an MBN. The 

degree of an MBN is analogous to the degree of a graph representing a  point-to-point 

network and is indicative of the number of input/ou tpu t ports needed per processor. 

A large loading can introduce a  significant delay or attenuation of the signal. High 

loading in electrical buses introduces capacitive coupling th a t limits the rate at which 

data  can be transm itted. In an optical bus with high loading, the signal is excessively 

attenuated by power drawn by photodetectors connected to the bus [29]. Therefore, 

an MBN implementation should a ttem pt to minimize both  degree and loading.

An N  x M  MBN can be represented as an N  x M  Boolean m atrix  that has a 1 

in row p and column b iff processor p  is connected to bus b. Figure 2.2(b) shows the
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m atrix representation of the 16 x 8 MBN of Figure 2.2(a). Observe that the rows and 

columns of the m atrix can be permuted without affecting the connectivity properties 

0 1 2 3 4 5 6 7

0 —
□  f  |
0 
0 :
0 
0 :
0 
0:
0 
0  
0  
0
0
rn
0
lii

(a)

0 1 2 3 4 5 6 7
0 1
1 1 1
2 1
3 1 1
4 1
5 1 1
6 1
7 1 1
8 1
9 1 1
10 1
11 1 1
12 1
13 1 1
14 1
15 1

(b)

Figure 2.2: A 16 x 8 MBN and its matrix; blank entries in the m atrix represent 0 ’s.

of the MBN. This is because perm uting amounts to just renumbering processors and 

buses. We use this fact later, when doing so is advantageous.

2.3 Running Binary Tree Algorithms on MBNs

We assume that Bin{n) is run on a  2n x  M  MBN. Using more than 2n processors 

has no advantage. If the number of processors is 2n# <  2n, then the 2" inputs can 

be divided among the available 2n' processors, so that there are 2n~n> inputs per
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processor. Each processor then sequentially reduces the 2n~n' inputs to one result in 

2n~n> — 1 steps. The reminder of the algorithm is run as a Bin(n') on a 2n' x M  MBN.

To run a binary-tree algorithm, Bin(n), on a 2n x M  MBN, each node of ̂ F(n) is 

m apped to a processor. Each edge of T (n )  that connects nodes mapped to distinct 

processors represents a communication; such edges are called non-trivial edges [27]. 

Consider the example in Figure 2.1(b). Here the nodes of .F(3) are labeled with 

(mapped to) processor indices 0,1, • • •, 7. This indicates the processor responsible for 

the action (if any) at a  node. Consider the node labeled 0 at level 1 (call it node v 

for this discussion). Its two children are labeled 0 and 1. The edge from node v to its 

left child has end vertices, both of which are labeled by the same processor index (0 

in this case). Therefore, this edge does not represent a communication and is called 

a  trivial edge (shown dotted in the figure). On the other hand, the edge from node 

v to its right child is non-trivial as its end points have diiferent labels (0 and 1 in 

this case); hence, the edge represents a communication between processors 0 and 1. 

Figure 2.1(b) shows non-trivial edges as solid lines; the remaining trivial edges are 

shown dotted. Each non-trivial edge of T {n)  is mapped to a bus of the MBN.

Conversely, an MBN to run Bin(n) can be specified by mapping nodes and non

trivial edges of T {n) to processors and buses, respectively, of the MBN. Thus T{n) 

(with nodes and non-trivial edges appropriately labeled) completely specifies a 2n x 

M  MBN and the method used to run Bin(n) on it. Figure 2.1(b) shows T{Z) 

corresponding to the MBN in Figure 2.1(a). We will loosely use the term “binary- 

tree MBNs” to refer to MBNs suitable for running binary-tree algorithms.

In running a binary-tree algorithm on an MBN, we assume that in one “step” a 

processor can read from or write on each bus it is connected to and perform an internal 

operation using operands from its local memory or input ports. This assumption
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is reasonable when the number of ports in a processor is small—all of the MBNs 

considered in this work have a  (small) constant degree. Since the focus of this work is 

on the network connecting processors, there is no advantage in separately considering 

the time required for internal operations. The following restrictions apply, however: 

(z) Each value sent or received by a  processor during a  step uses a different bus, 

and (i i) the pair of processors sending and receiving a value must be connected to a 

common bus. Under these assumptions, a processor is perm itted to (a) send a partial 

result of the binary-tree algorithm, (b) receive two partial results, and (c) perform 

the operation o (associated with the binary-tree algorithm) on the partial results 

received, all in one step. This is not very different from the usual assumption that 

a processor can access operands from its local memory and perform an operation on 

them, all in one step.

2 .3 .1  D irect and In d irect M apping

As noted earlier, running Bin(n) on an MBN requires mapping nodes to processors. 

In this section we identify two types of mappings, direct and indirect, th a t greatly 

impact the degree and loading of binary-tree MBNs.

For any node u of F (n), let /z(u) denotes the processor to which u is mapped. Let 

u be an internal node of T {n)  with children v and w. Node u  is said to be a  direct 

node iff fi(u) =  p(y) or p{u) =  n(w); otherwise, node u is said to be indirect. A direct 

node is mapped to the same processor as one of its children while an indirect node is 

mapped to a processor which is different from both of its children. This implies that 

an indirect node is connected to each of its children by non-trivial edges, whereas a 

direct node is connected to one of its children by a trivial edge. A processor mapped 

to a direct node is called a direct processor of the step in question; otherwise, it is
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called an indirect processor of the step. Since a processor may be m apped to more 

than one node of ^F(n), it is possible for the same processor to be a direct processor 

at one step and an indirect processor a t another. Any mapping tha t has an indirect 

node is called an indirect mapping; otherwise it is called a direct mapping.

As an example, in Figure 2.1(b) all nodes except the root and its right child are 

direct. Therefore the entire Bin{2) or !F{$) uses an indirect mapping (as there is an 

indirect node). On the other hand, the T{f2) consisting of the left subtree of the root 

represents a direct mapping.

Observe tha t an indirect node involves two communications (one from each child), 

whereas a direct node requires only one. Thus a direct mapping minimizes the number 

of communications. Notwithstanding the fact that an indirect mapping entails more 

communications, we show in Section 3.2 th a t this mapping is necessary for constant 

loading.

2.4 Prefix Computations on Binary-Tree MBNs

Given N  inputs, a i, a-i, • • •, a^ , and an associative operation o, the Ith prefix (where 

1 <  i < N ) is the quantity a io a 2o- - • oa,-. A prefix computation for the above inputs 

and operation computes the prefix for each 1 <  i <  N . The relationship between 

reduction algorithms and prefix computations is well known in the context of a PRAM 

[38, pp. 44-49] and a fixed-degree topology [49, pp. 37-43]. This relationship has not 

been studied for binary-tree MBNs, however. We prove here th a t a binary-tree MBN 

is suitable for prefix computations as well.

T h e o re m  2.1 I f  X (n )  is an M BN that runs B in(n) in T (n ) steps, then X (n) can 

run a prefix algorithm in 2T (n) steps.
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Figure 2.3: Steps of running prefix computation on binary-tree MBNs

Proof: When an MBN runs a binary-tree algorithm, the nodes of Bin(n) are ex

ecuted in a manner that respects the precedence relationship described by the tree 

JT{n). Figure 2.3(a) shows three nodes of T{n) (corresponding to two levels) where 

nodes u and v are children of node w. Let the two partial results (or inputs) held by 

nodes u and v be a and b respectively, and let the associative operation performed by 

the binary-tree algorithm be o.

The prefix computation runs on the binary-tree MBN in two phases. The first 

phase runs the binary-tree algorithm from the leaves to the root. The only difference 

here (from running a regular binary-tree algorithm) is tha t a node saves the value 

it receives from the left child, unlike the usual form of the algorithm that simply 

computes the partial result. For example, node w receives a and b from nodes u and 

v and computes a o 6. In addition to computing this quantity, node w also saves the 

value “a” (shown in a box in Figure 2.3). Node w sends partial result aob to the next 

higher level in the next step (Figure 2.3(a)). The time to run this phase is clearly the 

same as that of the binary-tree algorithm, namely T(n).
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The second phase of the prefix computation also proceeds level by level, starting 

from the top most level (level n) down to the leaves. This can be viewed as reversing 

the binary-tree algorithm where value(s) from top of the tree propagates to the leaves. 

Figure 2.3(b) describes the action at each node during this phase. The root of J-(n) 

sends the value it stored (one received from its left child in the first phase) to the right 

child. It sends the identity1 of operation “o” to the left child. A processor with stored 

value a and that receive value c from its parent (i) sends c unaltered to its left child 

and (ii) sends a o c to the right child. This phase mimics the binary-tree algorithm 

(phase 1) in reverse, so its time is T [n ) as well. Therefore, the time required to run 

a prefix computation on a binary-tree MBN is twice as much as the time required for 

running a binary-tree algorithm. (The correctness of this method follows from the 

results in [38, 49].) ■

JThe identity i has the property th a t for any value x from the domain o f  o ,  i  o  i  = i  o  i = i .  If 
o does not have an identity, then the root could simply send a  special signal indicating to  its left 
child th a t it need not apply o to  the value received.
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Chapter 3 

Degree, Loading, Time Trade-Offs

This chapter establishes non-trivial relationships between the degree, loading and 

running time of binary-tree MBNs. We first show by a trivial connectivity argument 

that any binary-tree MBN has a  degree of at least 2 and a loading of at least 2; the 

loading is at least 3 if no more than 2n_l buses are used for 2n processors. Next we 

show th a t for a direct mapping, constant degree can never yield constant loading, and 

vice-versa. We then establish a series of results that successively bound the loading 

of degree-2, optimal-time binary-tree MBNs for B in(n ) to first Q(v/n ), then to Q (n?) 

and finally to f t ( j^ ; ) ,  where 2n is the size of the problem. These results make no 

assumptions about the type of mapping (direct or indirect) and the number of buses, 

although the optimal-time restriction indirectly requires the MBN to have a t least 

2n_l buses. Considering that increasing the degree by ju st 1 can yield a constant 

loading MBN (see Section 3.6), these lower bound results are quite surprising.

Further, if we relax the optimal-time requirement, then we show the existence of 

a degree-2 , loading-4 MBN tha t runs Bin(n) in 2n —3 steps. However, the extra tim e 

needed (beyond n ) still bounds the loading. We show th a t if a  degree-2 MBN runs 

B in(n ) in n  + t steps, for some 0 <  t  < n, then the loading is Q ( tiog(^)) '

20
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In Section 3.1 we introduce some preliminary ideas used in this chapter and Sec

tion 3.2 bounds the loading for binary-tree MBNs with a direct mapping. In Sec

tion 3.3 we derive the first of the general lower bounds and lay most of the ground 

work necessary for the tighter lower bounds of Sections 3.4 and 3.5. We explore 

loading-time tradeoffs in Section 3.7. We extend the lower bound results of Sec

tions 3.3, 3.4 and 3.5 to  k-ary tree algorithms in Section 3.8.

3.1 Preliminaries

As mentioned in Section 2.3, we will consider a 2'l-processor MBN to run Bin(n). 

An optimal-time MBN requires at least 2n_l buses. If the number of buses is less 

than 2n_l, a t least the first level of T {n)  requires more than one step to schedule, so 

optim al time is not possible. Therefore, we consider optimal-time 2" x M  binary-tree 

MBNs for B in(n ) with M  > 2n_1 buses. If such an MBN has degree 2, then it has 

a t most 2n+l connections (at most 2 per processor). If these connections are evenly 

distributed among the buses, then the loading would be ["̂ 77-] <  4. In this chapter 

we show that such a uniform distribution of connections is not possible and tha t a 

large number of connections is concentrated on a small number of buses resulting in 

a large non-constant loading.

An MBN is said to be connected iff there is a path (possibly via several buses and 

processors) between any pair of processors. We now derive trivial lower bounds on 

the degree and loading of a connected binary-tree MBN.

L e m m a  3.1 For n  >  1 and M  > 2 , any connected 2 " x M  binary-tree M BN  has a 

degree o f at least 2 and a loading o f at least max (2 , ["̂ 7^ ] )  •

Proof: If the degree is 1 and if the MBN has connections to  each of its M  > 2

buses, then the MBN cannot be connected; each processor connected to a bus b
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can only communicate with other processors connected to bus b. Thus at least one 

processor must be connected to 2 or more buses. This implies that the total number of 

connections in the MBN is at least 2n +  1. These connections are distributed over M  

buses, so the loading is at least • Since each bus must have at least 2 connections

(otherwise it cannot be used for a communication), the loading is max (2 , ■

■
Remark: If M  =  2m for some 1 < m  < n, then the minimum loading is 2n~m -f- 1.

The 2n x 2m Tree MBN of Section 4.2 has an optimal loading of 3.

3.2 Lower Bound for Direct Mapping

To run a binary-tree algorithm on an MBN, the nodes of the tree F{n) are mapped 

to processors, and non-trivial edges are m apped to buses. Recall the definitions of 

direct and indirect mapping (see Section 2.3.1, page 16). In a direct mapping, each 

internal node of T{n)  is mapped to the same processor as one of its children; that is, 

a processor applying the operation o (associated with a binary-tree algorithm) holds 

one of the operands as a partial result from the previous step. On the other hand, 

in an indirect mapping, two processors with partial results may send them to a third 

processor that applies o on these. The direct mapping may appear to be a better 

choice as it reduces communication requirements by maximizing the number of trivial 

edges. This is not true for the loading of the MBN, as we show below. Indeed, the 

MBN proposed by Vaidyanathan and Padmanabhan [85] uses a direct mapping and 

has a non-constant loading.

L em m a 3.2  For any n > 1, an M BN with degree d that runs Bin(n) optimally in n  

steps using a direct mapping has a loading o f at least I ^ I -I- 1 .
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level

7T n

n — 1 

n — 2

Figure 3.1: .F(n) with a direct mapping

Proof: Consider MBN A t  with nodes labeled by a direct mapping. Observe first

tha t for any node u  that is mapped to some processor /i(u), there exists a path from 

u  to a leaf, such that all nodes on the path  are mapped to n(u). (This follows from 

the definition of direct mapping.) Let the root of A t  be mapped to processor 7r. From 

the above observation, there is a path from the root to a leaf such that all nodes on 

this path  are mapped to 7r (see Figure 3.1). Clearly, there are n  internal nodes on 

this path, each of which has one of its two children also on the path. Let the children 

not included in the above path  be mapped to processors 7T/ (where 0 <  £ < n) as 

shown in Figure 3.1. Each leaf of A t  is mapped to a different processor (as each 

input of Bin(n) is in a different processor). This coupled with the observation at 

the beginning of this proof, establishes that all of 7To, tti, • • •, 7rn_i are distinct. Thus 

processor n  is required to communicate with n different processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

Let processor 7r be connected to buses 6, (where 0 < i < t f  < d). Since the MBN 

runs B in(n) in n  steps, each of the processors 7T0, 7Ti, • • •, 7r„_i must also be connected 

to at least one bus 6, (where 0 <  i < df). Thus the total number of connections to 

all buses bi is a t least n  +  d!. This implies th a t the loading of the MBN is a t least

[ = 5 * 1  =  [ * !  +  !  2  f s l  +  1 .  ■
Remark: Lemma 3.2 implies tha t an indirect mapping is essential for any optim al

time binary-tree MBN with constant degree and loading.

3.3 An Q ( y / n )  Lower Bound

In this section, we develop the first of a series of non-trivial lower bounds on the 

loading of degree-2, optimal-time, binary-tree MBNs. Here we will prove th a t if an 

MBN runs B in{n ) in n  steps and if its degree is 2, then its loading is fi(\/n ).

3 .3 .1  S tra teg y  and D efin ition s

We prove this lower bound result by showing th a t the connections in any degree-2, 

optimal-time binary-tree MBN are distributed unevenly over the buses. Our strategy 

here (and to a  large extent in Sections 3.4 and 3.5 as well) is to identify (or prove 

the existence of) a small number, /?, of buses tha t collectively have a large number, 

7 , of connections. This will establish that the loading is a t least

For M  >  2n _ l , consider a 2" x M  MBN, X (n ), that runs B in (n ) in n  steps 

(numbered 1 ,2, • • •, n) and whose degree and loading are 2 and L, respectively. We 

will use the terms “end of step s” and “beginning of step s +  1” synonymously. For 

any 1 <  s <  n, let X s{n) denote a 2n x M  MBN that includes only those connections 

of X (n )  th a t are used in a t least one of steps 1,2, •••,« . Then X 0{n) is a  2” x M  

MBN with no connections and X n(n) =  X (n).
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0 1 2 3 2n — 2 2” — 1

0 1 2n~' 

Figure 3.2: Step 1 of X \{n)

At each step s we will consider an 2n x 2n_l “sub-MBN”, Ya(n), of X ,(n); i.e., 

connections of Ya(n) are also connections of X 3(n). Sub-MBN Ya(n) consists of those 

connections of X a(n) whose existence has been established. We say th a t a connection 

is added to mean that a  previously unaccounted for connection has been detected. 

Therefore, the degree and the loading of the MBN changes from step to step. Running 

B in(n) on an MBN can be viewed as a step by step construction of the MBN with 

the counted connections added at each step.

An intermediate result of Bin(n) (value at any non-root or non-leaf node of tree 

JF(n)) is called a partial result. A processor p holding a partial result or an input at 

the end of step s (where 0 <  s <  n) is called a result processor of step s. Otherwise p 

is a non-result processor of step s. If the degree of the processor p  at the end of step 

is 2 , then it is called a fu ll processor of step s; otherwise, p  is a non-full processor of 

step s.

Clearly, all 2n processors are non-full, result processors of step 0; i.e., at the start 

of the algorithm. Step 1 (the first step) requires a t least 2n_l communications (exactly 

2n_ l, if all 2n_l partial results generated at the end of step 1 are obtained by a direct 

mapping). Therefore X i(n) is isomorphic to the MBN shown in Figure 3.2. Thus 

for 1 <  s <  n, the terms “full” and “non-full” are synonymous with “degree-2” and 

“degree-1,” respectively.
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3.3.2 B asic  R esu lts

We now list four simple consequences of X {n)  being a  degree-2, optimal-time, binary- 

tree MBN; these facts are used, often without explicit mention, in subsequent discus

sion.

1. All partial results received in a step are used in the same step, and a partial 

result generated in a step is used up in the next step. This is because the 

algorithm runs optimally, so partial results cannot idle.

2 . A direct (resp., indirect) processor of a step receives one (resp., two) partial 

results in tha t step; this follows from 1 above.

3. A processor receiving two partial results a t a step must do so from different 

processors; otherwise the step will not be executed in unit time.

4. A processor sending a  partial result cannot receive one a t the same step. This is 

because it will have to receive two partial results and send one partial result as 

a processor can hold only one partial result. This is not possible on a degree-2, 

optimal-time MBN.

L em m a 3.3 For any 1 < s < n, i f  p is a non-full, result processor of step s, then p  

is a non-full, result processor of steps 1, 2 , • • •, s.

Proof: It suffices to prove that if p is a non-full, result processor of step s, then it is

a result processor of step s — 1. If p holds a result at the end of step s, but not a t the 

end of step s — 1, then it must have obtained two partial results during step s. This 

requires p to have two connections and be a full processor of step s. ■

C o ro lla ry  3.4 For any L < s < n, each result processor of step s is a full processor 

of step s.
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Proof: Let p  be a non-full, result processor of step s. Then by Lemma 3.3, it is also

a result processor of steps 1,2, • • •, s. Therefore to  prove the lemma, it is sufficient 

to prove that s < L. Let p  receive a partial result for step t  (where 1 <  t < s) from 

processor pe, via the only bus b (say) to which p  is connected. Therefore, bus b is 

connected to processors in the set {p} U {pt : 1 <  t  < s}.

Consider processor pt th a t sends a partial result to p  during step t. If pt is a result 

processor of step t, then it must receive two partial results from processors different 

from p (in addition to sending a partial result to p). This is not possible as one of 

the (at most 2) buses to which pt is connected is used by p. Since this bus (bus b) is 

used by p during steps 1, 2 , • • •, s, processor pt cannot be a  result processor of steps 

t , t  + 1, ■ ■ •, s. Therefore, pt & {px : t  < x  < s}  and so {p} U {pt : 1 <  t  < s} has 

s + 1 processors, all of which are connected to bus b. Since the loading of X  (n ) is L, 

we have s +  1 <  L  (or s < L ). ■

From this point on, we will only consider step s > L. Since our aim is to prove that 

L  =  Vt{y/n) (f2 ({^0  in Section 3.5), we may assume tha t L < n. By Corollary 3.4, 

all result processors (of any step) can be assumed to be connected to 2 buses.

3 .3 .3  T h e  A cco u n tin g  Schem e

In determining a lower bound on the loading L  of X (n ), we will count connections 

between processors and buses of X (n ). Let (p, b) denote a connection between pro

cessor p  and bus b. In our analysis, we will consider only those connections (p, b) for 

which p  is a full processor, and which participates in some step s > L. Since a lower 

bound on the loading is sought, some connections can be ignored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

To account for the connections considered, we now associate each such connection 

with a  processor. For each processor p and step s > L, define a set, r a(p), of 

connections owned by processor p in step s. (We will show later that if pi ^  p?, then 

r 5(pi) and r a(pz) are disjoint.) We now define r, (p).

1 . If p  is a  result processor of step L, then it is also a full processor of step L  (by 

Corollary 3.4). Let p  be connected to buses bx and For each such p, define 

T l(p) =  {<P,&i>,(p,&2>}. I f p  is not a  result processor of step L, then define 

T l (p) to be empty.

2. For s > L, let p be a result processor of step s that receives partial result(s) 

from (not necessarily distinct) processor(s) p ' and p" via bus(es) 6' and b", 

respectively. Define Ta(p), Fs(p') and Ts(p") as follows.

T s(p ) =  ^ ( p )  U  {(pi,b'),(p2,b")}

r 3(j/) =  r ^ o / ) - ^ ! ^ ) }  

r a(p") = r  a_i(p")-{(p25&">}

where (p i,b') €  r ,^ i( j / )  and (p2, 6") €  ra_i(p"); since we are interested pri

marily in the cardinality, |ra(p)|, of Ta(p), (jpi,br) (resp., (p2, 6")) can be any 

element of r a_i(p') (resp., r a_i(p")). Note that i fp  receives only one value in 

step s, then j f  =  p", bf = b” and pi =  p-j,.

In summary, for each partial result received by processor p from processor p' 

via bus 6, processor p' transfers ownership of a connection on bus b to processor 

p. If processor p does not send or receive any partial result in step s, then

r a(p) = r a_t(p).
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L em m a 3.5 For any s > L,

(i) For distinct processors pi,pz, r s(pt) and r a(p2) are disjoint.

(ii) For any processor p, i f  (j/, b) 6  r a(p), then processor p is connected to bus b.

(iii) I f  p  is a result processor of step s, then r a(p) has a connection o f the form  

(p ',b ), fo r each bus b to which p is connected.

Proof: At step L, by definition of Tt, all result processors own their connections to

the two buses to which they are connected. Therefore, Lemma 3.5 holds a t step L. 

