
Louisiana State University Louisiana State University

LSU Digital Commons LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

2000

Multiple Bus Networks for Binary -Tree Algorithms. Multiple Bus Networks for Binary -Tree Algorithms.

Hettihewage Prasanna Dharmasena
Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Recommended Citation

Dharmasena, Hettihewage Prasanna, "Multiple Bus Networks for Binary -Tree Algorithms." (2000). LSU

Historical Dissertations and Theses. 7190.

https://digitalcommons.lsu.edu/gradschool_disstheses/7190

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU
Digital Commons. For more information, please contact gradetd@lsu.edu.

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F7190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/7190?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F7190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print colored or poor quality illustrations and
photographs, print bieedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

LUVd
800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MULTIPLE BUS NETWORKS FOR
BINARY-TREE ALGORITHMS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

m

The Department of Electrical and Computer Engineering

by
H. P. Dharmasena

B.S., University of Moratuwa, 1983
M.S., Louisiana State University, 1987

May 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number 9979254

__ ___ _ _ < ®

UMI
UMI Microform9979254

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

I would like to express my sincere gratitude to Dr. R. Vaidyanathan for his guidance,

wisdom and especially his patience during the course of this research. I would also

like to thank members of my committee Dr. S. Kundu, Dr. A. El-Amawy, Dr. J. L.

Trahan, Dr. K. Zhou and Dr. L. J. Smolinsky.

This work would have been impossible without the support of various individu

als at my work. I wish to express my sincere appreciation to the members of the

instrument development group for their understanding and support.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

A c k n o w l e d g m e n t s ... ii

L i s t o f T a b l e s ... v i

L is t o f F ig u r e s ... v ii

A b s t r a c t ... x

C h a p t e r

1 In t r o d u c t i o n .. 1
1.1 MBNs and Binary-Tree A lg o rith m s.. 4
1.2 Scope of the D isserta tion ... 6
1.3 Contribution of this W o r k .. 9
1.4 Organization of the D isserta tion .. 10

2 P r e l im in a r ie s ... 11
2.1 Binary Tree Algorithms ... 11
2.2 Multiple Bus N etw orks.. 13
2.3 Running Binary Tree Algorithms on M B N s.. 14

2.3.1 Direct and Indirect M apping... 16
2.4 Prefix Computations on Binary-Tree MBNs ... 17

3 D e g r e e , L o a d i n g , T im e T r a d e - O f f s ... 20
3.1 P re lim in a r ie s ... 21
3.2 Lower Bound for Direct M a p p in g ... 22
3.3 An f i(\/n) Lower B o u n d ... 24

3.3.1 Strategy and D efin itio n s ... 24
3.3.2 Basic R e s u l t s ... 26
3.3.3 The Accounting S c h e m e ... 27
3.3.4 Non-Uniform Bus U s a g e .. 30
3.3.5 The Lower B o u n d .. 31

3.4 An Q (n ^ Lower B o u n d ... 32
3.4.1 Additional R e s u l t s ... 32
3.4.2 Tighter Lower B o u n d .. 35

3.5 An Q (i j ^) Lower B o u n d ... 37
3.5.1 Initial C o n d i t io n .. 38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5.2 The New Accounting Scheme ... 39
3.5.3 Tighter Lower B o u n d .. 43

3.6 The TYee M B N ... 44
3.7 Loading-Speed Tradeoff.. 47

3.7.1 Lower B o u n d ... 47
3.7.2 Upper B o u n d ... 49

3.8 Extension to k-ary Tree A lgo rithm s... 52
3.9 Concluding R e m a rk s ... 58

4 M u ltiple-B us E nhanced M eshes .. 59
4.1 P re lim in a r ie s .. 63

4.1.1 MBN M e a su re s .. 64
4.1.2 Multiple-Bus Enhanced M e sh e s .. 65

4.2 Binary-Tree MBN E x te n s io n s .. 66
4.3 Meshes with Tree M B N s .. 69
4.4 MBEMs with Segment S w itch es ... 74

4.4.1 Binary-Tree MBNs with Segment S w itch es 74
4.4.2 Meshes with Tree MBNs and Segment S w itc h e s 80

4.5 Results and D iscussion .. 83

5 Fault T o l e r a n c e .. 84
5.1 Fault M o d e l ... 85
5.2 R e p lic a t io n ... 86

5.2.1 Adding Redundant C onnections.. 87
5.2.2 Definition of 72*.. 87
5.2.3 The Designated S e t ... 89
5.2.4 Fault Tolerance Properties of 72* 95
5.2.5 Processor F au lts .. 96
5.2.6 Fault Tolerant Binary-Tree M B N s... 97

5.3 Recursive S chedu ling ... 101
5.3.1 An MBN, with 2m — 1 B u se s .. 102
5.3.2 Recursive Scheduling with 23 Bus F a u l t s 110
5.3.3 Putting it All T o gether.. I l l

5.4 Comparison of R e s u l t s ... 112
5.5 Concluding R e m a rk s ... 113

6 V LSI L ayout Lo w er B o u n d .. 115
6.1 P re lim in a r ie s .. 118

6.1.1 VLSI M o d e l.. 118
6.1.2 Definitions and Figure C onventions.. 119

6.2 Towards the Lower B o u n d ... 124
6.2.1 Minimum Communication Structure ... 124
6.2.2 Labeling Links .. 129

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 .2 .3 Collapsing L i n k s .. 130

7 S u m m a r y a n d F u t u r e W o r k .. 136

B i b l i o g r a p h y ... 140

V i t a .. 147

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 Some results for meshes with Tree M B N ... 73

4.2 Some results for meshes with Tree MBN and Segment S w itc h e s 82

5.1 Summary of r e s u l ts .. 114

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Running B in (3) on an 8 x 4 MBN ... 12

2.2 A 16 x 8 MBN and its m a t r ix ... 14

2.3 Steps of running prefix computation on binary-tree M B N s 18

3.1 T {n) with a direct m a p p in g ... 23

3.2 Step 1 of X i(n) .. 25

3.3 Processors and buses in the neighborhood of bus b o 36

3.4 Subintervals of [L, n] .. 37

3.5 The connections on bus b o .. 44

3.6 Running B in (4) on T (4) ... 46

3.7 Path with t d e l a y s ... 48

3.8 Running Bin(3) on 8 x 4 MBN, 2 ? (3) .. 50

3.9 MBN for ternary tree a lg o r i th m s ... 58

4.1 A 32 x 8 Tree MBN .. 68

4.2 Structure of a mesh with binary-tree MBN ... 71

4.3 Steps of method 1 76

4.4 Steps of the method 2 .. 77

4.5 Construction 1 .. 78

4.6 Construction 2 .. 79

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 The MBN of Figure 2.2 augmented to handle 3 bus fau lts 88

5.2 Graph £73jg.. 90

5.3 An illustration of the proof of Lemma..... 5.1.. 92

5.4 Node disjoint correspondences for an e x a m p le ... 95

5.5 Regions of F {n) ... 103

5.6 Recursive decomposition of n) .. 104

5.7 Running the first step of Region 3 105

5.8 An example of a 8 x 4 MBN ... 105

5.9 Connections of processors and buses with one bus f a u l t 106

5.10 Connection of processors and buses in Region 3 ... 108

5.11 Regions of .F(n) for k bus faults .. 110

6.1 H-Tree layout of a 31-processor binary t r e e .. 116

6.2 7-node binary tree layou t.. 116

6.3 8-processor MBN l a y o u t .. 117

6.4 8 processor MBN running B i n (3) .. 117

6.5 A perim eter l a y o u t .. 119

6.6 Links between processors.. 120

6.7 View from processor 1 .. 120

6.8 Subset view I .. 121

6.9 Subset view I I .. 122

6.10 Subset view I I I ... 122

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.11 Subset view from processor 1 122

6.12 Subset view from processor 4 123

6.13 Equivalent v i e w s .. 123

6.14 Symbolic representation of a subset v i e w ... 123

6.15 Communication Structure for 3) .. 124

6.16 Subcase 1(a) 125

6 .1 7 Subcase 1(b): P2 -P 1-P0 J in k ... 126

6.18 Subcase 1(b): P2 -P3-P0 l in k ... 126

6.19 Case 2 .. 127

6.20 Case 2: P2 -P 1-P0 l i n k ... 127

6 .21 Case 2: P2 -P3-P0 l i n k ... 127

6 .2 2 Subcase 3(a) 128

6 .2 3 Subcase 3(b): P2 -P 1-P0 l i n k ... 128

6.24 Subcase 3(b): P2-P3-P0 l in k ... 129

6.25 T { n) ... 130

6.26 View from final result p ro cesso r.. 130

6.27 A maximal collapse of a structure with 4 levels .. 132

6.28 A different c o llap se ... 134

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Multiple bus networks (MBN) connect processors via buses. This dissertation ad

dresses issues related to running binary-tree algorithms on MBNs. These algorithms

are of a fundamental nature, and reduce inputs at leaves of a binary tree to a result

a t the root. We study the relationships between running time, degree (maximum

number of connections per processor) and loading (maximum number of connections

per bus). We also investigate fault-tolerance, meshes enhanced with MBNs, and VLSI

layouts for binary-tree MBNs.

We prove th a t the loading of optimal-time, degree-2, binary-tree MBNs is non

constant. In establishing this result, we derive three loading lower bounds f2(Vn),

fi(n^) and ^ (n ^)> each tighter than the previous one. We also show tha t if the

degree is increased to 3, then the loading can be a constant. A constant loading

degree-2 MBN exists, if the algorithm is allowed to run slower than the optimal.

We introduce a new enhanced mesh architecture (employing binary-tree MBNs)

tha t captures features of all existing enhanced meshes. This architecture is more flexi

ble, allowing all existing enhanced mesh results to be ported to a more implementable

platform.

We present two methods for im parting tolerance to bus and processor faults in

binary-tree MBNs. One of the methods is general, and can be used with any MBN and

for both processor and bus faults. A key feature of this method is tha t it perm its the

network designer to designate a set of buses as “unim portant” and consider all faulty

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

buses as unimportant. This minimizes the impact of faulty elements on the MBN.

The second method is specific to bus faults in binary-tree MBNs, whose features it

exploits to produce faster solutions.

We also derive a series of results tha t distill the lower bound on the perimeter

layout area of optimal-time, binary-tree MBNs to a single conjecture. Based on this

we believe that optimal-time, binary-tree MBNs require no less area than a balanced

tree topology even though such MBNs can reuse buses over various steps of the

algorithm.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

In a parallel processing system, the interprocessor communication network plays a

very important role. In this dissertation, we deal with one class of such networks

called multiple bus networks (MBNs). An MBN consists of a set of processors and

a set of buses, with each processor connected to a t least one bus. Any processor

connected to a bus can access the bus. However, the bus can convey only one piece

of information at a time.

MBNs have several advantages over traditional point-to-point networks (such as

the ring, mesh, torus and hypercube). In a point-to-point network, each communi

cation link is dedicated to a pair of processors. In an MBN, on the other hand, the

communication medium (bus) is shared among several processors and could, there

fore, be used more efficiently. This sharing of the communication medium also allows

for a graceful degradation of performance in the presence of faults. Because the

communication medium is shared, MBNs lend themselves to easy broadcasting. An

MBN can be used to emulate several point-to-point topologies or set of interconnec

tion functions [26, 27, 33, 47, 48] as each bus could serve as a communication link

between different processor pairs at different times. An MBN is representative of

any hypergraph based system [6], and a bus can be viewed as an abstraction of any

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

shared resource, for example a memory module in shared memory systems, or a trans

mission frequency in systems with frequency division multiplexing (such as wireless

[18, 22, 35, 52, 61] and optical [5, 20, 65]). Therefore, this work may find applicability

in other settings as well.

Traditionally, MBNs have been used in an asynchronous environment with rela

tively few processors. Most of this work has been on analyzing data throughput of

multiprocessor systems under various traffic models, arbitration schemes, and rela

tionship between numbers of processors/buses [12, 14, 21, 28, 32, 36, 55, 56, 66, 94].

Work also exists on variations on the basic MBN model [9, 16, 37, 39, 43, 53, 90] and

on the pattern of connections between processors and buses [12, 31, 39, 42, 54, 81].

Traditionally, MBNs have been used in asynchronous systems with a small number of

processors partly because of the fact that physical loading due to capacitive coupling

limits the number of connections to a bus. In an optical bus, loading is caused by a

receiver on the bus drawing some of the available power, thus limiting the number of

receivers that can be connected to the bus. The asynchronous bus model also requires

a complex arbitration scheme to resolve bus contention.

In this dissertation we primarily consider a synchronous bus model, though most

results apply to asynchronous MBNs as well. Technological advances have made it

feasible to connect more loads on a bus. This, in turn, makes fine-grained synchronous

MBNs (with a large number of processors) possible. The synchronous environment

also removes the need for arbitration. Feldman et al. [29] recently proposed an optical

slab waveguide bus capable of connecting a large number of processors a t very high

da ta rates. Qiao and Melhem [70] proposed a communication scheme called time-

division source-oriented multiplexing (TDSM) for synchronous optical buses th a t can

be used for large systems. Their method takes advantage of unidirectional propaga

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

tion and predictable delay of optical fibers to achieve reliable communication among

a large number of processors. Lin et al. [51] have proposed “precharged” buses to

facilitate concurrent broadcasts.

Much work on synchronous MBNs has centered around topologies (primarily the

two-dimensional mesh) enhanced with buses (for example [1, 4, 10, 17, 19, 64, 69, 71,

75]). There has also been some work on running algorithm classes and implementing

interconnection functions [2, 23, 24, 25, 26, 40, 46, 47, 50, 63, 83, 85]. Another

class of MBNs th a t uses synchronous buses is reconfigurable models, that allow the

connection pattern between processors to change dynamically (Nakano [59] provides

an extensive bibliography). Under current technological constraints, however, fixed

connection MBNs, such as those considered in this work, are easier to implement

than reconfigurable networks. Commercially available field programmable gate arrays

(FPGAs) have also been proposed as reconfigurable com putational platforms [34, 41,

58, 74, 88, 91, 92]. The programmable interconnections between “configurable logic

blocks” in FPGAs show some features of MBNs in th a t they are often implemented

as wires with taps (buses) [89, 93].

In this dissertation we address various issues related to running a well-known

class of algorithms called binary-tree algorithms on MBNs. (Other researchers have

also studied algorithm classes on MBNs and other networks [2, 40, 47, 62, 63, 73,

82].) A binary-tree algorithm reduces N inputs to a single result. The computation

performed by such an algorithm can be represented as a balanced binary tree with

the inputs at the leaves and the result a t the root. Several fundamental algorithms

involving semigroup operations and prefix computations such as maximum/minimum,

parity, polynomial evaluation and barrier synchronization can be implemented as

binary-tree algorithms. Binary-tree algorithms require a rich communication pattern,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

so a network suitable for running binary-tree algorithm is likely to be suitable for

many other applications as well. Because of the fundamental nature of binary-tree

algorithms, a dedicated hardware module to run these algorithms could aid solution to

a large number of problems. Any insights gained by studying binary-tree algorithms

will be useful in designing such modules. In the past, binary-tree algorithms and

MBNs for them have been in setting of enhanced meshes [1, 4, 10, 19, 64, 69, 75, 76].

Other work on binary-tree MBNs addresses issues such as design, fault-tolerance and

VLSI layouts [2, 25, 26, 27, 57, 63, 83, 84, 85].

1.1 MBNs and Binary-Tree Algorithms

In this section we present a broad picture of the issues related to MBNs running

binary-tree algorithms (or “binary tree MBNs”). An N x M Multiple Bus Network

MBN has N processors and M buses. Each processor is connected to a subset of

the set of buses. Two processors may communicate in one unit of time, provided

they are connected to a common bus. However, the bus may carry only one piece of

information on it a t any given point in time. Two important parameters of an MBN

are its degree (maximum number of buses connected to a processor) and loading

(maximum number of processors connected to a bus). These parameters determine

the cost and implementability of the MBN. A large degree requires a processor to

have a large number of input/output ports, while a large loading can reduce the data

rate of the system.

One direction of research on MBNs considers a given pattern of interconnections

between processors and buses and investigates the capabilities of the resulting MBN

architecture. Often this takes the form of emulating other architectures (for example

[26, 27, 40]) or developing algorithms on models ([52, 60, 61]); the enhanced mesh

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

results cited earlier also fall in this c a te g o ry The second direction considers the

problem of designing an MBN suited to a particular interconnection requirement.

This dissertation and others [48, 57, 63] represent work in this direction.

As mentioned earlier, degree and loading are im portant considerations for MBNs.

Clearly, the MBN should also be evaluated on how well it provides the interconnec

tion requirements in question; this would consider issues such as number of hops and

congestion on buses. Constructing an “optimal” MBN to run a given set of intercon

nection functions is a non-trivial task. Kulasinghe and El-Amawy [46] showed that

the general problem of designing an optimal interconnecting network for a given set

of interconnection functions is NP-Hard. The criteria they used for measuring the

cost is the of number of buses and interfaces (connections between processors and

buses). They showed [47] tha t this problem can be solved in polynomial time for

certain “symmetric” interconnections, and presented a methodology for such imple

mentations. Though such symmetries exist in interconnection topologies, it is not

the case for many algorithm classes. Moreover, their analysis does not address the

interplay between speed, degree and loading of the MBN.

W ith a single bus, the solution is simple as the only possibility is to connect all

processors to the bus; this approach is used in most enhanced meshes and traditional

multiprocessor systems. This method has the disadvantage of high loading and bus

contention, limiting the size of the network. At the other extreme, all the processors

could be connected to all buses. The Broadcast Communication Model (BCM) [60, 61]

adopts this approach. This increases the loading and degree, and consequently, the

cost of the MBN.

Thus an intermediate solution (that connects each processor to a subset of buses) is

im portant. Optimal MBNs for binary-tree algorithms are particularly challenging to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

design. On one hand, for an N input algorithm the MBN needs sufficient bandwidth

to sustain 0(iV) simultaneous communications; the lower (near leaf) levels of the

tree involve a large number of simultaneous communications. On the other hand,

because of its similarity to a binary tree the MBN should be fairly sparse. Thus, a

small num ber of connections needs to be distributed over a large number of buses,

lowering the acceptable values for both degree and loading. Most previous results

have completely ignored degree and loading, or have reduced one at the expense of the

other. For example Vaidyanathan and Padm anabhan [85] have proposed an iV-input

binary-tree algorithm that runs optimally in log N steps. Though the degree of this

MBN is 2, its loading is 0 (log N). On the other hand, Ragavendra [71] proposed

a mesh with a hierarchy of broadcast buses in each row and column. For a given

param eter k, this MBN has a loading k, but the degree of O (^ y) - Thus if the

degree is small, the loading is large and vice versa. In this dissertation we construct

an MBN tha t runs binary-tree algorithms optimally and which has both constant

degree and loading. We now describe results of this dissertation in more detail.

1.2 Scope of the Dissertation

Because of its fundamental nature, binary-tree algorithms have been studied in al

most all facets of computing. As mentioned earlier, most previous work on binary-tree

MBNs has focused on enhanced mesh architectures. Very little work has been done

on identifying fundamental properties of binary-tree MBNs and to establish relation

ships between running time, loading and the degree. In Chapter 3, we study these

relationships, and establish lower-bounds on degree-2, binary-tree MBNs. We iden

tify two im portant mappings and establish th a t it is essential to have a mapping

called indirect mapping to achieve low loading. We do this by establishing a series of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

lower bounds on loading, each one tighter than the previous bound. Specifically, for

a 2n-input, optimal-time, binary-tree MBN we first prove the loading to be fi(x/w)-

We then improve this bound to f2(na) by deriving some additional results. Finally

the lower bound is further tightened to by refining the method used to count

connections on buses. (The lower bound restriction requires the MBN to have at

least 2"-1 buses.) These lower bound results (and indeed most other results of this

work) are general and apply to any binary-tree MBN satisfying the conditions of the

problem, rather than a given MBN instance. Although a degree of 2 necessitates non

constant loading, this is not the case for degree 3. We construct a binary-tree MBN

called the Tree MBN that has degree 3 and loading 3, which is the best possible.

Also in Chapter 3 we investigate trade-offs between the loading and running time.

We show that if the running time is allowed to increase by a factor of 2, then a

degree-2, binary-tree MBN with constant loading exists. We establish tha t if the

additional time (beyond the optimal) used by the MBN is t, and if the largest problem

that can be solved on a degree-2, loading- L, optimal-time MBN has size 2t(-L), then

We present an example of a degree-2, loading-4, (2n—3)-step binary-tree

MBN that matches this bound for constant L.

Chapter 4 explores the idea of using binary-tree MBNs to enhance meshes. Here

we show that an architecture using multiple buses has significant advantages over

traditional enhanced meshes tha t employ single-bus networks to connect processor

sets. We also study buses with segment switches (each of which can break a bus into

two) and use it to reduce the loading. Other parameters of the proposed architecture

can be selected for various trade-offs between the cost and performance. (Performance

measures include running time, degree, loading, VLSI area and the aspect ratio; many

exiting architectures require highly elongated rectangular layouts that are difficult to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

implement on a chip.) The architecture we propose improves on all previous results

in at least one of the measures. It provides more choices to the network designer

than any other architecture in the literature. Tables 4.1 and 4.2 (pages 73 and 82)

summarize the results of this chapter.

In Chapter 5 we study methods for imparting fault tolerance to binary-tree MBNs.

This complements the use of binary-tree MBNs as building blocks for general-purpose

computing platforms (described in Chapter 4). Redundant connections can also be

used to increase the yield for chips with binary-tree MBNs. In Chapter 5, we present

two methods for constructing fault tolerant MBNs from any given binary-tree MBN.

One of these methods (replication) is a general method th a t can be applied to pro

cessor and bus faults on any type of MBN. The other method (recursive scheduling)

exploits features particular to binary-tree MBNs to produce better results, but han

dles only bus-faults. The general results of this chapter are too involved to state here;

we state results for some particular cases instead. Replication constructs a binary-

tree MBN that requires at most 5 extra steps, even if half the buses fail. Also, even

if half the processors fail, the number of the extra steps required is at most 2.

In Chapter 6 we investigate the VLSI area required for optimal-time, binary-tree

MBNs. The corresponding problem for the balanced tree topology is well studied [80].

The binary-tree algorithm is different from a balanced tree topology in that only one

level of the tree is active (or used) in any step of a binary-tree algorithm. Therefore,

binary-tree MBNs can reuse the same buses or wires at different levels. This is not

possible in a balanced tree topology, where all edges could be active simultaneously.

This raises the possibility that the VLSI area for a binary-tree MBN is less than that

required for a balanced tree topology. We specifically consider the “perimeter layout”

case where all the processors of the MBN are laid out on the periphery of the layout;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

allowing the processors to be placed in the interior can trivially use a solution for

the balanced tree topology. Our work on this topic leads us to conjecture that the

perimeter area required for optimal-time iV-input binary-tree MBNs is Q (N lo g N).

Simulations seem to indicate that this conjecture is true.

1.3 Contribution of this Work

This dissertation studies various facets of running binary-tree algorithms on MBNs,

providing a be tter understanding of the abilities and lim itations of binary-tree MBNs.

Most of our results are general in nature, applicable to any binary-tree MBN rather

than particular cases. Many of these results extend to A:-ary tree algorithms (for

k > 2) as well.

Chapter 3 establishes im portant relationships between key parameters, namely

running time, loading and degree. We develop a novel accounting scheme to keep track

of the connections on a bus. It is possible that this method of counting connections

may be useful in other algorithms as well. We also identify two mappings (called direct

and indirect) of binary-tree algorithms on MBNs that impact the loading and degree of

binary-tree MBNs. We show tha t indirect mapping is essential to achieving constant

loading. Considering tha t indirect mapping increases the amount of communication,

this result is rather counter-intuitive. Equally surprising is the result of Section 3.7

that shows th a t by increasing the running time by a constant factor, loading can be

reduced by a non-constant factor.

In Chapter 4 we provide a general framework for connecting processors in a 2-

dimensional mesh that, among other things, captures all the features of previous

enhanced-mesh architectures but with a more realistic loading. Thus, our work pro

vides the means to automatically translate all existing algorithms on enhanced meshes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

to a more implementable platform. In addition, our approach affords much more flex

ibility to the network designer than traditional methods.

The contribution of Chapter 5 is in providing a framework that adds redundancy

in a controlled manner to convert any binary-tree MBN to one that is resilient to

processor and bus faults. In particular, one of the methods, replication, works for

any MBN (not just binary-tree MBNs) and uses an approach to rename elements and

convert faulty components into ones th a t have the least impact on performance.

Although Chapter 6 does not derive a lower bound on the area, it distills the

argument to a single conjecture. It also develops some satellite results (such as an

8-processor, optimal-time MBN with “one layer” of buses) th a t may have independent

significance.

1.4 Organization of the Dissertation

In the next chapter we discuss some preliminary ideas and introduce some definitions.

Chapter 3 deals with loading, running time and degree trade-offs. In Chapter 4 we

describe meshes enhanced with binary-tree MBNs. C hapter 5 deals with fault-tolerant

MBNs. In Chapter 6 we describe the basis of our conjecture on the lower bound of

the area required for a “perimeter layout” of optim al-time binary-tree MBNs. Finally

in Chapter 7 we summarize this work, and identify areas for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Preliminaries

In this chapter we discuss some basic ideas used in the rest of the dissertation. We

define binary-tree algorithms in Section 2.1 and multiple bus networks (MBNs) in

Section 2.2. In Section 2.3 we discuss issues related to running binary-tree algorithms

on MBNs. In particular, Section 2.3.1 identifies two types of mappings of MBN pro

cessors to “nodes” of binary-tree algorithms. These mappings are im portant factors,

determining the loading of MBNs that run binary-tree algorithms. Finally, in Sec

tion 2.4, we prove that an MBN running a binary-tree algorithm can also perform

prefix computations in the same order of time.