Observe that in part 2 of the definition of r a(p), the sets Ta(p) and ( r a(p'), r a(p")) 

are disjoint, and the connections added to r a(p) are (pi,bf) and (p2, V ), where V and 

V  are buses to which p  is connected. These observations, coupled with the fact that 

Lemma 3.5 holds for step L, completes the proof. ■

Remarks: If the sets Ta(p) are used to count the number of connections in X s(n),

then part (i) of Lemma 3.5 ensures that no connection is counted more than once. 

However, some connections may not be counted at all. Part (ii) is used later in 

Theorem 3.9. Part (iii) ensures that the transfer of ownership in part 2 of the 

definition of T3(p) is always possible.

L em m a 3.6 For any step s > L and any processor p, |Ta(p)| =  |ra_[(p)| + £ , where

1, i f  p is a result processor of steps s and s — 1 .

2 , if  p is a result processor of step s and a non-result processor 

of step s — 1.

-1, i fp  is a non-result processor of step s and a result processor 

of step s — 1.

0 , i f  p is a non-result processor o f steps s and s — 1 .

6 =
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Proof: Observe th a t S is the number of partial results received by processor p in

step s; S =  — 1 indicates that p  sends a partial result. The lemma now follows from 

this observation and part 2 of the definition of r ,(p ) . ■

C o ro lla ry  3 .7  For any step s > L, i fp  is a result processor o f a  o f the steps L ,L  + 

1, • • •, s, then |F ,(p) | >  a.

Proof: The first time p becomes a result processor at step s0, say, (even if sQ = L), 

| r ao (p) | =  2. For each of the remaining a  — 1 times it is a result processor in some 

step s' > so, we consider two cases:

Case 1: Suppose p is a  result processor of steps s' — 1 and s'. Here |IV(p)| =

|IV_i(p)| -+- 1 (Lemma 3.6).

Case 2: Suppose p is a result processor of step s ' and a non-result processor of

step s' — 1. Since s' >  So, there is a  step s" (so <  s" <  s') such th a t p is a result 

processor of step s" — 1 and a non-result processor of steps s", s" + 1, • - •, s ' — 1. 

Here | r s/(p)| =  |r,/_ i(p )| +  2, |r , /_ L(p)[ =  |I> (p ) |, and |I> (p ) | =

| r a«_L(p)[ — 1 (again by Lemma 3.6). Therefore, |IV(p)| =  |IV '_i(p)| +  1.

In any case, for each step s' >  so of which p is a  result processor, IV (p) increases by 

one. Thus at the last step t  < s of which p is a result processor, | Tt (p) | =  2 +  (a  — 1) =  

a  +  1. If t < s, then |rt+i(p)| =  [rs(p)| =  a . ■

3 .3 .4  N on -U n iform  B u s U sage

In this section we show that as the binary-tree algorithm proceeds towards the root 

of JF(n), most of the activity in the MBN centers around few buses th a t ultimately 

incur a high loading.
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For any step s > L, a  bus b of X (n )  is said to be active in step s  iff it is connected 

to at least one result processor of step s. If a bus is used to carry a  partial result in 

step s, then it must be active in step s. However, a  bus tha t is active in step s  need 

not be used in step s. In the following lemma, we prove that the pool of buses tha t 

could be active a t a step shrinks with each step, thereby forcing a few buses to have 

a large number of connections.

L e m m a  3.8 For any step s > L, bus b is active in step s, then it is also active in 

step s — 1 .

Proof: Let bus b not be active in step s — 1. Then by definition of a non-active bus,

all the processors connected to b are non-result processors of step s — 1. Suppose 

at step s, processor p connected to b becomes a result processor of step s, thereby 

making b active in step s. Since p cannot be a result processor of step s — 1 (otherwise 

b would be an active bus in step s — 1), p must receives two results in step s from 

distinct processors pf and p". One of these partial results must be via bus b. Clearly 

the two sending processors p' and p" are full (Corollary 3.4), result processors of step 

s — 1. Thus, one of them must be connected to b in step s — 1, which contradicts the 

assumption tha t b is not active in step s  — 1. ■

3 .3 .5  T h e  Lower B ou n d

We are now in a  position to prove the main result of this section.

T h e o re m  3.9 For any n > 2, i f  a 2n-processor M B N  with degree 2 and loading L 

runs Bin{n) optimally in n  steps, then L  =  Q(y/n)

Proof: From Lemma 3.8, there exists a bus, bo, th a t is active in steps L, L + 1, • • •, n.

Let b0 be connected to I  <  L  full processors, p i,P 2> ■ ■ • ,Pi- For 1 <  i < £, let the two
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buses to which processor p* is connected be bo and Also let processor p,- be a result

processor an times from step L  to step n.

From Lemma 3.5(«), each element of r n(pj) is a  connection to either bQ or Since
t

the loading of the MBN is L, ^2  |rn(p,-)| < t  +  IL  < I?  +  L. From Corollary 3.7 we
i = l

I I
also have JZ  l^"(Pi)l ^  5Z a «- Since bo is an active bus of steps L, L  + 1, • • •, n,

i —  1 i = l
I 1 1

5Z a,- >  n  — L +  1. Thus, n — L +  1 <  a * — 5Z l^n(P»)l ^
x— 1 i = l  i = l
which implies that n  <  L 2 + 2L — 1 or L  =  Q(y/n). ■

Remark: Theorem 3.9 proves that for large problem sizes, the product of the degree

and loading of any MBN that runs a  binary-tree algorithm in optimal time is at least 

9, thereby establishing that the MBN, 7~(n), proposed in Section 3.6 has the best 

possible “degree-loading” product.

3.4 An Q Lower Bound

In the lower bound of Section 3.3, we selected a bus bo and proved tha t its neigh

borhood (consisting of processors on bo and buses connected to these processors) had 

a large number of connections. In restricting our consideration to the neighborhood 

of bus bo, the technique used undercounted the number of connections in the neigh

borhood. Here we develop additional results that provide a more accurate count of 

connections, even though the consideration is expanded to a larger neighborhood.

3.4.1 A d d ition a l R esu lts

Recall the definitions of direct and indirect nodes and processors (Section 2.3.1, 

page 16).

L em m a 3.10 For any s > L, let p be a result processor of step s 4 -1.
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(z) I f  p is a result processor o f step s, then it is a direct processor o f step s +  1. 

(ii) I fp  is a non-result processor o f step s, then the following assertions hold:

(a) Processor p is an indirect processor of step s -+- 1.

(b) The two buses to which processor p is connected are active in step s.

(c) For each bus b to which processor p is connected, a result processor o f step s 

(that is also connected to b) becomes a non-result processor o f step s -F 1.

Proof: If p is a result processor of both steps s and s +  1, then the result it holds

from step s must be used to  obtain the result of step s + 1. (Otherwise, the processor 

will have to receive two new values, while sending the result of step s to another 

processor; this is not possible on a degree-2 MBN.) Also, since X (n )  runs B in (n ) in

n  steps, partial results cannot be saved to be used at a  later step.

If, on the other hand, p  does not hold a result at step s, it must receive two partial 

results during step s + 1, and is, therefore, an indirect processor of step s +  1. Since 

these results (of step s) arrive through the two buses by and &2 (say) to which p is 

connected, there must be result processors pi and p2 of step s  that are connected to 

buses &i and 62, respectively; that is, the buses 61 and 62 are active in step s. The 

result processors pi and P2 of step s cannot be result processors of step s +  1 as they 

send their results to processor p. (A result processor sending its value to another 

processor must receive two values to remain a result processor of the next step; this 

is not possible on a degree-2 MBN.) ■

The following corollary is a generalization of Lemma 3.8.

C o ro lla ry  3.11 For any s > L, i f  p result processors of step s are connected to bus 

b, then fo r any s > s' > L, at least p result processors o f step s' must be connected to 

bus b.
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Proof: It is sufficient to  prove that the number of result processors connected to

bus b cannot increase after step L. Let processors pi,p?, • •• ,p z be result processors 

of step s' that are connected to bus b. Let processor q connected to bus b not be a 

result processor of step s', and let it become a result processor of step s ' +  1. Since 

processor q is connected to  bus b, one of the partial results m ust come from one of 

the processors p i,p 2 , ■ "  ,px via bus b. The processor that is sending the partial result 

becomes a non-result processor of step s '+ l ,  and the total num ber of result processors 

connected to bus b does not increase. Therefore, a t least a  to ta l of p result processors 

must be connected to bus b in all the steps s > s' > L. ■

Remark: It is im portant to note that the processors holding the results may change

from one step to another, while the number of result processors is non-increasing.

Two processors are said to be neighbors iff they are connected to  a common bus. 

For integers a, b with a < b , let interval [a ,6] denote the set { a ,a  +  1, - - •, 6 — 1,6}.

L em m a 3.12 For s > L , i f  p is not a result processor of step s — 1, and is a result 

processor o f steps s, s +  l , - * - , s  +  x — 1 (for some x  > 0), then the following assertions 

hold:

(z) For each step s' in the interval [L, s — 1], at least x  +  1 neighbors o f p are 

result processors o f step s '.

(ii) A t the end o f step s + x  — 1, the neighbors of p  collectively own at least 

((x -(- l) (s  — L) -I- ) connections.

Proof: When processor p  becomes a result processor of step s, it must be an indirect

processor of step s (Lemma 3.10), and it consumes two results from its neighbors. 

Processor p also consumes a  result from one of its neighbors in each of the steps s +  1, 

s +  2, • • •, s +  x — 1, (during which it is a direct, result processor). By Corollary 3.11,
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for the 2 +  (x — 1) =  x + 1 results consumed by p in steps s, s + 1 , - • •, s +  x — 1, there 

must be x -I- 1 results among the neighbors of p in each of steps L, L +  1, • • •, s — 1.

Of the x + 1  results consumed by processor p, two are consumed in step s. There

fore for the remaining x — 1, there are x — 1 result processors among the neigh

bors of p  in each of steps L, L  +  1, • • •, s — 1, s. In general, for any 1 <  i <  x, 

there are x — i result processors among the neighbors of p in each of the steps 

L, L  +  1, • • •, s +  i — 1. If N  is the set of neighbors of p, then by Corollary 3.7

we have [IY ^ ^ tp ')!  =  (s ~  L )(x  +  *) +  H  (x  ~  0  =  (s ~  L )(x  +  !) +  ■
p'e/v «=i

3.4 .2  T igh ter  Lower B ound

Now we are in a position to prove the main result of this section.

T h e o re m  3.13 For any n  > 2, i f  a 2n-processor M B N  with degree o f 2 and loading
2

o f L runs a B in(n) optimally in n  steps, then L  =  f2(ns).

Proof: Let the loading of the MBN be L < n. By Lemma 3.8, there is a bus that

is active during each step in the interval [L,n]\ let this bus be b0. Let full processors 

Pi ,P2, * • • ,Pi (for some £ < L) be connected to bus b0. For each i (where 1 <  i < £), 

let processor p, be connected to bus 6, (in addition to bus bo). Besides processor p,, 

let bus bi be connected to m, <  L  processors (see Figure 3.3).

For any given step s €  [L, n ], at least one of p l ,p 2, • • • ,p / is a result processor (as 

b0 is active during each step of [L , n]). Therefore, the interval [L, n] can be partitioned 

into k subintervals, / l5 / 2, • • •, /*, as follows (see Figure 3.4):

(i) In each step of subinterval Ij, processor {Pi : 1 <  i <  ^} is a result

processor.

(ii) For j  > 1, 7Tj ^  TTj-i.
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bo

PtjP 1,1 Pi,mi Pi,l Pij

Figure 3.3: Processors and buses in the neighborhood of bus b0

Let interval Ij be of length i j  (where 1 < Xj < n — L + l) .  Clearly, ^  xj  = n — L + 1.
i =i

i - i  j
Also Ii =  [L, L + x i — 1] and for j  > 1, Ij = L +  53  xr , L -  1 +  5Z xr

r—l r=l
— [Sj  > sj

x j -  1] (say).

Applying Lemma 3.12 to Ij, the number of connections owned by neighbors of 

7Tj (at the end of step Sj +  Xj — 1) is (sj — L){xj +  1) +  Summing this for

all k intervals, we can assert that the number of connections collectively owned by 

processors p\,p-i, • • • ,pi and their neighbors is at least

t ,  ( f e -  -  L ) ( x ,  +  1) +  X i(x ’2  I } )  =  I , ( i 2 +  1) +

. .  __1\  l _2

X2(X2 +  1) +  ( * 1  +

H bx k- i ) (x k + 1)+ lj > (*1+X3+-+X*) +(XlX2+XlX3̂ -------hXiX/t+ X2X3 +

X2x4 H—  •-rx2xfc+  hxfc-iXfc) =  =  0 (n 2). These connections are distributed
t

among the 1 + i  + ^ r r i i  < 1 +  L +  L(L  — 1) =  I?  +  1 buses connected to the above
t=i

processors (see Figure 3.3). Since each bus can have at most L  connections we have 

L{ 1 +  L2) = L3 + L = fi(n2), which implies that L = Q (n£). ■
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.
Interval / t

I

X\
step L

result processor 7rt 
step L + x\ — l = s-2 — 1
step «2

Interval / 2 x 2 result processor 7r2 ^  7Ti

’ step «2 + *2 — 1 = *3 — 1
step S3

result processor nj ^  itj-i 

= sj+1 1

result processor 7r* ^  7r*_i

Figure 3.4: Subintervals of [.L , n]

3.5 An Q ( i^ ) Lower Bound

In the last two lower bound derivations (Sections 3.3 and 3.4), we used an accounting 

scheme to count the number of connections in the neighborhood of a bus bo that was 

active at steps L, L  +  1, • • •, n. This accounting scheme transferred ownership of one 

connection for each partial result sent/received by a  processor. This scheme assumes 

the existence of only one transferable connection with each result processor, even

Interval Ij I Xj

Interval I* Xk

step Sj — 1
step Sj

step Sj + Xj — 1
step

step Sk — 1 
step Sk

step n
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though the result processors could possibly own many more connections. In this 

section we develop a  modification to this accounting scheme th a t allows many more 

connections to be counted. The new accounting scheme perm its the ownership of 

more than one connection to be transferred between processors, whenever possible. 

We do this by breaking the interval [L, n] into smaller segments and establishing the 

existence of more than one transferable connection with result processors in each 

segment. This is the key to tightening the lower bound on the loading to fi (u^Tr).

In Section 3.5.1 we derive the basic results needed for the new accounting scheme. 

In Section 3.5.2 we describe the new accounting scheme. Finally in Section 3.5.3 we 

derive the new lower bound.

3 .5 .1  In itia l C on d ition

For some integer d > 1, partition the interval [L,n] into y  segments [L, 3L -t- l j ,
To

(3Z> -F 2, 3L  ~f~ 1 ~t~ d], [3L -f 2 -f  d, 3L  -f 1 -f 2d], • • •, [3L  +  2 +  (y  — 1 )d, n]. Denote
Tl h Ty

these segments by Iq, I\, • • ■, Iy. Segment I0 contains 2L  4- 2 steps, and segments 

I\, I 2 , • • •, Iy- 1 each contains d steps. The last segment, Iy, contains (n — 3L — 2) — 

d(y — 1) <  d steps. In this section we develop a relationship between the number of 

result processors and the total number of connections on an active bus at the end of 

step 3L +  1 (end of interval / 0). W ithout loss of generality, assume L <

L em m a  3.14 Let b be any active bus of steps L, L +  1, • • •, 3L  +  1. Let there be p 

result processors connected to bus b at the end of step 3L  +  1. Let there be £ < L fu ll 

processors (including the p result processors) connected to bus b at step 3L +  1. Then 

^ > 2  p.

Proof: At step 3L +  1 there are p result processors connected to bus b. Therefore,

there must be at least p (not necessarily the same) result processors connected to
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bus b all the way from step L  (Corollary 3.11). In this interval, ownership of only 

one connection is transferred with each partial result. Therefore, during this interval 

of 2L  +  2 steps, the total number of connections owned by processors connected to 

bus b is increased by a t least (2L  +  2)p (Corollary 3.7, page 30). There is a total 

of £ full processors connected to bus b at step 3L + 1. Each of these f  processors is 

connected to a bus different from 6. Collectively, the number of connections owned 

by all f  processors on bus b is £L  +  f , where £L is the connection to the buses in 

the neighborhood of b, and £ is the number of connections to b itself. (Recall th a t a 

processor can own connections only to the buses it is connected to and all detected 

connections are owned.) Since the loading of any of these £ buses in the “neighborhood 

of bus U' cannot exceed L, we have £(1 +  L) >  2p(l +  L), which implies tha t £ >  2 p.

■

3 .5 .2  T h e  N ew  A ccou n tin g  Schem e

Notice tha t the result of Lemma 3.14 shows tha t at the end of step 3L  +  1 there 

are twice as many connections as result processors to any active bus. However, some 

result processors may still own only one connection on each of its buses, while other 

processors may own many more connections. At the end of step 3L+1, if all the known 

connections are redistributed among the a  result processors, then each processor will 

own at least 2 connections to  each (active) bus b to which it is connected. Therefore, 

beyond this point ownership of 2 connections could be transacted for each partial 

result sent/received. This change alone with the previous m ethod of counting the 

connections will raise the lower bound on L  by a  factor of about 2. However, if 

we proceed for another d steps, we can show that the number of connections owned 

by each result processor is greater that 2. This can be used to evenly redistribute
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connections so that each result processor now owns more than 2 connections. This 

in turn allows more connections to be transacted with each partial result. In fact, 

such a redistribution of the known connections can be carried out a t the end of each 

of the intervals Iq, 7i, / 2, • • • Iy~i. The last steps of these intervals (at which known 

connections are redistributed) are called transition points. In general, if there are a  

result processors connected to bus b, and a total of 7  connections to an active bus 

b at a transition point, then after redistributing connections, each result processor 

is guaranteed to own [qJ connections to bus b. The accounting scheme used in 

Sections 3.3 and 3.4 can still be used with suitable modifications. We now outline 

these modifications.

1. For 1 <  i <  y, consider interval =  [s,-,st+i — 1], where S{ =  3L + 2 + 

{i — 1 )d is the first step of /<. Clearly s, — 1 is a transition point, so at 

the end of step S’,- the accounting scheme redistributes known connections of 

each active bus evenly among its result processors. Let each result proces

sor own w connections at step s,. More precisely, for result processor p  with 

connections to buses b' and b", let its set of owned connections be r jf(p) =  

{(Pi, V), (p'2, b'), ■ • •, (j/w, I/), (p'l, V'), (pg, (p", 6")} where pfj  and p\'j (1 <  

j  < w) are some processors connected to bus b' and 6", respectively. If  p  is 

not a result processor of step S{, then r a<(p) is empty. Since the set of known 

connections is partitioned among the result processors, no connection is owned 

by more than one processor.

2. For a step s (where s* <  s < si+I — 1), let p  be a result processor of step s  that 

receives partial result (s) from (not necessarily distinct) processor(s) pf and p" 

via bus(es) b' and b", respectively. The sets r a(p), and r s(p") change as
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follows.

r,(p) = r a_x(p) u

r,^) = ra_1(p')-{(P',6'),(P,2 04^)}
r a(p") = r a_!(j/') -  b"), (j/±, (p i, &")}

For 1 <  j  < w, {p'j, b) €  and (p", 6") e  r a_!(p"); since we are interested

primarily in the cardinality, |ra(p)|, of Ta(p), the w connections transferred ((py, b') 

and (p", 6"), for 1 < j  < w) can be any w element of ̂ -[(p') and r a_i(p"). Note th a t 

if p is a direct processor that receives only one partial result in step s, then p' =  p", 

b' = V  and j/j =  p".

In summary, for each partial result received by processor p  from processor p' via 

bus b, processor p' transfers ownership of w connections on bus b to processor p. We 

call w the transaction weight of interval If processor p  does not send or receive 

any partial result in step s, then Ta(p) =  r a_i(p). The facts stated in Lemma 3.5 

also hold when the transaction weight is more than one. We restate Lemma 3.5 

modified to accommodate the idea of transaction weight; its proof is the same as th a t 

of Lemma 3.5.

L em m a 3.15 Let I  be an interval with transaction weight w. For any step s €  / ,  

the following statements hold.

(£) For distinct processors p \ ,p i,  Ta(pi) and r s(p2) are disjoint.

(u) For any processor p, i f  (jf, b) 6  r a(p), then processor p is connected to bus b. 

(in) I f p  is a result processor o f step s, then Ta(p) has w connections o f the form  

(p'i, b), (jp/2, b), • ■ •, (p'w, b) fo r  each bus b to which p is connected.
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Lemma 3.6 tracks the size of r a(p). We now restate this lemma with appropri

ate modifications for the new accounting scheme. Again its proof parallels that of 

Lemma 3.6.

L em m a  3 .16  Let I  be an interval with transaction weight w. For any step s € I, 

|r,(p)| = |r,_i(p)| +  S, where

w, i f  p is a result processor of steps s and 5  — 1,

2w, i f  p is a result processor o f step s and a non-result processor 

o f step s — 1,

—w, i f  p is a non-result processor of step s and a result processor 

o f step s — 1,

0 , i f  p is a non-result processor of steps s and s — 1 .

Corollary 3.7 (page 30) relates the number of connections owned by a processor and 

the number of steps for which it holds a partial result. We now restate Corollary 3.7 

with suitable modifications to accommodate a transaction weight w > 1.

C o ro lla ry  3 .17 Let I  be an interval with transaction weight w. For any step s € 

I  =  [si, s2], i f  p  is a result processor o f a  of the steps of subinterval [si, s] o f I , then

|r3(p)| > w a .

Proof: The proof follows along the same lines as the proof of Corollary 3.7 (page 30)

with each connection transferred replaced by a group of w connections. W ith each 

partial result, w connections are transferred. The remaining steps of the proof are 

the same as in Corollary 3.7. ■
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3 .5 .3  T igh ter Lower B ound

We now use the results developed so far to derive a tighter lower bound on the 

loading of degree-2, optimal-time, binary-tree MBNs. Recall that the initial segment

10 =  [L , 3L + 1], the last segment is Iy =  [3L + 2 + (y — 1 )d, n] and for 1 <  i < y,

11 = [3L + 2 + (i -  1 )d, 3L + 1 + id\.

L em m a 3.18 Let 6q be an active bus of steps L, L  -I- 1, • • •, n. For 0 < i < y, let Wi 

be the transaction weight o f segment Ii. Then, w0 =  2 and u;i+l =  -

Proof: Lemma 3.14 proves that w0 =  2. Let there be p,+i result processors con

nected to bus b0 at the beginning of interval / l+1. Let 6 +i be the total number of 

processors (including the /?,+i result processors) connected to bus 60 a t the beginning 

of the interval I i+1- Since there are p,-+i result processors connected to bus b0 at the 

beginning of the interval / i+i, there must be at least pl+i (possibly different) result 

processors connected to bus 60 a t each of the steps of interval /,- (Lemma 3.11). The 

number of connections collectively owned by these processors at the beginning of the 

interval /,-+1 is at least dw,pi+l (Corollary 3.17). These connections must be on bus b0 

or buses in its neighborhood (that are connected to a processor with a connection to 

bus b0) as shown in Figure 3.5. The number of connections on bus b0 is f1+i- Each of 

the £,-+i has a t most L  connections. Therefore, the number of connections on bo and 

buses in its neighborhood is at most +  Lpi+l =  (1 +  L)pi+\. Since the number of 

connections owned by the p,+i processors on b0 cannot exceed this quantity, we have 

WiPi+id < £i+iL + f i+i =  (1 +  L)6 +1. By definition, wi+l =  [ | ^ J  =  [ ^ J .  ■

L em m a 3.19 For 0 <  i < y, let Wi be the transaction weight for segment I f  

is an integer, then u;,+i =  2 ( 2̂ 7) •
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€ f u l l  p ro c e sso rs

p  r e su lt  p rocessors
< * > 6q

/ K \  / H \  / H \

Figure 3.5: The connections on bus &o

Proof: If is an integer, then [ f ^ J  =  Then from Lemma 3.18, wi+l =

and w0 = 2. Solving this recurrence will yield wi+i = 2 • ■

Now we are in a position to prove the main theorem of this section.

T h e o re m  3 .20 F orn  > 2 , i f  a degree-2, loading-L, 2n-processor M BN runs a B in(n) 

in n  steps, then L  =

Proof: Let d =  2(1 +  L ). Using the same notation as in the proof of Lemma 3.18,

this gives wy =  2y+1 =  L^J- Since py >  1, we have £y > 2y+l. That is, there are 

at least 2y+l connection to bus 60 that is active in each of the steps of I y. Therefore 

2y+l <  L, hence, y +  1 =  j J  Thus L logL  =  f l(n) which implies

that L =  ■

3.6 The Tree MBN

We showed in the previous sections that for n  >  1, any MBN with at least 2n~l 

buses running Bin(n) has a degree of at least 2 and a loading of at least 3. Next we 

proved that if an MBN runs Bin(n) in n steps and if its degree is 2, then its loading is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

f2 (i5̂ ) -  This raises the question, what if the degree is 3? In this section we answer 

this question positively by constructing a binary-tree MBN with the least possible 

degree-loading product. For n  >  1, we present a 2" x 2n“ l MBN 7*(n), called the 

Tree MBN, th a t runs Bin(n) in n  steps. The degree and loading of T (n )  are each 3. 

Lemma 3.1 and Theorem 3.20 prove tha t 7~(n) has the best possible degree-loading 

product of 9. Figure 3.6(a) shows a T(4) and Figure 3.6(b) shows how it runs B in (4). 

We now formally describe T (n). For n  =  1, each of the two processors of T ( l )  is 

connected to the only bus. For the remaining description, we assume tha t n  > 2.

Let the processors and buses of T {n )  be indexed 0,1, • • •, 2n—1 and 0,1, • • •, 2n_l — 

1, respectively. Group processors and buses into 2n“ l clusters, C,, where 0 <  i < 2n~l . 

Cluster Ci consists of bus i and processors 2i and 2i + 1, both of which are connected 

to bus i. Arrange the 2n_l clusters into n  levels (see Figure 3.6(a)). Level 0 contains 

only cluster Co. For 0 <  £ < n, level £ contains clusters Cx, for 2/_1 <  x  < 2/ . In 

addition to connections from processors 2i and 2i -I- 1 to bus i (where 0 <  i < 2n_l), 

T (n ) has the following connections between clusters. Processor 1 is connected to 

bus 1; for 1 <  i < 2n~2, processor 2i +  1 of cluster C, is connected to buses 2i and 

2i +  1. It is easy to see that for 0 <  i < 2n_l, processor 2i is connected only to bus i, 

and processor 2 i+ l  is connected only to buses i, 2i and 2 i+ l  (if they exist). Similarly 

for 0 <  i < 2n_l, bus i is connected only to processors 2i, 2i + 1 and (2  JjJ +  l ) .  

Thus the degree and loading of T{n) are each 3.

Figure 3.6(b), with nodes and non-trivial edges labeled with processor and bus 

indices, respectively, shows how T(4) runs B in(4). The general case is a straightfor

ward extension of this, so we will keep this description brief. In running B in(n)  on 

T (n ), each processor initially holds an input. The first step consists of a communi

cation within each cluster, with processor 2i +  1 receiving an input from processor 2i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Figure 3.6: Running B in(4) on T (4)

(via bus i) and performing the operation o. Subsequent steps involve communication 

between clusters. In step s (where 2 <  s < n), processor 2i +  1 (where 0 <  i < 2n~s) 

sends a partial result to processor (2 |^J +  l ) ,  receives partial results from processors 

4i +  1 and 4i +  3, and applies the operation o on the partial results received. At the 

end of step n, processor 1 holds the result of Bin(n).

T h eo re m  3.21 For any n > 1, the 2n x 2n_l MBN, T (n ), runs B in(n) optimally in 

n  steps. The degree and loading o fT (n )  are each 3. ■
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3.7 Loading-Speed Tradeoff

In the preceding sections we proved that an optimal-time, degree-2 binary-tree MBN 

cannot have constant loading. In Section 3.6 we showed that this lower bound on 

loading does not hold if the degree is perm itted to increase to 3. This section deals 

with the “optimal-time” restriction on these results. We prove that if the algorithm 

is perm itted to run a little more slowly, then a constant loading is possible, even 

with a degree of 2. Specifically we show the existence of a  degree-2, loading-4 MBN 

that runs Bin{n) in n +  t time when t is 0 (n ) . When t  is constant, however, the 

loading cannot be constant. We derive a  lower bound that relates the loading with 

t, the amount of time beyond the optimal that the MBN is perm itted to execute the 

binary-tree algorithm.

3.7.1  Lower B ound

Let 2T̂  be the size of the largest instance of a binary-tree algorithm that can be run 

optimally in t (L) steps on a degree-2, loading-L MBN. From Theorem 3.20 we know 

that t (L) = 0 (L  logL). The existence of a degree-2, 0(n)-loading, optimal-time 

MBN for B in(n ) [85] gives the bound t (L) =  f2(L).

T h e o re m  3.22 For any degree-2, loading-L, 2"-processor M BN that runs B in(n) in

n +  t steps, t  > •

Proof: Since the MBN runs Bin(n) suboptimally, there are some nodes of -F(n) with

“delays” in them. A node with delay <5 passes its value (input/partial result) to its 

parent 6 steps after this value is available to it. This delay may be used to transfer 

the value to a different processor with less demands in its buses.
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< t { L )  +  1

r { L )  +  1

r(L) + I

r ( L )  +  1

Figure 3.7: Path  with t  delays

The definition of r(L ) ensures tha t for x  > r(L ), the tree P {x) has at least one 

delayed node in it; therefore Bin(x) requires at least x  + 1 steps on such an MBN. 

Divide T {n )  into [T̂ + l] parts (see Figure 3.7), P i5 where 1 <  i  < • Each

part, Pi, (except perhaps the last one) consists of r(L ) + 1  contiguous levels of P (n ). 

T hat is, these parts contain trees isomorphic to !F{t {L) +  1) that must contain at 

least one delayed node (with delay S > 1). For part Pi that starts from the leaves, 

the roots of the F ( t (L) +  l)s in this part obtain the values no earlier than  at step 

r(L ) + 2 .  As a result, the roots of the T { t (L) +  l)s in the next part P2 obtain 

their values no earlier than at step 2(r(L ) +  2). In general for 1 < i < [ r (E)+ lJ, 

the roots of the F ( t (L) +  l)s of part Pi obtain their values no earlier than at step 

z(r(L) +  2). W ithout the delayed nodes, these roots would have obtained their values 

at step i(r(L ) + 1), so the additional time taken is a t least i. Therefore, the additional
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time (due to delayed nodes) taken before the root of ̂ F(n) obtains its value is a t least

[frfy+rJ- ■

3 .7 .2  U p p er B ou n d

When the loading L  is a constant, Theorem 3.22 requires the additional tim e (beyond 

the minimum required n  steps) to run Bin(n) to be fi(n). This is because r(L ) = 

O (L lo g L )  =  0 (1 ), for constant L. We now show that this lower bound on the 

additional time is tight by presenting a degree 2, loading-4 MBN tha t runs B in(n ) in 

2n — 3 steps (that is, with n  — 3 additional steps).

Consider a degree-2, constant loading-^, 2n x 2n_1 delayed root MBN, 'D{n), that 

has the following properties:

•  The processor, f (n ) ,  that holds the final result of Bin(n) has a degree of 1; that 

is, f { n ) is connected to only one bus.

•  There is a bus 6(n) with loading t  — 2; that is, two more processors could be 

connected to bus 6(n) without increasing the loading of X>(n).

•  One of the processors, p(n), connected to bus 6(n) has degree 1; that is, pro

cessor p(n) is not connected to any bus other than b(n).

Processors f ( n ) and p(n) and bus b(n) will be called the special elements of 'D(n). 

An example of such an MBN is the 8 x 4  MBN shown in Figure 3.8(a). For this MBN 

the loading i  is 4, and /(3 ) , p(3) are processors 0 and 6 , respectively, while bus 3 is 

6(3). It is easy to verify, that T>{3) possesses the above properties. Also note that 

X>(3) runs Bin(3) in 3 steps.

We now show how two copies of £>(n) can be used to construct the 2n+l x 2n MBN, 

V (n  +  1). To distinguish these copies, we name them V {n )  and P "(n ) and refer to
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m  p( 3)

bus 3 =  6(3)

(a)

(b)

Figure 3.8: Running Bin{3) on 8 x 4 MBN, P(3)

their special elements as / '(n ) , p '(n) 6/(n), /" (n ),p "(n ) and 6"(n). To construct 

Z?(n +  1) from D '(n) and T>"(n), all that needs to be done is to connect processors 

f '{ n ) and / '( n )  to bus 6'(n). Designate p'(n) to be / ( n +  1), p"(n) to be p(n + 1) and 

6"(n) to be b(n +  1).

MBN Z>(n-t-l) has a loading of £ as the only two added connections are to bus b'(n) 

that has only I  — 2 connections to start with. Its degree is 2 as the added connections 

are one each from processors / ' ( n ) and /" (n ), that had only one connection each to 

begin with. It is easy to verify th a t each of the processors f ( n  + 1) =  Pi(n) and 

p(n  +  1) =  p"(n) has degree 1 and tha t bus 6(n +  1) =  611 (n) has loading £ — 2. If we 

can now establish that f ( n  +  1) holds the final result, then P (n  +  1) will satisfy the 

three properties stated above for Af (n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

When Bin(n  4- 1) is run on P (n + 1 ), the first n  levels (starting from the leaves) are 

run simultaneously on I y (n )  and 2>"(n); the results of these steps are in processors 

f ' ( n ) and /" (n ) . These processors use bus V(n) to send their partial results to 

f ( n  + 1) =  p '(n). (Recall th a t processors f { n )  and f" (n )  have been connected to bus 

6'(n ), while f ( n  -(- 1) =  p '(n) is already connected to this bus.) Processor / ( n  4-1) 

now computes the final value of Bin{n  + 1). From this discussion it should also be 

evident that if 2>(n) runs B in{n ) in T (n ) steps, then T>{n 4- 1) runs Bin(n  4 - 1) in 

T (n  + 1) =  T (n)  4 - 2 steps. This is because both processors / '( n )  and f"{n )  use the 

same bus, b'(n), to  send their partial results to processor / ( n  4- 1); this introduces a 

delay in computing the root. Coupled with the fact tha t T (3) =  3 (see Figure 3.8), 

this gives T(n) = 2n  — 3, for n  >  3.

Thus we have the following result.

L em m a 3.23 For any n  > 3, the degree-2, loading-4, 2n x  2n_1 delayed root MBN, 

T>{n), runs B in{n) in 2n — 3 steps. ■

The generalization of the above result to non-constant loading L  > 4 is straightfor

ward. First construct a 2 i x 2L~l degree-2, loading-L MBN, by the m ethod proposed 

by Vaidyanathan and Padm anabhan [85]). Denote this MBN by T>l - An important 

feature of the MBN is tha t the result processor has only one connection, and the 

bus that is connected to the final result processor has less than  L connections. We 

can now use two copies of P l ( t i  — 1) and follow the construction described in the 

upper bound section to  obtain T>i,(n). It is easy to see th a t the tim e it takes to run 

B in(n ) on V L{n) is L — 1 4 - 2(n — L +  l)  =  2n — L +  l  steps.

T h e o re m  3.24 For any n  > 3, the degree-2, loading-L, 2n x 2 n_l MBN, T>i{n), runs 

Bin{n) in 2n — L  4- 1 steps. ■
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The results of this section show that a degree-2, constant loading MBN exists for 

Bin{n) if and only if it is perm itted to take @(n) more steps than the optimal.

3.8 Extension to k-ary Tree Algorithms

In this section, we extend the lower bound results of this chapter to k-ary tree algo

rithms. In a  A;-ary algorithm, a node (or a processor) receives A;-inputs/ partial results 

and reduces them to one result by performing an associative k-ary operation on them. 

Binary-tree algorithms form a special case of k-ary tree algorithms, with k  =  2. All 

the results so far have been established for binary-tree algorithms.

In general, for k > 2, a k-ary tree algorithm reduces kn inputs to one result, 

and can be represented as a balanced (n-level) k-ary tree. Clearly, the optim al time 

for this algorithm  is n  steps. In this section we extend the lower bound results of 

Sections 3.3, 3.4 and 3.5 to k-ary tree algorithms. Most of the basic results needed 

to establish the lower bounds for k-ary tree algorithms are very similar to the binary 

tree case. We will therefore keep our discussion brief and only point out places where 

the k-ary case differs from the binary case.

Let X (n )  be an optimal-time, loading-L, k-ary tree MBN with kn processors 

and M  > (k  — l)A;n-1 buses. We start by stating the basic results of Section 3.3.2 

(page 26) extended to k-ary tree MBNs. We list four simple consequences of X  (n ) 

being a degree-A:, optimal-time, A;-ary tree MBN that are used often without explicit 

mention, in subsequent discussion.

1. A full processor has k  connections, while a non-full processor has less than  k  

connections.
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2. All partial results received in a step are used in the same step, and a partial 

result generated in a step is used up in the next step. This is because the 

algorithm runs optimally, so partial results cannot idle.

3. A processor using a  direct (resp., indirect) mapping receives k  — 1 (resp., k) 

partial results; this follows from 2 above.

4. A processor receiving k partial results at a step must do so from different pro

cessors. Otherwise the step will not be executed in unit time.

5. A processor sending a partial result cannot receive one at the same step. This is 

because it will have to receive k  and send one partial result. This is not possible 

on a degree-A;, optimal-time MBN.

It is easy to show th a t Lemma 3.3 and Corollary 3.4 hold for the fc-ary case. Define 

ownership as in Section 3.3.3 with one connection being transacted for each partial 

result sent/received. Clearly Lemma 3.5 still holds. Lemma 3.6 clearly extends to 

the following:

L em m a 3.25 For any step s > L and any processor p, Ta(p) =  T ,-! (p) +  5, where

k — 1, i f  p is a result processor of steps s and s — 1

k, i f  p is a result processor o f step s and a non-result processor 

of step s — 1

—1, i f  p  is a non-result processor of step s and a result processor 

o f step s — 1

0, i f  p  is a non-result processor of steps s and s — 1

6 =
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As a result, we have the following corollary using the reasoning of Corollary 3.7.

C o ro lla ry  3.26 For any step s > L, i f  p is a result processor of a  of the steps 

L, L  +  1, •• - ,s , then |rs(p)| > a{k — 1). ■

Observe tha t Lemma 3.8 is independent of the k-ary case.

T h e o re m  3.27 For any n  >  2 , i f  a kn-processor M BN with o f degree-k and loading 

of L, runs kn-input, k-ary tree algorithm optimally in n  steps, then L  =  f2(v/n).

Proof: Prom Lemma 3.8, there exists bus, bo, that is active in steps L, L  +  1, — , n.

Let bo be connected to £ < L  processors, P i,P2, ••*,?/, all of which are full processors

of step n. For 1 <  i < £, let the k buses to which processor p,- is connected be 6o and 

bi,i,bit2 , • ■ •, &»,*_!• Also let processor p, be a result processor times from step L  to

step n.

Prom Lemma 3.5(u), each element of r„(pt) is a connection to either bQ or Since
i

the loading of the MBN is L, 53 lr n (p.) I < £ + £{k — 1 )L  < L2(k — 1) +  L. Prom
i = l

i i
Corollary 3.26 we also have ^  [rn(p,)| >  [k — 1) a ,. Since b0 is an active bus of

»= I i = l
I

steps L, L + l, • • •, n, 53  a , >  n — L +  1. Thus, (k — l ) (n  — L  +  1) <  L2(k — I) + L,
»=i

which implies that n < L2 +  — 1 or L  =  Vt{y/n). ■

To obtain the second lower bound from the first, observe that Lemma 3.10 and 

Corollary 3.11 hold for the k-ary case as stated. Lemma 3.12 changes slightly as 

shown below.

L em m a 3.28 For s > L, i f  p  is not a result processor o f step s — 1, and is a result 

processor o f steps s, s + 1, • • •, s + x — 1 {for some x  > 0), then the following assertions 

held:
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(i) For each step s' in the interval [L ,s  — 1], at least x  + 1 neighbors o f p  are 

result processors of step s'.

(ii) A t the end o f step s + x  — 1, the neighbors of p  collectively own at least 

(k — 1) ((x  +  l)(s  — L) +  z(z~1)) connections.

Proof: Is the same as in Lemma 3.12 except that the number of connection owned by

a processor increases by a factor of A: — 1 for every result holding step (Corollary 3.26).

■

T h e o re m  3.29 For any n > 2, i f  a k n-processor M BN  with degree of k  and loading
/  2 \ Lo f L  runs a k-ary tree algorithm optimally in n  step, then L  =  fi 3 .

Proof: This proof is the same as in Lemma 3.13 with some modifications as indicated

below. The number of connections collectively owned by processors p i j ,  p 1,2, • • •, 

P\,k-i • • P/,1, P/,2 , • • -, Pz,fc-i and their neighbors is at least

(* -  1) E  ((*J -  £)(*J +  !) +  1})  =  e«k - ! ) ( " -  =  9 ((*  -  i)" 2)-

These connections are distributed among l  +  (fc —1)^+ (k — 1)2(L—1)£ < 1+ L (k  — 1)+ 

L (L  — 1 )(k — I )2 buses connected to the above processors. Since each bus can have 

at most L  connections we have

L [ l  + L (k  -  1) -I- L(L  -  l) (k  -  l ) 2] =  S ((k  -  1 )2L3) =  Q((k -  1 )n2)

, which implies that L = Q (**■)*• ®

Remark: For constant k, L is still f2(n 3).
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The new accounting scheme developed for proving the lower bound of

Section 3.5 is also valid for the A;-ary tree algorithms. We state results from Section 3.5 

th a t require some changes.

L e m m a  3.30 For k > 2, let b be any active bus o f steps L, L  4- 1, • • •, 3L  4- 2. Let 

there be p result processors connected to bus b at the end of step 3L 4- 2. Let there 

be £ < L fu ll processors ( including the p result processors) connected to bus b at step 

3L  4 - 2. Then £ >  2p.

Proof: At step 3L  +  2 there are p result processors connected to bus bo- Therefore,

there must be at least p (not necessarily the same) result processors connected to bus 

b0 all the way from step L  (Corollary 3.11). In this interval, ownership of only one 

connection is transferred with each partial result. Therefore, during this interval of 

2L 4- 2 steps, the total number of connections owned by processors connected to bus 

b0 is increased by at least (2L  4- 2)(k  — 1 )p (Corollary 3.25). There is a to tal of f  full 

processors connected to bus bo a t step 3L  4- 2. Each of these £ processors is connected 

to (k — 1) buses different from 6o- Collectively, the number of connections owned by 

all £ processors on bus 60 is £ -f f  (fc — 1 )L, where £(fc — 1)L is the connection on the 

buses in the neighborhood of b0 and £ is the number of connections on b0 itself. Since 

the loading of any of these £ buses in the “neighborhood of bus bo" cannot exceed L, 

£(1  + (k — 1 )L) > p(k — 1)(2L +  2), which implies that f  >  2p, or wQ > 2. ■

For the same partitioning of the interval [L,n] in Section 3.5.1, we have the fol

lowing.

L e m m a  3.31 Let bo be an active bus o f steps L, L  4-1, • • •, n. For 0 < i < w, let Wi 

be the transaction weight for segment /,-. Then, wo =  2 and u;,+1 =  Wi'
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Proof: Lemma 3.30 proves that w0 = 2. Rest of the proof is the same as in

Lemma 3.18. However, notice that each processor in the neighborhood of the bus 

is now connected to k — 1 other buses. Therefore,

WiPi+id < &+i(fc -  1 )L  +  f i+l =  (1 +  L{k -  l))&+i, so ^  > TTLtk^vj 

By definition, u,i+l =  [J* lJ  =  [ l+L(dfc_i)w»j- ■

L em m a  3.32 Let bo be an active bus of steps L, L + 1, • • •, n. For 0 <  i < w, let 

Wi be the transaction weight for segment Ii. I f  l+Lfk_ ^  is an integer, then W{+1 =

2 ( ( k - l ) L + l )  ■

Proof: If is an integer, then j =  l+L*k_iy  Then from Lemma 3.31,

wi+1 =  and w0 =  2 . Solving this recurrence will yield u;l+i =  2 (i^z^rTy) •

■

T h e o re m  3.33 Forn > 2 , i f  a degree-k, loading-L, kn-processor M BN  runs kn-input
n

k-ary tree algorithm in n  steps, then L  =  0 ( logn^ -g^).

Proof: Let d — 2(1+ L(k—1)). This gives wy =  2y+l =  LfjJ- Since py >  1, >  2y+l.

T hat is 2y+l connection to a bus. Therefore, 2y+l <  L, and j  <  l°g !>■
n

Thus kL  log L  =  Q(n) which implies that L =  iogrt—iog'fc)~ ®

Remark: For constant k, L  is still fl(

We now outline the construction of a Tree MBN for k-ary tree algorithms. Fig

ure 3.9 shows an example when k =  3. The degree of this MBN is 4 and its loading is

3. In general, the k-ary tree MBN has kn processors, (k  — I )/:"-1 buses, and a degree 

of A; +  1. The loading is always 3.
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Figure 3.9: MBN for ternary tree algorithms

3.9 Concluding Remarks

We have proved tha t for any degree-2 MBN tha t runs B in(n ) optimally, its loading is 

Q (i5̂ r). If the MBN uses a direct mapping, then we have proved that the bound on 

the loading is f2(n). This is a tight bound as there exists an MBN with such a loading 

[85]. We have also shown a tradeoff between the speed and loading of degree-2 MBNs. 

In particular, we have proved tha t a degree-2, constant loading MBN can run B in (n ) 

if and only if it is perm itted to take 0 (n ) steps more than the optimal. We conjecture 

that an optimal-time, degree-2, binary-tree MBN has an fi(n) loading lower bound. 