2.1 Binary Tree Algorithms

A binary-tree algorithm, Bin{n), reduces 2n inputs to a single result. The computation

performed by a binary-tree algorithm can be represented as a complete binary tree.

For integer n > 1, and any associative binary operation o, a binary-tree algorithm,

B in(n) accepts N = 2n inputs ao, oi, • • •, a ^ - i at the leaves of a complete binary

tree (denoted by F (n)) and produces one output, ao o a i o • • • o a /y _ i, at the root of

T in) . The algorithm proceeds level by level from the leaves to the root, applying the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

0
1
2
3

(a): An 8 x 4 MBN

3) level 3

level 2

level 1

© level 0

(b): JF(3

® (£

Figure 2.1: Running Bin (3) on an 8 x 4 MBN

operation o at each internal node to the partial results a t its children. Figure 2.1(b)

shows ^ (3); the numbers associated with nodes and edges are explained later.

The tree T{n) has n levels, and at level i (where 0 < i < n), there are 2n -/ nodes.

Clearly, Bin(n) can be used to apply a semigroup operation on a set of 2" inputs.

Any network tha t runs Bin(n) in T(n) steps can also be used to perform a prefix

computation on 2n inputs in 0(T(ri)) steps (see Section 2.4). It must be noted that

Bin{n) is a description of a class of algorithms, rather than the solution to a particular

problem (such as a reduction operation) th a t can be implemented as a binary-tree

algorithm. Thus Bin(n) requires at least n steps as the height of .F(n) is n; on the

other hand, particular reduction problems such as finding the OR of N bits can be

solved on some models in 0 (1) time [51, 77]. To run Bin(n) on a network with 2n

processors, each of the 2n+l — 1 nodes of T {n) is mapped to one of the 2” processors of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

the network (Figure 2.1(b)). We elaborate further on running binary-tree algorithms

on MBNs in Section 2.3.

2.2 Multiple Bus Networks

An N x M Multiple Bus Network (M BN) has N processors and M buses. Each

processor is connected to a subset of the set of buses. Figure 2.2(a) shows a 16 x 8

MBN. Two processors connected to the same bus can communicate with each other

in one unit of time. A bus can carry only one piece of information a t any given point

in time.

The number of buses to which a processor is connected is called the degree o f the

processor. The largest of the degrees of all processors is called the degree o f the MBN.

The number of processors connected to a bus is called the loading o f the bus. The

largest of the loadings of all the buses is called the loading o f the MBN. The MBN

of Figure 2.1(a) has a degree of 2 and a loading of 4, while tha t of Figure 2.2(a) has

a degree of 2 and a loading of 5. The degree and loading are im portant parameters

tha t determine the cost, speed of operation and implementability of an MBN. The

degree of an MBN is analogous to the degree of a graph representing a point-to-point

network and is indicative of the number of input/ou tpu t ports needed per processor.

A large loading can introduce a significant delay or attenuation of the signal. High

loading in electrical buses introduces capacitive coupling th a t limits the rate at which

data can be transm itted. In an optical bus with high loading, the signal is excessively

attenuated by power drawn by photodetectors connected to the bus [29]. Therefore,

an MBN implementation should a ttem pt to minimize both degree and loading.

An N x M MBN can be represented as an N x M Boolean m atrix that has a 1

in row p and column b iff processor p is connected to bus b. Figure 2.2(b) shows the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

m atrix representation of the 16 x 8 MBN of Figure 2.2(a). Observe that the rows and

columns of the m atrix can be permuted without affecting the connectivity properties

0 1 2 3 4 5 6 7

0 —
□ f |
0
0 :
0
0 :
0
0:
0
0
0
0
0
rn
0
lii

(a)

0 1 2 3 4 5 6 7
0 1
1 1 1
2 1
3 1 1
4 1
5 1 1
6 1
7 1 1
8 1
9 1 1
10 1
11 1 1
12 1
13 1 1
14 1
15 1

(b)

Figure 2.2: A 16 x 8 MBN and its matrix; blank entries in the m atrix represent 0 ’s.

of the MBN. This is because perm uting amounts to just renumbering processors and

buses. We use this fact later, when doing so is advantageous.

2.3 Running Binary Tree Algorithms on MBNs

We assume that Bin{n) is run on a 2n x M MBN. Using more than 2n processors

has no advantage. If the number of processors is 2n# < 2n, then the 2" inputs can

be divided among the available 2n' processors, so that there are 2n~n> inputs per

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

processor. Each processor then sequentially reduces the 2n~n' inputs to one result in

2n~n> — 1 steps. The reminder of the algorithm is run as a Bin(n') on a 2n' x M MBN.

To run a binary-tree algorithm, Bin(n), on a 2n x M MBN, each node of ̂ F(n) is

m apped to a processor. Each edge of T (n) that connects nodes mapped to distinct

processors represents a communication; such edges are called non-trivial edges [27].

Consider the example in Figure 2.1(b). Here the nodes of .F(3) are labeled with

(mapped to) processor indices 0,1, • • •, 7. This indicates the processor responsible for

the action (if any) at a node. Consider the node labeled 0 at level 1 (call it node v

for this discussion). Its two children are labeled 0 and 1. The edge from node v to its

left child has end vertices, both of which are labeled by the same processor index (0

in this case). Therefore, this edge does not represent a communication and is called

a trivial edge (shown dotted in the figure). On the other hand, the edge from node

v to its right child is non-trivial as its end points have diiferent labels (0 and 1 in

this case); hence, the edge represents a communication between processors 0 and 1.

Figure 2.1(b) shows non-trivial edges as solid lines; the remaining trivial edges are

shown dotted. Each non-trivial edge of T {n) is mapped to a bus of the MBN.

Conversely, an MBN to run Bin(n) can be specified by mapping nodes and non

trivial edges of T {n) to processors and buses, respectively, of the MBN. Thus T{n)

(with nodes and non-trivial edges appropriately labeled) completely specifies a 2n x

M MBN and the method used to run Bin(n) on it. Figure 2.1(b) shows T{Z)

corresponding to the MBN in Figure 2.1(a). We will loosely use the term “binary-

tree MBNs” to refer to MBNs suitable for running binary-tree algorithms.

In running a binary-tree algorithm on an MBN, we assume that in one “step” a

processor can read from or write on each bus it is connected to and perform an internal

operation using operands from its local memory or input ports. This assumption

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

is reasonable when the number of ports in a processor is small—all of the MBNs

considered in this work have a (small) constant degree. Since the focus of this work is

on the network connecting processors, there is no advantage in separately considering

the time required for internal operations. The following restrictions apply, however:

(z) Each value sent or received by a processor during a step uses a different bus,

and (i i) the pair of processors sending and receiving a value must be connected to a

common bus. Under these assumptions, a processor is perm itted to (a) send a partial

result of the binary-tree algorithm, (b) receive two partial results, and (c) perform

the operation o (associated with the binary-tree algorithm) on the partial results

received, all in one step. This is not very different from the usual assumption that

a processor can access operands from its local memory and perform an operation on

them, all in one step.

2 .3 .1 D irect and In d irect M apping

As noted earlier, running Bin(n) on an MBN requires mapping nodes to processors.

In this section we identify two types of mappings, direct and indirect, th a t greatly

impact the degree and loading of binary-tree MBNs.

For any node u of F (n), let /z(u) denotes the processor to which u is mapped. Let

u be an internal node of T {n) with children v and w. Node u is said to be a direct

node iff fi(u) = p(y) or p{u) = n(w); otherwise, node u is said to be indirect. A direct

node is mapped to the same processor as one of its children while an indirect node is

mapped to a processor which is different from both of its children. This implies that

an indirect node is connected to each of its children by non-trivial edges, whereas a

direct node is connected to one of its children by a trivial edge. A processor mapped

to a direct node is called a direct processor of the step in question; otherwise, it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

called an indirect processor of the step. Since a processor may be m apped to more

than one node of ^F(n), it is possible for the same processor to be a direct processor

at one step and an indirect processor a t another. Any mapping tha t has an indirect

node is called an indirect mapping; otherwise it is called a direct mapping.

As an example, in Figure 2.1(b) all nodes except the root and its right child are

direct. Therefore the entire Bin{2) or !F{$) uses an indirect mapping (as there is an

indirect node). On the other hand, the T{f2) consisting of the left subtree of the root

represents a direct mapping.

Observe tha t an indirect node involves two communications (one from each child),

whereas a direct node requires only one. Thus a direct mapping minimizes the number

of communications. Notwithstanding the fact that an indirect mapping entails more

communications, we show in Section 3.2 th a t this mapping is necessary for constant

loading.

2.4 Prefix Computations on Binary-Tree MBNs

Given N inputs, a i, a-i, • • •, a^ , and an associative operation o, the Ith prefix (where

1 < i < N) is the quantity a io a 2o- - • oa,-. A prefix computation for the above inputs

and operation computes the prefix for each 1 < i < N . The relationship between

reduction algorithms and prefix computations is well known in the context of a PRAM

[38, pp. 44-49] and a fixed-degree topology [49, pp. 37-43]. This relationship has not

been studied for binary-tree MBNs, however. We prove here th a t a binary-tree MBN

is suitable for prefix computations as well.

T h e o re m 2.1 I f X (n) is an M BN that runs B in(n) in T (n) steps, then X (n) can

run a prefix algorithm in 2T (n) steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

[w.
o c

ba

a o b

[w.

ba

Figure 2.3: Steps of running prefix computation on binary-tree MBNs

Proof: When an MBN runs a binary-tree algorithm, the nodes of Bin(n) are ex

ecuted in a manner that respects the precedence relationship described by the tree

JT{n). Figure 2.3(a) shows three nodes of T{n) (corresponding to two levels) where

nodes u and v are children of node w. Let the two partial results (or inputs) held by

nodes u and v be a and b respectively, and let the associative operation performed by

the binary-tree algorithm be o.

The prefix computation runs on the binary-tree MBN in two phases. The first

phase runs the binary-tree algorithm from the leaves to the root. The only difference

here (from running a regular binary-tree algorithm) is tha t a node saves the value

it receives from the left child, unlike the usual form of the algorithm that simply

computes the partial result. For example, node w receives a and b from nodes u and

v and computes a o 6. In addition to computing this quantity, node w also saves the

value “a” (shown in a box in Figure 2.3). Node w sends partial result aob to the next

higher level in the next step (Figure 2.3(a)). The time to run this phase is clearly the

same as that of the binary-tree algorithm, namely T(n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

The second phase of the prefix computation also proceeds level by level, starting

from the top most level (level n) down to the leaves. This can be viewed as reversing

the binary-tree algorithm where value(s) from top of the tree propagates to the leaves.

Figure 2.3(b) describes the action at each node during this phase. The root of J-(n)

sends the value it stored (one received from its left child in the first phase) to the right

child. It sends the identity1 of operation “o” to the left child. A processor with stored

value a and that receive value c from its parent (i) sends c unaltered to its left child

and (ii) sends a o c to the right child. This phase mimics the binary-tree algorithm

(phase 1) in reverse, so its time is T [n) as well. Therefore, the time required to run

a prefix computation on a binary-tree MBN is twice as much as the time required for

running a binary-tree algorithm. (The correctness of this method follows from the

results in [38, 49].) ■

JThe identity i has the property th a t for any value x from the domain o f o , i o i = i o i = i . If
o does not have an identity, then the root could simply send a special signal indicating to its left
child th a t it need not apply o to the value received.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Degree, Loading, Time Trade-Offs

This chapter establishes non-trivial relationships between the degree, loading and

running time of binary-tree MBNs. We first show by a trivial connectivity argument

that any binary-tree MBN has a degree of at least 2 and a loading of at least 2; the

loading is at least 3 if no more than 2n_l buses are used for 2n processors. Next we

show th a t for a direct mapping, constant degree can never yield constant loading, and

vice-versa. We then establish a series of results that successively bound the loading

of degree-2, optimal-time binary-tree MBNs for B in(n) to first Q(v/n), then to Q (n?)

and finally to f t (j^ ;) , where 2n is the size of the problem. These results make no

assumptions about the type of mapping (direct or indirect) and the number of buses,

although the optimal-time restriction indirectly requires the MBN to have a t least

2n_l buses. Considering that increasing the degree by ju st 1 can yield a constant

loading MBN (see Section 3.6), these lower bound results are quite surprising.

Further, if we relax the optimal-time requirement, then we show the existence of

a degree-2 , loading-4 MBN tha t runs Bin(n) in 2n —3 steps. However, the extra tim e

needed (beyond n) still bounds the loading. We show th a t if a degree-2 MBN runs

B in(n) in n + t steps, for some 0 < t < n, then the loading is Q (tiog(^)) '

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

In Section 3.1 we introduce some preliminary ideas used in this chapter and Sec

tion 3.2 bounds the loading for binary-tree MBNs with a direct mapping. In Sec

tion 3.3 we derive the first of the general lower bounds and lay most of the ground

work necessary for the tighter lower bounds of Sections 3.4 and 3.5. We explore

loading-time tradeoffs in Section 3.7. We extend the lower bound results of Sec

tions 3.3, 3.4 and 3.5 to k-ary tree algorithms in Section 3.8.

3.1 Preliminaries

As mentioned in Section 2.3, we will consider a 2'l-processor MBN to run Bin(n).

An optimal-time MBN requires at least 2n_l buses. If the number of buses is less

than 2n_l, a t least the first level of T {n) requires more than one step to schedule, so

optim al time is not possible. Therefore, we consider optimal-time 2" x M binary-tree

MBNs for B in(n) with M > 2n_1 buses. If such an MBN has degree 2, then it has

a t most 2n+l connections (at most 2 per processor). If these connections are evenly

distributed among the buses, then the loading would be ["̂ 77-] < 4. In this chapter

we show that such a uniform distribution of connections is not possible and tha t a

large number of connections is concentrated on a small number of buses resulting in

a large non-constant loading.

An MBN is said to be connected iff there is a path (possibly via several buses and

processors) between any pair of processors. We now derive trivial lower bounds on

the degree and loading of a connected binary-tree MBN.

L e m m a 3.1 For n > 1 and M > 2 , any connected 2 " x M binary-tree M BN has a

degree o f at least 2 and a loading o f at least max (2 , ["̂ 7^]) •

Proof: If the degree is 1 and if the MBN has connections to each of its M > 2

buses, then the MBN cannot be connected; each processor connected to a bus b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

can only communicate with other processors connected to bus b. Thus at least one

processor must be connected to 2 or more buses. This implies that the total number of

connections in the MBN is at least 2n + 1. These connections are distributed over M

buses, so the loading is at least • Since each bus must have at least 2 connections

(otherwise it cannot be used for a communication), the loading is max (2 , ■

■
Remark: If M = 2m for some 1 < m < n, then the minimum loading is 2n~m -f- 1.

The 2n x 2m Tree MBN of Section 4.2 has an optimal loading of 3.

3.2 Lower Bound for Direct Mapping

To run a binary-tree algorithm on an MBN, the nodes of the tree F{n) are mapped

to processors, and non-trivial edges are m apped to buses. Recall the definitions of

direct and indirect mapping (see Section 2.3.1, page 16). In a direct mapping, each

internal node of T{n) is mapped to the same processor as one of its children; that is,

a processor applying the operation o (associated with a binary-tree algorithm) holds

one of the operands as a partial result from the previous step. On the other hand,

in an indirect mapping, two processors with partial results may send them to a third

processor that applies o on these. The direct mapping may appear to be a better

choice as it reduces communication requirements by maximizing the number of trivial

edges. This is not true for the loading of the MBN, as we show below. Indeed, the

MBN proposed by Vaidyanathan and Padmanabhan [85] uses a direct mapping and

has a non-constant loading.

L em m a 3.2 For any n > 1, an M BN with degree d that runs Bin(n) optimally in n

steps using a direct mapping has a loading o f at least I ^ I -I- 1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

level

7T n

n — 1

n — 2

Figure 3.1: .F(n) with a direct mapping

Proof: Consider MBN A t with nodes labeled by a direct mapping. Observe first

tha t for any node u that is mapped to some processor /i(u), there exists a path from

u to a leaf, such that all nodes on the path are mapped to n(u). (This follows from

the definition of direct mapping.) Let the root of A t be mapped to processor 7r. From

the above observation, there is a path from the root to a leaf such that all nodes on

this path are mapped to 7r (see Figure 3.1). Clearly, there are n internal nodes on

this path, each of which has one of its two children also on the path. Let the children

not included in the above path be mapped to processors 7T/ (where 0 < £ < n) as

shown in Figure 3.1. Each leaf of A t is mapped to a different processor (as each

input of Bin(n) is in a different processor). This coupled with the observation at

the beginning of this proof, establishes that all of 7To, tti, • • •, 7rn_i are distinct. Thus

processor n is required to communicate with n different processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Let processor 7r be connected to buses 6, (where 0 < i < t f < d). Since the MBN

runs B in(n) in n steps, each of the processors 7T0, 7Ti, • • •, 7r„_i must also be connected

to at least one bus 6, (where 0 < i < df). Thus the total number of connections to

all buses bi is a t least n + d!. This implies th a t the loading of the MBN is a t least

[= 5 * 1 = [* ! + ! 2 f s l + 1 . ■
Remark: Lemma 3.2 implies tha t an indirect mapping is essential for any optim al

time binary-tree MBN with constant degree and loading.

3.3 An Q (y / n) Lower Bound

In this section, we develop the first of a series of non-trivial lower bounds on the

loading of degree-2, optimal-time, binary-tree MBNs. Here we will prove th a t if an

MBN runs B in{n) in n steps and if its degree is 2, then its loading is fi(\/n).

3 .3 .1 S tra teg y and D efin ition s

We prove this lower bound result by showing th a t the connections in any degree-2,

optimal-time binary-tree MBN are distributed unevenly over the buses. Our strategy

here (and to a large extent in Sections 3.4 and 3.5 as well) is to identify (or prove

the existence of) a small number, /?, of buses tha t collectively have a large number,

7 , of connections. This will establish that the loading is a t least

For M > 2n _ l , consider a 2" x M MBN, X (n), that runs B in (n) in n steps

(numbered 1 ,2, • • •, n) and whose degree and loading are 2 and L, respectively. We

will use the terms “end of step s” and “beginning of step s + 1” synonymously. For

any 1 < s < n, let X s{n) denote a 2n x M MBN that includes only those connections

of X (n) th a t are used in a t least one of steps 1,2, •••,« . Then X 0{n) is a 2” x M

MBN with no connections and X n(n) = X (n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

0 1 2 3 2n — 2 2” — 1

0 1 2n~'

Figure 3.2: Step 1 of X \{n)

At each step s we will consider an 2n x 2n_l “sub-MBN”, Ya(n), of X ,(n); i.e.,

connections of Ya(n) are also connections of X 3(n). Sub-MBN Ya(n) consists of those

connections of X a(n) whose existence has been established. We say th a t a connection

is added to mean that a previously unaccounted for connection has been detected.

Therefore, the degree and the loading of the MBN changes from step to step. Running

B in(n) on an MBN can be viewed as a step by step construction of the MBN with

the counted connections added at each step.

An intermediate result of Bin(n) (value at any non-root or non-leaf node of tree

JF(n)) is called a partial result. A processor p holding a partial result or an input at

the end of step s (where 0 < s < n) is called a result processor of step s. Otherwise p

is a non-result processor of step s. If the degree of the processor p at the end of step

is 2 , then it is called a fu ll processor of step s; otherwise, p is a non-full processor of

step s.

Clearly, all 2n processors are non-full, result processors of step 0; i.e., at the start

of the algorithm. Step 1 (the first step) requires a t least 2n_l communications (exactly

2n_ l, if all 2n_l partial results generated at the end of step 1 are obtained by a direct

mapping). Therefore X i(n) is isomorphic to the MBN shown in Figure 3.2. Thus

for 1 < s < n, the terms “full” and “non-full” are synonymous with “degree-2” and

“degree-1,” respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

3.3.2 B asic R esu lts

We now list four simple consequences of X {n) being a degree-2, optimal-time, binary-

tree MBN; these facts are used, often without explicit mention, in subsequent discus

sion.

1. All partial results received in a step are used in the same step, and a partial

result generated in a step is used up in the next step. This is because the

algorithm runs optimally, so partial results cannot idle.

2 . A direct (resp., indirect) processor of a step receives one (resp., two) partial

results in tha t step; this follows from 1 above.

3. A processor receiving two partial results a t a step must do so from different

processors; otherwise the step will not be executed in unit time.

4. A processor sending a partial result cannot receive one a t the same step. This is

because it will have to receive two partial results and send one partial result as

a processor can hold only one partial result. This is not possible on a degree-2,

optimal-time MBN.

L em m a 3.3 For any 1 < s < n, i f p is a non-full, result processor of step s, then p

is a non-full, result processor of steps 1, 2 , • • •, s.

Proof: It suffices to prove that if p is a non-full, result processor of step s, then it is

a result processor of step s — 1. If p holds a result at the end of step s, but not a t the

end of step s — 1, then it must have obtained two partial results during step s. This

requires p to have two connections and be a full processor of step s. ■

C o ro lla ry 3.4 For any L < s < n, each result processor of step s is a full processor

of step s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

Proof: Let p be a non-full, result processor of step s. Then by Lemma 3.3, it is also

a result processor of steps 1,2, • • •, s. Therefore to prove the lemma, it is sufficient

to prove that s < L. Let p receive a partial result for step t (where 1 < t < s) from

processor pe, via the only bus b (say) to which p is connected. Therefore, bus b is

connected to processors in the set {p} U {pt : 1 < t < s}.

Consider processor pt th a t sends a partial result to p during step t. If pt is a result

processor of step t, then it must receive two partial results from processors different

from p (in addition to sending a partial result to p). This is not possible as one of

the (at most 2) buses to which pt is connected is used by p. Since this bus (bus b) is

used by p during steps 1, 2 , • • •, s, processor pt cannot be a result processor of steps

t , t + 1, ■ ■ •, s. Therefore, pt & {px : t < x < s} and so {p} U {pt : 1 < t < s} has

s + 1 processors, all of which are connected to bus b. Since the loading of X (n) is L,

we have s + 1 < L (or s < L). ■

From this point on, we will only consider step s > L. Since our aim is to prove that

L = Vt{y/n) (f2 ({^0 in Section 3.5), we may assume tha t L < n. By Corollary 3.4,

all result processors (of any step) can be assumed to be connected to 2 buses.

3 .3 .3 T h e A cco u n tin g Schem e

In determining a lower bound on the loading L of X (n), we will count connections

between processors and buses of X (n). Let (p, b) denote a connection between pro

cessor p and bus b. In our analysis, we will consider only those connections (p, b) for

which p is a full processor, and which participates in some step s > L. Since a lower

bound on the loading is sought, some connections can be ignored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

To account for the connections considered, we now associate each such connection

with a processor. For each processor p and step s > L, define a set, r a(p), of

connections owned by processor p in step s. (We will show later that if pi ^ p?, then

r 5(pi) and r a(pz) are disjoint.) We now define r, (p).

1 . If p is a result processor of step L, then it is also a full processor of step L (by

Corollary 3.4). Let p be connected to buses bx and For each such p, define

T l(p) = {<P,&i>,(p,&2>}. I f p is not a result processor of step L, then define

T l (p) to be empty.

2. For s > L, let p be a result processor of step s that receives partial result(s)

from (not necessarily distinct) processor(s) p ' and p" via bus(es) 6' and b",

respectively. Define Ta(p), Fs(p') and Ts(p") as follows.

T s(p) = ^ (p) U {(pi,b'),(p2,b")}

r 3(j/) = r ^ o /) - ^ ! ^) }

r a(p") = r a_i(p")-{(p25&">}

where (p i,b') € r ,^ i(j /) and (p2, 6") € ra_i(p"); since we are interested pri

marily in the cardinality, |ra(p)|, of Ta(p), (jpi,br) (resp., (p2, 6")) can be any

element of r a_i(p') (resp., r a_i(p")). Note that i fp receives only one value in

step s, then j f = p", bf = b” and pi = p-j,.

In summary, for each partial result received by processor p from processor p'

via bus 6, processor p' transfers ownership of a connection on bus b to processor

p. If processor p does not send or receive any partial result in step s, then

r a(p) = r a_t(p).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

L em m a 3.5 For any s > L,

(i) For distinct processors pi,pz, r s(pt) and r a(p2) are disjoint.

(ii) For any processor p, i f (j/, b) 6 r a(p), then processor p is connected to bus b.

(iii) I f p is a result processor of step s, then r a(p) has a connection o f the form

(p ',b), fo r each bus b to which p is connected.

Proof: At step L, by definition of Tt, all result processors own their connections to

the two buses to which they are connected. Therefore, Lemma 3.5 holds a t step L.

Observe that in part 2 of the definition of r a(p), the sets Ta(p) and (r a(p'), r a(p"))

are disjoint, and the connections added to r a(p) are (pi,bf) and (p2, V), where V and

V are buses to which p is connected. These observations, coupled with the fact that

Lemma 3.5 holds for step L, completes the proof. ■

Remarks: If the sets Ta(p) are used to count the number of connections in X s(n),

then part (i) of Lemma 3.5 ensures that no connection is counted more than once.

However, some connections may not be counted at all. Part (ii) is used later in

Theorem 3.9. Part (iii) ensures that the transfer of ownership in part 2 of the

definition of T3(p) is always possible.

L em m a 3.6 For any step s > L and any processor p, |Ta(p)| = |ra_[(p)| + £ , where

1, i f p is a result processor of steps s and s — 1 .

2 , if p is a result processor of step s and a non-result processor

of step s — 1.

-1, i fp is a non-result processor of step s and a result processor

of step s — 1.

0 , i f p is a non-result processor o f steps s and s — 1 .