If this is the case, then the f2(n) MBN of Vaidyanathan and Padm anabhan [85] is 

optim al for degree-2 MBNs.
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Chapter 4

Multiple-Bus Enhanced Meshes

Over the last decade several topologies have been proposed for connecting proces

sors in parallel systems. Of these, the two dimensional mesh has emerged as one 

of the most widely studied, due, in part, to its regular structure and simple layout 

in two dimensions. A disadvantage of the mesh is its large diameter, which is often 

the bottleneck of many fundamental algorithms. To circumvent this problem, while 

building on the advantages of the mesh, researchers have proposed meshes enhanced 

with buses (for example [1, 7, 8 , 11, 13, 19, 27, 30, 33, 51, 71, 72, 75]). Most such 

enhancements carefully select the set of processors to connect, but employ an overly 

simple m ethod to connect elements of that set. In this chapter we demonstrate the 

advantage of connecting these sets using MBNs in general, and binary-tree MBNs in 

particular.

A general idea in enhanced meshes is to identify (not necessarily disjoint) sets 

of processors of the mesh, and then connect processors in each set by a single bus. 

We will refer to these sets as connect-sets. Typically, a connect-set consists of pro

cessors in a  row (or column) of the mesh [1, 7, 10, 30, 51], or variants of this idea 

such as every x th processor of a  row (or column), for some integer x  [4, 17, 19, 75]. 

Hierarchical approaches [71, 64] have also been suggested for selecting connect-sets.

59
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Regardless of the method used, each connect-set is connected by a single bus. (A 

single “segmentable bus” [72, 75] can also used in this context.) We will refer to 

such architectures as Single-Bus Enhanced Meshes (SBEM s). W ith increase in the 

network size, and consequently the connect-set sizes, SBEMs require buses with high 

loading. Another problem of connecting a  large number of processors to a single bus 

is an increase in the demand for the bus, resulting in communication bottlenecks. 

One advantage, however, is the ease of broadcasting (provided the loading is not 

excessive).

In this chapter, we propose Multiple-Bus Enhanced Meshes (MBEMs) that allow 

the use of multiple buses to connect processors in connect-sets. In particular, binary- 

tree MBNs are very well suited for this purpose as they are designed to facilitate 

the two most widely studied applications of enhanced meshes, namely, semigroup 

operations and broadcasting. An MBEM with binary-tree MBNs along rows/columns 

(or their subsets) can be viewed as being similar to the mesh of trees, a very versatile 

topology [49]. A mesh of trees has mesh processors arranged in a  grid, and additional 

processors and links that connect each row and column as a complete binary tree. 

This network has the desirable features of both the tree and the mesh architecture 

such as a small diameter and a large bisection width. Variations of this idea, such as 

mesh with trees along diagonals, have also been proposed [49, page 295].

MBEMs have three important advantages over SBEMs. First, the loading of 

MBEMs can be limited (often to a constant), regardless of the network size. Second, 

the network for connecting elements of a  connect-set can be tailored by the network 

designer to obtain various trade-offs between network cost and performance. Third, 

an MBEM is a generalization of the SBEM; therefore MBEMs can capture the features 

of SBEMs.
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Almost all previous enhanced mesh architectures are SBEMs, focusing on identify

ing connect-sets rather than the method for connecting elements within them. Conse

quently, they have the disadvantage of high loading associated with SBEMs. For ex

ample Stout [76] and Bokhari [10] added a single global bus to the basic 2-dimensional 

mesh to facilitate broadcasting. Since all the processors are connected to this single 

bus, the loading is very high (G(N)). However, Aggarwal [1] added k  global buses to 

a d-dimensional array. This architecture has a  degree k  and also a  high G (N) loading, 

as each processor is connected to all A; global buses. Another model that has drawn 

considerable interest is the mesh with multiple broadcasting buses [7, 8 , 30, 51, 76]. 

In this model, each row and the column of the mesh is connected to a single bus. 

Consequently, the loading is Q (y/N). A partial solution to the high loading problem 

has been to connect only a selected subset of row/column processors to a bus. For ex

ample Chen et al. [17], Bar-Noy and Peleg [4], and Serrano and Parham i [75] connect 

every N s  processor on each row and column to a bus. These methods still have a high 

loading (Q (Na), for a  > ! ) •  Raghavendra [71] has proposed the HMESH, a hierar

chical architecture that reduces loading, but only at the cost of a large non-constant 

degree. Pan et al. [64] proposed the IMMB architecture, which uses a multi-level 

mesh hierarchy. Even though its degree is small, it has a high 0 (y /N )  loading. Ser

rano and Parhami [75] used buses with segment switches in each row/column of the 

mesh. Although this reduces the loading somewhat, the model still has a Q (y/N ) 

loading.

A large portion of results on enhanced meshes has been performing semigroup 

operation (reductions and semigroup operations). Stout [76] showed that finding 

maximum/minimum, median, and sorting can be done in 0 (y /N ) , 0 (y /N  log N ), 

and 0 { N ) time with a single global bus. Bokhari [10] improved the time required
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for finding the maximum/minimum to 0 ( N 3) steps. Aggarwal [1] added k  global 

buses to a d-dimensional array, and showed th a t finding maximum/ minimum re- 

^ - 1  time. Prasanna-Kumar and Raghavendra [69] derived an 0 (N « )  

tim e algorithm for running semigroup operations on a  y /N  x y /N  square mesh with 

broadcast buses. Chen et al. [17] and Bar-Noy and Peleg [4] have shown that the 

running tim e can be reduced to 0 (N » ) ,  if a rectangular N»  x N # mesh augmented 

with broadcast buses is used. Serrano and Parhami [75] added segment switches to 

the buses and achieved the same running time, while reducing the loading. Chung 

[19] reduced the time to O(N^o) while Pan et al. [64] achieved better time on an 

enhanced mesh of low aspect ratio.

In addition to semigroup operations, enhanced meshes have also been used to solve 

other classes of problems as well. For example, Bhagavathi et al. [7] have shown that 

many visibility problems, such as convex hull, can be computed in O(logiV) time on 

a  y /N  x  y /N  mesh with multiple broadcast buses. In a  different paper, Bhagavathi 

et al. [8] established that selecting the k th smallest element in a  rectangular N» x
5 1 3N  a enhanced mesh can be done in 0(N™  (log N)<) time. The batched searching 

and ranking problem (which is fundamental to many algorithms including database 

querying, pattern  recognition, robotics and VLSI), where m  values stored in a y /N  x 

y /N  mesh with multiple broadcast buses, has been be solved in 0 ( \o g N  + y / in )  time

[ H i -

Some architectures using multiple buses for connect-set have also been proposed. 

The GMCCMB [19] allows several buses to connect elements of a connect-set, it 

represents a particular situation tha t can be viewed as a farther refinement of the 

connect-set itself, rather than employing a specialized MBN. Indeed, our results im

prove on those of the GMCCMB. The TBN [25], BBT [26] and BRT [27] are MBEMs,
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that also use binary-tree MBNs to enhance the mesh. However, these results do not 

provide a  general treatm ent of the topic or relate cost and performance issues as is 

done in th is work.

Given any iV-processor, — bus, binary-tree MBN, we first develop a framework for 

deriving other binary-tree MBNs that provide different cost/performance trade-offs. 

The prim ary parameters considered are time for reduction and broadcasting, loading, 

degree, and layout area. We also study binary-tree MBNs with “segment switches” 

on buses. (A segment switch allows a bus to be cut into several parts that can be 

used simultaneously as independent bus segments.)

We use the binary-tree MBN derivatives mentioned above to construct MBEMs 

and show how the network parameters can be adjusted to obtain various trade-offs. 

Tables 4.1 and 4.2 (pages 73 and 82) show some param eter choices, with interesting 

possibilities. All MBEMs in the table have optimal area and constant degree. Al

though our discussion on semigroup operations focuses on reduction, the results can 

also be extend to prefix computations (see Section 2.4, page 17).

In the next section we briefly discuss the parameters used to evaluate MBEMs. In 

Section 4.2 we use a given binary-tree MBN to derive other binary-tree MBNs. We 

put these results together in Section 4.3 to construct enhanced meshes with a wide 

range of cost/performance trade-offs. Section 4.4 deals with similar ideas for MBEMs 

with segment switches. Finally in Section 4.5 we summarize our results and make 

some concluding remarks.

4.1 Preliminaries

In this section we discuss some preliminary ideas and define some terms used in rest 

of the chapter.
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4.1 .1  M B N  M easures

We will quantify the notion of cost and performance of an MBN (and an MBEM 

based on it) using five measures: reduction time, broadcast time, degree, loading, 

and layout area. These quantities are not entirely independent of each other, but 

collectively serve to measure the network’s cost and performance. The number of 

buses has also been used in previous results to reflect the sparseness of the network. 

We ascribe less importance to this quantity in this work, as the layout area captures 

the notion of network sparseness. The degree and loading have been discussed in 

Section 2.2 (page 13). We now describe the remaining parameters.

R e d u c tio n  tim e : This is the time required for the MBN to reduce inputs at its

processors to a single result, using a binary-tree algorithm.

B ro a d c a s t tim e : This is the time required for the MBN to broadcast a piece of 

information from one processor to all other processors. A broadcast (from a fixed 

source) can be viewed as a traversal of a binary tree from root to leaves, so the broad

cast time is upper bounded by the reduction time for the MBN. If the broadcast can 

originate from any processor, then the broadcast time is at most twice the reduction 

time (corresponding to a traversal to the root of a tree, and a broadcast down to the 

leaves).

L ayou t: An X  x Y  layout of an MBEM or MBN is a placement of its processors

and buses in two layers within an X  x Y  rectangle. A “word-model” is assumed in 

which buses and connections between processors and buses are of unit width. Pro

cessors themselves are assumed to be of constant area; this is reasonable for constant 

degree MBNs, such as those considered in this chapter. The layout is assumed to be
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rectilinear; that is, all buses and connections consist of horizontal and /o r vertical line 

segments (wires). The two-layer layout places horizontal and vertical wires on two 

different layers with “vias” connecting layers when needed. The area of an X  x Y  

layout is X Y  and its aspect ratio is • Clearly, a low area is desirable, while a

low aspect ratio facilitates easier implementation.

As mentioned earlier, we will use MBNs to construct MBEMs. Since these MBNs 

will be used with connect-sets, each of which spans a single row or column of the mesh, 

we will only consider MBN layouts in which all processors are placed in a  line along 

one side of the rectangle enclosing the layout. Such a layout is called a “perim eter” 

layout. Since a  perimeter layout typically has one side of size 0 ( P ) ,  where P  is 

the number of processors, we will specify a high aspect ratio, perim eter layout by its 

layout height H\ this represents a P x H  layout (see Figure 6.5, page 119). The layout 

of the MBEMs, however, will be dense and place processors throughout the enclosing 

rectangle to obtain a constant aspect ratio. Here the layout must be specified by both 

dimensions of the enclosing rectangle; i.e., as an X  x Y  layout.

4 .1 .2  M u ltip le -B u s E n h an ced  M eshes

A Multiple-Bus Enhanced Mesh {M BEM ) has a  set of processors connected by an 

underlying mesh topology. The processors are grouped into (not necessarily disjoint) 

sets Co, Ci, • • •, Cz, called connect-sets. The selection of these connect-sets is an 

architectural choice, made with an eye on the application domain, cost and desired 

performance. A typical connect-set includes an entire row/column [1, 10, 51] or 

subsets of a row or column [4, 17, 19, 75]. O ther more complex methods have also 

been proposed [33, 64, 71].
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The processors of each connect-set are connected via one or more buses. Up 

to this point, there is no difference between MBEMs, and traditional Single-Bus 

Enhanced Meshes (SBEMs). The difference between them is in the m anner in which 

processors of a connect-set are connected. In an SBEM all elements of a  connect-set 

are connected to a single bus, dedicated to that connect-set. In an MBEM, however, 

any MBN could be used to  connect elements of a connect-set. As a particular case, if 

MBNs, each with one bus are used, then the MBEM becomes an SBEM. Therefore, 

MBEMs can be viewed as generalizations of SBEMs. In general, a  different type of 

MBN may be used for different connect-sets. They could even be different for the 

same connect-set in two different MBEMs. Thus the idea of decomposing the mesh 

into connect-sets is independent of the method used to connect each connect-set. It is 

the method of connecting them that distinguishes SBEMs (that use single buses) from 

MBEMs (that use multiple buses). We show in this chapter that there are significant 

advantages to connecting elements of connect-sets by multiple buses.

4.2 Binary-Tree MBN Extensions

In this section, we present a method to construct a  2n x 2m MBN from any given 

2" x 2n_1 binary-tree MBN (where 0 <  m  <  n). We apply this general result to the 

Tree MBN (Section 3.6, page 44) and then use the resulting 2" x 2TO binary-tree MBN 

to enhance 2-dimensional meshes (Sections 4.3 and 4.4).

L em m a  4.1 Let X (n )  be a 2” x 2n_l M BN with degree and loading o f dn and in, 

that runs B in(n) in tn steps and that performs broadcast in qn steps. Let X (n )  have a 

layout height of hn. Then fo r  any 0 <  m  <  n, there exists a 2n x 2 m MBN, X '{ n , m), 

with degree and loading dm+i and i m+\ + 2 n-m — 2, that runs Bin(n) in  2n-m -l-£m+1 —2
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steps. The M B N X '(n , m) has an hm+i layout height and a broadcast time o fqm+1 + 2

steps.

Proof: Consider running B in(m  +  1) on X (m  + 1). Clearly the first step divides the

2m+1 processors into 2m pairs, each of which uses a distinct bus. For any 0 <  i <  2m+l, 

let processor pair (i , 7r(z)) use bus b(i) in the above step. Construct the 2n x 2m MBN, 

X '(n , m), as follows. Divide its 2n processors into 2m+l sets, 5, (where 0 <  i < 2m+1); 

each set consists of 2n_m_1 contiguous processors of X '(n ,m ) .  Designate one of the 

processors, of each set as its “leader.” Connect each non-leader processor of 5, U 

to bus b{i) and connect the 2m+1 leaders to the 2m buses as in X ( m  +  1). Note that 

the leader of Si is also connected to bus b(i).

The MBN X '{ n , m) runs Bin{n) by first combining the inputs in Si and (via 

bus b(i)) into the leaders of Si and £*(,) in 2(2"_m_l — 1) =  2n~m — 2 steps. This 

effectively reduces B in(n ) into B in(m  + 1), which is next run as on X (m  + 1) in <m+1 

steps. The processors of X (m  +  1) have at most dm+1 connections. All the other 

processors have only one connection each. Therefore, the degree of X '(n , m )  is dm+i- 

Each bus of X ’(n ,m )  is connected to 2n-m processors. Two of these 2n-m processors 

are part of X (m  +  1). Therefore, the loading of X '(n ,m )  is 2n-m — 2 4- £m+1. Since 

the layout height of X (n )  is hn, the layout height of X (m  + 1) is hm+i■ Any processor 

in X '{n , m ) can be reached from another processor by traversing in MBN X (m  -I- 1) 

and along two additional bus (within a group). Since the broadcast time of X (n )  is 

qn, the broadcast time of X '{n ,m )  is qm+i +  2 steps. ■

We now discuss the implication of Lemma 4.1. Observe that if tn =  n  (which is 

optimal), then the time for X '(n , m )  to run B in(n ) is 2n-m +  m  — 1, which has been 

shown to be optimal for any 2n x 2m MBN [2]. If dn is a constant, then so is dm+1, 

the degree of X '{n , m). If £n =  3, then the loading of X '{p , m) is 2n-m -I- 1, the best
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Figure 4.1: A 32 x 8 Tree MBN

possible for any connected 2n x 2m MBN (see Lemma 3.1, page 21). Thus, X '{p ,m ) 

inherits optimal features of X (p). In particular, the 2n x 2"-1 Tree MBN, T {n)  (see 

Section 3.6, page 44), runs Bin(n) optimally and has degree and loading of 3 each. 

Lemma 4.1 allows 7”(n) to be extended to a  2" x 2m MBN (for any 0 <  m < n) that 

runs Bin(n) in optimal time, whose degree is 3 (same as that of T (n)), and whose 

loading is 2n-m +  l  (which is optimal). Figure 4.1 shows the structure of a 32 x 8 Tree 

MBN. This MBN has a loading of 5, and a degree of 3. Its time for running B in(5) 

is 6 steps.

The selection of an appropriate MBN to connect the processors in the connect- 

set is crucial as it determines all the im portant network parameters (running time, 

degree, loading, etc.). For this work we will use the Tree MBN. (Other MBNs such 

as the delayed root MBN (Section 3.7.2, page 49) or those of [27, 24] could also be 

used.) Though the Tree MBN is defined for 2" inputs, it is easily modified to handle
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N  (not necessarily a power of 2) inputs. It can also be verified (see Figure 3.6(a)) 

that a 2" x 2n_1 Tree MBN has 0 (n ) layout height. For brevity, we will express 

the performance measures (time, loading, degree etc.) of the Tree MBN in terms of 

orders, rather than exact values. We now summarize the properties of the above Tree 

MBN in the following theorem using the order notation.

T h e o re m  4 .2  For 1 <  M  <  y ,  there exists an N  x M  Tree M BN  with constant de

gree and 0 ( |£ 0 loading. It i~uns an N-input, binary-tree algorithm in O +  log A/) 

steps. This MBNs has a 0 (log  M ) layout height and O (log AT) broadcast time.

4.3 Meshes with Tree MBNs

In this section we construct an MBEM called the Mesh with Tree MBNs th a t uses 

the Tree MBN to connect processors of connect-sets. This structure has several 

advantages over other enhanced meshes proposed in the literature. We derive some 

results to highlight these advantages. Our description here uses the least number of 

param eters to describe the idea. This idea can be generalized to include different sized 

and dimensioned meshes, MBNs other than the Tree MBN, and different sizes/types 

of MBNs for different connect-sets.

For integers N ,A ,B  > 1 define the mesh with Tree MBNs, A/iT{N , A , B ), as 

follows. Arrange N  processors as a y /N  x y /N  mesh. Divide this mesh into A  x A  

submeshes (Figure 4.2(a)), and designate one processor (the top, left processor 

say) of each submesh as the “leader.” The leaders form a  x array. For 

0 <  i < processors {ptJ : 0 <  j  < ^ p } , form the horizontal connect-sets and 

processors {pjyi : 0 <  j  < form the vertical connect-sets. In other words, rows 

and columns of leaders form connect-sets. Each connect-set is connected via B  buses 

to form a *^p x B  instance of the Tree MBN (Figure 4.2(b)). If B  =  1, then there will
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be a single bus in each Tree MBN connecting the horizontal and vertical connect-sets 

and the resulting SBEM structure will be the model of Chen et. al [17], if A =  N*  

and tha t of Bhagavathi et. al [10], if A =  1. We now outline the three m ajor phases 

involved in running an AT-input binary-tree algorithm on this structure.

1. Local reduction: Reduce the A x  A  inputs in each submesh to a single partial 

result in its leader using the local mesh links. This requires 2(A  — 1) steps and 

the problem size reduces to jp .

2. Horizontal reduction: Use all *^p x B  horizontal Tree MBNs (shown as H  

in Figure 4.2(b)), in parallel to reduce ^ p  partial results in leaders of each 

horizontal connect-set to a single partial result. The time and loading for this 

phase are 0 ( ^  +  logB) and O ( ^ ) ,  respectively (Theorem 4.2). The problem 

size is now reduced to ^ p .

3. Vertical reduction: All partial results of the horizontal reduction step are in one 

connect-set. This phase is performed on the vertical ^ p  x B  Tree MBN of this 

connect-set. The time and loading for this phase are again 0 ( ^ |  +  logB ) and 

O ( ^ J ) .  The inputs are now reduced to one result.

The overall time for running an iV-input binary-tree algorithm on A4T (N , A, B ) 

is the sum of time required for each of the three phases; that is, the reduction time is 

0 (A  +  +  logB ). The broadcast time is the time it takes for a piece of information

to travel from one processor to any other processor. In this MBEM, it is equal to the 

broadcast time of two ^ p  x B  Tree MBNs and time required to reach any processor 

in an A x A submesh. Therefore, the broadcast time is 0 (A  +  logB). The loading is 

O ( ^ )  and the degree (including the local mesh connections) is 4 + 2  x 3 =  0 (1 ). The 

total number of buses (not including local mesh connections) MBEM is 0 ( ~ * ^ ). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

• —»— • — j—• —• — < i— ---------- • —•

fi£iH====ti
y/N

• ------ #—• — •- • — •

y /N

(a): Leaders shown as large circles

A

H

4 4  ......  . 4
H

V

4
V

4  .
H  = V  =
f  x f l  Tree MBN

V

4

H

4 4  ......  . 4
(b): Binary tree MBNs connecting the leaders

Figure 4.2: Structure of a mesh with binary-tree MBN
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VLSI area required for the y /N  x y /N  processor array alone is N . Therefore, the VLSI 

area of N iT (N ,  A, B ) is f2(iV). Each of the horizontal and vertical MBNs has pro

cessors and, as shown in Figure 4.2(a), these processors are separated by a distance of 

A  4- log B  units. Therefore, each of these MBNs has an O  ( (^ p (A  +  log B ))  x logB ) 

VLSI layout. Since the ^ p  vertical and horizontal MBNs have symmetric layouts, 

N IT (N , A, B ) has a constant aspect ratio O ((y /N (  1 +  x ( / N ( l  +  ^ n ) )  lay

out. Therefore, its layout area is 0 ( N  + Afl̂ gg ). In summary, M T ( N ,  A, B)  has the 

following:

Degree =  10

Loading =  0 ( ^ J )

Broadcast time =  ©(A-I-logB)

Reduction time =  ©(A 4- ^  4- logB)

Number of buses =  ©(

Area =  ©(iV +  ^ f £ )

Aspect ratio =  0(1)

Since the reduction time is fi(A) and Q(logiV) (N  inputs cannot be reduced in 

less than logiV steps), we choose A =  fi(logN).  Since B  =  O(N),  logB  =  O(logiV). 

Therefore, A =  D(logB). Then Ai T ( N , A , B )  has 0(A r) area, which is optimal. 

W ith L =  0 ( ^ ? )  denoting the loading, we have

Degree 

Loading 

Broadcast time 

Reduction time

=  10 

=  L 

=  ©(A)

=  ©(A +  L)
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Number of buses =  0 (B 2L)

Area =  O(iV)

Aspect Ratio =  0(1)

Notice that it is possible to make trade-offs between loading and the num ber of 

buses, while keeping the time and VLSI area unchanged. Table 4.1 shows results for 

various choices of A  and L. The last two entries of the table also show reduction 

results on other (SBEM) architectures in the literature. Notice tha t our m ethod 

matches that of the GMCCB [19], while having a better aspect ratio and providing 

additional possibilities for the same time, or for the same loading. Compared to

IMMB [64] our method has a better loading for z < \  and provides more possibilities

for the loading (given a fixed time).

Table 4.1: Some results for meshes with Tree MBN

Architectures Time Loading No of Buses Aspect Ratio
A  = N i N s constant N s constant
A  = Ns N s Ns Ns constant•12II N to constant NTS constant
A  =  Nio N ts NTo NTS constant
A  =  N t* N ts constant N  18 constant
A  =  N ts NTS N T S • rN  18 constant
for z > 0, A  =  log* N log2 AT L JV

L  \ o f \ N
constant

for z > 0, A = N z N z 3 constant
for z > 0, A  =  N z N z N z N l~3z constant
GMCCMB [19] NTS NTS NTS N s
IMMB [64], for z >  0 N z N* N l~3z constant
In all of the cases VLSI area is 0  (N)  and the degree is constant. 
All the  entries show orders rather th an  absolute values.
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4.4 MBEMs with Segment Switches

A segment switch placed on a bus can break (when opened) the bus into two inde

pendent buses. When the switch is closed, the two segments are fused together and 

they function as a single bus. It has been well studied in the context of dynamically 

reconfigurable architectures [59, 77] and other bus-based networks [72, 75]. Since seg

ment switches allow a bus to be configured to suit a particular step of an algorithm, 

they could be used to reduce the loading as shown in this section.

4 .4 .1  B inary-T ree M B N s w ith  Segm ent Sw itch es

In this section we derive results similar to Theorem 4.2 for binary-tree MBNs with 

segment switches. We then use these derivative binary-tree MBNs to enhance the 

mesh.

Addition of segment switches requires further development of some of the ideas 

used. These ideas are in the setting of a given computation (such as reduction or 

broadcasting). We assume that a segment switch changes state at least once during 

the course of the computation. A bus may be defined as a maximally connected 

segment resulting from all segment switches being in the closed state.

The state of segment switches in an MBN may change during the execution of 

an algorithm. It is therefore possible to define two types of loadings for MBNs with 

segment switches, absolute and relative. The absolute loading is the largest possible 

loading of a bus (when all segment switches on it are closed); this matches the con

ventional idea of loading. The relative loading of a bus segment a t some step s of 

a computation is the number of connections and (closed) segment switches on that 

segment during step s. The relative loading of a step s is the largest of the relative 

loadings of all the bus segments of step s. The relative loading o f a computation is
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the largest of the relative loadings of all steps of the computation. Notice that the 

effect of bus loading (whether optical or electrical) is restricted to  within a segment. 

Therefore, relative loading is indicative of the demands on the system for that com

putation. On the other hand, absolute loading is useful for the worst case scenario 

in a general purpose environment. Naturally, the absolute loading is no smaller than 

the relative loading of any computation.

We now describe two methods for running binary-tree algorithms on MBNs with 

segment switches.

Consider a bus with K  segment switches numbered 0,1, • • •, K  — 1. When all the 

switches are open, the bus is broken into K  independent segments1. Let these atomic 

segments be So, Si, • • • S k - i- In the context of a binary-tree algorithm, let there be 

one result processor holding a partial result per segment. (There may be many non

result processors connected to each bus segment.) The aim is to reduce the K  partial 

results to one final result.

M e th o d  1: W ithout loss of generality, let K  =  2* for integer k. This method

performs the reduction in log K  steps (optimal time) as follows (see also Figure 4.3). 

First, close the segment switches 0,2,4, • ■ •, K  — 2. This will fuse segments (So, Si}, 

(S2, S3}, • • •, S k - i}- Reduce the partial results of the two fused segments

to one result. Next, close the segment switches 1,5,9, • • •, K  — 3 and reduce the 

two partial results of the fused segments to one result. At this step, four original 

bus segments {So, Si, S2, S3}, (S 4, S5, S6, S7}, • • • ,{S*-_4, S K - 3 , S K- 2, S*-_i} are fused 

together. This process is carried out doubling the number of segments fused, until all 

the segments are fused together and the last two partial results are reduced to one

1 Actually ther are i f+ 1  segments, but we will keep the discussion simple by leaving one unutilized.
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step 1 
step 2 
step 3

Figure 4.3: Steps of method 1

final result. The time for this reduction is clearly log AT steps, and loading is equal to 

the number of processors connected to the entire bus (or at least half this number). 

Since all the processors are connected via the bus when all the segment switches are 

closed, the broadcast tim e of this method is only one step.

M e th o d  2: This m ethod performs the reduction in K  steps as illustrated in Fig

ure 4.4. First close segment switch K  — 2, and reduce the inputs in segments S k - i  

and S k - 3 to a result in segment S k - 3. Next open segment switch K  — 2 and close the 

segment switch K  — 3. This will fuse segments S k - 3 and S k - a- Reduce the partial 

results in segments S k - z and S k - a into a result in segment S k - z • This reduction 

process is carried out, until the last two segments S\  and So are fused together and 

their results/inputs are reduced to one result in segment So. The time for this re

duction is clearly K  — 1 steps. Since at most two segments are fused a t any given 

time, the loading of this method is equal to twice the number of processors in each 

segment. For this loading, the broadcast time is the same as the reduction time.

We now present two methods to construct an S-segment switch, N  x  M  binary- 

tree MBN from any given N  x y  binary-tree MBN. We propose two constructions, 

each of which uses the two methods discussed above.
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Figure 4.4: Steps of the m ethod 2

C o n s tru c tio n  1: Let X ( N )  be an iV x |  MBN. The aim is to use X ( N )  to

construct an N  x M  MBN X i (N ,  M,  S, K )  with S  segment switches and a parameter

K  th a t controls its running time and relative loading. Let these parameters satisfy

1 < M K <  S  < N .  For brevity and without loss of generality, assume tha t quantities

such as AT S
M ’ M K

and -rr are integers.

The idea is to first use 4f buses with segment switches to reduce the N  inputs to

M  partial results. Next use the remaining buses (without segment switches) as an 

M  x y  instance X (M ) the given MBN. We now describe the reduction of N  inputs 

to M  partial results. Each of buses used for this part is used to obtain 2 partial 

results. Since all buses proceed identically, we describe the activity of only one.

Of the N  processors and S  segment switches, ^  processors and switches are 

assigned to each bus. These processors and switches are arranged on the bus as shown 

in Figure 4.5. The processors are divided into ^  segments, with a segment switch 

between adjacent segments. There are segments, one per switch. Cluster

K  contiguous segments into a group. Each group spans K  segments and there are 

groups. The reduction proceeds as follows.
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Figure 4.5: Construction 1

1. Open all the segment switches, and sequentially reduce the j f  inputs in each 

segment. This takes y  — 1 steps, and the relative loading of each bus segment 

is f .

2. Use Method 1 to reduce each group of K  segments in O (log ft') time with a 

relative loading of

3. Use Method 2 to reduce group partial results to the two partial results for the 

bus. This takes steps with relative loading

4. Reduce the M  results on an Af x y  instance X  (Af) of the given MBN.

If X ( N )  runs in t n  steps with relative loading £n , this step runs in t \ f  steps with 

£m relative loading. If the given MBN X  (N ) has degree cfor, broadcast time qs  and 

layout height hff, then the total time required to reduce N  inputs on X \ (N,  M, S, K)  

is 0 ( | r  +  log ft" +  -fjK +  t M). The relative loading and degree are 0(^K - + £m ) and 

dM respectively. The layout height and the absolute loading of Xi (N ,  M ,S ,  K)  are 

O(Hm ) and 0 ( ^  4- £\f). It is easy to see that the broadcast time of X \ (N ,  M,  S, K)  

is determined by step 3 and the broadcast time on X ( M ) .  Therefore, the broadcast 

time of X i  (N, M,  S, K )  is 0(gjvf +  j^ic) steps.
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Figure 4.6: Construction 2

L em m a  4.3 Let X ( N )  be an N  x y  M BN with degree and loading d s  and £ \ .  Let 

X ( N )  run an N -input binary-tree algorithm in t s  steps and have a layout height of 

h s - Let the broadcast time of this M BN be q \ .  For 1 <  NIL < S  < N , there exists an 

S-segment switch, N  x  M  M BN Xy( N ,  M,  S, K )  with degree dM, relative

loading, and 0 ( j L  +  £m ) absolute loading that runs an N -inpu t binary-tree algorithm 

in 0 ( ^  + j ^  +  lo g /f  +  tjvf) steps. The VLSI height o f  X i(N , M , S, K ) is 0 {h \ f )  and 

the broadcast time is 0 ( q ^  +  steps. ■

If the given MBN X  (N ) is the Tree MBN, then we have the following result.

T h e o re m  4.4  For 1 <  < S  < N , there exists an M B N  with constant degree,

@ (^ r)  relative loading and 0 ( ^ )  absolute loading that runs an N -input binary-tree 

algorithm in @(^r +  +  log K  +  log M ) steps. This M B N  has a layout height of

0(log  M ) and a broadcast time o /0 (logA f +  steps.

C o n s tru c tio n  2: Again let X ( N )  be the given MBN. This construction uses a

small number of segment switches S  < M.  Use Lemma 4.1 to construct A '(^r, 

tin |  x |  derivative of X ( N ) .  Use S  such X ' ( ^ - , ^ ) s  to reduce the N  inputs to 

S  partial results. Now the problem is that of reducing S  partial results on a bus 

(see Figure 4.4). W ith a parameter K  (where 1 <  K  < S ), this can be done with 

Method 1 first and then Method 2 in ©(log K  +  j^) steps with a relative loading of 

Q(K) .
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Construct X 2(N, M,  S, K ) as follows. Distribute all S  segment switches along one 

bus. Divide the N  processors and M  buses into S  equal parts. Construct S  copies of 

MBN X '( y ,  and connect one MBN each to the S  bus segments.

W ith the same notation as in Construction 1, we have the following result.

L em m a  4.5  Let X  (N) be an N  x y  M BN with degree and loading d s  and £ \ .  Let 

X ( N )  run an N -input binary-tree algorithm in t s  steps and have a layout height of 

htf. Let the broadcast time of this M BN be q \ .  For 1 < K < S < M < y > there 

exists an S-segment switch, N  x (Af +  1) M B N  X 2(N, M,  S, K )  with d*M degree, 

©(2K  +  la**) relative loading and 0 ( 5  +  ^  absolute loading that runs an

N -input binary-tree algorithm in  ©(-^ +  +  log/if 4- taw.) steps. The layout height

o f X 2(N, M,  S, K )  is Oh(™ )  and the broadcast tim e is Q(q^M +  £)■ ■

Remark: Note th a t X"(N ,  M , S, K )  is an M  x (M  +  1) MBN.

If the given MBN X (n) is the Tree MBN, then we have the following result.

L em m a  4.6  For 1 < K < S < M < y > there exists an M BN  with constant degree, 

Q (K  +  Yi) relative loading and ©(S +  absolute loading that runs an N -input 

binary-tree algorithm in 0 ( j j  + £  + lo g  K  + lo g (^ ))  steps. The layout height o f the 

M B N  is 0 ( log(4f)) and the broadcast time is O (log(4f) 4- steps. ■

4 .4 .2  M esh es w ith  Tree M B N s and  S egm en t S w itch es

The idea of Section 4.3 readily extends to binary-tree MBNs with segment switches. 

Here the MBN connecting row and column connect-sets is a x B , S  segment-switch 

extension of the Tree MBN, obtained from Construction 1 (Theorem 4.4). The steps 

involved in running a binary-tree algorithm with segment switches are the same as in 

Section 4.3. Therefore, we simply sta te  the results.
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Time =  e ( A  + ^  + - ^  + l o g K +  loS B)

Relative loading =

Absolute loading =  © (^ ^ )

Number of buses =  0 ( ^ ^ )

Number of segment switches =

Broadcast time =  0 ( ^  +  logB)

VLSI area =  G ( N  +

Let A'  =  ^  and A"  =  . If we let 1 <  ^  <  S  <  ^  <  AS,  then the

conditions for Lemma 4.5 are satisfied by row and column MBNs. Also 1 <  777 <  

S  < A ' S  < A S  which implies that A' < A.  If we also set S  < A B K  then A" < A,  so 

we have the following:

Reduction time =  (A)

Relative loading =  Q(A'K)

Absolute loading =  Q(A'A"K)

Number of segment switches =  0 (34777)

Number of buses =  a^a a "

Broadcast time =  0 (A " +  logB)

VLSI area =  0(AT)

Using the above set of equations, we can compute various network parameters for 

different values of running time, segment switches and K . We show some results 

in Table 4.2. This table clearly shows the effect of segment switches on loading. 

Compared to Table 4.1, for the same running time, a lower relative loading can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

Table 4.2: Some results for meshes with Tree MBN and Segment Switches

Case Time Relative
Loading

Absolute
Loading

Aspect
Ratio

Number 
of Buses

Number of 
Switches

A  = A ' = N s  
A" = K  — N s

JVi N s N s 0 ( 1 ) N s N s

A  = A ' — N s  
A" =  AT?, K  =  N s

N» N s N s 0 ( 1 ) N s N s

A  = N t s ,  A! =  1 
A" =  K  =  1

NTS 0(1) 0 ( 1 ) 0 ( 1 ) NTS NiS

A  = A'  =  N t s  

A" = K  = N t s

N ts N ts NTS 0 ( 1 ) N ts jV&

A = N z, A! =  1 
A" = K  =  1

N z 0 ( 1 ) 0 ( 1 ) 0 ( 1 ) iVl-2z N i-*2

A  =  log* N , A ' = L  
A" =  K  =  1

log* N L L l o g ' N 0 ( 1 ) /V
L  log2* N

N ' 
tlog2* N

A = A , = N Z 
A" = N Z, K  =  1

N z N z N*z 0 ( 1 ) N 1-*2 N l-3z

A — A" = N z 
A! =  K  =  1

N z 0 ( 1 ) N z 0 ( 1 ) N l~3z

Segmented Bus 
Enhanced Mesh [75]

N* N s N s N s N s Ns

achieved. For example with time 0 ( n z) and N l~3z buses, the loading is constant. 

For the same case in Table 4.1 this loading is N z. Moreover, the results here are 

better then that has been achieved by Serrano and Parhami [75]. For a running time 

of 0 ( N s ) ,  we have a much wider choice of parameters, and the resulting MBN is 

superior in all respects to that in [75]. Specifically, we can achieve a much lower 

loading, while improving on aspect ratio, absolute loading and number of buses. Also 

compared to the IMMB [64] we now have for 0 ( N Z) time a constant relative loading 

with the same number of buses.
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Traditionally, buses have been used in a variety of ways to enhance the basic mesh. 

In all these schemes, a single bus is used to connect processors. In this chapter we 

have explored the use of multiple buses to connect processors together to form meshes 

enhanced with MBNs. The traditional single bus approach is a special case of our 

framework.

The IMMB can also achieve O(logiV) time, but to  reduce its loading to  constant, 

a  high-dimensional, sub-optimal area structure [86] is needed. The methods pre

sented in this chapter can be applied with any MBN. Therefore, these methods can 

be adopted for use with other algorithms by suitably selecting MBNs in horizontal 

and vertical dimensions. If each processor (or some of the processors) is connected 

to several buses through segment switches, then it is possible to “dynamically re

configure” the MBNs. In th a t case, the same MBEM can be used to run different 

algorithms or different steps of the same algorithm optimally by reconfiguring the 

processor bus interconnection pattern.
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Chapter 5

Fault Tolerance

In Chapter 4, we showed th a t binary-tree MBNs can be used for general purpose 

enhanced meshes with properties similar to the mesh of trees [49]. This chapter deals 

with the construction of fault-tolerant binary-tree MBNs. Such MBNs can be used 

as fault-tolerant building blocks for enhanced meshes. We present two methods for 

constructing such MBNs. One of the methods is more general in that it can also be 

used for any MBN (not just binary-tree MBNs). It is particularly useful in situations 

where the MBN uses resources (buses and processors) non-uniformly. In other words, 

if a given algorithm uses some of the resources most of the time, and the rest not 

tha t often, then this method can exploit this situation to produce better results; 

binary-tree algorithms represent one such situation. The second method applies only 

to binary-tree algorithms.

Specifically, we present two methods called replication and recursive scheduling 

th a t add connections in a systematic and controlled manner to transform any given 

binary-tree MBN into a fault-tolerant one. Given any N  x  M  binary-tree MBN, 

A i,  and an integer 1 <  k < 4r, we derive a N  x M  MBN A i' that can tolerate 

the failure of any set of k buses. The performance of the fault-tolerant MBN, A4#, is 

measured in terms of (i) the tim e to run a set of computations designed for A i,  (i i ) its

84
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degree, and (Hi) its loading. These attributes of Ai '  depend on the corresponding 

attributes of A i .  Replication can also be used for handling processor faults. The 

methods we propose in this chapter accept any MBN as input, so the approaches for 

bus and processor faults are independent; that is, tolerance to processor faults can 

be imparted to  an MBN that is already tolerant to bus faults and vice versa.

Most previous work [3, 12, 15, 31, 45, 67, 68] on fault-tolerance in MBNs has 

focused primarily on issues related to connectivity/topology (number of failures to 

disconnect network, average distance between processors, etc.) and performance in 

a general purpose setting (such as throughput under various traffic models). Nadella 

and Vaidyanathan [57, 84] have considered the design of a specific fault-tolerant 

binary-tree MBN. The methods we present here are a generalization of that work 

in that it can be applied to any binary-tree MBN.

In Section 5.1 we state the assumptions used in the chapter. In Sections 5.2 and 

5.3, we detail replication and recursive scheduling. The extension of replication to 

processor faults is discussed in Section 5.2.5. In Section 5.2.6 we tailor the replication 

results specifically to binary-tree MBNs. We compare the two methods in Section 5.4 

and make some concluding remarks in Section 5.5.

5.1 Fault Model

We assume here that a faulty bus or processor is entirely faulty and completely 

unusable. We also assume that the faulty or fault-free status of each processor and 

bus is known before the MBN begins its computation and does not change during 

the computation. If a bus b (or processor p) is faulty, then a fault-free bus b' (or 

processor p') will be assigned to perform the functions of bus b (or processor p). We 

assume that bus bf (or processor p') has all the information necessary to perform
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these functions. The above assignment of responsibilities to  fault-free elements is 

done before the computation commences.

The focus of this work is on designing an MBN that has the required redundant 

connections available, while the actual fault handling procedure (including fault iden

tification and processing) is not considered. This may also be useful in improving the 

yield of a chip with binary-tree MBNs in which faults during manufacture can be 

bypassed by a one-time reconfiguration [44, 87].

5.2 Replication

In this section we develop the results for bus faults first, then extend them to include 

processor faults in Section 5.2.5. Replication is a general method that can be applied 

to any MBN. A key feature of replication is that it perm its a set of k  buses to be 

designated as ‘less im portant,” and the failure of an arbitrary set of k  buses can be 

treated as the failure of these less-important buses. In cases where not all resources 

are used equally, replication constructs a  fault-tolerant MBN tha t is better tuned to 

the given computational setting. Binary-tree algorithms is a  good example of uneven 

resource use, where the number of processors and buses required decreases by a factor 

of 2 with each level. We establish that for any 2" x 2n_l binary-tree MBN, replication 

gives a fault-tolerant MBN that requires at most 5 (resp., 2) extra  steps if as many as 

2n~2 buses (resp., 2n_l processors) fail. Such a  result would not be possible without 

considering the fact that some buses/processors are used for only a few steps. Even 

with this consideration, one cannot guarantee that the faulty elements would be the 

ones used lightly. Replication provides the effect of this guarantee by allowing the 

failure of any set of buses/processors to be treated as the failure of a fixed set of less 

im portant elements. This flexibility lends itself to designing a fault-tolerant MBN
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that is better tuned to perform a given set of computations. Since we assume that 

faults occur before the start of the computation, resilience to processor faults can 

be obtained as a  dual of the bus faults case. Therefore, replication can be used for 

processor faults as well.

5 .2 .1  A d d in g  R ed u n dan t C on n ection s

Given any N  x  M  MBN, A i,  and an integer 1 <  k < , replication constructs a

N  x M  MBN, 72*, th a t can emulate A4, even if any set of (at most) k  buses fail. 

The idea is to select k  replacements for each bus b and copy the connections of b 

to each of the k replacement buses. We first define 72* and then establish that 72* 

can treat any set of faulty buses as a designated set of less im portant buses. This is 

followed by the derivation of the fault-tolerance properties of 72*. Finally, we discuss 

tolerance to processor faults, as the dual of the bus fault case.

5 .2 .2  D efin itio n  o f  7?*

Let the buses of the given N  x M  MBN, A4, (and the generated N  x AT fault-

tolerant MBN, 72*) be 0,1, ■ • •, Af — 1. For any bus b of AA, let Proc[b : AA) denote

the set of processors of AA that are connected to bus b. For any 0 <  6 <  Af, let

R{b) =  {(6 — i) mod Af : 0 <  i <  k}  be the replacement set for bus b. Now

define the fault-tolerant MBN, 72*, as follows: For any 0 <  b < Af, Proc[b : 72*] =

(J  Proc[b' : A4]. 
feRW

Each bus b of 72* has all the connections of bus b of A4,  and the additional 

connections needed to replace buses (b — i)(m od Af) of A4, where 1 <  i  < k.

In the following example, we have arranged (permuted) the buses so that the 

connections of a bus replicated on the k  other buses overlap with existing connections. 

This can reduce the degree from (A;+l)d to kd. Permuting the buses in this m anner to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

0 1 2 3 4 5 6 7
0 1 0 0 0

1 1 • 0 0 0

2 1 0 0 0

3 1 • 0 0 0

4 1 0

5 1 • 0 0 0

6 1 0 0 0

7 1 0 • 0 0 0

8 0 0 0 1
9 0 0 0 1 0 •
10 0 1 0 0

11 0 1 • 0 0

12 0 0 1 0

13 0 0 1 0 • 0

14 1 0 0 0

15 0 0 0 1 0 0 •

Figure 5.1: The MBN of Figure 2.2 augmented to handle 3 bus faults

reduce degree may not be possible in all situations. W ith k  =  3, Figure 5.1 shows the 

MBN 72-3 corresponding to the 16 x 8 MBN, .M, of Figure 2.2 (page 14). A connection 

between a processor and a bus of A4 is indicated by a “1,” and a connection added 

for fault-tolerance is indicated by a “o.” Entries where an existing connection ( “1”) 

and an added connection (“o”) overlap are indicated by In this example, nearly 

half the buses are permitted to be faulty. Therefore, a dense MBN, .M3, is to be 

expected. The observations below show that this is not the case in general.

The following observations about 72* are straightforward.

1. If none of the buses are faulty, then 72* can emulate M. without any overhead. 

This is because for each bus b, Proc[b : M ] C  Proc[b : 72fc]. In other words, 

the set of connections of M  is a subset of those of 72*.
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2. If the degree of M. is d, then the degree of 72* is at most (A: +  1 )d. This is

because each connection to a bus b of M  is copied over to k other buses of

72*. Thus a processor connected to <¥ < d  buses of M. is connected to at most 

(k +  l)d ' < (k + 1 )d buses of 72*.

By arranging buses to maximize connection overlaps (shown as in Fig

ure 5.1), it may be possible to reduce the degree to kd. Notice tha t the degree 

of the MBN of Figure 5.1 is 7, rather than (3 +  1)2 =  8.

3. If the loading of M  is I, then the loading of 72* is a t most (k  +  l ) i .  This is

because each bus b of 72* is connected1 to

| Proc[6 : 72*] j <  JZ  |.Proc[&': Af]| <  (k + 1)£ processors.
6, €R (6)

Since not all buses have £ connections to sta rt with, the loading of 72* is usually 

much smaller than (k +  1)£.