6 =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Proof: Observe th a t S is the number of partial results received by processor p in

step s; S = — 1 indicates that p sends a partial result. The lemma now follows from

this observation and part 2 of the definition of r ,(p) . ■

C o ro lla ry 3 .7 For any step s > L, i fp is a result processor o f a o f the steps L ,L +

1, • • •, s, then |F ,(p) | > a.

Proof: The first time p becomes a result processor at step s0, say, (even if sQ = L),

| r ao (p) | = 2. For each of the remaining a — 1 times it is a result processor in some

step s' > so, we consider two cases:

Case 1: Suppose p is a result processor of steps s' — 1 and s'. Here |IV(p)| =

|IV_i(p)| -+- 1 (Lemma 3.6).

Case 2: Suppose p is a result processor of step s ' and a non-result processor of

step s' — 1. Since s' > So, there is a step s" (so < s" < s') such th a t p is a result

processor of step s" — 1 and a non-result processor of steps s", s" + 1, • - •, s ' — 1.

Here | r s/(p)| = |r,/_ i(p)| + 2, |r , /_ L(p)[= |I> (p) |, and |I> (p) | =

| r a«_L(p)[— 1 (again by Lemma 3.6). Therefore, |IV(p)| = |IV '_i(p)| + 1.

In any case, for each step s' > so of which p is a result processor, IV (p) increases by

one. Thus at the last step t < s of which p is a result processor, | Tt (p) | = 2 + (a — 1) =

a + 1. If t < s, then |rt+i(p)| = [rs(p)| = a . ■

3 .3 .4 N on -U n iform B u s U sage

In this section we show that as the binary-tree algorithm proceeds towards the root

of JF(n), most of the activity in the MBN centers around few buses th a t ultimately

incur a high loading.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

For any step s > L, a bus b of X (n) is said to be active in step s iff it is connected

to at least one result processor of step s. If a bus is used to carry a partial result in

step s, then it must be active in step s. However, a bus tha t is active in step s need

not be used in step s. In the following lemma, we prove that the pool of buses tha t

could be active a t a step shrinks with each step, thereby forcing a few buses to have

a large number of connections.

L e m m a 3.8 For any step s > L, bus b is active in step s, then it is also active in

step s — 1 .

Proof: Let bus b not be active in step s — 1. Then by definition of a non-active bus,

all the processors connected to b are non-result processors of step s — 1. Suppose

at step s, processor p connected to b becomes a result processor of step s, thereby

making b active in step s. Since p cannot be a result processor of step s — 1 (otherwise

b would be an active bus in step s — 1), p must receives two results in step s from

distinct processors pf and p". One of these partial results must be via bus b. Clearly

the two sending processors p' and p" are full (Corollary 3.4), result processors of step

s — 1. Thus, one of them must be connected to b in step s — 1, which contradicts the

assumption tha t b is not active in step s — 1. ■

3 .3 .5 T h e Lower B ou n d

We are now in a position to prove the main result of this section.

T h e o re m 3.9 For any n > 2, i f a 2n-processor M B N with degree 2 and loading L

runs Bin{n) optimally in n steps, then L = Q(y/n)

Proof: From Lemma 3.8, there exists a bus, bo, th a t is active in steps L, L + 1, • • •, n.

Let b0 be connected to I < L full processors, p i,P 2> ■ ■ • ,Pi- For 1 < i < £, let the two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

buses to which processor p* is connected be bo and Also let processor p,- be a result

processor an times from step L to step n.

From Lemma 3.5(«), each element of r n(pj) is a connection to either bQ or Since
t

the loading of the MBN is L, ^2 |rn(p,-)| < t + IL < I? + L. From Corollary 3.7 we
i = l

I I
also have JZ l^"(Pi)l ^ 5Z a «- Since bo is an active bus of steps L, L + 1, • • •, n,

i — 1 i = l
I 1 1

5Z a,- > n — L + 1. Thus, n — L + 1 < a * — 5Z l^n(P»)l ^
x— 1 i = l i = l
which implies that n < L 2 + 2L — 1 or L = Q(y/n). ■

Remark: Theorem 3.9 proves that for large problem sizes, the product of the degree

and loading of any MBN that runs a binary-tree algorithm in optimal time is at least

9, thereby establishing that the MBN, 7~(n), proposed in Section 3.6 has the best

possible “degree-loading” product.

3.4 An Q Lower Bound

In the lower bound of Section 3.3, we selected a bus bo and proved tha t its neigh

borhood (consisting of processors on bo and buses connected to these processors) had

a large number of connections. In restricting our consideration to the neighborhood

of bus bo, the technique used undercounted the number of connections in the neigh

borhood. Here we develop additional results that provide a more accurate count of

connections, even though the consideration is expanded to a larger neighborhood.

3.4.1 A d d ition a l R esu lts

Recall the definitions of direct and indirect nodes and processors (Section 2.3.1,

page 16).

L em m a 3.10 For any s > L, let p be a result processor of step s 4 -1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

(z) I f p is a result processor o f step s, then it is a direct processor o f step s + 1.

(ii) I fp is a non-result processor o f step s, then the following assertions hold:

(a) Processor p is an indirect processor of step s -+- 1.

(b) The two buses to which processor p is connected are active in step s.

(c) For each bus b to which processor p is connected, a result processor o f step s

(that is also connected to b) becomes a non-result processor o f step s -F 1.

Proof: If p is a result processor of both steps s and s + 1, then the result it holds

from step s must be used to obtain the result of step s + 1. (Otherwise, the processor

will have to receive two new values, while sending the result of step s to another

processor; this is not possible on a degree-2 MBN.) Also, since X (n) runs B in (n) in

n steps, partial results cannot be saved to be used at a later step.

If, on the other hand, p does not hold a result at step s, it must receive two partial

results during step s + 1, and is, therefore, an indirect processor of step s + 1. Since

these results (of step s) arrive through the two buses by and &2 (say) to which p is

connected, there must be result processors pi and p2 of step s that are connected to

buses &i and 62, respectively; that is, the buses 61 and 62 are active in step s. The

result processors pi and P2 of step s cannot be result processors of step s + 1 as they

send their results to processor p. (A result processor sending its value to another

processor must receive two values to remain a result processor of the next step; this

is not possible on a degree-2 MBN.) ■

The following corollary is a generalization of Lemma 3.8.

C o ro lla ry 3.11 For any s > L, i f p result processors of step s are connected to bus

b, then fo r any s > s' > L, at least p result processors o f step s' must be connected to

bus b.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Proof: It is sufficient to prove that the number of result processors connected to

bus b cannot increase after step L. Let processors pi,p?, • •• ,p z be result processors

of step s' that are connected to bus b. Let processor q connected to bus b not be a

result processor of step s', and let it become a result processor of step s ' + 1. Since

processor q is connected to bus b, one of the partial results m ust come from one of

the processors p i,p 2 , ■ " ,px via bus b. The processor that is sending the partial result

becomes a non-result processor of step s '+ l , and the total num ber of result processors

connected to bus b does not increase. Therefore, a t least a to ta l of p result processors

must be connected to bus b in all the steps s > s' > L. ■

Remark: It is im portant to note that the processors holding the results may change

from one step to another, while the number of result processors is non-increasing.

Two processors are said to be neighbors iff they are connected to a common bus.

For integers a, b with a < b , let interval [a ,6] denote the set { a ,a + 1, - - •, 6 — 1,6}.

L em m a 3.12 For s > L , i f p is not a result processor of step s — 1, and is a result

processor o f steps s, s + l , - * - , s + x — 1 (for some x > 0), then the following assertions

hold:

(z) For each step s' in the interval [L, s — 1], at least x + 1 neighbors o f p are

result processors o f step s '.

(ii) A t the end o f step s + x — 1, the neighbors of p collectively own at least

((x -(- l) (s — L) -I-) connections.

Proof: When processor p becomes a result processor of step s, it must be an indirect

processor of step s (Lemma 3.10), and it consumes two results from its neighbors.

Processor p also consumes a result from one of its neighbors in each of the steps s + 1,

s + 2, • • •, s + x — 1, (during which it is a direct, result processor). By Corollary 3.11,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

for the 2 + (x — 1) = x + 1 results consumed by p in steps s, s + 1 , - • •, s + x — 1, there

must be x -I- 1 results among the neighbors of p in each of steps L, L + 1, • • •, s — 1.

Of the x + 1 results consumed by processor p, two are consumed in step s. There

fore for the remaining x — 1, there are x — 1 result processors among the neigh

bors of p in each of steps L, L + 1, • • •, s — 1, s. In general, for any 1 < i < x,

there are x — i result processors among the neighbors of p in each of the steps

L, L + 1, • • •, s + i — 1. If N is the set of neighbors of p, then by Corollary 3.7

we have [IY ^ ^ tp ')! = (s ~ L)(x + *) + H (x ~ 0 = (s ~ L)(x + !) + ■
p'e/v «=i

3.4 .2 T igh ter Lower B ound

Now we are in a position to prove the main result of this section.

T h e o re m 3.13 For any n > 2, i f a 2n-processor M B N with degree o f 2 and loading
2

o f L runs a B in(n) optimally in n steps, then L = f2(ns).

Proof: Let the loading of the MBN be L < n. By Lemma 3.8, there is a bus that

is active during each step in the interval [L,n]\ let this bus be b0. Let full processors

Pi ,P2, * • • ,Pi (for some £ < L) be connected to bus b0. For each i (where 1 < i < £),

let processor p, be connected to bus 6, (in addition to bus bo). Besides processor p,,

let bus bi be connected to m, < L processors (see Figure 3.3).

For any given step s € [L, n], at least one of p l ,p 2, • • • ,p / is a result processor (as

b0 is active during each step of [L , n]). Therefore, the interval [L, n] can be partitioned

into k subintervals, / l5 / 2, • • •, /*, as follows (see Figure 3.4):

(i) In each step of subinterval Ij, processor {Pi : 1 < i < ^} is a result

processor.

(ii) For j > 1, 7Tj ^ TTj-i.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

bo

PtjP 1,1 Pi,mi Pi,l Pij

Figure 3.3: Processors and buses in the neighborhood of bus b0

Let interval Ij be of length i j (where 1 < Xj < n — L + l) . Clearly, ^ xj = n — L + 1.
i =i

i - i j
Also Ii = [L, L + x i — 1] and for j > 1, Ij = L + 53 xr , L - 1 + 5Z xr

r—l r=l
— [Sj > sj

x j - 1] (say).

Applying Lemma 3.12 to Ij, the number of connections owned by neighbors of

7Tj (at the end of step Sj + Xj — 1) is (sj — L){xj + 1) + Summing this for

all k intervals, we can assert that the number of connections collectively owned by

processors p\,p-i, • • • ,pi and their neighbors is at least

t , (f e - - L) (x , + 1) + X i(x ’2 I }) = I , (i 2 + 1) +

. . __1\ l _2

X2(X2 + 1) + (* 1 +

H bx k- i) (x k + 1)+ lj > (*1+X3+-+X*) +(XlX2+XlX3̂ -------hXiX/t+ X2X3 +

X2x4 H— •-rx2xfc+ hxfc-iXfc) = = 0 (n 2). These connections are distributed
t

among the 1 + i + ^ r r i i < 1 + L + L(L — 1) = I? + 1 buses connected to the above
t=i

processors (see Figure 3.3). Since each bus can have at most L connections we have

L{ 1 + L2) = L3 + L = fi(n2), which implies that L = Q (n£). ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

.
Interval / t

I

X\
step L

result processor 7rt
step L + x\ — l = s-2 — 1
step «2

Interval / 2 x 2 result processor 7r2 ^ 7Ti

’ step «2 + *2 — 1 = *3 — 1
step S3

result processor nj ^ itj-i

= sj+1 1

result processor 7r* ^ 7r*_i

Figure 3.4: Subintervals of [.L , n]

3.5 An Q (i^) Lower Bound

In the last two lower bound derivations (Sections 3.3 and 3.4), we used an accounting

scheme to count the number of connections in the neighborhood of a bus bo that was

active at steps L, L + 1, • • •, n. This accounting scheme transferred ownership of one

connection for each partial result sent/received by a processor. This scheme assumes

the existence of only one transferable connection with each result processor, even

Interval Ij I Xj

Interval I* Xk

step Sj — 1
step Sj

step Sj + Xj — 1
step

step Sk — 1
step Sk

step n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

though the result processors could possibly own many more connections. In this

section we develop a modification to this accounting scheme th a t allows many more

connections to be counted. The new accounting scheme perm its the ownership of

more than one connection to be transferred between processors, whenever possible.

We do this by breaking the interval [L, n] into smaller segments and establishing the

existence of more than one transferable connection with result processors in each

segment. This is the key to tightening the lower bound on the loading to fi (u^Tr).

In Section 3.5.1 we derive the basic results needed for the new accounting scheme.

In Section 3.5.2 we describe the new accounting scheme. Finally in Section 3.5.3 we

derive the new lower bound.

3 .5 .1 In itia l C on d ition

For some integer d > 1, partition the interval [L,n] into y segments [L, 3L -t- l j ,
To

(3Z> -F 2, 3L ~f~ 1 ~t~ d], [3L -f 2 -f d, 3L -f 1 -f 2d], • • •, [3L + 2 + (y — 1)d, n]. Denote
Tl h Ty

these segments by Iq, I\, • • ■, Iy. Segment I0 contains 2L 4- 2 steps, and segments

I\, I 2 , • • •, Iy- 1 each contains d steps. The last segment, Iy, contains (n — 3L — 2) —

d(y — 1) < d steps. In this section we develop a relationship between the number of

result processors and the total number of connections on an active bus at the end of

step 3L + 1 (end of interval / 0). W ithout loss of generality, assume L <

L em m a 3.14 Let b be any active bus of steps L, L + 1, • • •, 3L + 1. Let there be p

result processors connected to bus b at the end of step 3L + 1. Let there be £ < L fu ll

processors (including the p result processors) connected to bus b at step 3L + 1. Then

^ > 2 p.

Proof: At step 3L + 1 there are p result processors connected to bus b. Therefore,

there must be at least p (not necessarily the same) result processors connected to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

bus b all the way from step L (Corollary 3.11). In this interval, ownership of only

one connection is transferred with each partial result. Therefore, during this interval

of 2L + 2 steps, the total number of connections owned by processors connected to

bus b is increased by a t least (2L + 2)p (Corollary 3.7, page 30). There is a total

of £ full processors connected to bus b at step 3L + 1. Each of these f processors is

connected to a bus different from 6. Collectively, the number of connections owned

by all f processors on bus b is £L + f , where £L is the connection to the buses in

the neighborhood of b, and £ is the number of connections to b itself. (Recall th a t a

processor can own connections only to the buses it is connected to and all detected

connections are owned.) Since the loading of any of these £ buses in the “neighborhood

of bus U' cannot exceed L, we have £(1 + L) > 2p(l + L), which implies tha t £ > 2 p.

■

3 .5 .2 T h e N ew A ccou n tin g Schem e

Notice tha t the result of Lemma 3.14 shows tha t at the end of step 3L + 1 there

are twice as many connections as result processors to any active bus. However, some

result processors may still own only one connection on each of its buses, while other

processors may own many more connections. At the end of step 3L+1, if all the known

connections are redistributed among the a result processors, then each processor will

own at least 2 connections to each (active) bus b to which it is connected. Therefore,

beyond this point ownership of 2 connections could be transacted for each partial

result sent/received. This change alone with the previous m ethod of counting the

connections will raise the lower bound on L by a factor of about 2. However, if

we proceed for another d steps, we can show that the number of connections owned

by each result processor is greater that 2. This can be used to evenly redistribute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

connections so that each result processor now owns more than 2 connections. This

in turn allows more connections to be transacted with each partial result. In fact,

such a redistribution of the known connections can be carried out a t the end of each

of the intervals Iq, 7i, / 2, • • • Iy~i. The last steps of these intervals (at which known

connections are redistributed) are called transition points. In general, if there are a

result processors connected to bus b, and a total of 7 connections to an active bus

b at a transition point, then after redistributing connections, each result processor

is guaranteed to own [qJ connections to bus b. The accounting scheme used in

Sections 3.3 and 3.4 can still be used with suitable modifications. We now outline

these modifications.

1. For 1 < i < y, consider interval = [s,-,st+i — 1], where S{ = 3L + 2 +

{i — 1)d is the first step of /<. Clearly s, — 1 is a transition point, so at

the end of step S’,- the accounting scheme redistributes known connections of

each active bus evenly among its result processors. Let each result proces

sor own w connections at step s,. More precisely, for result processor p with

connections to buses b' and b", let its set of owned connections be r jf(p) =

{(Pi, V), (p'2, b'), ■ • •, (j/w, I/), (p'l, V'), (pg, (p", 6")} where pfj and p\'j (1 <

j < w) are some processors connected to bus b' and 6", respectively. If p is

not a result processor of step S{, then r a<(p) is empty. Since the set of known

connections is partitioned among the result processors, no connection is owned

by more than one processor.

2. For a step s (where s* < s < si+I — 1), let p be a result processor of step s that

receives partial result (s) from (not necessarily distinct) processor(s) pf and p"

via bus(es) b' and b", respectively. The sets r a(p), and r s(p") change as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

follows.

r,(p) = r a_x(p) u

r,^) = ra_1(p')-{(P',6'),(P,2 04^)}
r a(p") = r a_!(j/') - b"), (j/±, (p i, &")}

For 1 < j < w, {p'j, b) € and (p", 6") e r a_!(p"); since we are interested

primarily in the cardinality, |ra(p)|, of Ta(p), the w connections transferred ((py, b')

and (p", 6"), for 1 < j < w) can be any w element of ̂ -[(p') and r a_i(p"). Note th a t

if p is a direct processor that receives only one partial result in step s, then p' = p",

b' = V and j/j = p".

In summary, for each partial result received by processor p from processor p' via

bus b, processor p' transfers ownership of w connections on bus b to processor p. We

call w the transaction weight of interval If processor p does not send or receive

any partial result in step s, then Ta(p) = r a_i(p). The facts stated in Lemma 3.5

also hold when the transaction weight is more than one. We restate Lemma 3.5

modified to accommodate the idea of transaction weight; its proof is the same as th a t

of Lemma 3.5.

L em m a 3.15 Let I be an interval with transaction weight w. For any step s € / ,

the following statements hold.

(£) For distinct processors p \ ,p i, Ta(pi) and r s(p2) are disjoint.

(u) For any processor p, i f (jf, b) 6 r a(p), then processor p is connected to bus b.

(in) I f p is a result processor o f step s, then Ta(p) has w connections o f the form

(p'i, b), (jp/2, b), • ■ •, (p'w, b) fo r each bus b to which p is connected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Lemma 3.6 tracks the size of r a(p). We now restate this lemma with appropri

ate modifications for the new accounting scheme. Again its proof parallels that of

Lemma 3.6.

L em m a 3 .16 Let I be an interval with transaction weight w. For any step s € I,

|r,(p)| = |r,_i(p)| + S, where

w, i f p is a result processor of steps s and 5 — 1,

2w, i f p is a result processor o f step s and a non-result processor

o f step s — 1,

—w, i f p is a non-result processor of step s and a result processor

o f step s — 1,

0 , i f p is a non-result processor of steps s and s — 1 .

Corollary 3.7 (page 30) relates the number of connections owned by a processor and

the number of steps for which it holds a partial result. We now restate Corollary 3.7

with suitable modifications to accommodate a transaction weight w > 1.

C o ro lla ry 3 .17 Let I be an interval with transaction weight w. For any step s €

I = [si, s2], i f p is a result processor o f a of the steps of subinterval [si, s] o f I , then

|r3(p)| > w a .

Proof: The proof follows along the same lines as the proof of Corollary 3.7 (page 30)

with each connection transferred replaced by a group of w connections. W ith each

partial result, w connections are transferred. The remaining steps of the proof are

the same as in Corollary 3.7. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

3 .5 .3 T igh ter Lower B ound

We now use the results developed so far to derive a tighter lower bound on the

loading of degree-2, optimal-time, binary-tree MBNs. Recall that the initial segment

10 = [L , 3L + 1], the last segment is Iy = [3L + 2 + (y — 1)d, n] and for 1 < i < y,

11 = [3L + 2 + (i - 1)d, 3L + 1 + id\.

L em m a 3.18 Let 6q be an active bus of steps L, L -I- 1, • • •, n. For 0 < i < y, let Wi

be the transaction weight o f segment Ii. Then, w0 = 2 and u;i+l = -

Proof: Lemma 3.14 proves that w0 = 2. Let there be p,+i result processors con

nected to bus b0 at the beginning of interval / l+1. Let 6 +i be the total number of

processors (including the /?,+i result processors) connected to bus 60 a t the beginning

of the interval I i+1- Since there are p,-+i result processors connected to bus b0 at the

beginning of the interval / i+i, there must be at least pl+i (possibly different) result

processors connected to bus 60 a t each of the steps of interval /,- (Lemma 3.11). The

number of connections collectively owned by these processors at the beginning of the

interval /,-+1 is at least dw,pi+l (Corollary 3.17). These connections must be on bus b0

or buses in its neighborhood (that are connected to a processor with a connection to

bus b0) as shown in Figure 3.5. The number of connections on bus b0 is f1+i- Each of

the £,-+i has a t most L connections. Therefore, the number of connections on bo and

buses in its neighborhood is at most + Lpi+l = (1 + L)pi+\. Since the number of

connections owned by the p,+i processors on b0 cannot exceed this quantity, we have

WiPi+id < £i+iL + f i+i = (1 + L)6 +1. By definition, wi+l = [| ^ J = [^ J . ■

L em m a 3.19 For 0 < i < y, let Wi be the transaction weight for segment I f

is an integer, then u;,+i = 2 (2̂ 7) •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

€ f u l l p ro c e sso rs

p r e su lt p rocessors
< * > 6q

/ K \ / H \ / H \

Figure 3.5: The connections on bus &o

Proof: If is an integer, then [f ^ J = Then from Lemma 3.18, wi+l =

and w0 = 2. Solving this recurrence will yield wi+i = 2 • ■

Now we are in a position to prove the main theorem of this section.

T h e o re m 3 .20 F orn > 2 , i f a degree-2, loading-L, 2n-processor M BN runs a B in(n)

in n steps, then L =

Proof: Let d = 2(1 + L). Using the same notation as in the proof of Lemma 3.18,

this gives wy = 2y+1 = L^J- Since py > 1, we have £y > 2y+l. That is, there are

at least 2y+l connection to bus 60 that is active in each of the steps of I y. Therefore

2y+l < L, hence, y + 1 = j J Thus L logL = f l(n) which implies

that L = ■

3.6 The Tree MBN

We showed in the previous sections that for n > 1, any MBN with at least 2n~l

buses running Bin(n) has a degree of at least 2 and a loading of at least 3. Next we

proved that if an MBN runs Bin(n) in n steps and if its degree is 2, then its loading is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

f2 (i5̂) - This raises the question, what if the degree is 3? In this section we answer

this question positively by constructing a binary-tree MBN with the least possible

degree-loading product. For n > 1, we present a 2" x 2n“ l MBN 7*(n), called the

Tree MBN, th a t runs Bin(n) in n steps. The degree and loading of T (n) are each 3.

Lemma 3.1 and Theorem 3.20 prove tha t 7~(n) has the best possible degree-loading

product of 9. Figure 3.6(a) shows a T(4) and Figure 3.6(b) shows how it runs B in (4).

We now formally describe T (n). For n = 1, each of the two processors of T (l) is

connected to the only bus. For the remaining description, we assume tha t n > 2.

Let the processors and buses of T {n) be indexed 0,1, • • •, 2n—1 and 0,1, • • •, 2n_l —

1, respectively. Group processors and buses into 2n“ l clusters, C,, where 0 < i < 2n~l .

Cluster Ci consists of bus i and processors 2i and 2i + 1, both of which are connected

to bus i. Arrange the 2n_l clusters into n levels (see Figure 3.6(a)). Level 0 contains

only cluster Co. For 0 < £ < n, level £ contains clusters Cx, for 2/_1 < x < 2/ . In

addition to connections from processors 2i and 2i -I- 1 to bus i (where 0 < i < 2n_l),

T (n) has the following connections between clusters. Processor 1 is connected to

bus 1; for 1 < i < 2n~2, processor 2i + 1 of cluster C, is connected to buses 2i and

2i + 1. It is easy to see that for 0 < i < 2n_l, processor 2i is connected only to bus i,

and processor 2 i+ l is connected only to buses i, 2i and 2 i+ l (if they exist). Similarly

for 0 < i < 2n_l, bus i is connected only to processors 2i, 2i + 1 and (2 JjJ + l) .

Thus the degree and loading of T{n) are each 3.

Figure 3.6(b), with nodes and non-trivial edges labeled with processor and bus

indices, respectively, shows how T(4) runs B in(4). The general case is a straightfor

ward extension of this, so we will keep this description brief. In running B in(n) on

T (n), each processor initially holds an input. The first step consists of a communi

cation within each cluster, with processor 2i + 1 receiving an input from processor 2i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

Figure 3.6: Running B in(4) on T (4)

(via bus i) and performing the operation o. Subsequent steps involve communication

between clusters. In step s (where 2 < s < n), processor 2i + 1 (where 0 < i < 2n~s)

sends a partial result to processor (2 |^J + l) , receives partial results from processors

4i + 1 and 4i + 3, and applies the operation o on the partial results received. At the

end of step n, processor 1 holds the result of Bin(n).

T h eo re m 3.21 For any n > 1, the 2n x 2n_l MBN, T (n), runs B in(n) optimally in

n steps. The degree and loading o fT (n) are each 3. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

3.7 Loading-Speed Tradeoff

In the preceding sections we proved that an optimal-time, degree-2 binary-tree MBN

cannot have constant loading. In Section 3.6 we showed that this lower bound on

loading does not hold if the degree is perm itted to increase to 3. This section deals

with the “optimal-time” restriction on these results. We prove that if the algorithm

is perm itted to run a little more slowly, then a constant loading is possible, even

with a degree of 2. Specifically we show the existence of a degree-2, loading-4 MBN

that runs Bin{n) in n + t time when t is 0 (n) . When t is constant, however, the

loading cannot be constant. We derive a lower bound that relates the loading with

t, the amount of time beyond the optimal that the MBN is perm itted to execute the

binary-tree algorithm.

3.7.1 Lower B ound

Let 2T̂ be the size of the largest instance of a binary-tree algorithm that can be run

optimally in t (L) steps on a degree-2, loading-L MBN. From Theorem 3.20 we know

that t (L) = 0 (L logL). The existence of a degree-2, 0(n)-loading, optimal-time

MBN for B in(n) [85] gives the bound t (L) = f2(L).

T h e o re m 3.22 For any degree-2, loading-L, 2"-processor M BN that runs B in(n) in

n + t steps, t > •

Proof: Since the MBN runs Bin(n) suboptimally, there are some nodes of -F(n) with

“delays” in them. A node with delay <5 passes its value (input/partial result) to its

parent 6 steps after this value is available to it. This delay may be used to transfer

the value to a different processor with less demands in its buses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

< t { L) + 1

r { L) + 1

r(L) + I

r (L) + 1

Figure 3.7: Path with t delays

The definition of r(L) ensures tha t for x > r(L), the tree P {x) has at least one

delayed node in it; therefore Bin(x) requires at least x + 1 steps on such an MBN.

Divide T {n) into [T̂ + l] parts (see Figure 3.7), P i5 where 1 < i < • Each

part, Pi, (except perhaps the last one) consists of r(L) + 1 contiguous levels of P (n).

T hat is, these parts contain trees isomorphic to !F{t {L) + 1) that must contain at

least one delayed node (with delay S > 1). For part Pi that starts from the leaves,

the roots of the F (t (L) + l)s in this part obtain the values no earlier than at step

r(L) + 2 . As a result, the roots of the T { t (L) + l)s in the next part P2 obtain

their values no earlier than at step 2(r(L) + 2). In general for 1 < i < [r (E)+ lJ,

the roots of the F (t (L) + l)s of part Pi obtain their values no earlier than at step

z(r(L) + 2). W ithout the delayed nodes, these roots would have obtained their values

at step i(r(L) + 1), so the additional time taken is a t least i. Therefore, the additional

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

time (due to delayed nodes) taken before the root of ̂ F(n) obtains its value is a t least

[frfy+rJ- ■

3 .7 .2 U p p er B ou n d

When the loading L is a constant, Theorem 3.22 requires the additional tim e (beyond

the minimum required n steps) to run Bin(n) to be fi(n). This is because r(L) =

O (L lo g L) = 0 (1), for constant L. We now show that this lower bound on the

additional time is tight by presenting a degree 2, loading-4 MBN tha t runs B in(n) in

2n — 3 steps (that is, with n — 3 additional steps).

Consider a degree-2, constant loading-^, 2n x 2n_1 delayed root MBN, 'D{n), that

has the following properties:

• The processor, f (n) , that holds the final result of Bin(n) has a degree of 1; that

is, f { n) is connected to only one bus.

• There is a bus 6(n) with loading t — 2; that is, two more processors could be

connected to bus 6(n) without increasing the loading of X>(n).

• One of the processors, p(n), connected to bus 6(n) has degree 1; that is, pro

cessor p(n) is not connected to any bus other than b(n).

Processors f (n) and p(n) and bus b(n) will be called the special elements of 'D(n).

An example of such an MBN is the 8 x 4 MBN shown in Figure 3.8(a). For this MBN

the loading i is 4, and /(3) , p(3) are processors 0 and 6 , respectively, while bus 3 is

6(3). It is easy to verify, that T>{3) possesses the above properties. Also note that

X>(3) runs Bin(3) in 3 steps.

We now show how two copies of £>(n) can be used to construct the 2n+l x 2n MBN,

V (n + 1). To distinguish these copies, we name them V {n) and P "(n) and refer to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

m p(3)

bus 3 = 6(3)

(a)

(b)

Figure 3.8: Running Bin{3) on 8 x 4 MBN, P(3)

their special elements as / '(n) , p '(n) 6/(n), /" (n),p "(n) and 6"(n). To construct

Z?(n + 1) from D '(n) and T>"(n), all that needs to be done is to connect processors

f '{ n) and / '(n) to bus 6'(n). Designate p'(n) to be / (n + 1), p"(n) to be p(n + 1) and

6"(n) to be b(n + 1).

MBN Z>(n-t-l) has a loading of £ as the only two added connections are to bus b'(n)

that has only I — 2 connections to start with. Its degree is 2 as the added connections

are one each from processors / ' (n) and /" (n), that had only one connection each to

begin with. It is easy to verify th a t each of the processors f (n + 1) = Pi(n) and

p(n + 1) = p"(n) has degree 1 and tha t bus 6(n + 1) = 611 (n) has loading £ — 2. If we

can now establish that f (n + 1) holds the final result, then P (n + 1) will satisfy the

three properties stated above for Af (n).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

When Bin(n 4- 1) is run on P (n + 1), the first n levels (starting from the leaves) are

run simultaneously on I y (n) and 2>"(n); the results of these steps are in processors

f ' (n) and /" (n) . These processors use bus V(n) to send their partial results to

f (n + 1) = p '(n). (Recall th a t processors f { n) and f" (n) have been connected to bus

6'(n), while f (n -(- 1) = p '(n) is already connected to this bus.) Processor / (n 4-1)

now computes the final value of Bin{n + 1). From this discussion it should also be

evident that if 2>(n) runs B in{n) in T (n) steps, then T>{n 4- 1) runs Bin(n 4 - 1) in

T (n + 1) = T (n) 4 - 2 steps. This is because both processors / '(n) and f"{n) use the

same bus, b'(n), to send their partial results to processor / (n 4- 1); this introduces a

delay in computing the root. Coupled with the fact tha t T (3) = 3 (see Figure 3.8),

this gives T(n) = 2n — 3, for n > 3.

Thus we have the following result.

L em m a 3.23 For any n > 3, the degree-2, loading-4, 2n x 2n_1 delayed root MBN,

T>{n), runs B in{n) in 2n — 3 steps. ■

The generalization of the above result to non-constant loading L > 4 is straightfor

ward. First construct a 2 i x 2L~l degree-2, loading-L MBN, by the m ethod proposed

by Vaidyanathan and Padm anabhan [85]). Denote this MBN by T>l - An important

feature of the MBN is tha t the result processor has only one connection, and the

bus that is connected to the final result processor has less than L connections. We

can now use two copies of P l (t i — 1) and follow the construction described in the

upper bound section to obtain T>i,(n). It is easy to see th a t the tim e it takes to run

B in(n) on V L{n) is L — 1 4 - 2(n — L + l) = 2n — L + l steps.

T h e o re m 3.24 For any n > 3, the degree-2, loading-L, 2n x 2 n_l MBN, T>i{n), runs

Bin{n) in 2n — L 4- 1 steps. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

The results of this section show that a degree-2, constant loading MBN exists for

Bin{n) if and only if it is perm itted to take @(n) more steps than the optimal.

3.8 Extension to k-ary Tree Algorithms

In this section, we extend the lower bound results of this chapter to k-ary tree algo

rithms. In a A;-ary algorithm, a node (or a processor) receives A;-inputs/ partial results

and reduces them to one result by performing an associative k-ary operation on them.

Binary-tree algorithms form a special case of k-ary tree algorithms, with k = 2. All

the results so far have been established for binary-tree algorithms.

In general, for k > 2, a k-ary tree algorithm reduces kn inputs to one result,

and can be represented as a balanced (n-level) k-ary tree. Clearly, the optim al time

for this algorithm is n steps. In this section we extend the lower bound results of

Sections 3.3, 3.4 and 3.5 to k-ary tree algorithms. Most of the basic results needed

to establish the lower bounds for k-ary tree algorithms are very similar to the binary

tree case. We will therefore keep our discussion brief and only point out places where

the k-ary case differs from the binary case.

Let X (n) be an optimal-time, loading-L, k-ary tree MBN with kn processors

and M > (k — l)A;n-1 buses. We start by stating the basic results of Section 3.3.2

(page 26) extended to k-ary tree MBNs. We list four simple consequences of X (n)

being a degree-A:, optimal-time, A;-ary tree MBN that are used often without explicit

mention, in subsequent discussion.

1. A full processor has k connections, while a non-full processor has less than k

connections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

2. All partial results received in a step are used in the same step, and a partial

result generated in a step is used up in the next step. This is because the

algorithm runs optimally, so partial results cannot idle.

3. A processor using a direct (resp., indirect) mapping receives k — 1 (resp., k)

partial results; this follows from 2 above.

4. A processor receiving k partial results at a step must do so from different pro

cessors. Otherwise the step will not be executed in unit time.

5. A processor sending a partial result cannot receive one at the same step. This is

because it will have to receive k and send one partial result. This is not possible

on a degree-A;, optimal-time MBN.

It is easy to show th a t Lemma 3.3 and Corollary 3.4 hold for the fc-ary case. Define

ownership as in Section 3.3.3 with one connection being transacted for each partial

result sent/received. Clearly Lemma 3.5 still holds. Lemma 3.6 clearly extends to

the following:

L em m a 3.25 For any step s > L and any processor p, Ta(p) = T ,-! (p) + 5, where

k — 1, i f p is a result processor of steps s and s — 1

k, i f p is a result processor o f step s and a non-result processor

of step s — 1

—1, i f p is a non-result processor of step s and a result processor

o f step s — 1

0, i f p is a non-result processor of steps s and s — 1

6 =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

As a result, we have the following corollary using the reasoning of Corollary 3.7.

C o ro lla ry 3.26 For any step s > L, i f p is a result processor of a of the steps

L, L + 1, •• - ,s , then |rs(p)| > a{k — 1). ■

Observe tha t Lemma 3.8 is independent of the k-ary case.

T h e o re m 3.27 For any n > 2 , i f a kn-processor M BN with o f degree-k and loading

of L, runs kn-input, k-ary tree algorithm optimally in n steps, then L = f2(v/n).

Proof: Prom Lemma 3.8, there exists bus, bo, that is active in steps L, L + 1, — , n.

Let bo be connected to £ < L processors, P i,P2, ••*,?/, all of which are full processors

of step n. For 1 < i < £, let the k buses to which processor p,- is connected be 6o and

bi,i,bit2 , • ■ •, &»,*_!• Also let processor p, be a result processor times from step L to

step n.

Prom Lemma 3.5(u), each element of r„(pt) is a connection to either bQ or Since
i

the loading of the MBN is L, 53 lr n (p.) I < £ + £{k — 1)L < L2(k — 1) + L. Prom
i = l

i i
Corollary 3.26 we also have ^ [rn(p,)| > [k — 1) a ,. Since b0 is an active bus of

»= I i = l
I

steps L, L + l, • • •, n, 53 a , > n — L + 1. Thus, (k — l) (n — L + 1) < L2(k — I) + L,
»=i

which implies that n < L2 + — 1 or L = Vt{y/n). ■

To obtain the second lower bound from the first, observe that Lemma 3.10 and

Corollary 3.11 hold for the k-ary case as stated. Lemma 3.12 changes slightly as

shown below.

L em m a 3.28 For s > L, i f p is not a result processor o f step s — 1, and is a result

processor o f steps s, s + 1, • • •, s + x — 1 {for some x > 0), then the following assertions

held:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(i) For each step s' in the interval [L ,s — 1], at least x + 1 neighbors o f p are

result processors of step s'.

(ii) A t the end o f step s + x — 1, the neighbors of p collectively own at least

(k — 1) ((x + l)(s — L) + z(z~1)) connections.

Proof: Is the same as in Lemma 3.12 except that the number of connection owned by

a processor increases by a factor of A: — 1 for every result holding step (Corollary 3.26).

■

T h e o re m 3.29 For any n > 2, i f a k n-processor M BN with degree of k and loading
/ 2 \ Lo f L runs a k-ary tree algorithm optimally in n step, then L = fi 3 .

Proof: This proof is the same as in Lemma 3.13 with some modifications as indicated

below. The number of connections collectively owned by processors p i j , p 1,2, • • •,

P\,k-i • • P/,1, P/,2 , • • -, Pz,fc-i and their neighbors is at least

(* - 1) E ((*J - £)(*J + !) + 1}) = e«k - !) (" - = 9 ((* - i)" 2)-

These connections are distributed among l + (fc —1)^+ (k — 1)2(L—1)£ < 1+ L (k — 1)+

L (L — 1)(k — I)2 buses connected to the above processors. Since each bus can have

at most L connections we have

L [l + L (k - 1) -I- L(L - l) (k - l) 2] = S ((k - 1)2L3) = Q((k - 1)n2)

, which implies that L = Q (**■)*• ®

Remark: For constant k, L is still f2(n 3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

The new accounting scheme developed for proving the lower bound of

Section 3.5 is also valid for the A;-ary tree algorithms. We state results from Section 3.5

th a t require some changes.

L e m m a 3.30 For k > 2, let b be any active bus o f steps L, L 4- 1, • • •, 3L 4- 2. Let

there be p result processors connected to bus b at the end of step 3L 4- 2. Let there

be £ < L fu ll processors (including the p result processors) connected to bus b at step

3L 4 - 2. Then £ > 2p.

Proof: At step 3L + 2 there are p result processors connected to bus bo- Therefore,

there must be at least p (not necessarily the same) result processors connected to bus

b0 all the way from step L (Corollary 3.11). In this interval, ownership of only one

connection is transferred with each partial result. Therefore, during this interval of

2L 4- 2 steps, the total number of connections owned by processors connected to bus

b0 is increased by at least (2L 4- 2)(k — 1)p (Corollary 3.25). There is a to tal of f full

processors connected to bus bo a t step 3L 4- 2. Each of these £ processors is connected

to (k — 1) buses different from 6o- Collectively, the number of connections owned by

all £ processors on bus 60 is £ -f f (fc — 1)L, where £(fc — 1)L is the connection on the

buses in the neighborhood of b0 and £ is the number of connections on b0 itself. Since

the loading of any of these £ buses in the “neighborhood of bus bo" cannot exceed L,

£(1 + (k — 1)L) > p(k — 1)(2L + 2), which implies that f > 2p, or wQ > 2. ■

For the same partitioning of the interval [L,n] in Section 3.5.1, we have the fol

lowing.

L e m m a 3.31 Let bo be an active bus o f steps L, L 4-1, • • •, n. For 0 < i < w, let Wi

be the transaction weight for segment /,-. Then, wo = 2 and u;,+1 = Wi'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

Proof: Lemma 3.30 proves that w0 = 2. Rest of the proof is the same as in

Lemma 3.18. However, notice that each processor in the neighborhood of the bus

is now connected to k — 1 other buses. Therefore,

WiPi+id < &+i(fc - 1)L + f i+l = (1 + L{k - l))&+i, so ^ > TTLtk^vj

By definition, u,i+l = [J* lJ = [l+L(dfc_i)w»j- ■

L em m a 3.32 Let bo be an active bus of steps L, L + 1, • • •, n. For 0 < i < w, let

Wi be the transaction weight for segment Ii. I f l+Lfk_ ^ is an integer, then W{+1 =

2 ((k - l) L + l) ■

Proof: If is an integer, then j = l+L*k_iy Then from Lemma 3.31,

wi+1 = and w0 = 2 . Solving this recurrence will yield u;l+i = 2 (i^z^rTy) •

■

T h e o re m 3.33 Forn > 2 , i f a degree-k, loading-L, kn-processor M BN runs kn-input
n

k-ary tree algorithm in n steps, then L = 0 (logn^ -g^).

Proof: Let d — 2(1+ L(k—1)). This gives wy = 2y+l = LfjJ- Since py > 1, > 2y+l.

T hat is 2y+l connection to a bus. Therefore, 2y+l < L, and j < l°g !>■
n

Thus kL log L = Q(n) which implies that L = iogrt—iog'fc)~ ®

Remark: For constant k, L is still fl(

We now outline the construction of a Tree MBN for k-ary tree algorithms. Fig

ure 3.9 shows an example when k = 3. The degree of this MBN is 4 and its loading is

3. In general, the k-ary tree MBN has kn processors, (k — I)/:"-1 buses, and a degree

of A; + 1. The loading is always 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

bo 61

piPO

PSP3 PO P8P« Pi

bis

pis P20 P31P» PlO Pi i Pia P13 PIC P22 P2S

Figure 3.9: MBN for ternary tree algorithms

3.9 Concluding Remarks

We have proved tha t for any degree-2 MBN tha t runs B in(n) optimally, its loading is

Q (i5̂ r). If the MBN uses a direct mapping, then we have proved that the bound on

the loading is f2(n). This is a tight bound as there exists an MBN with such a loading

[85]. We have also shown a tradeoff between the speed and loading of degree-2 MBNs.

In particular, we have proved tha t a degree-2, constant loading MBN can run B in (n)

if and only if it is perm itted to take 0 (n) steps more than the optimal. We conjecture

that an optimal-time, degree-2, binary-tree MBN has an fi(n) loading lower bound.

If this is the case, then the f2(n) MBN of Vaidyanathan and Padm anabhan [85] is

optim al for degree-2 MBNs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Multiple-Bus Enhanced Meshes

Over the last decade several topologies have been proposed for connecting proces

sors in parallel systems. Of these, the two dimensional mesh has emerged as one

of the most widely studied, due, in part, to its regular structure and simple layout

in two dimensions. A disadvantage of the mesh is its large diameter, which is often

the bottleneck of many fundamental algorithms. To circumvent this problem, while

building on the advantages of the mesh, researchers have proposed meshes enhanced

with buses (for example [1, 7, 8 , 11, 13, 19, 27, 30, 33, 51, 71, 72, 75]). Most such

enhancements carefully select the set of processors to connect, but employ an overly

simple m ethod to connect elements of that set. In this chapter we demonstrate the

advantage of connecting these sets using MBNs in general, and binary-tree MBNs in

particular.

A general idea in enhanced meshes is to identify (not necessarily disjoint) sets

of processors of the mesh, and then connect processors in each set by a single bus.

We will refer to these sets as connect-sets. Typically, a connect-set consists of pro

cessors in a row (or column) of the mesh [1, 7, 10, 30, 51], or variants of this idea

such as every x th processor of a row (or column), for some integer x [4, 17, 19, 75].

Hierarchical approaches [71, 64] have also been suggested for selecting connect-sets.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Regardless of the method used, each connect-set is connected by a single bus. (A

single “segmentable bus” [72, 75] can also used in this context.) We will refer to

such architectures as Single-Bus Enhanced Meshes (SBEM s). W ith increase in the

network size, and consequently the connect-set sizes, SBEMs require buses with high

loading. Another problem of connecting a large number of processors to a single bus

is an increase in the demand for the bus, resulting in communication bottlenecks.

One advantage, however, is the ease of broadcasting (provided the loading is not

excessive).

In this chapter, we propose Multiple-Bus Enhanced Meshes (MBEMs) that allow

the use of multiple buses to connect processors in connect-sets. In particular, binary-

tree MBNs are very well suited for this purpose as they are designed to facilitate

the two most widely studied applications of enhanced meshes, namely, semigroup

operations and broadcasting. An MBEM with binary-tree MBNs along rows/columns

(or their subsets) can be viewed as being similar to the mesh of trees, a very versatile

topology [49]. A mesh of trees has mesh processors arranged in a grid, and additional

processors and links that connect each row and column as a complete binary tree.

This network has the desirable features of both the tree and the mesh architecture

such as a small diameter and a large bisection width. Variations of this idea, such as

mesh with trees along diagonals, have also been proposed [49, page 295].

MBEMs have three important advantages over SBEMs. First, the loading of

MBEMs can be limited (often to a constant), regardless of the network size. Second,

the network for connecting elements of a connect-set can be tailored by the network

designer to obtain various trade-offs between network cost and performance. Third,

an MBEM is a generalization of the SBEM; therefore MBEMs can capture the features

of SBEMs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Almost all previous enhanced mesh architectures are SBEMs, focusing on identify

ing connect-sets rather than the method for connecting elements within them. Conse

quently, they have the disadvantage of high loading associated with SBEMs. For ex

ample Stout [76] and Bokhari [10] added a single global bus to the basic 2-dimensional

mesh to facilitate broadcasting. Since all the processors are connected to this single

bus, the loading is very high (G(N)). However, Aggarwal [1] added k global buses to

a d-dimensional array. This architecture has a degree k and also a high G (N) loading,

as each processor is connected to all A; global buses. Another model that has drawn

considerable interest is the mesh with multiple broadcasting buses [7, 8 , 30, 51, 76].

In this model, each row and the column of the mesh is connected to a single bus.

Consequently, the loading is Q (y/N). A partial solution to the high loading problem

has been to connect only a selected subset of row/column processors to a bus. For ex

ample Chen et al. [17], Bar-Noy and Peleg [4], and Serrano and Parham i [75] connect

every N s processor on each row and column to a bus. These methods still have a high

loading (Q (Na), for a > !) • Raghavendra [71] has proposed the HMESH, a hierar

chical architecture that reduces loading, but only at the cost of a large non-constant

degree. Pan et al. [64] proposed the IMMB architecture, which uses a multi-level

mesh hierarchy. Even though its degree is small, it has a high 0 (y /N) loading. Ser

rano and Parhami [75] used buses with segment switches in each row/column of the

mesh. Although this reduces the loading somewhat, the model still has a Q (y/N)

loading.

A large portion of results on enhanced meshes has been performing semigroup

operation (reductions and semigroup operations). Stout [76] showed that finding

maximum/minimum, median, and sorting can be done in 0 (y /N) , 0 (y /N log N),

and 0 { N) time with a single global bus. Bokhari [10] improved the time required

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

for finding the maximum/minimum to 0 (N 3) steps. Aggarwal [1] added k global

buses to a d-dimensional array, and showed th a t finding maximum/ minimum re-

^ - 1 time. Prasanna-Kumar and Raghavendra [69] derived an 0 (N «)

tim e algorithm for running semigroup operations on a y /N x y /N square mesh with

broadcast buses. Chen et al. [17] and Bar-Noy and Peleg [4] have shown that the

running tim e can be reduced to 0 (N ») , if a rectangular N» x N # mesh augmented

with broadcast buses is used. Serrano and Parhami [75] added segment switches to

the buses and achieved the same running time, while reducing the loading. Chung

[19] reduced the time to O(N^o) while Pan et al. [64] achieved better time on an

enhanced mesh of low aspect ratio.

In addition to semigroup operations, enhanced meshes have also been used to solve

other classes of problems as well. For example, Bhagavathi et al. [7] have shown that

many visibility problems, such as convex hull, can be computed in O(logiV) time on

a y /N x y /N mesh with multiple broadcast buses. In a different paper, Bhagavathi

et al. [8] established that selecting the k th smallest element in a rectangular N» x
5 1 3N a enhanced mesh can be done in 0(N™ (log N)<) time. The batched searching

and ranking problem (which is fundamental to many algorithms including database

querying, pattern recognition, robotics and VLSI), where m values stored in a y /N x

y /N mesh with multiple broadcast buses, has been be solved in 0 (\o g N + y / in) time

[H i -

Some architectures using multiple buses for connect-set have also been proposed.

The GMCCMB [19] allows several buses to connect elements of a connect-set, it

represents a particular situation tha t can be viewed as a farther refinement of the

connect-set itself, rather than employing a specialized MBN. Indeed, our results im

prove on those of the GMCCMB. The TBN [25], BBT [26] and BRT [27] are MBEMs,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

that also use binary-tree MBNs to enhance the mesh. However, these results do not

provide a general treatm ent of the topic or relate cost and performance issues as is

done in th is work.

Given any iV-processor, — bus, binary-tree MBN, we first develop a framework for

deriving other binary-tree MBNs that provide different cost/performance trade-offs.

The prim ary parameters considered are time for reduction and broadcasting, loading,

degree, and layout area. We also study binary-tree MBNs with “segment switches”

on buses. (A segment switch allows a bus to be cut into several parts that can be

used simultaneously as independent bus segments.)

We use the binary-tree MBN derivatives mentioned above to construct MBEMs

and show how the network parameters can be adjusted to obtain various trade-offs.

Tables 4.1 and 4.2 (pages 73 and 82) show some param eter choices, with interesting

possibilities. All MBEMs in the table have optimal area and constant degree. Al

though our discussion on semigroup operations focuses on reduction, the results can

also be extend to prefix computations (see Section 2.4, page 17).

In the next section we briefly discuss the parameters used to evaluate MBEMs. In

Section 4.2 we use a given binary-tree MBN to derive other binary-tree MBNs. We

put these results together in Section 4.3 to construct enhanced meshes with a wide

range of cost/performance trade-offs. Section 4.4 deals with similar ideas for MBEMs

with segment switches. Finally in Section 4.5 we summarize our results and make

some concluding remarks.

4.1 Preliminaries

In this section we discuss some preliminary ideas and define some terms used in rest

of the chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

4.1 .1 M B N M easures

We will quantify the notion of cost and performance of an MBN (and an MBEM

based on it) using five measures: reduction time, broadcast time, degree, loading,

and layout area. These quantities are not entirely independent of each other, but

collectively serve to measure the network’s cost and performance. The number of

buses has also been used in previous results to reflect the sparseness of the network.

We ascribe less importance to this quantity in this work, as the layout area captures

the notion of network sparseness. The degree and loading have been discussed in

Section 2.2 (page 13). We now describe the remaining parameters.

R e d u c tio n tim e : This is the time required for the MBN to reduce inputs at its

processors to a single result, using a binary-tree algorithm.