5.2.3 T h e  D esign ated  Set

Often some buses of an MBN, A t, are more critical than others. This may be due to 

connectivity and /or usage in a particular set of computations. Failure of these “crit

ical buses” impacts the network performance more severely. By the same measure, 

failure of “non-critical buses” does not degrade the performance to the same extent. 

In this section we first prove that there is no loss of generality in assuming that a 

fixed set of k  buses is faulty (regardless of which k buses of 72* are actually faulty). 

That is, 72* can treat the failure of an arbitrary set of k  buses as the failure of a fixed 

set of k  designated non-critical buses. Next we show how this fixed faulty set can be 

emulated by the fault-free buses of 72*. This has the benefit of allowing the network

1 We denote the cardinality of a  set 5  by |S |.
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Figure 5.2: Graph Gz,a-

designer to designate a  suitable set of less im portant buses tha t can be treated as 

faulty.

For any 1 <  k < M , define a directed graph G k ,M  with nodes {0,1,2, • • •, M  — 1} 

as follows. There is a  directed edge (b, b') from node b to node b' iff b' =  (b+i) mod M,  

for some 1 < i < k.  Figure 5.2 shows Qz$. In the context of the N  x M  MBN, 72*, 

each node of G k ,M  represents a bus of 72.*,. Node 6 has a directed edge to each node 

that can replace it; th a t is, (6, U) is an edge iff b 6  R{V).

Let Q — {V,E)  be any directed graph and let U, W  C V  with \U\ C \W\.  An

injective2 function p : U — > W  is called a node disjoint correspondence iff

1. For each u €  U, there is a directed path in G from u  to p(u), and

2. For distinct i t i ,u 2 € U, the paths from ui to p(ttt ) and u2 to p(u2) are node

disjoint (that is, the paths have no nodes is common).

By establishing that Gk,M has a node disjoint correspondence from the set of faulty 

buses to the designated set of less im portant buses, we will show that the faulty buses 

can be treated as less important.

2A function p : U  — ► W  is injective iff ui ^  u2 implies th a t p(tii) ^  p{u2 ); th a t  is, d istinct 
elements of U  are m apped to  distinct elements of W .
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In the following we assume that ^  is an integer. This assumption greatly simplifies 

the discussion while the extension to arbitrary values of B  (relative to k) is quite 

straightforward.

Divide the vertex set, {0,1, • • ■, M  — 1}, of Gk,M into ^  segments So, S i, • • •, S m_ 1, 

each consisting of k  contiguous buses. For 0 <  i < let S, =  {ik + j  : 0 <  j  < k}; 

th a t is So =  {0,1,2, • • •, k  — 1}, Si =  {k, k  +  1, • • •, 2k — 1}, and so on.

L e m m a  5.1 For any 0 <  i < ^  — 1, let U  C S,- and W  C S,-+i so that \U\ < 

\Si+i — W  |. Graph Gk,M admits a node-disjoint correspondence p  : U — ► (St+i — W ).

Proof: For each u £ U  we will construct a  node disjoint path  in reverse. That is,

starting  from St+i — W , we will trace the path back to U. Let aj =  ik  +  j  and 

bj =  (i + l ) k + j  (where 0 <  j  < k) so th a t S,- =  {a7- : 0 < j  < k}  and SI+i =  {bj : 0 <  

j  < k}.  (Observe tha t aj has edges to elements aJ+i, aJ+2, • • •, a*, b\ , b?, ■ • •, bj.) From 

each bj 6 Si+1 — W,  trace edge (a,, bj) back to aj. If aj € U, then let p{a.j) =  bj, and 

edge (aj, bj) is the required node disjoint path  from a7- to S,+i — W .  We now consider 

the remaining elements of U and S,-+1 — W  (that is, those not mapped as discussed 

above). Let sets U' and U" be as follows:

U' =  { a j £ U : b j t S i+l - W }

= elements of U with no path established to S,+i — W  as yet;

U" =  {aj £ U  : bj €  Si+l -  W }

=  elements of Sj  that are not in U, but have been arrived at

from Sj+i — W .

Since \U\ < |5.-+i — W \, it is easy to see that |C/'| <  \U"\. Also note that U' and U" 

are disjoint. Let U' =  {a'Q, a\, • • •, a^} and U" =  {oq, a", • • •, a"}, where y >  x  > 1. 

Assume that element a" £  U" was arrived a t from element 6" £  5 t+I — W . We will
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i + 1

(a) Case a'- < a"

i + 1

(b) Case a' >  a"

Figure 5.3: An illustration of the proof of Lemma 5.1.

now attem pt to establish a node disjoint path from a' to a". If this can be done, 

then we have established a node disjoint path from a'- to b" (via a"). We consider two 

cases.

Case 1: (a' <  a") Since a'-, a" €  Si, there is an edge (a ', a") in Gk,M- (This is 

because Gk,M has an edge from an element of S',- to all larger elements of 5,). 

Let p(a ') =  bfj with the path being (a'-, a", 6") (see Figure 5.3(a)).

Case 2: (a' >  a") Since a" <  a' <  6J and Gk,M has edge (a", V-), the edge (a'-, h/-) 

also exists. Therefore let p(a ') =  b" with the path being edge (a!j,b") (see 

Figure 5.3(b)).

Since U' and U" are disjoint, the case a ' =  a'j is not possible. It is clear that 

p : U — y (Sj+i — W )  is an injection, and that for each u  € U, there is a pa th  from u
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to p(u). To see tha t these paths are node disjoint observe that paths consisting of a 

single edge pose no problem. The remaining 2-edge paths (due to Case 1) have the 

form (a'j, a", b"). The only danger is of a" being in the path of an element of U that 

is different from a ' . Since a" ^  U  and a" is unique for a given a ' , this is not possible 

and hence, p is a node-disjoint correspondence. ■

L em m a 5.2 Let F  C {b : 0 <  b < M } be the set o f (at most k ) faulty buses of 72*.■ 

Graph &k,M admits a node-disjoint correspondence p : F  — ► 5m _,.

Proof: For 0 <  i < let F* be the set of faulty buses in 5, and let X , =  F0 U  Fi U

• • • U Fi. We will now prove by induction on i (where 0 <  i < ™) that Gk,M admits 

a node-disjoint correspondence pi : X,-_i — > (5,- — Fi). Clearly this will prove the 

lemma.

For i =  1, let U = F0 — X 0 and W  =  F t . Since |Fo| +  |F i| <  |F | < k = |5 i|, we 

have \U\ =  |F0| < \Si — F t [ =  \S\ — W |, so Lemma 5.1 guarantees a node-disjoint 

correspondence pi : X q — > (Si — F\).

Let pi : X i_t — ► (Si — Fi) be a node-disjoint correspondence. Let F _ i  C S, — F  

be the set to which elements of X,-_i have been mapped by p,-. Since p,- is an injection, 

l*i-il =  Notice tha t |F - i | + |F |+  |F + l| =  |X t-_t |+  |F |+  |F+ i| =  |F0|+  |F |

+ • ■ • +|Fj_i| +  |Fj|-(- |F+i| < |F | < k =  |5,-+i|.

Therefore IF  U F _ i | 5~ |F + i — Fi+1|. W ith U =  F U  F - i  and W  =  F+i> Lemma 5.1 

gives us a node-disjoint correspondence p : ( F  U F - i )  — ► (F+i _  Fi+1)- Now define 

pi+i : X i — > (S.+i -  F + i)  as follows.

if 6 e X ,_ !
Pi+i(b) =  <

p(b), if b e  Fi
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Since /?, and p are-node disjoint correspondences and since A,-_ i and Y{-1 are 

disjoint, /?,+1 is a node-disjoint correspondence. ■

We say that bus b replaces bus V to mean that bus b assumes the identity of bus 

U, in the process losing its own.

T h e o re m  5.3  M BN  72* can treat the failure of any set, F , o f k  buses as the failure 

of a designated set, D , o f k  buses of N i.

Proof: W ithout loss of generality, let D  =  5 w _ t =  {M  — k, M  — k  + 1, • • •, M  — 1}.

By Lemma 5.2, there is a  node-disjoint correspondence p : F  — > D. For any faulty 

bus b €  F , let the path  from b to p{b) be (6 =  bo, bi, - • •, bx =  p{b)). Since 6j+i) 

(where 0 <  i < x)  is an edge of Gk,M, bus 61+i of 72* can replace bus 6, of A4. In 

other words, the faulty bus b =  b0 can indirectly be replaced by bus bx 6  D, via buses 

bx- i , b x- 2 , * * • j bi. The node disjoint correspondence guarantees tha t no bus is called 

upon to replace more than  one other bus. The only buses that replace other buses, 

but are themselves not replaced, are those of D.

Thus the buses can assume new identities so th a t, regardless of the set, F,  of 

faulty buses, the MBN can treat the designated set, D,  as faulty. We now show an 

example.

Let the set of buses be {0,1, •••,7} and let k =  3 with D  =  {5,6,7} and 

F  =  {1,2,4}. Then the node disjoint correspondence is given by the directed paths 

(1 ,3 ,6 ),(2 ,5), and (4,7). These paths are shown in bold in Figure 5.4. The new 

identities assumed by buses are as follows:

Original bus 0 1 2 3 4 5 6 7

Replaced by 0 3 5 6 7 - - -

Notice that buses of the designated set D  =  {5,6,7} are  not replaced, and are there

fore considered faulty.
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Figure 5.4: Node disjoint correspondences for an example

We now describe how the MBN copes with the loss of buses from the designated 

set. We say that fault free bus b e m u la te s  faulty bus V to mean tha t b assumes 

the work of in addition to its own. (This is different from the notion of bus b 

“replacing” bus V, where b loses its identity to V.) Each faulty bus b € D  (the 

designated set) is emulated by a fault-free bus 6' €  SQ. Since there is an edge in Gk,M 

from bus M  — k  +  6 G 5w _, to bus b e  So, for 0 <  b < k, such an emulation is always 

possible. We will refer to the set S q as the e m u la t in g  s e t .

5 .2 .4  Fault T olerance P rop erties  o f IZk

Earlier in Section 5.2.2 we established that if the degree and loading of A i  are d and £, 

respectively, then the degree and loading of 72* are (k + l)d  and (k + 1)£, respectively. 

We now derive the time needed for 72* to emulate a  computation on A i.

The time required for 72* to run a computation of Ad depends on the choice of 

the designated set D  and the emulating set S0 (in addition to the computation to 

be performed). For example, if the buses of S q are never used concurrently with 

those of D, then 72* emulates A i  without any loss of speed, even when k  buses fail. 

At the other extreme, if buses of SQ and D  are used simultaneously for t  steps in a
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computation, then these t steps now run in 21 steps (each bus of 5o does the work 

of two buses). In general, if a computation on A i  has t  steps in which a bus of D  

and its replacement are both used, then 72* requires t  extra steps to emulate A i.  In 

particular, if a T-step computation on A i  uses the buses of D  for at most t  steps, 

then 72* performs this computation in at most T  + t  steps. This view permits the 

performance to be bounded by the set D  alone. If D  is the set of least used buses, 

then we have the following result.

T h e o re m  5.4 For any N  x  M  MBN, A i ,  and an integer 0 <  k < M  — 1, the N  x M  

MBN, Ttk, has the following properties:

(z) I f  no bus is faulty, then 72* can emulate A i  without overhead.

(zz) A T-step computation on A i  that uses a set o f k  buses for at most t < T  

steps can be run on 72* in T  + 1 steps, even i f  any set of {at most) k buses of 

72* fail.

{Hi) I f  the degree of A i  is d, then the degree o/72* at most {k 4- 1 )d.

(iv ) I f  the loading o f A i  is I, then the loading o f Ilk  at most {k +  l)£.

■

5.2 .5  P rocessor Faults

Since the fault model assumes an off-line fault processing scheme, the ideas developed 

so far for bus faults apply to processor faults as well. All that this requires is trans

posing the N  x M  MBN m atrix into a M  x  N  matrix; this interchanges the roles of 

processors and buses. Therefore, Theorem 5.4 can be restated as follows.

T h e o re m  5.5 For any N  x M  MBN, A i ,  and an integer 0 <  k < the fault- 

tolerant N  x M  MBN, 7Zk, has the following properties:
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(i) I f  no processor is faulty, then 72.* can emulate A i  without overhead.

(ii) A T-step computation on A i  that uses a set o f k processors for at m ost t < T  

steps can be run on 72* i n T  + t steps, even i f  any set o f (at most) k  processors 

o f n k fail.

(in) I f  the degree o f A i  is d, then the degree o f 72* is at most (k  4- l)d .

(iv) I f  the loading o f A i  is I, then the loading o f 72* is at most (k 4- 1)1.

■
The MBN, A i,  could already be one th a t is resilient to bus faults. In th a t case, 

72* is resilient to both processor and bus faults. We combine the Theorems 5.4 and 

5.5 and the fact that loading and degree cannot exceed N  and M  respectively, to 

obtain the main result of this section.

T h e o re m  5.6 Given any N  x M  M B N  A i ,  and an integers 1 <  q < y  and 1 <  k < 

y , the N  x M  M BN  72* has the following properties.

(i) I f  no processor or bus is faulty, then 72* can emulate A i  without overhead.

(a) A T-step computation on A i  that uses a set of k buses for tf, < T  steps and 

q processors fo r tp < T  steps can be run on 72* i n T  4- h  + tp steps even i f  any 

set o f (at most) k buses and (at most) q processors 0/72* fail.

(b) I f  the degree o f A i  is d, then the degree of Ttf is max(Af, (k 4- l)(g  4- l)d)-

(c) I f  the loading o f A i  is i ,  then the loading of TZqk is max(Ar, (q 4- 1)(A: 4- 1)^)-

■

5 .2 .6  Fault T olerant B inary-T ree M B N s

In this section, we use replication to derive results specific to binary-tree MBNs. We 

first derive bounds on processor and bus usages in binary-tree MBNs and then use
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these bounds with Theorems 5.4 and 5.5 to derive results specific to fault-tolerant 

binary-tree MBNs. Recall the following facts (Chapter 2, page 11) regarding binary- 

tree algorithms.

1. W ith the root of T { n )  at level n  and the leaves a t level 0, for any 0 <  i < n, 

there are 2n~l  nodes at level i.

2 . Call a communication (non-trivial edge of T{tl)) that brings partial results to a 

level-£ node as a level-l c o m m u n ic a t io n .  For 0 <  £ <  n, there are a t least 2n~l , 

and at most 2n_<+l, level-£ communications; this is because each internal node 

has at least 1 and at most 2 non-trivial edges from its children.

Consider the problem of running B i n ( n ) on a 2n x 2m MBN, where 0 <  m <  n. 

For 1 <  I  < n  — m, there are at least 2n~l  >  2m level-£ communications. For these 

levels, the number of communications exceeds the number of available buses, so it is 

reasonable to assume that the MBN minimizes the number of communications (and 

hence the running time). Therefore for 1 <  £ < n  — m ,  there are exactly 2n~l level-£ 

communications, that are performed on the 2m buses in 2n~e~m steps. The total
n —m

num ber of steps for levels 1, 2 , • • •, n — m is 2n~l~m =  2n-m — 1.
i = i

Consider the next step, that executes nodes at level n  — m  +  1. This level has a t 

most 2m communications and potentially uses all the buses. Level n  — m  +  2 has a t 

most 2m~l communications and so uses a t most 2m_1 buses. Similarly, a t most 2m~2 

buses are used at level n  — m +  3. As a result, at least 2m — 2m-2 buses are not used 

at level n  — m +  3. In the same way, at most 2m~3 buses are used at level n  — m +  4 

and at least 2m — (2m-2 + 2m-3) =  2m_l +  2m-3 buses are not used at levels n  — m  + 3 

and n  — m  + 4. Similarly, a t most 2m-4 buses are used at level n  — m  + 5 and at least 

2m — (2m-2 +  2m-3 -I- 2m-4) =  2m_1 +  2m_4 buses are not used at levels n — m +  3,
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n — m  +  4 and n — m  +  5. In general, we have the following lemma, whose proof is 

straightforward by induction on £ > n  — m  +  3.

L em m a  5.7 For n  — m  + 3 < £ < n, any 2n x 2m M BN running Bin{n) at least 

2"»-i + 2n-/+l buses are not used in communications at levels n —m + 3 ,n —m +2, ■■■,£.

■
A direct consequence of this result is the following Theorem.

T h e o re m  5.8 For 0 <  m  < n, any 2n x 2m M BN running B in(n) has at least 2m_1 

buses, each o f which is used for at most 2n-m +  3 steps.

Proof: Communications a t levels 1, 2 , • • •, n  — m require 2n-m — 1 steps, and use

all the buses. Since there are at most 2m (resp., 2m_l) communications a t levels 

n — m  + 1 (resp., n  — m +  2), these levels can each take a t most 2 steps (even if 

both communications to a node use the same bus). Lemma 5.7 implies that at least 

2m_1 + 2 >  2m_l buses are not used at levels n — m  +  3, n  — m  4- 2, • • •, n. These 2m_l 

buses are used for at most 2n-m — 1 +  2 +  2 =  2n-m +  3 steps. ■

We now outline the derivation of similar results for processor usage. We assume 

that a step is required for a processor to send/receive partial results and perform an 

internal computation. Clearly there are 2n~l active processors (nodes) at level I  of 

H n ) .

As explained earlier, assume that Bin(n) is run on a 2n-processor MBN. Suppose, 

we use a 2n x 2m MBN where m <  n —2. Divide the input into 2m+l groups, each with 

2n~m_i inputs. Here it is reasonable to (sequentially and optimally) reduce a group 

of 2n_m_l inputs to one partial result; 2n-m_1 processors of a group are connected to 

a bus and take turns to send their input to a fixed processor (leader) of the group. 

All 2n~m_l processors of the group, except the leader, work for only one of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

2Ti-m-i _  j  steps needed to reduce the group. Since there are 2m+l groups, there are 

at least (2n_m_1 — l ) 2m+l =  2n — 2m+1 >  2n — 2n_l =  2n_l processors that are used 

for only one step.

When m  > n — 1, there are enough buses to accommodate all the communi

cations at each level. At level n  < I  < 1, there are 2n~e “active” processors. 

Therefore the number of processors not used in any of the levels 2 ,3 ,• ••,£  is
t

2n — 53  2n-‘ =  2n_l +  2n~l unused processors. Each of levels 0 and 1 can use a pro-
i= 2

cessor only once. This is because at most half the processors are used in level 1. 

Thus, we have the following result.

L em m a 5.9 For 0 <  m  <  n, any 2n x 2m M BN running B in (n ) has at least 2n_l 

processors, each of which is used fo r  at most 2 steps. ■

Then, by Theorem 5.6 we have the following result.

T h e o re m  5 .10 For 0 <  m  < n, and any given 2" x 2m MBN, N i, there is a fault- 

tolerant 2" x 2m MBN, A i',  that runs B in(n) in at most 2n~m 4- 5 additional steps, 

with 2n~l faulty processors and 2m_1 faulty buses. ■

Remarks: There are 2n~l communications at level t  of J~{n). Therefore, until level

n — m, the number of communications per level exceeds the available buses. Thus, 

the 2n-m additional steps cannot be avoided. The remaining 5 additional steps are 

only upper bounds. For existing networks [23, 24], the corresponding number is only 

2. In particular, when n  =  m — 1, these MBNs require only 1 extra step to tolerate 

the failure of half the buses (or processors).
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5.3 Recursive Scheduling

In this section we present a  second method for converting any given binary-tree MBN 

into one th a t is resilient to bus faults. Replication (Section 5.2) works for any MBN, 

not ju st binary-tree MBNs. Consequently, it does not exploit features particular to 

binary-tree algorithms. For example, consider an MBN th a t, with no faulty buses, 

executes each level of T (n )  in one step. If this MBN now has one or few faulty buses, 

then each level with even one faulty bus now requires two steps under replication. In 

other words, replication fails to exploit the possibility of executing nodes at higher 

levels (closer to the root) before all lower level nodes have been executed. (Notice 

that the only requirement in !F{n) is for a node to be executed after all its descen

dants. It is not required to wait for lower-level non-descendent nodes.) Recursive 

scheduling exploits the features of binary-tree algorithms to  construct fault-tolerant 

MBNs th a t run faster than their replication counterparts. However, the loading of 

the fault-tolerant MBN is somewhat higher, and the m ethod itself is less general, 

being applicable only to bus faults in binary-tree MBNs.

For 1 <  m  < n, given any 2" x 2m binary-tree MBN A f and integer k  (where 

1 < k =  2s <  2m), recursive scheduling produces a 2" x 2m MBN <S*that is resilient to 

the failure of an arbitrary set of at most k  buses. The restriction that k =  2a admits 

k =  1 and 2, the most probable fault situations. We now outline the m ajor steps in 

the construction of MBN «S*.

1. Use the given binary-tree MBN Af to construct a  2n x (2m — k) MBN Af*. 

MBN Af* has k fewer buses than  Af and is not tolerant to bus failures.

2. Add k buses to Ad* to convert it into a 2" x  2m binary-tree MBN Af*; the k 

added buses have no connections at this point.
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3. Use replication (Section 5.2) to transform A ik into a 2" x 2m binary-tree MBN 

A ik , that is resilient to k  arbitrary bus faults.

4. Finally, superimpose A i  on A i'k to obtain «S*. This last step ensures tha t S*

behaves exactly as A i in the absence of bus faults.

All of the above steps, except the construction of A i'k (Step 1), are straightforward; 

most of the remainder of this section is devoted to the construction of A i k. We first 

consider the case where k  =  1, as the construction of A i'k can be expressed in terms 

of M \.

5.3 .1  A n  M B N , w ith  2m — 1 B u ses

In this section we consider the case where k = 1 and construct a 2n x (2m — 1)

binary-tree MBN. This MBN is used to define A ik for k = 23 > 1 (Section 5.3.2).

For x  > 0, let A ix be the 2X x 21-1 instance of the given MBN A i.  We will use 

instances A im- i  and A im (among others) in the construction of A i[ .

Recall that a binary-tree MBN can be defined by the manner in which it “sched

ules” the tree T (n )\ i.e., by the labeling of the nodes and non-trivial edges by buses 

(see Section 2.3, page 14). Here we will define how J-(n) is scheduled by A i\ .  De

compose JF(n) into three regions as shown in Figure 5.5. The 2n x (2m — 1) MBN A i\  

schedules Regions 1, 2 and 3 in succession (in that order). For each region it uses all 

2m — 1 buses available to it. This approach is different from that of replication which 

would have caused each level of the entire tree T (n )  to be executed in succession 

using at most 2m — 1 buses. The 2” leaves of -F(n) are labeled with the 2n processors 

of A i[ .  In executing T (n ), an internal node u at level t  is labeled only with one of 

the 2n-/ levels a t the subtree rooted a t it. Thus, Regions 1 and 2 use disjoint sets of 

processors of A i \ . The roots of the trees at Regions 1 and 2 are leaves of the tree at
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no. of
nodes level

n

one T {m )

Region 3
2 "  -  1 
T {n  — m)n — m

Region 2 \  Qne r ( n  _  m)Region 1

0

Figure 5.5: Regions of F (n)

Region 3. Region 3 uses only processors at these leaves (level n — m  nodes of !F{n)). 

We now describe the three regions in detail and the method used to schedule them 

on A l p

R eg io n  1: This region lies between levels n — m  and 0 of the tree F{n). It consists

of 2m — 1 trees, each an n — m ) rooted at a level n — m  node of T {n). (Of the 2m 

such subtrees of T{n), any 2m — 1 may be selected for Region 1.) Each T { n  — m) 

is scheduled with a single bus. T hat is, all 2n-m processors at the leaves of the 

T {ji — m) are connected to a single bus, and their values sequentially reduced to one 

leader processor assigned to the root of the T [n  — m ). Clearly this requires 2n-m — 1 

steps. Since there are 2TO — 1 buses available, all the T [ n  — m )s of Region 1 can be 

scheduled as discussed simultaneously. (Notice that this is a very efficient use of the 

buses as each of the 2m — 1 buses is utilized in all 2n-m — 1 steps.) Also observe tha t
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n-m

... n-2m
... n-3m 
"■ n-4m

Figure 5.6: An example showing 4 levels of recursive decomposition of J-(n) with 
m =  2 and k =  1

in running Region 1, each processor is connected to only one bus, and each bus is 

connected to 2n-m processors.

R e g io n  2: This region consists of a  single T { n  — m ) rooted at a level n  — m  node

of tree T {n). (Of the 2m such subtrees of F {n), Region 2 has one, while Region 1 

has 2m — 1 such subtrees.) If n — m  < m, then Region 2 is scheduled on an instance 

A in-m  of the given MBN A i.  Notice that A in -m  uses 2n_m_1 <  2m_l <  2m — 1 buses 

as m >  0 , so sufficient buses are available.

On the other hand, if n — m  > m, then the tree F (n  — m) of Region 2 is scheduled 

recursively on a 2n-m x (2m — 1) MBN. T hat is, this T {n  — m) is divided into three 

regions, each scheduled in sequence (see Figure 5.6).

R e g io n  3: This region consists of levels n to n  — m  of the tree F (n ). Consequently,

it comprises of a single F (m ). Notice that level n - m o f  JF(n) is shared between 

Regions 1, 2, and Region 3. The leaves of the T { m ) of Region 3 are the roots of the 

T {n  — m )s of Regions 1 and 2. By virtue of the fact that each tree of Regions 1 and
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bus 1 bus 2 bus 2m —I

O O

Figure 5.7: Scheduling the lowest level of communications of Region 3. 
shown in dark hold partial results and move to higher levels of Region 3.

Processors

Figure 5.8: An example of a 8 x 4 MBN

2 use disjoint sets of processors, the leaves of the .F(m) of Region 3 are labeled with 

distinct processors.

The first step of Region 3 schedules the lowest level of communications of the 

T {m ). This involves reducing 2m inputs to 2m_l partial results and can be done with 

2m_l <  2m — 1 buses as shown in Figure 5.7.

If m  =  1, then this completes the execution of Region 3. Otherwise the 2m_l 

processors holding partial results, along with 2m-2 <  2m — 1 buses of , are used to 

schedule the remainder of Region 3, as a 2m_l x 2m-2 instance, A4m_i, of the given 

MBN M .

We now illustrate these ideas using an example, where n =  4, m  = 2 and k  =  1. 

Number the 24 =  16 processors 0,1 , • • •, 15 and call the 2m — k  =  3 available buses 

a, P , j .  Let the given MBN use a direct mapping (see Figure 5.8). For replication,
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Figure 5.9: Connections of processors and buses with one bus fault

each of 22 =  4 buses are used for first 3 levels. T hat is, replication uses at least 3 extra 

steps, for a total running tim e of 8 steps. The optimal running time for this MBN is 

only 5 steps. Figure 5.9 illustrates recursive scheduling. In this example, Regions 1, 2 

and 3 run in 3, 2 and 2 steps respectively, for a total of 7 steps. In contrast, replication 

requires 8 steps. This difference will be magnified for large problems.

R u n n in g  T im e: Let 7 \(n , m) denote the time to run Bin(n) on the 2" x (2m — 1)

MBN M ,.  For x  > 0, let tx denote the time to run B in(x ) on A fz, a 2X x 2I_l 

instance of the given MBN, A4; let t0 =  0.

Clearly, T\ (n, m ) is the sum of the times needed to run all three regions. Region 1 

runs in 2m-m — 1 steps, and Region 3 in £n_m +  1 steps. U n — m  < m , then Region 2 

also runs in £n_m steps. Otherwise Region 2 runs (recursively) in T i(n —m, m) steps. 

Thus we have the following recurrence.

Let i\ =  [^"1 — 1. It can be verified tha t n  — i\m  < m  < n  — (z'i — l)m . Therefore,
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T \(n ,m ) =  2n m + tm- i+ T i ( n  -  m ,m )

— 2n m +  tm_i +  2n-2m 4- tm- i  +  Ti(n — 2m, m ).

_  (2"~m -+- 2n-2m H h 2n-,,m) +  -f- Ti (n — i^m, m)

=  2—  ( i ^ p ^ - ) + i ltm_ 1 + tn . iim

D egree : The degree, D i(n , m), of Af^ depends on the manner in which processors

are brought together on Region 3. For our initial discussion, if dx is the degree of

a 2X x 2x~l instance A fx of the given MBN Af, then assume that the degree of

the root processor is at most dx — 1; this is indeed the case for the Tree MBN of 

Section 3.6 (page 44). Under these assumptions, we will show that D i(n ,m ) <  dm, 

the degree of a 2m x 2m_l instance of Af. In other words, D\ (n, m ) is independent of 

x. Subsequently, we will eliminate the assumption on the degree of the root processor 

of A fm.

In Region 1, each processor is connected to one bus, and therefore has a degree 

1. For Region 2, if n  — m <  m, then the region is run on an Af n-m that has degree 

dn-m <  dm- If n — m  > m, then the degree due to Region 2 is D \(n  — m, n) which by 

the induction hypothesis is at most dm- In particular, the degree of the root processor 

r  (say) of the tree in Region 2 is at most dm — 1.

In Region 3 we have 2m — 1 processors p, (for 1 <  i < 2m) from the root of the trees 

in Region 2. Each processor p,- (1 <  i < 2m) has degree 1 and processor r  has degree at 

most dm — I- In the first step of Region 3, processors are paired and each pair reduced 

to one partial result holding processor. These processors proceed further in Region 3, 

while the remaining processors are not used any further. Let the processor pairs for
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Figure 5.10: Connection of processors and buses in Region 3

the first step be (a*,/?,-), where 1 <  i  < 2m_l and a,-,/?,- 6  { p i , P 2 , • • * r }- Of

these, let a* hold the partial results and proceed further and let all a * have degree 

1; this implies the processor r  =  /?,- for some i  and it does not proceed beyond the 

first step of Region 3. Let processor a,- (whose degree is 1) be connected to some bus

Since each subtree of Region 2 uses a different bus, we can ensure tha t each a is 

connected to a distinct bus b,. The first step of Region 3 connects processors or, and 0i 

to bus bi, allowing processor /?, to send its value to a , (Figure 5.10). This increases the 

degree of /?,- by 1 and the loading of b, by 1, as a,- is already connected to b,-. Thus, at 

the end of this first step each processor /?,- has degree of 2 or dm > 2 (from Lemma 4.1, 

page 66). These processors proceed no further in Region 3. The processors art- that 

proceed in Region 3 each have a degree of 1, and each is connected to a different 

bus. Observe every bus of a 2n x 2n~l binary-tree MBN can be assigned to a distinct 

processor pair that is connected to it (namely those of the first step). Therefore, by 

perm uting processors and buses of A4m_i appropriately (see Section 2.2, page 13) the 

remainder of Region 3 can proceed with processors a,- and MBN A4m_ i as if these 

processors had no connections to begin with. After scheduling Region 3, processors 

or, now have a degree of a t most dm-i <  dm- Thus the degree of is (at m ost) d^.

The above derivation assumed th a t the degree of the root processor of A4X had 

a degree of at most dx — 1. As observed earlier, this is indeed the case for many 

binary-tree MBNs. If this is not the case then assume the degree of A4X to be dx -I-1.
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This would allow the degree of the root processor to be incremented in the first step 

of Region 3 without increasing the MBN degree. Notice th a t this is possible as the 

root of the Region 2 subtree does not proceed beyond the first step of Region 3. In 

summary, the degree of A i\  is a t most dm +  1.

L oading: The loading L i(n, m) of is upper bounded by the sum of the loading

due to the three regions. (Unlike processors, that are different for different subtrees 

of Regions 1 and 2, the same set of buses are used for all regions). Let I* denote the 

loading of A ix-

From the discussion of the degree, the loadings due to  Regions 1 and 3 are 2n-m 

and 1 +  £m- i ,  respectively. If n  — m  <  m, the loading of Region 2 is £n-m — im\ 

otherwise Region 2 has loading L i(n  — m, m). Thus we have the following recurrence.

L\ (n , m) =  <
2n m +  1 +  lm -\ + £n-m, if 71 — 771 <  771

2n-m   ̂ Ijn-l + L \(n  — 771, 7 7 l) , if T l  — 771 >  777

which has the solution L i(n ,m ) = 2n m +  1) +  £n — iim , where

*•» =  r s i  - 1 -

T h e o re m  5.11 For any 0 < m  < n, given o 2m x 2m_l binary-tree M B N  M .m of 

degree dm, loading £m, and running time tm to run Bin{m ), there exists a 2n x  (2m — l) 

M BN A4[, with degree at most dm+ l, loading o f 2n-m ( lj~̂ 2- i r )-N i (lm_ i-H )+  in-Um 

and running time o f 2n_m where — 1 . ■

Remark: If the MBN A i  is the Tree MBN of Section 3.6, then the degree of A i[  is 

only 3.
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no. of
nodes level

Region 3

n — m

Region 1 Region 2 \  one T {n  — m )

Figure 5.11: Regions of F{n) for k bus faults

5.3 .2  R ecursive Scheduling w ith  2s B u s F aults

Here we describe the construction of Ai'k, a 2n x (2m — k) MBN for running F{n) 

where 2n~x > k  =  25 >  1. The approach is the same as that for (Section 5.3.1). 

Indeed we use A i\  to construct M k. Divide T {n)  into three regions as shown in the 

Figure 5.11.

Region 1 now consists of 2m — 2s subtrees, while Region 2 has the remaining 2s 

subtrees. Region 3 is the same as in the k =  1 case. Schedule Region 1 as before, 

with one bus for each subtree. Schedule Region 3 as before with 2m_l < 2m — k buses 

(as k <  2m_l). The difference here is in the way Region 2 is scheduled. Region 2 

consists of 2a subtrees, each an T (n  — m); also s  < m. Divide the available 2m — 2* 

buses equally among the subtrees so that each subtree uses 2m-a — 1 buses. Thus 

each subtree runs on a 2n-m x (2m_a — 1) MBN, which is an instance of k  =  1 with 

n  replaced by n  — m  and m  replaced by m  — s. The running time for each of these
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subtrees of Region 2 is

T x(n -  m , T T l  -  s) = 2n 2m+a ( 1 _  2 ~(m-») J +  ***"»-.-1 +

where i* =  f ™ ]  -  1.

The overall nm ning time Tk(n ,m )  for Ad* is (2n_m — 1) +  (fm-i +  1) +  X |(n — 

m ,m  — s). By a similar argument the degree and loading of A i k are at most dm +  1 

and (2n_m) +  +  L \(n  — m ,m  — s).

T h e o re m  5.12 For any 0 < k  = 2s < m < n ,  given a 2m x 2m_1 binary-tree 

M B N  A i m of degree dm, loading lm, and running time tm to run B in(m ), there 

exists a 2n x  (2m — k) M BN  Ad*, with degree at most dm +  1, loading o f 2n-m +  

im -i + 2n~2m+s +  1) +  and running time o f

2n-m  _  l  +  tm - l +  1 +  2n- 2m+a ( l ^ p ( £ . ^ r )  +  w h ere  i k =

r = ^ i  - 1.1 m —3 1

■

5 .3 .3  P u tt in g  it A ll T ogether

Given a 2n x  (2m — k ) MBN Ad* we construct the fault-tolerant 2n x 2m MBN «S* by 

first adding k dummy buses, then applying replication, and finally superimposing the 

given 2" x 2m MBN A i  on it. Clearly, the k  designated buses for replication are the 

added dummy buses they are not used in Ad*. Therefore, S k runs in the same time as 

A i k when a t most k  bus-faults are present. The degree of S k is at most dx + (k + l)d 2, 

where dx and d2 are the degrees of A i  and Ad*. Its loading is a t most £x + (k-h  2)£2, 

where £x and £2 are the loadings of A i  and Ad*. Thus we have the following result.
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T h e o re m  5.13 Let N i be a 2n x 2n_1 binary-tree M B N  and let 0 <  k = 2s < m  < n  

and ifc =  — 1. Then recursive scheduling constructs a 2n x 2m binary-tree M BN

Sk with the following properties.

(z) I f  no bus is faulty, then Sk can emulate N4 with no overhead.

(ii) I f  M  takes tn steps to run B in(n) then, with at most there are k faulty  

bxtses, S k runs B in (n) in 2n-m -  1 +  tm_i +  1 + 2n-2m+a + iktm- s - 1

~Jt~ tn —m —iic( m —3) steps.

(Hi) I f  the degree o f M. is dn, then the degree o f Sk is at most min(2m, (k Jr2)dn). 

(iv) I f  the loading o f N i is £n,m, then the loading o f Sk is at most [2n_m +  £m_i +

2 " ~ 2m+a +  h ( £ m - 3 - l  +  1 ) +  £ n - m - i k { m - s ) ] ( h  +  1) +  2 n ~ m  +  £m + l -  2 .

■
Since bus faults and processor faults are treated independently of each other, we 

can use the results derived in Section 5.2.5 to  augment the MBNs that are tolerant 

to bus faults. Therefore, MBN Sk can be made tolerant to processor faults as well.

5.4 Comparison of Results

In this section, we compare the two methods. As explained earlier, expect the running 

time of recursive scheduling to be no more than  tha t of replication in all cases. In 

addition, we expect the loading of replication to be lower than recursive scheduling 

in all cases. This is because recursive scheduling uses buses more efficiently (and 

often), incurring more connections in the process. Table 5.1 shows the running time, 

loading and the degree of the two methods when the Tree MBN of Section 3.6 is 

used as the input MBN for the two methods. The running times of both recursive 

scheduling and replication are the same for cases m  = n  — 1 (regardless of the value 

of £). This is because here the failure of one bus has the same impact as the failure of
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half the buses [2]. Therefore, replication is optim al and recursive scheduling cannot 

improve on it. When the number of faults is large, (for example k =  2m_1 in the table, 

then), both methods again have the same running time. This is because replication 

assumes th a t half the buses are faulty, regardless of the actual number of faults. The 

case where m  =  k =  1 shows the advantage of recursive scheduling; the running 

time is about half that of replication. In this case, recursive scheduling makes the 

maximum use of all the available (2 ^ — 1) buses, while replication only uses 2 ^ -1 of 

the available buses. When the number of faulty buses approaches the total number 

of buses, then both the methods give the same running time. This situation is not 

unusual because both the methods have very few buses available and the inefficiency 

of replication becomes insignificant. As expected, loading of replication is superior 

to that of recursive scheduling in all cases. The degree of recursive scheduling is 

marginally larger in all cases due to the fact th a t we superimpose the original MBN 

on the fault tolerant MBN to obtain Sk-

5.5 Concluding Remarks

We have proposed two methods for converting any binary-tree MBN to one that is 

resilient to arbitrary bus faults. One of the methods presented can be used with both 

processor and bus faults. It also works with any type of MBN while the other method 

works only with binary-tree MBNs. The fault tolerant MBNs we have designed do 

not run optimally. However they have much better degree and loading than that 

proposed by Ali and Vaidyanathan [2]. The problem of designing low-degree, fault- 

tolerant MBNs that run binary-tree algorithms in optimal number of steps is open.

Replication specifies the additional connections needed in an MBN to map faulty 

elements to less important elements. An algorithm to perform the required reallo-
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Table 5.1: Summary of results

Case Recursive scheduling Replication
Time m  =  n — 1, fc =  l n  +  1 = n  +  1

m  =  n  — 1, k =  2n_2 71 +  1 = 71+1
m  =  f , k  =  1 2 f  +  n  — 1 < % +  2*+I +  1

m  =  j ,  k  =  2a“ l a +  27+l - 1 \  +  2*+I +  1
Loading m  = n — 1, k  =  I 17 > 6

m  =  n  — 1, k  =  2n-2 7.2"“2 +  10 > 3.2n-2 +  3
m  =  %, k =  I 2.2* + 1 5 > 2 .2 * + 6

m  =  5 , k  =  2 ir-1 (2*"l + l ) ( 2 * +l +  f + 3 ) > (2*“ l + 1 ) (2 *  + 3 )
Degree m  =  n — 1, k =  I 9 > 6

m  =  n  — 1, k  =  2n-2 (2"“2 +  2)3 > (2*-2 + 1)3
m  =  k =  1 9 > 6

m =  f , Jk =  2 i - 1 (2* +  2)3 > (2* +  1)3
num ber of processors =  2", number of buses =  2m, number of faulty buses, fc =  2*. 

We denote T ( n , n  — 1), <„,r»-i and dr»,n-i by T(n) ,  l n and dn respectively.

cation of identities is im portant as well. Though our approach could accommodate 

handling of bus-faults on the fly, it would incur larger overheads for processor faults, 

where entire contexts will have to be relocated. Another possible drawback of this 

work is tha t it does not address link faults that render the connection from a processor 

to a bus (rather than an entire bus or the processor) unusable.
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Chapter 6

VLSI Layout Lower Bound

This chapter deals with VLSI layouts for optimal-time MBNs. In a related topic, VLSI 

layouts for the balanced tree point-to-point topology have been thoroughly studied 

[80]. The balanced tree represents a structure where all edges of a  balanced binary 

tree could be used simultaneously. In contrast, an optimal-time binary-tree algorithm 

represents a situation in which one level of edges is used at a  time. This implies that 

any layout for a balanced tree would also suffice for a binary-tree MBN. The converse is 

not true, however. This is because the MBN could reuse the communication resources 

(and VLSI real state) over different steps, in a manner not possible on a balanced 

tree. The question we ask here is “is it possible for a binary-tree MBN to be laid out 

in a smaller area than a balanced tree?” For two of the three cases tha t we consider, 

the answer is easily provable to be “no.” For the third case, we conjecture that the 

answer is again “no” and we outline the basis of this conjecture in this chapter.

An X  x  Y  layout of a structure accommodates the structure in two layers within 

an X  x Y  rectangle. Clearly, the area of an X  x Y  layout is X Y .  In a perimeter 

layout, all processors are placed on the perimeter of the enclosing rectangle. On the 

other hand, a dense layout has no restriction on where processors may be placed. As 

the name indicates, a dense layout is usually more compact than a perim eter layout.

115
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Figure 6.1: H-Tree layout of a 31-processor binary tree

level 2 
level 1

Figure 6.2: 7-node binary tree layout

A perimeter layout, on the other hand, places processors more conveniently for use 

within a larger context such as meshes enhanced with MBNs (see Chapter 4), or for 

connecting to pins of a chip. The aspect ratio of an X  x Y  layout is

An iV-leaf (0(iV)-node) balanced tree has an optimal 0(A r) area, constant aspect 

ratio layout [80] (see Figure 6.1). Therefore an iV-processor binary-tree MBN also 

has such an optim al layout. On the other hand, if a constant aspect ratio, perimeter 

layout is required, then the perimeter must have f l (N)  length, as a result of which 

the area is Q(N2). The well known perimeter layout of a tree [80] can easily be bent 

around the perimeter of a G ( N  x N ) square to construct such a layout. Again, this 

is optimal for a binary-tree MBN.

It can be shown [80] that a high-aspect ratio layout for a balanced tree (with all the 

processors on one side of the layout) requires Q(N log N)  area. Does the same bound
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bus a bus b bus c bus d

Figure 6.3: 8-processor MBN layout

Figure 6.4: 8 processor MBN running Bin(3)

apply for binary-tree MBNs as well? The answer is not simple, as a binary-tree MBN 

uses only one level of edges at a time, and therefore could reuse buses over several 

steps. For example, a 7-node binary tree (that has two degree-3 nodes) requires at 

least two levels of wires, as shown in Figure 6 .2 . On the other hand an optimal-time 

8-processor binary-tree MBN can accommodate its buses in a single level (Figure 6.3). 

Figure 6.4 shows how this MBN runs the 8-input binary-tree algorithm, B in(3). In 

the remainder of this chapter we describe several steps towards developing a lower 

bound on the perimeter layout area for optimal-time binary-tree MBNs. It forms 

the basis of our conjecture that binary-tree MBNs do not have a lower layout area 

than balanced binary trees. Our argument is arranged as a series of lemmas and one 

conjecture. If this conjecture can be proved to be true, then this work will establish
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that any perim eter layout of an optimal-time, binary-tree MBN with N  processors 

requires Q (N l o g N )  area.

In the next section we discuss some preliminary ideas. In Section 6.2, we describe 

our steps towards the lower bound derivation.

6.1 Preliminaries

In this section we state  some assumptions and establish conventions used in subse

quent discussion.

6.1 .1  V L S I M od el

We adopt the most widely used mathematical model for VLSI algorithms [78, 79]. 

In this model, a  VLSI layout consists of horizontal and vertical wires of unit width. 

Horizontal and vertical wires are laid out on separate layers, and wires on the same 

layer are separated by unit distance. Whenever a horizontal wire is to be connected 

to a vertical wire, a  contact hole or via is cut at the intersection of the two wires and 

a contact made through this hole. Processors are assumed to occupy unit area. The 

assumption usually requires a processor to be of constant degree: our lower bound 

argument does not rely on this assumption, however. Note tha t this is a “word 

model” that assumes unit area for processors and width of wires, regardless of the 

word size used. Since the number of layers in actual fabrications is limited to a 

few, the size of a VLSI layout is primarily measured by the area of the largest layer 

(enclosing rectangle). Practical considerations of VLSI fabrication, such as cost and 

yield dictate tha t the area be kept as small as possible.

As explained earlier, we will only consider a high aspect ratio, perimeter layout 

for an optimal-time, binary-tree MBN. Such an MBN for Bin(n), has 2n processors,
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Figure 6.5: Processors are shown as circles

each of which occupies unit area. Therefore, one of the two dimensions of the layout 

is Q(2n) units long (see Figure 6.5). W ithout loss of generality, we assume tha t all 

2n processors are placed on one side of the layout. We will focus on finding a lower 

bound on the other dimension h (height) of the layout. In deriving this lower bound we 

assume tha t vertical wires have no width and, concentrate entirely on the horizontal 

wire segments. Initially, each processor holds an input. However, no assumption is 

made about which processor holds the final result of B in(n).