B ro a d c a s t tim e : This is the time required for the MBN to broadcast a piece of

information from one processor to all other processors. A broadcast (from a fixed

source) can be viewed as a traversal of a binary tree from root to leaves, so the broad

cast time is upper bounded by the reduction time for the MBN. If the broadcast can

originate from any processor, then the broadcast time is at most twice the reduction

time (corresponding to a traversal to the root of a tree, and a broadcast down to the

leaves).

L ayou t: An X x Y layout of an MBEM or MBN is a placement of its processors

and buses in two layers within an X x Y rectangle. A “word-model” is assumed in

which buses and connections between processors and buses are of unit width. Pro

cessors themselves are assumed to be of constant area; this is reasonable for constant

degree MBNs, such as those considered in this chapter. The layout is assumed to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

rectilinear; that is, all buses and connections consist of horizontal and /o r vertical line

segments (wires). The two-layer layout places horizontal and vertical wires on two

different layers with “vias” connecting layers when needed. The area of an X x Y

layout is X Y and its aspect ratio is • Clearly, a low area is desirable, while a

low aspect ratio facilitates easier implementation.

As mentioned earlier, we will use MBNs to construct MBEMs. Since these MBNs

will be used with connect-sets, each of which spans a single row or column of the mesh,

we will only consider MBN layouts in which all processors are placed in a line along

one side of the rectangle enclosing the layout. Such a layout is called a “perim eter”

layout. Since a perimeter layout typically has one side of size 0 (P) , where P is

the number of processors, we will specify a high aspect ratio, perim eter layout by its

layout height H\ this represents a P x H layout (see Figure 6.5, page 119). The layout

of the MBEMs, however, will be dense and place processors throughout the enclosing

rectangle to obtain a constant aspect ratio. Here the layout must be specified by both

dimensions of the enclosing rectangle; i.e., as an X x Y layout.

4 .1 .2 M u ltip le -B u s E n h an ced M eshes

A Multiple-Bus Enhanced Mesh {M BEM) has a set of processors connected by an

underlying mesh topology. The processors are grouped into (not necessarily disjoint)

sets Co, Ci, • • •, Cz, called connect-sets. The selection of these connect-sets is an

architectural choice, made with an eye on the application domain, cost and desired

performance. A typical connect-set includes an entire row/column [1, 10, 51] or

subsets of a row or column [4, 17, 19, 75]. O ther more complex methods have also

been proposed [33, 64, 71].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

The processors of each connect-set are connected via one or more buses. Up

to this point, there is no difference between MBEMs, and traditional Single-Bus

Enhanced Meshes (SBEMs). The difference between them is in the m anner in which

processors of a connect-set are connected. In an SBEM all elements of a connect-set

are connected to a single bus, dedicated to that connect-set. In an MBEM, however,

any MBN could be used to connect elements of a connect-set. As a particular case, if

MBNs, each with one bus are used, then the MBEM becomes an SBEM. Therefore,

MBEMs can be viewed as generalizations of SBEMs. In general, a different type of

MBN may be used for different connect-sets. They could even be different for the

same connect-set in two different MBEMs. Thus the idea of decomposing the mesh

into connect-sets is independent of the method used to connect each connect-set. It is

the method of connecting them that distinguishes SBEMs (that use single buses) from

MBEMs (that use multiple buses). We show in this chapter that there are significant

advantages to connecting elements of connect-sets by multiple buses.

4.2 Binary-Tree MBN Extensions

In this section, we present a method to construct a 2n x 2m MBN from any given

2" x 2n_1 binary-tree MBN (where 0 < m < n). We apply this general result to the

Tree MBN (Section 3.6, page 44) and then use the resulting 2" x 2TO binary-tree MBN

to enhance 2-dimensional meshes (Sections 4.3 and 4.4).

L em m a 4.1 Let X (n) be a 2” x 2n_l M BN with degree and loading o f dn and in,

that runs B in(n) in tn steps and that performs broadcast in qn steps. Let X (n) have a

layout height of hn. Then fo r any 0 < m < n, there exists a 2n x 2 m MBN, X '{ n , m),

with degree and loading dm+i and i m+\ + 2 n-m — 2, that runs Bin(n) in 2n-m -l-£m+1 —2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

steps. The M B N X '(n , m) has an hm+i layout height and a broadcast time o fqm+1 + 2

steps.

Proof: Consider running B in(m + 1) on X (m + 1). Clearly the first step divides the

2m+1 processors into 2m pairs, each of which uses a distinct bus. For any 0 < i < 2m+l,

let processor pair (i , 7r(z)) use bus b(i) in the above step. Construct the 2n x 2m MBN,

X '(n , m), as follows. Divide its 2n processors into 2m+l sets, 5, (where 0 < i < 2m+1);

each set consists of 2n_m_1 contiguous processors of X '(n ,m) . Designate one of the

processors, of each set as its “leader.” Connect each non-leader processor of 5, U

to bus b{i) and connect the 2m+1 leaders to the 2m buses as in X (m + 1). Note that

the leader of Si is also connected to bus b(i).

The MBN X '{ n , m) runs Bin{n) by first combining the inputs in Si and (via

bus b(i)) into the leaders of Si and £*(,) in 2(2"_m_l — 1) = 2n~m — 2 steps. This

effectively reduces B in(n) into B in(m + 1), which is next run as on X (m + 1) in <m+1

steps. The processors of X (m + 1) have at most dm+1 connections. All the other

processors have only one connection each. Therefore, the degree of X '(n , m) is dm+i-

Each bus of X ’(n ,m) is connected to 2n-m processors. Two of these 2n-m processors

are part of X (m + 1). Therefore, the loading of X '(n ,m) is 2n-m — 2 4- £m+1. Since

the layout height of X (n) is hn, the layout height of X (m + 1) is hm+i■ Any processor

in X '{n , m) can be reached from another processor by traversing in MBN X (m -I- 1)

and along two additional bus (within a group). Since the broadcast time of X (n) is

qn, the broadcast time of X '{n ,m) is qm+i + 2 steps. ■

We now discuss the implication of Lemma 4.1. Observe that if tn = n (which is

optimal), then the time for X '(n , m) to run B in(n) is 2n-m + m — 1, which has been

shown to be optimal for any 2n x 2m MBN [2]. If dn is a constant, then so is dm+1,

the degree of X '{n , m). If £n = 3, then the loading of X '{p , m) is 2n-m -I- 1, the best

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

3 1

2717 2423

Figure 4.1: A 32 x 8 Tree MBN

possible for any connected 2n x 2m MBN (see Lemma 3.1, page 21). Thus, X '{p ,m)

inherits optimal features of X (p). In particular, the 2n x 2"-1 Tree MBN, T {n) (see

Section 3.6, page 44), runs Bin(n) optimally and has degree and loading of 3 each.

Lemma 4.1 allows 7”(n) to be extended to a 2" x 2m MBN (for any 0 < m < n) that

runs Bin(n) in optimal time, whose degree is 3 (same as that of T (n)), and whose

loading is 2n-m + l (which is optimal). Figure 4.1 shows the structure of a 32 x 8 Tree

MBN. This MBN has a loading of 5, and a degree of 3. Its time for running B in(5)

is 6 steps.

The selection of an appropriate MBN to connect the processors in the connect-

set is crucial as it determines all the im portant network parameters (running time,

degree, loading, etc.). For this work we will use the Tree MBN. (Other MBNs such

as the delayed root MBN (Section 3.7.2, page 49) or those of [27, 24] could also be

used.) Though the Tree MBN is defined for 2" inputs, it is easily modified to handle

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

N (not necessarily a power of 2) inputs. It can also be verified (see Figure 3.6(a))

that a 2" x 2n_1 Tree MBN has 0 (n) layout height. For brevity, we will express

the performance measures (time, loading, degree etc.) of the Tree MBN in terms of

orders, rather than exact values. We now summarize the properties of the above Tree

MBN in the following theorem using the order notation.

T h e o re m 4 .2 For 1 < M < y , there exists an N x M Tree M BN with constant de

gree and 0 (|£ 0 loading. It i~uns an N-input, binary-tree algorithm in O + log A/)

steps. This MBNs has a 0 (log M) layout height and O (log AT) broadcast time.

4.3 Meshes with Tree MBNs

In this section we construct an MBEM called the Mesh with Tree MBNs th a t uses

the Tree MBN to connect processors of connect-sets. This structure has several

advantages over other enhanced meshes proposed in the literature. We derive some

results to highlight these advantages. Our description here uses the least number of

param eters to describe the idea. This idea can be generalized to include different sized

and dimensioned meshes, MBNs other than the Tree MBN, and different sizes/types

of MBNs for different connect-sets.

For integers N ,A ,B > 1 define the mesh with Tree MBNs, A/iT{N , A , B), as

follows. Arrange N processors as a y /N x y /N mesh. Divide this mesh into A x A

submeshes (Figure 4.2(a)), and designate one processor (the top, left processor

say) of each submesh as the “leader.” The leaders form a x array. For

0 < i < processors {ptJ : 0 < j < ^ p } , form the horizontal connect-sets and

processors {pjyi : 0 < j < form the vertical connect-sets. In other words, rows

and columns of leaders form connect-sets. Each connect-set is connected via B buses

to form a *^p x B instance of the Tree MBN (Figure 4.2(b)). If B = 1, then there will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

be a single bus in each Tree MBN connecting the horizontal and vertical connect-sets

and the resulting SBEM structure will be the model of Chen et. al [17], if A = N*

and tha t of Bhagavathi et. al [10], if A = 1. We now outline the three m ajor phases

involved in running an AT-input binary-tree algorithm on this structure.

1. Local reduction: Reduce the A x A inputs in each submesh to a single partial

result in its leader using the local mesh links. This requires 2(A — 1) steps and

the problem size reduces to jp .

2. Horizontal reduction: Use all *^p x B horizontal Tree MBNs (shown as H

in Figure 4.2(b)), in parallel to reduce ^ p partial results in leaders of each

horizontal connect-set to a single partial result. The time and loading for this

phase are 0 (^ + logB) and O (^) , respectively (Theorem 4.2). The problem

size is now reduced to ^ p .

3. Vertical reduction: All partial results of the horizontal reduction step are in one

connect-set. This phase is performed on the vertical ^ p x B Tree MBN of this

connect-set. The time and loading for this phase are again 0 (^ | + logB) and

O (^ J) . The inputs are now reduced to one result.

The overall time for running an iV-input binary-tree algorithm on A4T (N , A, B)

is the sum of time required for each of the three phases; that is, the reduction time is

0 (A + + logB). The broadcast time is the time it takes for a piece of information

to travel from one processor to any other processor. In this MBEM, it is equal to the

broadcast time of two ^ p x B Tree MBNs and time required to reach any processor

in an A x A submesh. Therefore, the broadcast time is 0 (A + logB). The loading is

O (^) and the degree (including the local mesh connections) is 4 + 2 x 3 = 0 (1). The

total number of buses (not including local mesh connections) MBEM is 0 (~ * ^). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

• —»— • — j—• —• — < i— ---------- • —•

fi£iH====ti
y/N

• ------ #—• — •- • — •

y /N

(a): Leaders shown as large circles

A

H

4 4 4
H

V

4
V

4 .
H = V =
f x f l Tree MBN

V

4

H

4 4 4
(b): Binary tree MBNs connecting the leaders

Figure 4.2: Structure of a mesh with binary-tree MBN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

VLSI area required for the y /N x y /N processor array alone is N . Therefore, the VLSI

area of N iT (N , A, B) is f2(iV). Each of the horizontal and vertical MBNs has pro

cessors and, as shown in Figure 4.2(a), these processors are separated by a distance of

A 4- log B units. Therefore, each of these MBNs has an O ((^ p (A + log B)) x logB)

VLSI layout. Since the ^ p vertical and horizontal MBNs have symmetric layouts,

N IT (N , A, B) has a constant aspect ratio O ((y /N (1 + x (/ N (l + ^ n)) lay

out. Therefore, its layout area is 0 (N + Afl̂ gg). In summary, M T (N , A, B) has the

following:

Degree = 10

Loading = 0 (^ J)

Broadcast time = ©(A-I-logB)

Reduction time = ©(A 4- ^ 4- logB)

Number of buses = ©(

Area = ©(iV + ^ f £)

Aspect ratio = 0(1)

Since the reduction time is fi(A) and Q(logiV) (N inputs cannot be reduced in

less than logiV steps), we choose A = fi(logN). Since B = O(N), logB = O(logiV).

Therefore, A = D(logB). Then Ai T (N , A , B) has 0(A r) area, which is optimal.

W ith L = 0 (^ ?) denoting the loading, we have

Degree

Loading

Broadcast time

Reduction time

= 10

= L

= ©(A)

= ©(A + L)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Number of buses = 0 (B 2L)

Area = O(iV)

Aspect Ratio = 0(1)

Notice that it is possible to make trade-offs between loading and the num ber of

buses, while keeping the time and VLSI area unchanged. Table 4.1 shows results for

various choices of A and L. The last two entries of the table also show reduction

results on other (SBEM) architectures in the literature. Notice tha t our m ethod

matches that of the GMCCB [19], while having a better aspect ratio and providing

additional possibilities for the same time, or for the same loading. Compared to

IMMB [64] our method has a better loading for z < \ and provides more possibilities

for the loading (given a fixed time).

Table 4.1: Some results for meshes with Tree MBN

Architectures Time Loading No of Buses Aspect Ratio
A = N i N s constant N s constant
A = Ns N s Ns Ns constant•12II N to constant NTS constant
A = Nio N ts NTo NTS constant
A = N t* N ts constant N 18 constant
A = N ts NTS N T S • rN 18 constant
for z > 0, A = log* N log2 AT L JV

L \ o f \ N
constant

for z > 0, A = N z N z 3 constant
for z > 0, A = N z N z N z N l~3z constant
GMCCMB [19] NTS NTS NTS N s
IMMB [64], for z > 0 N z N* N l~3z constant
In all of the cases VLSI area is 0 (N) and the degree is constant.
All the entries show orders rather th an absolute values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

4.4 MBEMs with Segment Switches

A segment switch placed on a bus can break (when opened) the bus into two inde

pendent buses. When the switch is closed, the two segments are fused together and

they function as a single bus. It has been well studied in the context of dynamically

reconfigurable architectures [59, 77] and other bus-based networks [72, 75]. Since seg

ment switches allow a bus to be configured to suit a particular step of an algorithm,

they could be used to reduce the loading as shown in this section.

4 .4 .1 B inary-T ree M B N s w ith Segm ent Sw itch es

In this section we derive results similar to Theorem 4.2 for binary-tree MBNs with

segment switches. We then use these derivative binary-tree MBNs to enhance the

mesh.

Addition of segment switches requires further development of some of the ideas

used. These ideas are in the setting of a given computation (such as reduction or

broadcasting). We assume that a segment switch changes state at least once during

the course of the computation. A bus may be defined as a maximally connected

segment resulting from all segment switches being in the closed state.

The state of segment switches in an MBN may change during the execution of

an algorithm. It is therefore possible to define two types of loadings for MBNs with

segment switches, absolute and relative. The absolute loading is the largest possible

loading of a bus (when all segment switches on it are closed); this matches the con

ventional idea of loading. The relative loading of a bus segment a t some step s of

a computation is the number of connections and (closed) segment switches on that

segment during step s. The relative loading of a step s is the largest of the relative

loadings of all the bus segments of step s. The relative loading o f a computation is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

the largest of the relative loadings of all steps of the computation. Notice that the

effect of bus loading (whether optical or electrical) is restricted to within a segment.

Therefore, relative loading is indicative of the demands on the system for that com

putation. On the other hand, absolute loading is useful for the worst case scenario

in a general purpose environment. Naturally, the absolute loading is no smaller than

the relative loading of any computation.

We now describe two methods for running binary-tree algorithms on MBNs with

segment switches.

Consider a bus with K segment switches numbered 0,1, • • •, K — 1. When all the

switches are open, the bus is broken into K independent segments1. Let these atomic

segments be So, Si, • • • S k - i- In the context of a binary-tree algorithm, let there be

one result processor holding a partial result per segment. (There may be many non

result processors connected to each bus segment.) The aim is to reduce the K partial

results to one final result.

M e th o d 1: W ithout loss of generality, let K = 2* for integer k. This method

performs the reduction in log K steps (optimal time) as follows (see also Figure 4.3).

First, close the segment switches 0,2,4, • ■ •, K — 2. This will fuse segments (So, Si},

(S2, S3}, • • •, S k - i}- Reduce the partial results of the two fused segments

to one result. Next, close the segment switches 1,5,9, • • •, K — 3 and reduce the

two partial results of the fused segments to one result. At this step, four original

bus segments {So, Si, S2, S3}, (S 4, S5, S6, S7}, • • • ,{S*-_4, S K - 3 , S K- 2, S*-_i} are fused

together. This process is carried out doubling the number of segments fused, until all

the segments are fused together and the last two partial results are reduced to one

1 Actually ther are i f+ 1 segments, but we will keep the discussion simple by leaving one unutilized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

0 o o o o o o o

V V V
step 1
step 2
step 3

Figure 4.3: Steps of method 1

final result. The time for this reduction is clearly log AT steps, and loading is equal to

the number of processors connected to the entire bus (or at least half this number).

Since all the processors are connected via the bus when all the segment switches are

closed, the broadcast tim e of this method is only one step.

M e th o d 2: This m ethod performs the reduction in K steps as illustrated in Fig

ure 4.4. First close segment switch K — 2, and reduce the inputs in segments S k - i

and S k - 3 to a result in segment S k - 3. Next open segment switch K — 2 and close the

segment switch K — 3. This will fuse segments S k - 3 and S k - a- Reduce the partial

results in segments S k - z and S k - a into a result in segment S k - z • This reduction

process is carried out, until the last two segments S\ and So are fused together and

their results/inputs are reduced to one result in segment So. The time for this re

duction is clearly K — 1 steps. Since at most two segments are fused a t any given

time, the loading of this method is equal to twice the number of processors in each

segment. For this loading, the broadcast time is the same as the reduction time.

We now present two methods to construct an S-segment switch, N x M binary-

tree MBN from any given N x y binary-tree MBN. We propose two constructions,

each of which uses the two methods discussed above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

Q O Q Q

HS- HSI- -H- - a - ■a- - a - - a - a

 --------- --------- -------- -------- -------- -------------------- step 1
V....-' --------- --------- -------- --------- -------------------- --------- step 2

V .
 ------- -------- — ;— — ■— — ----------- — — -— — ■— step 3

: ' V. : : : : : : :
-------------------- --- -------- -------- -------- -------- --------- --------- step 7

Figure 4.4: Steps of the m ethod 2

C o n s tru c tio n 1: Let X (N) be an iV x | MBN. The aim is to use X (N) to

construct an N x M MBN X i (N , M, S, K) with S segment switches and a parameter

K th a t controls its running time and relative loading. Let these parameters satisfy

1 < M K < S < N . For brevity and without loss of generality, assume tha t quantities

such as AT S
M ’ M K

and -rr are integers.

The idea is to first use 4f buses with segment switches to reduce the N inputs to

M partial results. Next use the remaining buses (without segment switches) as an

M x y instance X (M) the given MBN. We now describe the reduction of N inputs

to M partial results. Each of buses used for this part is used to obtain 2 partial

results. Since all buses proceed identically, we describe the activity of only one.

Of the N processors and S segment switches, ^ processors and switches are

assigned to each bus. These processors and switches are arranged on the bus as shown

in Figure 4.5. The processors are divided into ^ segments, with a segment switch

between adjacent segments. There are segments, one per switch. Cluster

K contiguous segments into a group. Each group spans K segments and there are

groups. The reduction proceeds as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

2S
MK groups

group o f K segments group of K segments

±L
^ §. • ►

N

o o Q Q O O

-G3-- -G3-

i i .

0 0 o

N_

O O O

-G3---G3—*—*

Figure 4.5: Construction 1

1. Open all the segment switches, and sequentially reduce the j f inputs in each

segment. This takes y — 1 steps, and the relative loading of each bus segment

is f .

2. Use Method 1 to reduce each group of K segments in O (log ft') time with a

relative loading of

3. Use Method 2 to reduce group partial results to the two partial results for the

bus. This takes steps with relative loading

4. Reduce the M results on an Af x y instance X (Af) of the given MBN.

If X (N) runs in t n steps with relative loading £n , this step runs in t \ f steps with

£m relative loading. If the given MBN X (N) has degree cfor, broadcast time qs and

layout height hff, then the total time required to reduce N inputs on X \ (N, M, S, K)

is 0 (| r + log ft" + -fjK + t M). The relative loading and degree are 0(^K - + £m) and

dM respectively. The layout height and the absolute loading of Xi (N , M ,S , K) are

O(Hm) and 0 (^ 4- £\f). It is easy to see that the broadcast time of X \ (N , M, S, K)

is determined by step 3 and the broadcast time on X (M) . Therefore, the broadcast

time of X i (N, M, S, K) is 0(gjvf + j^ic) steps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

y t (S M \ Y > f N M \ Y> (AT M \
A v S ’ S J V S 5 S ' v s » S)

Figure 4.6: Construction 2

L em m a 4.3 Let X (N) be an N x y M BN with degree and loading d s and £ \ . Let

X (N) run an N -input binary-tree algorithm in t s steps and have a layout height of

h s - Let the broadcast time of this M BN be q \ . For 1 < NIL < S < N , there exists an

S-segment switch, N x M M BN Xy(N , M, S, K) with degree dM, relative

loading, and 0 (j L + £m) absolute loading that runs an N -inpu t binary-tree algorithm

in 0 (^ + j ^ + lo g /f + tjvf) steps. The VLSI height o f X i(N , M , S, K) is 0 {h \ f) and

the broadcast time is 0 (q ^ + steps. ■

If the given MBN X (N) is the Tree MBN, then we have the following result.

T h e o re m 4.4 For 1 < < S < N , there exists an M B N with constant degree,

@ (^ r) relative loading and 0 (^) absolute loading that runs an N -input binary-tree

algorithm in @(^r + + log K + log M) steps. This M B N has a layout height of

0(log M) and a broadcast time o /0 (logA f + steps.

C o n s tru c tio n 2: Again let X (N) be the given MBN. This construction uses a

small number of segment switches S < M. Use Lemma 4.1 to construct A '(^r,

tin | x | derivative of X (N) . Use S such X ' (^ - , ^) s to reduce the N inputs to

S partial results. Now the problem is that of reducing S partial results on a bus

(see Figure 4.4). W ith a parameter K (where 1 < K < S), this can be done with

Method 1 first and then Method 2 in ©(log K + j^) steps with a relative loading of

Q(K) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Construct X 2(N, M, S, K) as follows. Distribute all S segment switches along one

bus. Divide the N processors and M buses into S equal parts. Construct S copies of

MBN X '(y , and connect one MBN each to the S bus segments.

W ith the same notation as in Construction 1, we have the following result.

L em m a 4.5 Let X (N) be an N x y M BN with degree and loading d s and £ \ . Let

X (N) run an N -input binary-tree algorithm in t s steps and have a layout height of

htf. Let the broadcast time of this M BN be q \ . For 1 < K < S < M < y > there

exists an S-segment switch, N x (Af + 1) M B N X 2(N, M, S, K) with d*M degree,

©(2K + la**) relative loading and 0 (5 + ^ absolute loading that runs an

N -input binary-tree algorithm in ©(-^ + + log/if 4- taw.) steps. The layout height

o f X 2(N, M, S, K) is Oh(™) and the broadcast tim e is Q(q^M + £)■ ■

Remark: Note th a t X"(N , M , S, K) is an M x (M + 1) MBN.

If the given MBN X (n) is the Tree MBN, then we have the following result.

L em m a 4.6 For 1 < K < S < M < y > there exists an M BN with constant degree,

Q (K + Yi) relative loading and ©(S + absolute loading that runs an N -input

binary-tree algorithm in 0 (j j + £ + lo g K + lo g (^)) steps. The layout height o f the

M B N is 0 (log(4f)) and the broadcast time is O (log(4f) 4- steps. ■

4 .4 .2 M esh es w ith Tree M B N s and S egm en t S w itch es

The idea of Section 4.3 readily extends to binary-tree MBNs with segment switches.

Here the MBN connecting row and column connect-sets is a x B , S segment-switch

extension of the Tree MBN, obtained from Construction 1 (Theorem 4.4). The steps

involved in running a binary-tree algorithm with segment switches are the same as in

Section 4.3. Therefore, we simply sta te the results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

Time = e (A + ^ + - ^ + l o g K + loS B)

Relative loading =

Absolute loading = © (^ ^)

Number of buses = 0 (^ ^)

Number of segment switches =

Broadcast time = 0 (^ + logB)

VLSI area = G (N +

Let A' = ^ and A" = . If we let 1 < ^ < S < ^ < AS, then the

conditions for Lemma 4.5 are satisfied by row and column MBNs. Also 1 < 777 <

S < A ' S < A S which implies that A' < A. If we also set S < A B K then A" < A, so

we have the following:

Reduction time = (A)

Relative loading = Q(A'K)

Absolute loading = Q(A'A"K)

Number of segment switches = 0 (34777)

Number of buses = a^a a "

Broadcast time = 0 (A " + logB)

VLSI area = 0(AT)

Using the above set of equations, we can compute various network parameters for

different values of running time, segment switches and K . We show some results

in Table 4.2. This table clearly shows the effect of segment switches on loading.