6.1 .2  D efin ition s and F igure C on ven tion s

Let the processor axis of a perimeter layout be the line (edge) of the layout on which 

processors are placed (in Figure 6.5, the bottom  horizontal side of the layout is the 

processor axis). Assume that, in general the layout orients the processor axis as 

the lower horizontal lines of the layout. Our approach to the area lower bound first 

identifies the minimum communication requirements for an optimal-time binary-tree 

MBN. This communication requirement is represented as horizontal links. A link 

between processors pi and p2 denotes a communication between these processors.
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The link is represented as a  horizontal line, whose projection on to the processor 

axis is a  line connecting processors p\ and P2 - The link is not to be confused with a 

wire or a bus. It is simply a  channel (not necessarily placed in a layout) dedicated 

for communications between processors p\ and pi. Our goal a t this point is only to 

identify the existence of such links.

In general, we will view the links from a processor’s perspective, and our interest 

will be restricted to questions such as “does the link cover other links?” (A link Ai 

is said to cover a link A2 if an infinite vertical line through any point in A2 intersects 

Aj. A link is said to cover a processor iff vertical lines drawn immediately to the left 

and right of the processor intersect the link.) We now introduce some notation tha t 

will help in explaining ideas about the MBN’s communication requirements.

1

®  ® ® ®  ®  ©  CD
Figure 6 .6 : Links between processors

(D

Figure 6.7: View from processor 1

Consider the links shown in Figure 6 .6 . These links represent the communication 

requirements shown in figure Figure 6.4. Links labeled 1 are at the lowest level of the
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tree. Notice tha t these links are between processor pairs (1, 2), (3 ,4), (5 ,6) and (7 ,8), 

that are involved in a  communication in the first step. In step 2, processor pairs (1,3) 

and (6 ,7) communicate; these communications correspond to the links labeled 2 in 

Figure 6 .6 . The two links labeled 3 between processor pairs (3,4) and (4 ,6) represent 

the corresponding non-trivial edges to the roots of Figure 6.4.

In general, each link is labeled with the step a t which it is used. For now we will use 

these link labels only to  show the correspondence with Figure 6 .6 . Figure 6.7 shows 

the view of these links from processor 1. This view only captures the existence of links 

and the fact that some links cover others. The length of a link is not an im portant 

consideration, except th a t each link is at least one unit long and a covering link is at 

least as long as the covered link. In most cases we will only be interested in portions 

of a subset of the links (as viewed from a processor). For example we may choose 

to consider the three subsets shown in Figures 6 .8 , 6.9 and 6.10 as the view from 

processor 1. Additionally, we may restrict the view to only portions of some links.

! 3:  2  ____
I 1 1

d)

Figure 6 .8 : Subset view I

Since the links with labels 2 and 3 in Figure 6.8 do not cover any link other than 

the link labeled 1 directly below it, we can shorten these two links shown (without 

the labels) in Figure 6.11. Since only the relative position of links is im portant for 

our consideration, Figure 6.11 also represents the views in Figure 6.9 and 6.10.

Figure 6.11 is also representative of the view from processors 2 and 3 of Figure 6.6
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3
; 2  ___________
j 1 1

( t

Figure 6.9: Subset view II

j 3 3_______

| 1 1

d )
Figure 6.10: Subset Anew III

but not processors 4, 5, 6 , 7 and 8 . The view from these processors contain the links 

shown in Figure 6.12.

Since we will not make a distinction based on the side of the processor th a t contains 

links, the views in Figures 6.13 are considered identical. We use a two sided arrow to 

indicate this as shown in Figure 6.13. Indeed, this represents the view from any of 

the processors of Figure 6 .6 .

CD
Figure 6 .11: Subset view from processor 1
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Figure 6 .12: Subset view from processor 4

or

o o
Figure 6.13: Equivalent views

A set of links in the view of a processor will be symbolically represented by a letter

enclosed in a box (for instance [X [ or | Y[). For example, if | X | denotes a single link, 

then Figure 6.13 can be redrawn as shown in Figure 6.14(a). In general |X  j could

X X Y

o o
(a) (b)

Figure 6.14: Symbolic representation of a subset view

be any set of links. The notation IXJ denotes the links of X along with another link

that covers all links of X. If [y ] denotes X , then Figure 6.14(a) can be redrawn as 

Figure 6.14(b). Note that a subset view or the view from a processor containing a  set
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X x] Qc
O

result processorany processor
(a)

Figure 6.15: Communication Structure for F(3)

of links denotes a subset of the true view from the processor. Since our lower bound 

argument counts the length of links, such a conservative “subset view3’ is acceptable.

In this section we derive the results necessary for establishing the lower bound on the

determines a set of links that the view from the final result processor must contain. 

This “minimum” communication pattern is used with the concept of “collapsing” 

(that captures the notion of bus reuse) to derive a lower bound on the wire length 

represented by links. This finally bounds the height of the layout.

6 .2 .1  M inim um  C om m unication  Structure

We sta rt by establishing the minimum communication requirement for any MBN run

ning 5tn(3) optimally in 3 steps. We then use this result to derive the communication 

requirement for Bin(n).

L em m a  6.1 Let N i be an 8 -processor M BN in which each processor contains the 

subset view shown in Figure 6.15(a) fo r some set [jt] of links. (Assume this view to

6.2 Towards the Lower Bound

height of a perimeter layout of an optimal-time, binary-tree MBN. Our approach first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125

be unrelated to running B in(3) on jA/f.) I f  A i  can run B in (3) optimally, then the final 

result processor contains the subset view shown in Figure 6.15(b).

Proof: Since A4 executes Bin (3) optimally in 3 steps, it must provide a path of at

most 3 hops1 from each processor to the final result processor po (say). Also observe 

tha t regardless of where processor po is placed on the processor axis, there must be at 

least four other processors on one of its sides. In summary, the final result processor 

po has a t least four processors on one side of it, with each of these processor connected 

to po by a  path  of a t most 3 hops. W ithout loss of generality, let P i,P 2,P3 and p4 

be these four processors to the right of processor po, with pi nearest to po and P3 

furthest.

Since A4 executes B in(3) optimally, each communication in this execution must 

be a 1-hop path. Therefore, the subset view from p 0  m ust contain links to processors 

P i ,  p i t  P3, P a  such that each of the processors can be reached from p0 by traversing 

at most 3 links. We now consider some cases.

•  •  •  •  •
pO p1 p2 p3 p4

Figure 6.16: Subcase 1 (a)

Casel: Suppose there is a link A (of length 4) between p0 and p4; this incudes the 

case where A covers p0 and /or p4. We now consider some subcases.

1A k-hop path between processors p  and p ' is a  sequence (p =  Po, fti , P i , &2 ,P2 , • • • >Pfc-i i &fc,Pfc), 
where for 1 <  t <  k  processors p,- and p,-_i are connected to  bus ft,.
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Subcase 1(a): Suppose there is a link A' ^  A that covers any of processors pi, 

P2  or P3  (as shown for pi in Figure 6.16). Then the 1X | of the processor 

(Pn P2 or pz) is covered by A' while the [x ] of a  different one of p t , p2 or 

Pz is covered by A. A subset of this situation is the view of Figure 6.15(b) 

(indicated by the dashed boxes of Figure 6.16).

Subcase 1(b): Suppose A is the only link covering processors p x, p2 and p3. 

Then for p 2 to have a path to p0, there must be links A', A" on both sides 

of either p x (Figure 6.17 ) or P3 (Figure 6.18). As shown in these figures,

X r — - A,”

\ m

•  •  •  •  •
pO p1 p2 p3 p4

Figure 6.17: Subcase 1(b): p?-p\-po link

X r— - X'

jsi

•  •  •  •  •
pO p1 p2 p3 p4

Figure 6.18: Subcase 1(b): P2-P3-P0 bnk

the view from po contains the subset view of Figure 6.15(b).

Case 2: Suppose there is a  link A of length 3. If there is a  link A' ^  A tha t covers any 

of the processors, then the proof follows as in Figure 6.16. Assume therefore,
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that there is no link other than A that covers any of the processors. W ithout

loss of generality, let A be between p0 and p3 (the case where A is between px

and P4 is analogous). Clearly there must be a  link A' from pz to p4 (Figure 6.19).

Processor p i  connects to po using a link A", A"' via processor pi (Figure 6.20)

or link A" via processor pz (Figure 6.21). These figures explain why the lemma

hold for these cases.
_______________________________________ X_

X '■

•  •  •  •  •
pO p1 p2 p3 p4

Figure 6.19: Case 2

r—- x

X"

wi-ii•L X i

Ms; I

•  •  •  •  •
pO p1 p2 p3 p4

Figure 6.20: Case 2: P2-P 1-P 0 link

r— ■ X
\ M X' r - - X

I ®  J; l_s i
» ; .

•  •  * •  •
pO p1 p2 p3 p4

Figure 6.21: Case 2: p2-p3-po link
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Case 3: Suppose there is a link A of length 2 . Once again assume that there is no 

link other than A that covers any of the processors; otherwise it represents the 

situation in Figure 6.16. We now consider some subcases.

Subcase 3(a): Suppose A is from po to p2 (or analogously from p? to p4). For 

p4 to get to po there must be links A', A" from p4 to P3 and p$ to pi. This 

situation is handled as shown in Figure 6.22.

K r '  ;
r  r-~. X

N® | i s !

—i—
•  * •  •  •
pO p1 p2 p3 p4

Figure 6.22: Subcase 3(a)

Subcase 3(b): Suppose A is in the middle between pi and p$. Then the path 

from P2 to po must include edge A' from pi to p0 and A" from p2 to either 

Pi (Figure 6.23) or p3 (Figure 6.24). In addition, there is a  link A'" from 

p4 to p3. These figures show how these cases are handled.

k  r— -
X r-~ , X.” i

j®s j

•  •  •  •  •
pO p1 p2 p3 p4

Figure 6.23: Subcase 3(b): P2-P1-P0 link
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X
: ; : X’ r— -  X"

I ;®j L®J
•  4► 4► 4

pO p i p2  p3 p4

Figure 6.24: Subcase 3(b): P2-P3-P0 link

Since the paths from pi, P2, P3, p^ to p0 can have a t most 3 hops, there must be 

at least one link of length 2 or more, so all cases are covered. ■

We now use Lemma 6.1 to identify a minimum set of communication links for an 

MBN running B in[n ) optimally.

L em m a  6.2 I f  an M B N  runs B in(n ) optimally, then the final result processor 

contains the subset view of Figure 6.26.

Proof: W ithout loss of generality, let j  be an integer. We proceed by induction on

h = * >  1.

If h =  1, then we have n  =  3. From Lemma 6.1 with [x ] being empty, we have the 

desired result. Assume the assertion of the lemma to hold for h > 1 and consider an 

MBN tha t runs Bin(3(h+ 1)) optimally. The tree ,F (3 (/i+ l)) can be decomposed into 

8 F f i t y s  as shown in Figure 6.25. Let the processors at level 3h (roots of the ^ ( 3 h) 

each contain subset view X . By induction hypothesis [x] is as shown in Figure 6.26.

Then by Lemma 6.1 the roots of F (3(h + 1)) contains the subset view of Figure 6.26. 

Expanding each [x] as in Figure 6.26 completes the proof. ■

6 .2 .2  L abelin g  Links

Subset Figure 6.26 shows the links that the view from the result processor must 

contain for any MBN running Bin(n) optimally. Clearly, the links are drawn in levels
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3(h + 1)

3h + 2

3 h +  1

 7(3h)
level 0

Figure 6.25: T {n)

:     0
:         i
\       2

I J-~:  — —   rn - 1
O

Figure 6.26: View from final result processor

0,1, • • •, — 1 corresponding to 3-level chunks of JF(n). If we label each link by

the (unique) step at which it is used, then no two levels of links have common labels, 

and within a  level, there are at most 3 distinct labels (as each level of Figure 6.26 

represents a set of B in (3)s that run in 3 steps).

6 .2 .3  C ollap sin g  Links

To translate the minimum communication requirement of Figure 6.26 into the mini

mum requirement of perimeter layout, the possibility of links labeled differently using 

the same physical wire (bus) must be accommodated, as this has the potential to 

reduce the area. To capture this idea of bus reuse, we introduce the concept of col

lapsing th a t allow links at different levels (with different labels) to merge. As observed
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earlier, each level of links represents a set of sub-problem Bin (3)s and has a t most 3 

different time labels. For 0 <  £ < \ j ]  the length of a link at level £ is at least 2n-<-1.

Collapsing causes a link to have multiple labels, that indicates the times a t which 

it is (re)used. That is, a link now has a set of labels (rather than a single label). 

For i = 1,2 let A, be a levels, link with label set L,. If £x > l 2, then link Xi can 

be collapsed into link A2 iff A2 covers A! and L\ fl L 2  is empty. After the collapse, 

the link A2 is removed from the communication requirement structure and the label 

set of A2 is changed to L\ U  L2. This collapsing captures the idea that link (bus) A2 

can be used for all its original communications as well as those represented by link 

(bus) At. Since their labels are disjoint, the link will not be used simultaneously for 

two communications. As A2 covers At, link A2 also reaches all processors reached by 

At. Since the aim is to derive a lower bound on the area using the total length of 

collapsed links, we will attem pt a set of collapses that minimizes this total link length 

in the communication structure. Indeed, because of the lower bound setting, we will 

assume th a t three links from each level >  £ 2  can be collapsed into each level-^2 

link, regardless of whether or not the level-£2 link covers the level-^i links.

Define a maximal collapse of the communication requirement of Figure 6.26 (or a 

substructure of this structure) as the result of the following procedure, 

for level £ <—  0 to [|J — 1 do 

for each remaining level-£ link A

(i) collapse two of the remaining level-£ -I- 1 links into A 

(«) from each of levels £ +  2, £ 4- 3, • • •, [ f  J — 1 collapse three of 

the remaining links from that level into A 

end 

end
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1
2   ------

collapsed to level 2 final result

Figure 6.27: At each level, collapsed links are shown dotted

Figure 6.27 shows an example of a maximal collapse for a 4 level structure. Note the 

above procedure allows a link At to be collapsed into another link A2 even if A2 does 

not cover Ai; however, each link Ai is collapsed into at most one other link A2.

We now derive a formula for the number of links left a t each level after following 

the above maximal collapse procedure. W ithout loss of generality assume j  to be 

an integer. Before any collapse, level-£ (where 0 <  £ <  | )  of the communication 

structure has 2l+l links. Let t) ( £ )  denote the number of links left at level-£ after a 

maximal collapse.

Clearly, level-0 links cannot be collapsed, so 77 (0) =  2. The 4 level-1 links are all 

collapsed into the level-0 links (two in each), so 77(1) =  0. For the remaining levels

i  > 1, ther are 77(£ — 1) collapses into level-(£ — 1) links and 3 in each of the remaining

level-{I — 2), level-(£ — 3), • • ■, level — 0 links (assuming level-£ has sufficient links for 

the collapse).

Thus, we have the following relationships. For £ > 2

1,(*) =  2 '+‘ -  2r,(£ -  1) -  3 £  i,U)
3 = 0
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Therefore,

r,(£ — 1) =  2* — 2rj(£ -  2) -  3 77O).
3 = 0

Substituting the second equation from the first we have, ti(£)+t]{£—1)+t}(£ — 2) = 2l . 

That is, the total number of links in three consecutive levels £,£ — 1  and £ — 2 is 2e.

L em m a  6.3 Assuming sufficient higher level links remain fo r a collapse, the total 

length o f wires after a maximal collapse o f the communication structure o f Figure 6.26 

is fl(n2n).

Proof: W ithout loss of generality, let j  =  h  be an integer. For 0 <  k < h, our

earlier observations give rj{3k) +  rj(3k +  1) +  77(3/1 + 2) =  23*+2. Since the shortest 

wire of level 3k, 3k +  1 and 3k  +  2 has length f2(2n-3fc) the total length of wires in 

levels 3k, 3k +  1 and 3k +  2 is L{k ) =  Q(2n~3 k23k+2) = f2(2n). Thus the to ta l wire
h

length is 2n =  Q(h2 n) =  Q(n 2 n). ■
k = 0

The maximal collapse procedure collapses into lower level (longer) wire before it 

gets to shorter wires. This is not the only method possible. For example, if shorter 

wires from some level £ > 1 were collapsed into both level-0 and level-1 wires, then 

some level-1 wires can no longer be collapsed into level-0 wires.

Figure 6.28 shows another collapsing method. Notice that only one level-2 link 

can be collapsed to each level-1 link. This is because each level-2 link has two level-3 

links collapsed into it. As a result, any set of two level-2 links must have 4 level-3 

links collapsed into them, guaranteeing at least one duplicate label (as each level has 

3 labels). Thus collapsing two level-2 links into a level-1 link would be equivalent to 

collapsing 4 level-3 links into level-1 link; this is not perm itted. Assuming unit length 

for the level-3 links, the collapse of Figure 6.28 leaves links whose total length is at
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0
1
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3

0
1
2

3

initial

T T  T T  T T  T T

collapsed to level 2

collapsed to level 1 collapsed to level 0

Figure 6.28: A different collapse

least 16. By the same token, the maximal collapse of Figure 6.27 has a length of at 

least 13.

Clearly many other approaches are possible. The question is “which one leads to 

the best possible collapse with the shortest total wire length?” Computer simulations 

seem to indicate tha t the maximal collapse produces the smallest length of links. 

Therefore, we have the following conjecture.

C o n je c tu re  1 No collapsing procedure reduces the total wire length more than the 

maximal collapse.

We now state the main result of this chapter.

T h e o re m  6.4  I f  Conjecture 1  is true, then the height o f a perimeter layout of any 

2n -processor optimal-time binary-tree M BN is fi(n).

Proof: W ithout loss of generality, assume that the processors are placed a unit

distance apart. (They certainly cannot be placed closer, and if they are spread further
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apart, then their wire length is proportionately larger.) Thus the “width” of the layout 

can be assumed to be 0 (2"). From Lemma 6.3 and Conjecture 1 the layout height is 

n  (?£-) =  fi(n). ■
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Chapter 7 

Summary and Future Work

In this research we have investigated various issues on running binary-tree algorithms 

on MBNs. We have identified relationships among im portant MBN parameters and 

established some non-trivial lower bounds. Most of the results are general and apply 

to all (or a  very large class of) binary-tree MBNs. We have developed some novel 

techniques th a t may find use in solving problems in other related areas. Most o f  the 

results also extend to  A;-ary trees for k > 2.

In Chapter 3 we investigated the relationships among loading, degree and running 

time of binary-tree MBNs. We developed an accounting scheme to count the number 

of connections on a bus. We established a series of lower bounds on the loading 

of optimal-time, degree-2 MBNs for running 2n-input binary-tree algorithms. The 

tightest of these bounds established the loading to  be We also identified two

im portant mappings called direct and indirect and established that indirect mapping 

is essential to achieving constant loading. This result is somewhat surprising, because 

indirect mapping increases the number of communications. We also showed th a t if 

the degree is increased to 3, then optimal-time, constant loading binary-tree MBN 

exists. We constructed the degree-3, loading-3, Tree MBN with the best possible 

degree-loading product.

136
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In Chapter 3 we also investigated the possibility of making trade-offs between 

the running tim e and loading. We showed tha t by increasing the running tim e by 

a constant factor, loading can be reduced by a non-constant factor. Specifically, we 

established th a t if the additional time (beyond the optimal) used by the MBN is t, 

and if the largest problem size that can be solved in optimal time on a loading-L, 

degree-2, binary-tree MBN is 2T̂ ,  then t  > [T̂ +l ]• We presented an example of 

a degree-2, loading-4, (2n — 3)-step binary-tree MBN that matches this bound (to 

within a constant factor) when L  is constant.

In Chapter 4 we used MBNs to enhance 2-dimensional meshes. We showed that 

this method of connecting processors together by multiple buses has significant advan

tages over the conventional single bus approach for connecting processors together. It 

allows all existing algorithms on enhanced meshes to be automatically translated into 

a more implementable platform with a realistic loading. As an MBNs can employ 

a single bus, our architecture captures all features of most existing enhanced mesh 

architectures. We derived the running time, loading, degree, number of buses, VLSI 

area and the aspect ratio of meshes enhanced with the Tree MBN, and showed that 

our results are be tter than the best previous results. We also studied buses with 

segment switches, and showed that segment switches help to reduce loading.

In Chapter 5 we introduced two methods of imparting fault tolerance to MBNs. 

We accomplished this by adding connections in a controlled manner to MBNs that 

are not tolerant to faults. The first method, called replication, is a  general m ethod 

th a t can be used with any MBN (not only binary-tree MBNs) and for both processor 

and bus faults. An im portant feature of replication is tha t it allows a designated set 

of buses/processors to be treated as faulty, regardless of which buses/processors are 

actually faulty. This allows the network designer to designate a set of less im portant
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buses/processors to be faulty. The second method, called recursive scheduling, is 

specific to bus faults in binary-tree MBNs. It uses the features of binary-tree MBNs 

to achieve better speeds compared to replication. The methods for bus faults are 

independent of tha t for processor faults. Therefore, tolerance to processor faults can 

be imparted to an MBN that is already tolerant to bus faults and vice versa.

In Chapter 6 we investigated the VLSI area requirement for a perimeter layout 

of optimal-time, binary-tree MBNs. The corresponding problem for balanced binary 

tree topology is well studied. Unlike in a complete binary tree, however, a binary-tree 

algorithm uses only one level of the tree at a step. Therefore, binary-tree MBNs 

could reuse the same buses at different steps of the algorithm. We developed a tech

nique to identify the minimum communication requirements for perimeter layouts of 

optimal-time, binary-tree MBNs and then to “collapse” links to mimic bus reuse. We 

conjectured that a particular collapsing scheme minimizes the total wire length. (Sev

eral computer simulations seemed to indicate that this conjecture is true.) Assuming 

this conjecture to be true, we established an f2(iVlog N )  lower bound on the VLSI 

area of a perimeter layout for optimal-time MBNs for N -input binary-tree algorithms.

F u tu re  W ork: We believe that the lower bound on the loading established

in Chapter 3 is not tight. This is based on the existence of an optimal-time, degree-2, 

loading-0(n) binary-tree MBN [85] and the fact that degree-2 MBNs tend to introduce 

a large number of direct nodes for binary-tree algorithms. This is because the ability 

of a processor to get rid of a partial result while receiving two new partial results is 

crucial for small loading, and this is not possible on a degree-2 MBN. Future work 

in this area can focus on bridging the gap between the lower bound and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

0 ( n )  upper bound. A possible approach for this could be to combine the methods 

used for establishing the Q(rir) and Q ( i ^ )  lower bounds.

The fault tolerance results of Chapter 5 can handle k  faults within a given binary- 

tree MBN. Extension of these methods to the enhanced mesh architecture of Chapter 4 

is sensitive to the number of faults in an MBN building block, rather than the entire 

network. T hat is, if there are k  faults distributed in the entire enhanced mesh, then 

the best way to  address this problem is not known. Currently, the only fail-safe way 

to handle k  faults in the entire enhance mesh is to assume that each of the MBNs 

can tolerate k  faults. This approach could be wasteful for large k.

In Chapter 6, we conjectured that the method used for collapsing the links in 

the communication structure is optimal. Establishing that this indeed the best is still 

open. Also we only investigated the area requirements of optimal-time, N  x  y  MBNs. 

The area requirements for N  x M  (for M  < y )  binary-tree MBNs and sub-optimal 

time MBNs are still open problems.
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