Compared to Table 4.1, for the same running time, a lower relative loading can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Table 4.2: Some results for meshes with Tree MBN and Segment Switches

Case Time Relative
Loading

Absolute
Loading

Aspect
Ratio

Number
of Buses

Number of
Switches

A = A ' = N s
A" = K — N s

JVi N s N s 0 (1) N s N s

A = A ' — N s
A" = AT?, K = N s

N» N s N s 0 (1) N s N s

A = N t s , A! = 1
A" = K = 1

NTS 0(1) 0 (1) 0 (1) NTS NiS

A = A' = N t s

A" = K = N t s

N ts N ts NTS 0 (1) N ts jV&

A = N z, A! = 1
A" = K = 1

N z 0 (1) 0 (1) 0 (1) iVl-2z N i-*2

A = log* N , A ' = L
A" = K = 1

log* N L L l o g ' N 0 (1) /V
L log2* N

N '
tlog2* N

A = A , = N Z
A" = N Z, K = 1

N z N z N*z 0 (1) N 1-*2 N l-3z

A — A" = N z
A! = K = 1

N z 0 (1) N z 0 (1) N l~3z

Segmented Bus
Enhanced Mesh [75]

N* N s N s N s N s Ns

achieved. For example with time 0 (n z) and N l~3z buses, the loading is constant.

For the same case in Table 4.1 this loading is N z. Moreover, the results here are

better then that has been achieved by Serrano and Parhami [75]. For a running time

of 0 (N s) , we have a much wider choice of parameters, and the resulting MBN is

superior in all respects to that in [75]. Specifically, we can achieve a much lower

loading, while improving on aspect ratio, absolute loading and number of buses. Also

compared to the IMMB [64] we now have for 0 (N Z) time a constant relative loading

with the same number of buses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Results and Discussion

83

Traditionally, buses have been used in a variety of ways to enhance the basic mesh.

In all these schemes, a single bus is used to connect processors. In this chapter we

have explored the use of multiple buses to connect processors together to form meshes

enhanced with MBNs. The traditional single bus approach is a special case of our

framework.

The IMMB can also achieve O(logiV) time, but to reduce its loading to constant,

a high-dimensional, sub-optimal area structure [86] is needed. The methods pre

sented in this chapter can be applied with any MBN. Therefore, these methods can

be adopted for use with other algorithms by suitably selecting MBNs in horizontal

and vertical dimensions. If each processor (or some of the processors) is connected

to several buses through segment switches, then it is possible to “dynamically re

configure” the MBNs. In th a t case, the same MBEM can be used to run different

algorithms or different steps of the same algorithm optimally by reconfiguring the

processor bus interconnection pattern.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Fault Tolerance

In Chapter 4, we showed th a t binary-tree MBNs can be used for general purpose

enhanced meshes with properties similar to the mesh of trees [49]. This chapter deals

with the construction of fault-tolerant binary-tree MBNs. Such MBNs can be used

as fault-tolerant building blocks for enhanced meshes. We present two methods for

constructing such MBNs. One of the methods is more general in that it can also be

used for any MBN (not just binary-tree MBNs). It is particularly useful in situations

where the MBN uses resources (buses and processors) non-uniformly. In other words,

if a given algorithm uses some of the resources most of the time, and the rest not

tha t often, then this method can exploit this situation to produce better results;

binary-tree algorithms represent one such situation. The second method applies only

to binary-tree algorithms.

Specifically, we present two methods called replication and recursive scheduling

th a t add connections in a systematic and controlled manner to transform any given

binary-tree MBN into a fault-tolerant one. Given any N x M binary-tree MBN,

A i, and an integer 1 < k < 4r, we derive a N x M MBN A i' that can tolerate

the failure of any set of k buses. The performance of the fault-tolerant MBN, A4#, is

measured in terms of (i) the tim e to run a set of computations designed for A i, (i i) its

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

degree, and (Hi) its loading. These attributes of Ai ' depend on the corresponding

attributes of A i . Replication can also be used for handling processor faults. The

methods we propose in this chapter accept any MBN as input, so the approaches for

bus and processor faults are independent; that is, tolerance to processor faults can

be imparted to an MBN that is already tolerant to bus faults and vice versa.

Most previous work [3, 12, 15, 31, 45, 67, 68] on fault-tolerance in MBNs has

focused primarily on issues related to connectivity/topology (number of failures to

disconnect network, average distance between processors, etc.) and performance in

a general purpose setting (such as throughput under various traffic models). Nadella

and Vaidyanathan [57, 84] have considered the design of a specific fault-tolerant

binary-tree MBN. The methods we present here are a generalization of that work

in that it can be applied to any binary-tree MBN.

In Section 5.1 we state the assumptions used in the chapter. In Sections 5.2 and

5.3, we detail replication and recursive scheduling. The extension of replication to

processor faults is discussed in Section 5.2.5. In Section 5.2.6 we tailor the replication

results specifically to binary-tree MBNs. We compare the two methods in Section 5.4

and make some concluding remarks in Section 5.5.

5.1 Fault Model

We assume here that a faulty bus or processor is entirely faulty and completely

unusable. We also assume that the faulty or fault-free status of each processor and

bus is known before the MBN begins its computation and does not change during

the computation. If a bus b (or processor p) is faulty, then a fault-free bus b' (or

processor p') will be assigned to perform the functions of bus b (or processor p). We

assume that bus bf (or processor p') has all the information necessary to perform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

these functions. The above assignment of responsibilities to fault-free elements is

done before the computation commences.

The focus of this work is on designing an MBN that has the required redundant

connections available, while the actual fault handling procedure (including fault iden

tification and processing) is not considered. This may also be useful in improving the

yield of a chip with binary-tree MBNs in which faults during manufacture can be

bypassed by a one-time reconfiguration [44, 87].

5.2 Replication

In this section we develop the results for bus faults first, then extend them to include

processor faults in Section 5.2.5. Replication is a general method that can be applied

to any MBN. A key feature of replication is that it perm its a set of k buses to be

designated as ‘less im portant,” and the failure of an arbitrary set of k buses can be

treated as the failure of these less-important buses. In cases where not all resources

are used equally, replication constructs a fault-tolerant MBN tha t is better tuned to

the given computational setting. Binary-tree algorithms is a good example of uneven

resource use, where the number of processors and buses required decreases by a factor

of 2 with each level. We establish that for any 2" x 2n_l binary-tree MBN, replication

gives a fault-tolerant MBN that requires at most 5 (resp., 2) extra steps if as many as

2n~2 buses (resp., 2n_l processors) fail. Such a result would not be possible without

considering the fact that some buses/processors are used for only a few steps. Even

with this consideration, one cannot guarantee that the faulty elements would be the

ones used lightly. Replication provides the effect of this guarantee by allowing the

failure of any set of buses/processors to be treated as the failure of a fixed set of less

im portant elements. This flexibility lends itself to designing a fault-tolerant MBN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

that is better tuned to perform a given set of computations. Since we assume that

faults occur before the start of the computation, resilience to processor faults can

be obtained as a dual of the bus faults case. Therefore, replication can be used for

processor faults as well.

5 .2 .1 A d d in g R ed u n dan t C on n ection s

Given any N x M MBN, A i, and an integer 1 < k < , replication constructs a

N x M MBN, 72*, th a t can emulate A4, even if any set of (at most) k buses fail.

The idea is to select k replacements for each bus b and copy the connections of b

to each of the k replacement buses. We first define 72* and then establish that 72*

can treat any set of faulty buses as a designated set of less im portant buses. This is

followed by the derivation of the fault-tolerance properties of 72*. Finally, we discuss

tolerance to processor faults, as the dual of the bus fault case.

5 .2 .2 D efin itio n o f 7?*

Let the buses of the given N x M MBN, A4, (and the generated N x AT fault-

tolerant MBN, 72*) be 0,1, ■ • •, Af — 1. For any bus b of AA, let Proc[b : AA) denote

the set of processors of AA that are connected to bus b. For any 0 < 6 < Af, let

R{b) = {(6 — i) mod Af : 0 < i < k} be the replacement set for bus b. Now

define the fault-tolerant MBN, 72*, as follows: For any 0 < b < Af, Proc[b : 72*] =

(J Proc[b' : A4].
feRW

Each bus b of 72* has all the connections of bus b of A4, and the additional

connections needed to replace buses (b — i)(m od Af) of A4, where 1 < i < k.

In the following example, we have arranged (permuted) the buses so that the

connections of a bus replicated on the k other buses overlap with existing connections.

This can reduce the degree from (A;+l)d to kd. Permuting the buses in this m anner to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

0 1 2 3 4 5 6 7
0 1 0 0 0

1 1 • 0 0 0

2 1 0 0 0

3 1 • 0 0 0

4 1 0

5 1 • 0 0 0

6 1 0 0 0

7 1 0 • 0 0 0

8 0 0 0 1
9 0 0 0 1 0 •
10 0 1 0 0

11 0 1 • 0 0

12 0 0 1 0

13 0 0 1 0 • 0

14 1 0 0 0

15 0 0 0 1 0 0 •

Figure 5.1: The MBN of Figure 2.2 augmented to handle 3 bus faults

reduce degree may not be possible in all situations. W ith k = 3, Figure 5.1 shows the

MBN 72-3 corresponding to the 16 x 8 MBN, .M, of Figure 2.2 (page 14). A connection

between a processor and a bus of A4 is indicated by a “1,” and a connection added

for fault-tolerance is indicated by a “o.” Entries where an existing connection (“1”)

and an added connection (“o”) overlap are indicated by In this example, nearly

half the buses are permitted to be faulty. Therefore, a dense MBN, .M3, is to be

expected. The observations below show that this is not the case in general.

The following observations about 72* are straightforward.

1. If none of the buses are faulty, then 72* can emulate M. without any overhead.

This is because for each bus b, Proc[b : M] C Proc[b : 72fc]. In other words,

the set of connections of M is a subset of those of 72*.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

2. If the degree of M. is d, then the degree of 72* is at most (A: + 1)d. This is

because each connection to a bus b of M is copied over to k other buses of

72*. Thus a processor connected to <¥ < d buses of M. is connected to at most

(k + l)d ' < (k + 1)d buses of 72*.

By arranging buses to maximize connection overlaps (shown as in Fig

ure 5.1), it may be possible to reduce the degree to kd. Notice tha t the degree

of the MBN of Figure 5.1 is 7, rather than (3 + 1)2 = 8.

3. If the loading of M is I, then the loading of 72* is a t most (k + l) i . This is

because each bus b of 72* is connected1 to

| Proc[6 : 72*] j < JZ |.Proc[&': Af]| < (k + 1)£ processors.
6, €R (6)

Since not all buses have £ connections to sta rt with, the loading of 72* is usually

much smaller than (k + 1)£.

5.2.3 T h e D esign ated Set

Often some buses of an MBN, A t, are more critical than others. This may be due to

connectivity and /or usage in a particular set of computations. Failure of these “crit

ical buses” impacts the network performance more severely. By the same measure,

failure of “non-critical buses” does not degrade the performance to the same extent.

In this section we first prove that there is no loss of generality in assuming that a

fixed set of k buses is faulty (regardless of which k buses of 72* are actually faulty).

That is, 72* can treat the failure of an arbitrary set of k buses as the failure of a fixed

set of k designated non-critical buses. Next we show how this fixed faulty set can be

emulated by the fault-free buses of 72*. This has the benefit of allowing the network

1 We denote the cardinality of a set 5 by |S |.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.2: Graph Gz,a-

designer to designate a suitable set of less im portant buses tha t can be treated as

faulty.

For any 1 < k < M , define a directed graph G k ,M with nodes {0,1,2, • • •, M — 1}

as follows. There is a directed edge (b, b') from node b to node b' iff b' = (b+i) mod M,

for some 1 < i < k. Figure 5.2 shows Qz$. In the context of the N x M MBN, 72*,

each node of G k ,M represents a bus of 72.*,. Node 6 has a directed edge to each node

that can replace it; th a t is, (6, U) is an edge iff b 6 R{V).

Let Q — {V,E) be any directed graph and let U, W C V with \U\ C \W\. An

injective2 function p : U — > W is called a node disjoint correspondence iff

1. For each u € U, there is a directed path in G from u to p(u), and

2. For distinct i t i ,u 2 € U, the paths from ui to p(ttt) and u2 to p(u2) are node

disjoint (that is, the paths have no nodes is common).

By establishing that Gk,M has a node disjoint correspondence from the set of faulty

buses to the designated set of less im portant buses, we will show that the faulty buses

can be treated as less important.

2A function p : U — ► W is injective iff ui ^ u2 implies th a t p(tii) ^ p{u2); th a t is, d istinct
elements of U are m apped to distinct elements of W .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

In the following we assume that ^ is an integer. This assumption greatly simplifies

the discussion while the extension to arbitrary values of B (relative to k) is quite

straightforward.

Divide the vertex set, {0,1, • • ■, M — 1}, of Gk,M into ^ segments So, S i, • • •, S m_ 1,

each consisting of k contiguous buses. For 0 < i < let S, = {ik + j : 0 < j < k};

th a t is So = {0,1,2, • • •, k — 1}, Si = {k, k + 1, • • •, 2k — 1}, and so on.

L e m m a 5.1 For any 0 < i < ^ — 1, let U C S,- and W C S,-+i so that \U\ <

\Si+i — W |. Graph Gk,M admits a node-disjoint correspondence p : U — ► (St+i — W).

Proof: For each u £ U we will construct a node disjoint path in reverse. That is,

starting from St+i — W , we will trace the path back to U. Let aj = ik + j and

bj = (i + l) k + j (where 0 < j < k) so th a t S,- = {a7- : 0 < j < k} and SI+i = {bj : 0 <

j < k}. (Observe tha t aj has edges to elements aJ+i, aJ+2, • • •, a*, b\ , b?, ■ • •, bj.) From

each bj 6 Si+1 — W, trace edge (a,, bj) back to aj. If aj € U, then let p{a.j) = bj, and

edge (aj, bj) is the required node disjoint path from a7- to S,+i — W . We now consider

the remaining elements of U and S,-+1 — W (that is, those not mapped as discussed

above). Let sets U' and U" be as follows:

U' = { a j £ U : b j t S i+l - W }

= elements of U with no path established to S,+i — W as yet;

U" = {aj £ U : bj € Si+l - W }

= elements of Sj that are not in U, but have been arrived at

from Sj+i — W .

Since \U\ < |5.-+i — W \, it is easy to see that |C/'| < \U"\. Also note that U' and U"

are disjoint. Let U' = {a'Q, a\, • • •, a^} and U" = {oq, a", • • •, a"}, where y > x > 1.

Assume that element a" £ U" was arrived a t from element 6" £ 5 t+I — W . We will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

i + 1

(a) Case a'- < a"

i + 1

(b) Case a' > a"

Figure 5.3: An illustration of the proof of Lemma 5.1.

now attem pt to establish a node disjoint path from a' to a". If this can be done,

then we have established a node disjoint path from a'- to b" (via a"). We consider two

cases.

Case 1: (a' < a") Since a'-, a" € Si, there is an edge (a ', a") in Gk,M- (This is

because Gk,M has an edge from an element of S',- to all larger elements of 5,).

Let p(a ') = bfj with the path being (a'-, a", 6") (see Figure 5.3(a)).

Case 2: (a' > a") Since a" < a' < 6J and Gk,M has edge (a", V-), the edge (a'-, h/-)

also exists. Therefore let p(a ') = b" with the path being edge (a!j,b") (see

Figure 5.3(b)).

Since U' and U" are disjoint, the case a ' = a'j is not possible. It is clear that

p : U — y (Sj+i — W) is an injection, and that for each u € U, there is a pa th from u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

to p(u). To see tha t these paths are node disjoint observe that paths consisting of a

single edge pose no problem. The remaining 2-edge paths (due to Case 1) have the

form (a'j, a", b"). The only danger is of a" being in the path of an element of U that

is different from a ' . Since a" ^ U and a" is unique for a given a ' , this is not possible

and hence, p is a node-disjoint correspondence. ■

L em m a 5.2 Let F C {b : 0 < b < M } be the set o f (at most k) faulty buses of 72*.■

Graph &k,M admits a node-disjoint correspondence p : F — ► 5m _,.

Proof: For 0 < i < let F* be the set of faulty buses in 5, and let X , = F0 U Fi U

• • • U Fi. We will now prove by induction on i (where 0 < i < ™) that Gk,M admits

a node-disjoint correspondence pi : X,-_i — > (5,- — Fi). Clearly this will prove the

lemma.

For i = 1, let U = F0 — X 0 and W = F t . Since |Fo| + |F i| < |F | < k = |5 i|, we

have \U\ = |F0| < \Si — F t [= \S\ — W |, so Lemma 5.1 guarantees a node-disjoint

correspondence pi : X q — > (Si — F\).

Let pi : X i_t — ► (Si — Fi) be a node-disjoint correspondence. Let F _ i C S, — F

be the set to which elements of X,-_i have been mapped by p,-. Since p,- is an injection,

l*i-il = Notice tha t |F - i | + |F |+ |F + l| = |X t-_t |+ |F |+ |F+ i| = |F0|+ |F |

+ • ■ • +|Fj_i| + |Fj|-(- |F+i| < |F | < k = |5,-+i|.

Therefore IF U F _ i | 5~ |F + i — Fi+1|. W ith U = F U F - i and W = F+i> Lemma 5.1

gives us a node-disjoint correspondence p : (F U F - i) — ► (F+i _ Fi+1)- Now define

pi+i : X i — > (S.+i - F + i) as follows.

if 6 e X ,_ !
Pi+i(b) = <

p(b), if b e Fi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Since /?, and p are-node disjoint correspondences and since A,-_ i and Y{-1 are

disjoint, /?,+1 is a node-disjoint correspondence. ■

We say that bus b replaces bus V to mean that bus b assumes the identity of bus

U, in the process losing its own.

T h e o re m 5.3 M BN 72* can treat the failure of any set, F , o f k buses as the failure

of a designated set, D , o f k buses of N i.

Proof: W ithout loss of generality, let D = 5 w _ t = {M — k, M — k + 1, • • •, M — 1}.

By Lemma 5.2, there is a node-disjoint correspondence p : F — > D. For any faulty

bus b € F , let the path from b to p{b) be (6 = bo, bi, - • •, bx = p{b)). Since 6j+i)

(where 0 < i < x) is an edge of Gk,M, bus 61+i of 72* can replace bus 6, of A4. In

other words, the faulty bus b = b0 can indirectly be replaced by bus bx 6 D, via buses

bx- i , b x- 2 , * * • j bi. The node disjoint correspondence guarantees tha t no bus is called

upon to replace more than one other bus. The only buses that replace other buses,

but are themselves not replaced, are those of D.

Thus the buses can assume new identities so th a t, regardless of the set, F, of

faulty buses, the MBN can treat the designated set, D, as faulty. We now show an

example.

Let the set of buses be {0,1, •••,7} and let k = 3 with D = {5,6,7} and

F = {1,2,4}. Then the node disjoint correspondence is given by the directed paths

(1 ,3 ,6),(2 ,5), and (4,7). These paths are shown in bold in Figure 5.4. The new

identities assumed by buses are as follows:

Original bus 0 1 2 3 4 5 6 7

Replaced by 0 3 5 6 7 - - -

Notice that buses of the designated set D = {5,6,7} are not replaced, and are there

fore considered faulty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4: Node disjoint correspondences for an example

We now describe how the MBN copes with the loss of buses from the designated

set. We say that fault free bus b e m u la te s faulty bus V to mean tha t b assumes

the work of in addition to its own. (This is different from the notion of bus b

“replacing” bus V, where b loses its identity to V.) Each faulty bus b € D (the

designated set) is emulated by a fault-free bus 6' € SQ. Since there is an edge in Gk,M

from bus M — k + 6 G 5w _, to bus b e So, for 0 < b < k, such an emulation is always

possible. We will refer to the set S q as the e m u la t in g s e t .

5 .2 .4 Fault T olerance P rop erties o f IZk

Earlier in Section 5.2.2 we established that if the degree and loading of A i are d and £,

respectively, then the degree and loading of 72* are (k + l)d and (k + 1)£, respectively.

We now derive the time needed for 72* to emulate a computation on A i.

The time required for 72* to run a computation of Ad depends on the choice of

the designated set D and the emulating set S0 (in addition to the computation to

be performed). For example, if the buses of S q are never used concurrently with

those of D, then 72* emulates A i without any loss of speed, even when k buses fail.

At the other extreme, if buses of SQ and D are used simultaneously for t steps in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

computation, then these t steps now run in 21 steps (each bus of 5o does the work

of two buses). In general, if a computation on A i has t steps in which a bus of D

and its replacement are both used, then 72* requires t extra steps to emulate A i. In

particular, if a T-step computation on A i uses the buses of D for at most t steps,

then 72* performs this computation in at most T + t steps. This view permits the

performance to be bounded by the set D alone. If D is the set of least used buses,

then we have the following result.

T h e o re m 5.4 For any N x M MBN, A i , and an integer 0 < k < M — 1, the N x M

MBN, Ttk, has the following properties:

(z) I f no bus is faulty, then 72* can emulate A i without overhead.

(zz) A T-step computation on A i that uses a set o f k buses for at most t < T

steps can be run on 72* in T + 1 steps, even i f any set of {at most) k buses of

72* fail.

{Hi) I f the degree of A i is d, then the degree o/72* at most {k 4- 1)d.

(iv) I f the loading o f A i is I, then the loading o f Ilk at most {k + l)£.

■

5.2 .5 P rocessor Faults

Since the fault model assumes an off-line fault processing scheme, the ideas developed

so far for bus faults apply to processor faults as well. All that this requires is trans

posing the N x M MBN m atrix into a M x N matrix; this interchanges the roles of

processors and buses. Therefore, Theorem 5.4 can be restated as follows.

T h e o re m 5.5 For any N x M MBN, A i , and an integer 0 < k < the fault-

tolerant N x M MBN, 7Zk, has the following properties:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

(i) I f no processor is faulty, then 72.* can emulate A i without overhead.

(ii) A T-step computation on A i that uses a set o f k processors for at m ost t < T

steps can be run on 72* i n T + t steps, even i f any set o f (at most) k processors

o f n k fail.

(in) I f the degree o f A i is d, then the degree o f 72* is at most (k 4- l)d .

(iv) I f the loading o f A i is I, then the loading o f 72* is at most (k 4- 1)1.

■
The MBN, A i, could already be one th a t is resilient to bus faults. In th a t case,

72* is resilient to both processor and bus faults. We combine the Theorems 5.4 and

5.5 and the fact that loading and degree cannot exceed N and M respectively, to

obtain the main result of this section.

T h e o re m 5.6 Given any N x M M B N A i , and an integers 1 < q < y and 1 < k <

y , the N x M M BN 72* has the following properties.

(i) I f no processor or bus is faulty, then 72* can emulate A i without overhead.

(a) A T-step computation on A i that uses a set of k buses for tf, < T steps and

q processors fo r tp < T steps can be run on 72* i n T 4- h + tp steps even i f any

set o f (at most) k buses and (at most) q processors 0/72* fail.

(b) I f the degree o f A i is d, then the degree of Ttf is max(Af, (k 4- l)(g 4- l)d)-

(c) I f the loading o f A i is i , then the loading of TZqk is max(Ar, (q 4- 1)(A: 4- 1)^)-

■

5 .2 .6 Fault T olerant B inary-T ree M B N s

In this section, we use replication to derive results specific to binary-tree MBNs. We

first derive bounds on processor and bus usages in binary-tree MBNs and then use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

these bounds with Theorems 5.4 and 5.5 to derive results specific to fault-tolerant

binary-tree MBNs. Recall the following facts (Chapter 2, page 11) regarding binary-

tree algorithms.

1. W ith the root of T { n) at level n and the leaves a t level 0, for any 0 < i < n,

there are 2n~l nodes at level i.

2 . Call a communication (non-trivial edge of T{tl)) that brings partial results to a

level-£ node as a level-l c o m m u n ic a t io n . For 0 < £ < n, there are a t least 2n~l ,

and at most 2n_<+l, level-£ communications; this is because each internal node

has at least 1 and at most 2 non-trivial edges from its children.

Consider the problem of running B i n (n) on a 2n x 2m MBN, where 0 < m < n.

For 1 < I < n — m, there are at least 2n~l > 2m level-£ communications. For these

levels, the number of communications exceeds the number of available buses, so it is

reasonable to assume that the MBN minimizes the number of communications (and

hence the running time). Therefore for 1 < £ < n — m , there are exactly 2n~l level-£

communications, that are performed on the 2m buses in 2n~e~m steps. The total
n —m

num ber of steps for levels 1, 2 , • • •, n — m is 2n~l~m = 2n-m — 1.
i = i

Consider the next step, that executes nodes at level n — m + 1. This level has a t

most 2m communications and potentially uses all the buses. Level n — m + 2 has a t

most 2m~l communications and so uses a t most 2m_1 buses. Similarly, a t most 2m~2

buses are used at level n — m + 3. As a result, at least 2m — 2m-2 buses are not used

at level n — m + 3. In the same way, at most 2m~3 buses are used at level n — m + 4

and at least 2m — (2m-2 + 2m-3) = 2m_l + 2m-3 buses are not used at levels n — m + 3

and n — m + 4. Similarly, a t most 2m-4 buses are used at level n — m + 5 and at least

2m — (2m-2 + 2m-3 -I- 2m-4) = 2m_1 + 2m_4 buses are not used at levels n — m + 3,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

n — m + 4 and n — m + 5. In general, we have the following lemma, whose proof is

straightforward by induction on £ > n — m + 3.

L em m a 5.7 For n — m + 3 < £ < n, any 2n x 2m M BN running Bin{n) at least

2"»-i + 2n-/+l buses are not used in communications at levels n —m + 3 ,n —m +2, ■■■,£.

■
A direct consequence of this result is the following Theorem.

T h e o re m 5.8 For 0 < m < n, any 2n x 2m M BN running B in(n) has at least 2m_1

buses, each o f which is used for at most 2n-m + 3 steps.

Proof: Communications a t levels 1, 2 , • • •, n — m require 2n-m — 1 steps, and use

all the buses. Since there are at most 2m (resp., 2m_l) communications a t levels

n — m + 1 (resp., n — m + 2), these levels can each take a t most 2 steps (even if

both communications to a node use the same bus). Lemma 5.7 implies that at least

2m_1 + 2 > 2m_l buses are not used at levels n — m + 3, n — m 4- 2, • • •, n. These 2m_l

buses are used for at most 2n-m — 1 + 2 + 2 = 2n-m + 3 steps. ■

We now outline the derivation of similar results for processor usage. We assume

that a step is required for a processor to send/receive partial results and perform an

internal computation. Clearly there are 2n~l active processors (nodes) at level I of

H n) .

As explained earlier, assume that Bin(n) is run on a 2n-processor MBN. Suppose,

we use a 2n x 2m MBN where m < n —2. Divide the input into 2m+l groups, each with

2n~m_i inputs. Here it is reasonable to (sequentially and optimally) reduce a group

of 2n_m_l inputs to one partial result; 2n-m_1 processors of a group are connected to

a bus and take turns to send their input to a fixed processor (leader) of the group.

All 2n~m_l processors of the group, except the leader, work for only one of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

2Ti-m-i _ j steps needed to reduce the group. Since there are 2m+l groups, there are

at least (2n_m_1 — l) 2m+l = 2n — 2m+1 > 2n — 2n_l = 2n_l processors that are used

for only one step.

When m > n — 1, there are enough buses to accommodate all the communi

cations at each level. At level n < I < 1, there are 2n~e “active” processors.

Therefore the number of processors not used in any of the levels 2 ,3 ,• ••,£ is
t

2n — 53 2n-‘ = 2n_l + 2n~l unused processors. Each of levels 0 and 1 can use a pro-
i= 2

cessor only once. This is because at most half the processors are used in level 1.

Thus, we have the following result.

L em m a 5.9 For 0 < m < n, any 2n x 2m M BN running B in (n) has at least 2n_l

processors, each of which is used fo r at most 2 steps. ■

Then, by Theorem 5.6 we have the following result.

T h e o re m 5 .10 For 0 < m < n, and any given 2" x 2m MBN, N i, there is a fault-

tolerant 2" x 2m MBN, A i', that runs B in(n) in at most 2n~m 4- 5 additional steps,

with 2n~l faulty processors and 2m_1 faulty buses. ■

Remarks: There are 2n~l communications at level t of J~{n). Therefore, until level

n — m, the number of communications per level exceeds the available buses. Thus,

the 2n-m additional steps cannot be avoided. The remaining 5 additional steps are

only upper bounds. For existing networks [23, 24], the corresponding number is only

2. In particular, when n = m — 1, these MBNs require only 1 extra step to tolerate

the failure of half the buses (or processors).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

5.3 Recursive Scheduling

In this section we present a second method for converting any given binary-tree MBN

into one th a t is resilient to bus faults. Replication (Section 5.2) works for any MBN,

not ju st binary-tree MBNs. Consequently, it does not exploit features particular to

binary-tree algorithms. For example, consider an MBN th a t, with no faulty buses,

executes each level of T (n) in one step. If this MBN now has one or few faulty buses,

then each level with even one faulty bus now requires two steps under replication. In

other words, replication fails to exploit the possibility of executing nodes at higher

levels (closer to the root) before all lower level nodes have been executed. (Notice

that the only requirement in !F{n) is for a node to be executed after all its descen

dants. It is not required to wait for lower-level non-descendent nodes.) Recursive

scheduling exploits the features of binary-tree algorithms to construct fault-tolerant

MBNs th a t run faster than their replication counterparts. However, the loading of

the fault-tolerant MBN is somewhat higher, and the m ethod itself is less general,

being applicable only to bus faults in binary-tree MBNs.

For 1 < m < n, given any 2" x 2m binary-tree MBN A f and integer k (where

1 < k = 2s < 2m), recursive scheduling produces a 2" x 2m MBN <S*that is resilient to

the failure of an arbitrary set of at most k buses. The restriction that k = 2a admits

k = 1 and 2, the most probable fault situations. We now outline the m ajor steps in

the construction of MBN «S*.

1. Use the given binary-tree MBN Af to construct a 2n x (2m — k) MBN Af*.

MBN Af* has k fewer buses than Af and is not tolerant to bus failures.

2. Add k buses to Ad* to convert it into a 2" x 2m binary-tree MBN Af*; the k

added buses have no connections at this point.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

3. Use replication (Section 5.2) to transform A ik into a 2" x 2m binary-tree MBN

A ik , that is resilient to k arbitrary bus faults.

4. Finally, superimpose A i on A i'k to obtain «S*. This last step ensures tha t S*

behaves exactly as A i in the absence of bus faults.

All of the above steps, except the construction of A i'k (Step 1), are straightforward;

most of the remainder of this section is devoted to the construction of A i k. We first

consider the case where k = 1, as the construction of A i'k can be expressed in terms

of M \.

5.3 .1 A n M B N , w ith 2m — 1 B u ses

In this section we consider the case where k = 1 and construct a 2n x (2m — 1)

binary-tree MBN. This MBN is used to define A ik for k = 23 > 1 (Section 5.3.2).

For x > 0, let A ix be the 2X x 21-1 instance of the given MBN A i. We will use

instances A im- i and A im (among others) in the construction of A i[.

Recall that a binary-tree MBN can be defined by the manner in which it “sched

ules” the tree T (n)\ i.e., by the labeling of the nodes and non-trivial edges by buses

(see Section 2.3, page 14). Here we will define how J-(n) is scheduled by A i\ . De

compose JF(n) into three regions as shown in Figure 5.5. The 2n x (2m — 1) MBN A i\

schedules Regions 1, 2 and 3 in succession (in that order). For each region it uses all

2m — 1 buses available to it. This approach is different from that of replication which

would have caused each level of the entire tree T (n) to be executed in succession

using at most 2m — 1 buses. The 2” leaves of -F(n) are labeled with the 2n processors

of A i[. In executing T (n), an internal node u at level t is labeled only with one of

the 2n-/ levels a t the subtree rooted a t it. Thus, Regions 1 and 2 use disjoint sets of

processors of A i \ . The roots of the trees at Regions 1 and 2 are leaves of the tree at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

no. of
nodes level

n

one T {m)

Region 3
2 " - 1
T {n — m)n — m

Region 2 \ Qne r (n _ m)Region 1

0

Figure 5.5: Regions of F (n)

Region 3. Region 3 uses only processors at these leaves (level n — m nodes of !F{n)).

We now describe the three regions in detail and the method used to schedule them

on A l p

R eg io n 1: This region lies between levels n — m and 0 of the tree F{n). It consists

of 2m — 1 trees, each an n — m) rooted at a level n — m node of T {n). (Of the 2m

such subtrees of T{n), any 2m — 1 may be selected for Region 1.) Each T { n — m)

is scheduled with a single bus. T hat is, all 2n-m processors at the leaves of the

T {ji — m) are connected to a single bus, and their values sequentially reduced to one

leader processor assigned to the root of the T [n — m). Clearly this requires 2n-m — 1

steps. Since there are 2TO — 1 buses available, all the T [n — m)s of Region 1 can be

scheduled as discussed simultaneously. (Notice that this is a very efficient use of the

buses as each of the 2m — 1 buses is utilized in all 2n-m — 1 steps.) Also observe tha t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

n-m

... n-2m
... n-3m
"■ n-4m

Figure 5.6: An example showing 4 levels of recursive decomposition of J-(n) with
m = 2 and k = 1

in running Region 1, each processor is connected to only one bus, and each bus is

connected to 2n-m processors.

R e g io n 2: This region consists of a single T { n — m) rooted at a level n — m node

of tree T {n). (Of the 2m such subtrees of F {n), Region 2 has one, while Region 1

has 2m — 1 such subtrees.) If n — m < m, then Region 2 is scheduled on an instance

A in-m of the given MBN A i. Notice that A in -m uses 2n_m_1 < 2m_l < 2m — 1 buses

as m > 0 , so sufficient buses are available.

On the other hand, if n — m > m, then the tree F (n — m) of Region 2 is scheduled

recursively on a 2n-m x (2m — 1) MBN. T hat is, this T {n — m) is divided into three

regions, each scheduled in sequence (see Figure 5.6).

R e g io n 3: This region consists of levels n to n — m of the tree F (n). Consequently,

it comprises of a single F (m). Notice that level n - m o f JF(n) is shared between

Regions 1, 2, and Region 3. The leaves of the T { m) of Region 3 are the roots of the

T {n — m)s of Regions 1 and 2. By virtue of the fact that each tree of Regions 1 and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

bus 1 bus 2 bus 2m —I

O O

Figure 5.7: Scheduling the lowest level of communications of Region 3.
shown in dark hold partial results and move to higher levels of Region 3.

Processors

Figure 5.8: An example of a 8 x 4 MBN

2 use disjoint sets of processors, the leaves of the .F(m) of Region 3 are labeled with

distinct processors.

The first step of Region 3 schedules the lowest level of communications of the

T {m). This involves reducing 2m inputs to 2m_l partial results and can be done with

2m_l < 2m — 1 buses as shown in Figure 5.7.

If m = 1, then this completes the execution of Region 3. Otherwise the 2m_l

processors holding partial results, along with 2m-2 < 2m — 1 buses of , are used to

schedule the remainder of Region 3, as a 2m_l x 2m-2 instance, A4m_i, of the given

MBN M .

We now illustrate these ideas using an example, where n = 4, m = 2 and k = 1.

Number the 24 = 16 processors 0,1 , • • •, 15 and call the 2m — k = 3 available buses

a, P , j . Let the given MBN use a direct mapping (see Figure 5.8). For replication,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Region 1 Region 2

Figure 5.9: Connections of processors and buses with one bus fault

each of 22 = 4 buses are used for first 3 levels. T hat is, replication uses at least 3 extra

steps, for a total running tim e of 8 steps. The optimal running time for this MBN is

only 5 steps. Figure 5.9 illustrates recursive scheduling. In this example, Regions 1, 2

and 3 run in 3, 2 and 2 steps respectively, for a total of 7 steps. In contrast, replication

requires 8 steps. This difference will be magnified for large problems.

R u n n in g T im e: Let 7 \(n , m) denote the time to run Bin(n) on the 2" x (2m — 1)

MBN M ,. For x > 0, let tx denote the time to run B in(x) on A fz, a 2X x 2I_l

instance of the given MBN, A4; let t0 = 0.

Clearly, T\ (n, m) is the sum of the times needed to run all three regions. Region 1

runs in 2m-m — 1 steps, and Region 3 in £n_m + 1 steps. U n — m < m , then Region 2

also runs in £n_m steps. Otherwise Region 2 runs (recursively) in T i(n —m, m) steps.

Thus we have the following recurrence.

Let i\ = [^"1 — 1. It can be verified tha t n — i\m < m < n — (z'i — l)m . Therefore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

T \(n ,m) = 2n m + tm- i+ T i (n - m ,m)

— 2n m + tm_i + 2n-2m 4- tm- i + Ti(n — 2m, m).

_ (2"~m -+- 2n-2m H h 2n-,,m) + -f- Ti (n — i^m, m)

= 2— (i ^ p ^ -) + i ltm_ 1 + tn . iim

D egree : The degree, D i(n , m), of Af^ depends on the manner in which processors

are brought together on Region 3. For our initial discussion, if dx is the degree of

a 2X x 2x~l instance A fx of the given MBN Af, then assume that the degree of

the root processor is at most dx — 1; this is indeed the case for the Tree MBN of

Section 3.6 (page 44). Under these assumptions, we will show that D i(n ,m) < dm,

the degree of a 2m x 2m_l instance of Af. In other words, D\ (n, m) is independent of

x. Subsequently, we will eliminate the assumption on the degree of the root processor

of A fm.

In Region 1, each processor is connected to one bus, and therefore has a degree

1. For Region 2, if n — m < m, then the region is run on an Af n-m that has degree

dn-m < dm- If n — m > m, then the degree due to Region 2 is D \(n — m, n) which by

the induction hypothesis is at most dm- In particular, the degree of the root processor

r (say) of the tree in Region 2 is at most dm — 1.

In Region 3 we have 2m — 1 processors p, (for 1 < i < 2m) from the root of the trees

in Region 2. Each processor p,- (1 < i < 2m) has degree 1 and processor r has degree at

most dm — I- In the first step of Region 3, processors are paired and each pair reduced

to one partial result holding processor. These processors proceed further in Region 3,

while the remaining processors are not used any further. Let the processor pairs for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

b,

n i O

&2m-l

O O
t t j 0 1 OC2 02 OC2m~ • 02m~1

Figure 5.10: Connection of processors and buses in Region 3

the first step be (a*,/?,-), where 1 < i < 2m_l and a,-,/?,- 6 { p i , P 2 , • • * r }- Of

these, let a* hold the partial results and proceed further and let all a * have degree

1; this implies the processor r = /?,- for some i and it does not proceed beyond the

first step of Region 3. Let processor a,- (whose degree is 1) be connected to some bus

Since each subtree of Region 2 uses a different bus, we can ensure tha t each a is

connected to a distinct bus b,. The first step of Region 3 connects processors or, and 0i

to bus bi, allowing processor /?, to send its value to a , (Figure 5.10). This increases the

degree of /?,- by 1 and the loading of b, by 1, as a,- is already connected to b,-. Thus, at

the end of this first step each processor /?,- has degree of 2 or dm > 2 (from Lemma 4.1,

page 66). These processors proceed no further in Region 3. The processors art- that

proceed in Region 3 each have a degree of 1, and each is connected to a different

bus. Observe every bus of a 2n x 2n~l binary-tree MBN can be assigned to a distinct

processor pair that is connected to it (namely those of the first step). Therefore, by

perm uting processors and buses of A4m_i appropriately (see Section 2.2, page 13) the

remainder of Region 3 can proceed with processors a,- and MBN A4m_ i as if these

processors had no connections to begin with. After scheduling Region 3, processors

or, now have a degree of a t most dm-i < dm- Thus the degree of is (at m ost) d^.

The above derivation assumed th a t the degree of the root processor of A4X had

a degree of at most dx — 1. As observed earlier, this is indeed the case for many

binary-tree MBNs. If this is not the case then assume the degree of A4X to be dx -I-1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

This would allow the degree of the root processor to be incremented in the first step

of Region 3 without increasing the MBN degree. Notice th a t this is possible as the

root of the Region 2 subtree does not proceed beyond the first step of Region 3. In

summary, the degree of A i\ is a t most dm + 1.

L oading: The loading L i(n, m) of is upper bounded by the sum of the loading

due to the three regions. (Unlike processors, that are different for different subtrees

of Regions 1 and 2, the same set of buses are used for all regions). Let I* denote the

loading of A ix-

From the discussion of the degree, the loadings due to Regions 1 and 3 are 2n-m

and 1 + £m- i , respectively. If n — m < m, the loading of Region 2 is £n-m — im\

otherwise Region 2 has loading L i(n — m, m). Thus we have the following recurrence.

L\ (n , m) = <
2n m + 1 + lm -\ + £n-m, if 71 — 771 < 771

2n-m ̂ Ijn-l + L \(n — 771, 7 7 l) , if T l — 771 > 777

which has the solution L i(n ,m) = 2n m + 1) + £n — iim , where

*•» = r s i - 1 -

T h e o re m 5.11 For any 0 < m < n, given o 2m x 2m_l binary-tree M B N M .m of

degree dm, loading £m, and running time tm to run Bin{m), there exists a 2n x (2m — l)

M BN A4[, with degree at most dm+ l, loading o f 2n-m (lj~̂ 2- i r)-N i (lm_ i-H)+ in-Um

and running time o f 2n_m where — 1 . ■

Remark: If the MBN A i is the Tree MBN of Section 3.6, then the degree of A i[is

only 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

no. of
nodes level

Region 3

n — m

Region 1 Region 2 \ one T {n — m)

Figure 5.11: Regions of F{n) for k bus faults

5.3 .2 R ecursive Scheduling w ith 2s B u s F aults

Here we describe the construction of Ai'k, a 2n x (2m — k) MBN for running F{n)

where 2n~x > k = 25 > 1. The approach is the same as that for (Section 5.3.1).

Indeed we use A i\ to construct M k. Divide T {n) into three regions as shown in the

Figure 5.11.

Region 1 now consists of 2m — 2s subtrees, while Region 2 has the remaining 2s

subtrees. Region 3 is the same as in the k = 1 case. Schedule Region 1 as before,

with one bus for each subtree. Schedule Region 3 as before with 2m_l < 2m — k buses

(as k < 2m_l). The difference here is in the way Region 2 is scheduled. Region 2

consists of 2a subtrees, each an T (n — m); also s < m. Divide the available 2m — 2*

buses equally among the subtrees so that each subtree uses 2m-a — 1 buses. Thus

each subtree runs on a 2n-m x (2m_a — 1) MBN, which is an instance of k = 1 with

n replaced by n — m and m replaced by m — s. The running time for each of these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

subtrees of Region 2 is

T x(n - m , T T l - s) = 2n 2m+a (1 _ 2 ~(m-») J + ***"»-.-1 +

where i* = f ™] - 1.

The overall nm ning time Tk(n ,m) for Ad* is (2n_m — 1) + (fm-i + 1) + X |(n —

m ,m — s). By a similar argument the degree and loading of A i k are at most dm + 1

and (2n_m) + + L \(n — m ,m — s).

T h e o re m 5.12 For any 0 < k = 2s < m < n , given a 2m x 2m_1 binary-tree

M B N A i m of degree dm, loading lm, and running time tm to run B in(m), there

exists a 2n x (2m — k) M BN Ad*, with degree at most dm + 1, loading o f 2n-m +

im -i + 2n~2m+s + 1) + and running time o f

2n-m _ l + tm - l + 1 + 2n- 2m+a (l ^ p (£ . ^ r) + w h ere i k =

r = ^ i - 1.1 m —3 1

■

5 .3 .3 P u tt in g it A ll T ogether

Given a 2n x (2m — k) MBN Ad* we construct the fault-tolerant 2n x 2m MBN «S* by

first adding k dummy buses, then applying replication, and finally superimposing the

given 2" x 2m MBN A i on it. Clearly, the k designated buses for replication are the

added dummy buses they are not used in Ad*. Therefore, S k runs in the same time as

A i k when a t most k bus-faults are present. The degree of S k is at most dx + (k + l)d 2,

where dx and d2 are the degrees of A i and Ad*. Its loading is a t most £x + (k-h 2)£2,

where £x and £2 are the loadings of A i and Ad*. Thus we have the following result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

T h e o re m 5.13 Let N i be a 2n x 2n_1 binary-tree M B N and let 0 < k = 2s < m < n

and ifc = — 1. Then recursive scheduling constructs a 2n x 2m binary-tree M BN

Sk with the following properties.

(z) I f no bus is faulty, then Sk can emulate N4 with no overhead.

(ii) I f M takes tn steps to run B in(n) then, with at most there are k faulty

bxtses, S k runs B in (n) in 2n-m - 1 + tm_i + 1 + 2n-2m+a + iktm- s - 1

~Jt~ tn —m —iic(m —3) steps.

(Hi) I f the degree o f M. is dn, then the degree o f Sk is at most min(2m, (k Jr2)dn).

(iv) I f the loading o f N i is £n,m, then the loading o f Sk is at most [2n_m + £m_i +

2 " ~ 2m+a + h (£ m - 3 - l + 1) + £ n - m - i k { m - s)] (h + 1) + 2 n ~ m + £m + l - 2 .

■
Since bus faults and processor faults are treated independently of each other, we

can use the results derived in Section 5.2.5 to augment the MBNs that are tolerant

to bus faults. Therefore, MBN Sk can be made tolerant to processor faults as well.

5.4 Comparison of Results

In this section, we compare the two methods. As explained earlier, expect the running

time of recursive scheduling to be no more than tha t of replication in all cases. In

addition, we expect the loading of replication to be lower than recursive scheduling

in all cases. This is because recursive scheduling uses buses more efficiently (and

often), incurring more connections in the process. Table 5.1 shows the running time,

loading and the degree of the two methods when the Tree MBN of Section 3.6 is

used as the input MBN for the two methods. The running times of both recursive

scheduling and replication are the same for cases m = n — 1 (regardless of the value

of £). This is because here the failure of one bus has the same impact as the failure of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

half the buses [2]. Therefore, replication is optim al and recursive scheduling cannot

improve on it. When the number of faults is large, (for example k = 2m_1 in the table,

then), both methods again have the same running time. This is because replication

assumes th a t half the buses are faulty, regardless of the actual number of faults. The

case where m = k = 1 shows the advantage of recursive scheduling; the running

time is about half that of replication. In this case, recursive scheduling makes the

maximum use of all the available (2 ^ — 1) buses, while replication only uses 2 ^ -1 of

the available buses. When the number of faulty buses approaches the total number

of buses, then both the methods give the same running time. This situation is not

unusual because both the methods have very few buses available and the inefficiency

of replication becomes insignificant. As expected, loading of replication is superior

to that of recursive scheduling in all cases. The degree of recursive scheduling is

marginally larger in all cases due to the fact th a t we superimpose the original MBN

on the fault tolerant MBN to obtain Sk-

5.5 Concluding Remarks

We have proposed two methods for converting any binary-tree MBN to one that is

resilient to arbitrary bus faults. One of the methods presented can be used with both

processor and bus faults. It also works with any type of MBN while the other method

works only with binary-tree MBNs. The fault tolerant MBNs we have designed do

not run optimally. However they have much better degree and loading than that

proposed by Ali and Vaidyanathan [2]. The problem of designing low-degree, fault-

tolerant MBNs that run binary-tree algorithms in optimal number of steps is open.

Replication specifies the additional connections needed in an MBN to map faulty

elements to less important elements. An algorithm to perform the required reallo-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Table 5.1: Summary of results

Case Recursive scheduling Replication
Time m = n — 1, fc = l n + 1 = n + 1

m = n — 1, k = 2n_2 71 + 1 = 71+1
m = f , k = 1 2 f + n — 1 < % + 2*+I + 1

m = j , k = 2a“ l a + 27+l - 1 \ + 2*+I + 1
Loading m = n — 1, k = I 17 > 6

m = n — 1, k = 2n-2 7.2"“2 + 10 > 3.2n-2 + 3
m = %, k = I 2.2* + 1 5 > 2 .2 * + 6

m = 5 , k = 2 ir-1 (2*"l + l) (2 * +l + f + 3) > (2*“ l + 1) (2 * + 3)
Degree m = n — 1, k = I 9 > 6

m = n — 1, k = 2n-2 (2"“2 + 2)3 > (2*-2 + 1)3
m = k = 1 9 > 6

m = f , Jk = 2 i - 1 (2* + 2)3 > (2* + 1)3
num ber of processors = 2", number of buses = 2m, number of faulty buses, fc = 2*.

We denote T (n , n — 1), <„,r»-i and dr»,n-i by T(n) , l n and dn respectively.

cation of identities is im portant as well. Though our approach could accommodate

handling of bus-faults on the fly, it would incur larger overheads for processor faults,

where entire contexts will have to be relocated. Another possible drawback of this

work is tha t it does not address link faults that render the connection from a processor

to a bus (rather than an entire bus or the processor) unusable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

VLSI Layout Lower Bound

This chapter deals with VLSI layouts for optimal-time MBNs. In a related topic, VLSI

layouts for the balanced tree point-to-point topology have been thoroughly studied

[80]. The balanced tree represents a structure where all edges of a balanced binary

tree could be used simultaneously. In contrast, an optimal-time binary-tree algorithm

represents a situation in which one level of edges is used at a time. This implies that

any layout for a balanced tree would also suffice for a binary-tree MBN. The converse is

not true, however. This is because the MBN could reuse the communication resources

(and VLSI real state) over different steps, in a manner not possible on a balanced

tree. The question we ask here is “is it possible for a binary-tree MBN to be laid out

in a smaller area than a balanced tree?” For two of the three cases tha t we consider,

the answer is easily provable to be “no.” For the third case, we conjecture that the

answer is again “no” and we outline the basis of this conjecture in this chapter.

An X x Y layout of a structure accommodates the structure in two layers within

an X x Y rectangle. Clearly, the area of an X x Y layout is X Y . In a perimeter

layout, all processors are placed on the perimeter of the enclosing rectangle. On the

other hand, a dense layout has no restriction on where processors may be placed. As

the name indicates, a dense layout is usually more compact than a perim eter layout.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

Figure 6.1: H-Tree layout of a 31-processor binary tree

level 2
level 1

Figure 6.2: 7-node binary tree layout

A perimeter layout, on the other hand, places processors more conveniently for use

within a larger context such as meshes enhanced with MBNs (see Chapter 4), or for

connecting to pins of a chip. The aspect ratio of an X x Y layout is

An iV-leaf (0(iV)-node) balanced tree has an optimal 0(A r) area, constant aspect

ratio layout [80] (see Figure 6.1). Therefore an iV-processor binary-tree MBN also

has such an optim al layout. On the other hand, if a constant aspect ratio, perimeter

layout is required, then the perimeter must have f l (N) length, as a result of which

the area is Q(N2). The well known perimeter layout of a tree [80] can easily be bent

around the perimeter of a G (N x N) square to construct such a layout. Again, this

is optimal for a binary-tree MBN.

It can be shown [80] that a high-aspect ratio layout for a balanced tree (with all the

processors on one side of the layout) requires Q(N log N) area. Does the same bound

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

bus a bus b bus c bus d

Figure 6.3: 8-processor MBN layout

Figure 6.4: 8 processor MBN running Bin(3)

apply for binary-tree MBNs as well? The answer is not simple, as a binary-tree MBN

uses only one level of edges at a time, and therefore could reuse buses over several

steps. For example, a 7-node binary tree (that has two degree-3 nodes) requires at

least two levels of wires, as shown in Figure 6 .2 . On the other hand an optimal-time

8-processor binary-tree MBN can accommodate its buses in a single level (Figure 6.3).

Figure 6.4 shows how this MBN runs the 8-input binary-tree algorithm, B in(3). In

the remainder of this chapter we describe several steps towards developing a lower

bound on the perimeter layout area for optimal-time binary-tree MBNs. It forms

the basis of our conjecture that binary-tree MBNs do not have a lower layout area

than balanced binary trees. Our argument is arranged as a series of lemmas and one

conjecture. If this conjecture can be proved to be true, then this work will establish

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

that any perim eter layout of an optimal-time, binary-tree MBN with N processors

requires Q (N l o g N) area.

In the next section we discuss some preliminary ideas. In Section 6.2, we describe

our steps towards the lower bound derivation.

6.1 Preliminaries

In this section we state some assumptions and establish conventions used in subse

quent discussion.

6.1 .1 V L S I M od el

We adopt the most widely used mathematical model for VLSI algorithms [78, 79].

In this model, a VLSI layout consists of horizontal and vertical wires of unit width.

Horizontal and vertical wires are laid out on separate layers, and wires on the same

layer are separated by unit distance. Whenever a horizontal wire is to be connected

to a vertical wire, a contact hole or via is cut at the intersection of the two wires and

a contact made through this hole. Processors are assumed to occupy unit area. The

assumption usually requires a processor to be of constant degree: our lower bound

argument does not rely on this assumption, however. Note tha t this is a “word

model” that assumes unit area for processors and width of wires, regardless of the

word size used. Since the number of layers in actual fabrications is limited to a

few, the size of a VLSI layout is primarily measured by the area of the largest layer

(enclosing rectangle). Practical considerations of VLSI fabrication, such as cost and

yield dictate tha t the area be kept as small as possible.

As explained earlier, we will only consider a high aspect ratio, perimeter layout

for an optimal-time, binary-tree MBN. Such an MBN for Bin(n), has 2n processors,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Figure 6.5: Processors are shown as circles

each of which occupies unit area. Therefore, one of the two dimensions of the layout

is Q(2n) units long (see Figure 6.5). W ithout loss of generality, we assume tha t all

2n processors are placed on one side of the layout. We will focus on finding a lower

bound on the other dimension h (height) of the layout. In deriving this lower bound we

assume tha t vertical wires have no width and, concentrate entirely on the horizontal

wire segments. Initially, each processor holds an input. However, no assumption is

made about which processor holds the final result of B in(n).

6.1 .2 D efin ition s and F igure C on ven tion s

Let the processor axis of a perimeter layout be the line (edge) of the layout on which

processors are placed (in Figure 6.5, the bottom horizontal side of the layout is the

processor axis). Assume that, in general the layout orients the processor axis as

the lower horizontal lines of the layout. Our approach to the area lower bound first

identifies the minimum communication requirements for an optimal-time binary-tree

MBN. This communication requirement is represented as horizontal links. A link

between processors pi and p2 denotes a communication between these processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

The link is represented as a horizontal line, whose projection on to the processor

axis is a line connecting processors p\ and P2 - The link is not to be confused with a

wire or a bus. It is simply a channel (not necessarily placed in a layout) dedicated

for communications between processors p\ and pi. Our goal a t this point is only to

identify the existence of such links.

In general, we will view the links from a processor’s perspective, and our interest

will be restricted to questions such as “does the link cover other links?” (A link Ai

is said to cover a link A2 if an infinite vertical line through any point in A2 intersects

Aj. A link is said to cover a processor iff vertical lines drawn immediately to the left

and right of the processor intersect the link.) We now introduce some notation tha t

will help in explaining ideas about the MBN’s communication requirements.

1

® ® ® ® ® © CD
Figure 6 .6 : Links between processors

(D

Figure 6.7: View from processor 1

Consider the links shown in Figure 6 .6 . These links represent the communication

requirements shown in figure Figure 6.4. Links labeled 1 are at the lowest level of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

tree. Notice tha t these links are between processor pairs (1, 2), (3 ,4), (5 ,6) and (7 ,8),

that are involved in a communication in the first step. In step 2, processor pairs (1,3)

and (6 ,7) communicate; these communications correspond to the links labeled 2 in

Figure 6 .6 . The two links labeled 3 between processor pairs (3,4) and (4 ,6) represent

the corresponding non-trivial edges to the roots of Figure 6.4.

In general, each link is labeled with the step a t which it is used. For now we will use

these link labels only to show the correspondence with Figure 6 .6 . Figure 6.7 shows

the view of these links from processor 1. This view only captures the existence of links

and the fact that some links cover others. The length of a link is not an im portant

consideration, except th a t each link is at least one unit long and a covering link is at

least as long as the covered link. In most cases we will only be interested in portions

of a subset of the links (as viewed from a processor). For example we may choose

to consider the three subsets shown in Figures 6 .8 , 6.9 and 6.10 as the view from

processor 1. Additionally, we may restrict the view to only portions of some links.

! 3: 2 ____
I 1 1

d)

Figure 6 .8 : Subset view I

Since the links with labels 2 and 3 in Figure 6.8 do not cover any link other than

the link labeled 1 directly below it, we can shorten these two links shown (without

the labels) in Figure 6.11. Since only the relative position of links is im portant for

our consideration, Figure 6.11 also represents the views in Figure 6.9 and 6.10.

Figure 6.11 is also representative of the view from processors 2 and 3 of Figure 6.6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

3
; 2 ___________
j 1 1

(t

Figure 6.9: Subset view II

j 3 3_______

| 1 1

d)
Figure 6.10: Subset Anew III

but not processors 4, 5, 6 , 7 and 8 . The view from these processors contain the links

shown in Figure 6.12.

Since we will not make a distinction based on the side of the processor th a t contains

links, the views in Figures 6.13 are considered identical. We use a two sided arrow to

indicate this as shown in Figure 6.13. Indeed, this represents the view from any of

the processors of Figure 6 .6 .

CD
Figure 6 .11: Subset view from processor 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Figure 6 .12: Subset view from processor 4

or

o o
Figure 6.13: Equivalent views

A set of links in the view of a processor will be symbolically represented by a letter

enclosed in a box (for instance [X [or | Y[). For example, if | X | denotes a single link,

then Figure 6.13 can be redrawn as shown in Figure 6.14(a). In general |X j could

X X Y

o o
(a) (b)

Figure 6.14: Symbolic representation of a subset view

be any set of links. The notation IXJ denotes the links of X along with another link

that covers all links of X. If [y] denotes X , then Figure 6.14(a) can be redrawn as

Figure 6.14(b). Note that a subset view or the view from a processor containing a set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

X x] Qc
O

result processorany processor
(a)

Figure 6.15: Communication Structure for F(3)

of links denotes a subset of the true view from the processor. Since our lower bound

argument counts the length of links, such a conservative “subset view3’ is acceptable.

In this section we derive the results necessary for establishing the lower bound on the

determines a set of links that the view from the final result processor must contain.

This “minimum” communication pattern is used with the concept of “collapsing”

(that captures the notion of bus reuse) to derive a lower bound on the wire length

represented by links. This finally bounds the height of the layout.

6 .2 .1 M inim um C om m unication Structure

We sta rt by establishing the minimum communication requirement for any MBN run

ning 5tn(3) optimally in 3 steps. We then use this result to derive the communication

requirement for Bin(n).

L em m a 6.1 Let N i be an 8 -processor M BN in which each processor contains the

subset view shown in Figure 6.15(a) fo r some set [jt] of links. (Assume this view to

6.2 Towards the Lower Bound

height of a perimeter layout of an optimal-time, binary-tree MBN. Our approach first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

be unrelated to running B in(3) on jA/f.) I f A i can run B in (3) optimally, then the final

result processor contains the subset view shown in Figure 6.15(b).

Proof: Since A4 executes Bin (3) optimally in 3 steps, it must provide a path of at

most 3 hops1 from each processor to the final result processor po (say). Also observe

tha t regardless of where processor po is placed on the processor axis, there must be at

least four other processors on one of its sides. In summary, the final result processor

po has a t least four processors on one side of it, with each of these processor connected

to po by a path of a t most 3 hops. W ithout loss of generality, let P i,P 2,P3 and p4

be these four processors to the right of processor po, with pi nearest to po and P3

furthest.

Since A4 executes B in(3) optimally, each communication in this execution must

be a 1-hop path. Therefore, the subset view from p 0 m ust contain links to processors

P i , p i t P3, P a such that each of the processors can be reached from p0 by traversing

at most 3 links. We now consider some cases.

• • • • •
pO p1 p2 p3 p4

Figure 6.16: Subcase 1 (a)

Casel: Suppose there is a link A (of length 4) between p0 and p4; this incudes the

case where A covers p0 and /or p4. We now consider some subcases.

1A k-hop path between processors p and p ' is a sequence (p = Po, fti , P i , &2 ,P2 , • • • >Pfc-i i &fc,Pfc),
where for 1 < t < k processors p,- and p,-_i are connected to bus ft,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

Subcase 1(a): Suppose there is a link A' ^ A that covers any of processors pi,

P2 or P3 (as shown for pi in Figure 6.16). Then the 1X | of the processor

(Pn P2 or pz) is covered by A' while the [x] of a different one of p t , p2 or

Pz is covered by A. A subset of this situation is the view of Figure 6.15(b)

(indicated by the dashed boxes of Figure 6.16).

Subcase 1(b): Suppose A is the only link covering processors p x, p2 and p3.

Then for p 2 to have a path to p0, there must be links A', A" on both sides

of either p x (Figure 6.17) or P3 (Figure 6.18). As shown in these figures,

X r — - A,”

\ m

• • • • •
pO p1 p2 p3 p4

Figure 6.17: Subcase 1(b): p?-p\-po link

X r— - X'

jsi

• • • • •
pO p1 p2 p3 p4

Figure 6.18: Subcase 1(b): P2-P3-P0 bnk

the view from po contains the subset view of Figure 6.15(b).

Case 2: Suppose there is a link A of length 3. If there is a link A' ^ A tha t covers any

of the processors, then the proof follows as in Figure 6.16. Assume therefore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

that there is no link other than A that covers any of the processors. W ithout

loss of generality, let A be between p0 and p3 (the case where A is between px

and P4 is analogous). Clearly there must be a link A' from pz to p4 (Figure 6.19).

Processor p i connects to po using a link A", A"' via processor pi (Figure 6.20)

or link A" via processor pz (Figure 6.21). These figures explain why the lemma

hold for these cases.
_______________________________________ X_

X '■

• • • • •
pO p1 p2 p3 p4

Figure 6.19: Case 2

r—- x

X"

wi-ii•L X i

Ms; I

• • • • •
pO p1 p2 p3 p4

Figure 6.20: Case 2: P2-P 1-P 0 link

r— ■ X
\ M X' r - - X

I ® J; l_s i
» ; .

• • * • •
pO p1 p2 p3 p4

Figure 6.21: Case 2: p2-p3-po link

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Case 3: Suppose there is a link A of length 2 . Once again assume that there is no

link other than A that covers any of the processors; otherwise it represents the

situation in Figure 6.16. We now consider some subcases.

Subcase 3(a): Suppose A is from po to p2 (or analogously from p? to p4). For

p4 to get to po there must be links A', A" from p4 to P3 and p$ to pi. This

situation is handled as shown in Figure 6.22.

K r ' ;
r r-~. X

N® | i s !

—i—
• * • • •
pO p1 p2 p3 p4

Figure 6.22: Subcase 3(a)

Subcase 3(b): Suppose A is in the middle between pi and p$. Then the path

from P2 to po must include edge A' from pi to p0 and A" from p2 to either

Pi (Figure 6.23) or p3 (Figure 6.24). In addition, there is a link A'" from

p4 to p3. These figures show how these cases are handled.

k r— -
X r-~ , X.” i

j®s j

• • • • •
pO p1 p2 p3 p4

Figure 6.23: Subcase 3(b): P2-P1-P0 link

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

X
: ; : X’ r— - X"

I ;®j L®J
• 4► 4► 4

pO p i p2 p3 p4

Figure 6.24: Subcase 3(b): P2-P3-P0 link

Since the paths from pi, P2, P3, p^ to p0 can have a t most 3 hops, there must be

at least one link of length 2 or more, so all cases are covered. ■

We now use Lemma 6.1 to identify a minimum set of communication links for an

MBN running B in[n) optimally.

L em m a 6.2 I f an M B N runs B in(n) optimally, then the final result processor

contains the subset view of Figure 6.26.

Proof: W ithout loss of generality, let j be an integer. We proceed by induction on

h = * > 1.

If h = 1, then we have n = 3. From Lemma 6.1 with [x] being empty, we have the

desired result. Assume the assertion of the lemma to hold for h > 1 and consider an

MBN tha t runs Bin(3(h+ 1)) optimally. The tree ,F (3 (/i+ l)) can be decomposed into

8 F f i t y s as shown in Figure 6.25. Let the processors at level 3h (roots of the ^ (3 h)

each contain subset view X . By induction hypothesis [x] is as shown in Figure 6.26.

Then by Lemma 6.1 the roots of F (3(h + 1)) contains the subset view of Figure 6.26.

Expanding each [x] as in Figure 6.26 completes the proof. ■

6 .2 .2 L abelin g Links

Subset Figure 6.26 shows the links that the view from the result processor must

contain for any MBN running Bin(n) optimally. Clearly, the links are drawn in levels

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

3(h + 1)

3h + 2

3 h + 1

 7(3h)
level 0

Figure 6.25: T {n)

: 0
: i
\ 2

I J-~: — — rn - 1
O

Figure 6.26: View from final result processor

0,1, • • •, — 1 corresponding to 3-level chunks of JF(n). If we label each link by

the (unique) step at which it is used, then no two levels of links have common labels,

and within a level, there are at most 3 distinct labels (as each level of Figure 6.26

represents a set of B in (3)s that run in 3 steps).

6 .2 .3 C ollap sin g Links

To translate the minimum communication requirement of Figure 6.26 into the mini

mum requirement of perimeter layout, the possibility of links labeled differently using

the same physical wire (bus) must be accommodated, as this has the potential to

reduce the area. To capture this idea of bus reuse, we introduce the concept of col

lapsing th a t allow links at different levels (with different labels) to merge. As observed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

earlier, each level of links represents a set of sub-problem Bin (3)s and has a t most 3

different time labels. For 0 < £ < \ j] the length of a link at level £ is at least 2n-<-1.

Collapsing causes a link to have multiple labels, that indicates the times a t which

it is (re)used. That is, a link now has a set of labels (rather than a single label).

For i = 1,2 let A, be a levels, link with label set L,. If £x > l 2, then link Xi can

be collapsed into link A2 iff A2 covers A! and L\ fl L 2 is empty. After the collapse,

the link A2 is removed from the communication requirement structure and the label

set of A2 is changed to L\ U L2. This collapsing captures the idea that link (bus) A2

can be used for all its original communications as well as those represented by link

(bus) At. Since their labels are disjoint, the link will not be used simultaneously for

two communications. As A2 covers At, link A2 also reaches all processors reached by

At. Since the aim is to derive a lower bound on the area using the total length of

collapsed links, we will attem pt a set of collapses that minimizes this total link length

in the communication structure. Indeed, because of the lower bound setting, we will

assume th a t three links from each level > £ 2 can be collapsed into each level-^2

link, regardless of whether or not the level-£2 link covers the level-^i links.

Define a maximal collapse of the communication requirement of Figure 6.26 (or a

substructure of this structure) as the result of the following procedure,

for level £ <— 0 to [|J — 1 do

for each remaining level-£ link A

(i) collapse two of the remaining level-£ -I- 1 links into A

(«) from each of levels £ + 2, £ 4- 3, • • •, [f J — 1 collapse three of

the remaining links from that level into A

end

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

initial collapsed to level 0

Q --------------------------------------- ---------------------------------------

1
2 ------

collapsed to level 2 final result

Figure 6.27: At each level, collapsed links are shown dotted

Figure 6.27 shows an example of a maximal collapse for a 4 level structure. Note the

above procedure allows a link At to be collapsed into another link A2 even if A2 does

not cover Ai; however, each link Ai is collapsed into at most one other link A2.

We now derive a formula for the number of links left a t each level after following

the above maximal collapse procedure. W ithout loss of generality assume j to be

an integer. Before any collapse, level-£ (where 0 < £ < |) of the communication

structure has 2l+l links. Let t) (£) denote the number of links left at level-£ after a

maximal collapse.

Clearly, level-0 links cannot be collapsed, so 77 (0) = 2. The 4 level-1 links are all

collapsed into the level-0 links (two in each), so 77(1) = 0. For the remaining levels

i > 1, ther are 77(£ — 1) collapses into level-(£ — 1) links and 3 in each of the remaining

level-{I — 2), level-(£ — 3), • • ■, level — 0 links (assuming level-£ has sufficient links for

the collapse).

Thus, we have the following relationships. For £ > 2

1,(*) = 2 '+‘ - 2r,(£ - 1) - 3 £ i,U)
3 = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

Therefore,

r,(£ — 1) = 2* — 2rj(£ - 2) - 3 77O).
3 = 0

Substituting the second equation from the first we have, ti(£)+t]{£—1)+t}(£ — 2) = 2l .

That is, the total number of links in three consecutive levels £,£ — 1 and £ — 2 is 2e.

L em m a 6.3 Assuming sufficient higher level links remain fo r a collapse, the total

length o f wires after a maximal collapse o f the communication structure o f Figure 6.26

is fl(n2n).

Proof: W ithout loss of generality, let j = h be an integer. For 0 < k < h, our

earlier observations give rj{3k) + rj(3k + 1) + 77(3/1 + 2) = 23*+2. Since the shortest

wire of level 3k, 3k + 1 and 3k + 2 has length f2(2n-3fc) the total length of wires in

levels 3k, 3k + 1 and 3k + 2 is L{k) = Q(2n~3 k23k+2) = f2(2n). Thus the to ta l wire
h

length is 2n = Q(h2 n) = Q(n 2 n). ■
k = 0

The maximal collapse procedure collapses into lower level (longer) wire before it

gets to shorter wires. This is not the only method possible. For example, if shorter

wires from some level £ > 1 were collapsed into both level-0 and level-1 wires, then

some level-1 wires can no longer be collapsed into level-0 wires.

Figure 6.28 shows another collapsing method. Notice that only one level-2 link

can be collapsed to each level-1 link. This is because each level-2 link has two level-3

links collapsed into it. As a result, any set of two level-2 links must have 4 level-3

links collapsed into them, guaranteeing at least one duplicate label (as each level has

3 labels). Thus collapsing two level-2 links into a level-1 link would be equivalent to

collapsing 4 level-3 links into level-1 link; this is not perm itted. Assuming unit length

for the level-3 links, the collapse of Figure 6.28 leaves links whose total length is at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

0
1
2

3

0
1
2

3

initial

T T T T T T T T

collapsed to level 2

collapsed to level 1 collapsed to level 0

Figure 6.28: A different collapse

least 16. By the same token, the maximal collapse of Figure 6.27 has a length of at

least 13.

Clearly many other approaches are possible. The question is “which one leads to

the best possible collapse with the shortest total wire length?” Computer simulations

seem to indicate tha t the maximal collapse produces the smallest length of links.

Therefore, we have the following conjecture.

C o n je c tu re 1 No collapsing procedure reduces the total wire length more than the

maximal collapse.

We now state the main result of this chapter.

T h e o re m 6.4 I f Conjecture 1 is true, then the height o f a perimeter layout of any

2n -processor optimal-time binary-tree M BN is fi(n).

Proof: W ithout loss of generality, assume that the processors are placed a unit

distance apart. (They certainly cannot be placed closer, and if they are spread further

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

apart, then their wire length is proportionately larger.) Thus the “width” of the layout

can be assumed to be 0 (2"). From Lemma 6.3 and Conjecture 1 the layout height is

n (?£-) = fi(n). ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Summary and Future Work

In this research we have investigated various issues on running binary-tree algorithms

on MBNs. We have identified relationships among im portant MBN parameters and

established some non-trivial lower bounds. Most of the results are general and apply

to all (or a very large class of) binary-tree MBNs. We have developed some novel

techniques th a t may find use in solving problems in other related areas. Most o f the

results also extend to A;-ary trees for k > 2.

In Chapter 3 we investigated the relationships among loading, degree and running

time of binary-tree MBNs. We developed an accounting scheme to count the number

of connections on a bus. We established a series of lower bounds on the loading

of optimal-time, degree-2 MBNs for running 2n-input binary-tree algorithms. The

tightest of these bounds established the loading to be We also identified two

im portant mappings called direct and indirect and established that indirect mapping

is essential to achieving constant loading. This result is somewhat surprising, because

indirect mapping increases the number of communications. We also showed th a t if

the degree is increased to 3, then optimal-time, constant loading binary-tree MBN

exists. We constructed the degree-3, loading-3, Tree MBN with the best possible

degree-loading product.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

In Chapter 3 we also investigated the possibility of making trade-offs between

the running tim e and loading. We showed tha t by increasing the running tim e by

a constant factor, loading can be reduced by a non-constant factor. Specifically, we

established th a t if the additional time (beyond the optimal) used by the MBN is t,

and if the largest problem size that can be solved in optimal time on a loading-L,

degree-2, binary-tree MBN is 2T̂ , then t > [T̂ +l]• We presented an example of

a degree-2, loading-4, (2n — 3)-step binary-tree MBN that matches this bound (to

within a constant factor) when L is constant.

In Chapter 4 we used MBNs to enhance 2-dimensional meshes. We showed that

this method of connecting processors together by multiple buses has significant advan

tages over the conventional single bus approach for connecting processors together. It

allows all existing algorithms on enhanced meshes to be automatically translated into

a more implementable platform with a realistic loading. As an MBNs can employ

a single bus, our architecture captures all features of most existing enhanced mesh

architectures. We derived the running time, loading, degree, number of buses, VLSI

area and the aspect ratio of meshes enhanced with the Tree MBN, and showed that

our results are be tter than the best previous results. We also studied buses with

segment switches, and showed that segment switches help to reduce loading.

In Chapter 5 we introduced two methods of imparting fault tolerance to MBNs.

We accomplished this by adding connections in a controlled manner to MBNs that

are not tolerant to faults. The first method, called replication, is a general m ethod

th a t can be used with any MBN (not only binary-tree MBNs) and for both processor

and bus faults. An im portant feature of replication is tha t it allows a designated set

of buses/processors to be treated as faulty, regardless of which buses/processors are

actually faulty. This allows the network designer to designate a set of less im portant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

buses/processors to be faulty. The second method, called recursive scheduling, is

specific to bus faults in binary-tree MBNs. It uses the features of binary-tree MBNs

to achieve better speeds compared to replication. The methods for bus faults are

independent of tha t for processor faults. Therefore, tolerance to processor faults can

be imparted to an MBN that is already tolerant to bus faults and vice versa.

In Chapter 6 we investigated the VLSI area requirement for a perimeter layout

of optimal-time, binary-tree MBNs. The corresponding problem for balanced binary

tree topology is well studied. Unlike in a complete binary tree, however, a binary-tree

algorithm uses only one level of the tree at a step. Therefore, binary-tree MBNs

could reuse the same buses at different steps of the algorithm. We developed a tech

nique to identify the minimum communication requirements for perimeter layouts of

optimal-time, binary-tree MBNs and then to “collapse” links to mimic bus reuse. We

conjectured that a particular collapsing scheme minimizes the total wire length. (Sev

eral computer simulations seemed to indicate that this conjecture is true.) Assuming

this conjecture to be true, we established an f2(iVlog N) lower bound on the VLSI

area of a perimeter layout for optimal-time MBNs for N -input binary-tree algorithms.

F u tu re W ork: We believe that the lower bound on the loading established

in Chapter 3 is not tight. This is based on the existence of an optimal-time, degree-2,

loading-0(n) binary-tree MBN [85] and the fact that degree-2 MBNs tend to introduce

a large number of direct nodes for binary-tree algorithms. This is because the ability

of a processor to get rid of a partial result while receiving two new partial results is

crucial for small loading, and this is not possible on a degree-2 MBN. Future work

in this area can focus on bridging the gap between the lower bound and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

0 (n) upper bound. A possible approach for this could be to combine the methods

used for establishing the Q(rir) and Q (i ^) lower bounds.

The fault tolerance results of Chapter 5 can handle k faults within a given binary-

tree MBN. Extension of these methods to the enhanced mesh architecture of Chapter 4

is sensitive to the number of faults in an MBN building block, rather than the entire

network. T hat is, if there are k faults distributed in the entire enhanced mesh, then

the best way to address this problem is not known. Currently, the only fail-safe way

to handle k faults in the entire enhance mesh is to assume that each of the MBNs

can tolerate k faults. This approach could be wasteful for large k.

In Chapter 6, we conjectured that the method used for collapsing the links in

the communication structure is optimal. Establishing that this indeed the best is still

open. Also we only investigated the area requirements of optimal-time, N x y MBNs.

The area requirements for N x M (for M < y) binary-tree MBNs and sub-optimal

time MBNs are still open problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A. Aggarwal, “Mesh Connected Computers with Fixed and Reconfigurable Buses:
Packet Routing and Sorting,” IEEE Trans. Computers, 45, 1996, pp. 529-539.

[2] A. Ali and R. Vaidyanathan, “Exact Bounds on Running ASCEND/DESCEND and
FAN-IN Algorithms on Synchronous Multiple Bus Networks,” IEEE Trans. Parallel &
Distributed Systems, 7, 1996, pp. 783-790.

[3] B. E. Aupperle and J. F. Meyer, “Fault-Tolerant BIBD Networks,” Proc. International
Symposium on Fault Tolerant Computing, 1988, pp. 306-311.

[4] A. Bar-Noy and D. Peleg, “Square Meshes are not always Optimal,” IEEE Trans.
Computers, 40, 1991, pp. 196-203.

[5] P. Berthome, Th. Duboux, T. Hagerup, I. Newman, and A. Schuster, “Self-Simulation
for the Passive Optical Star Model,” Proc. 3rd European Symposium on Algorithms,
vol. 979 1995, pp. 369-380.

[6] C. Berge, Hypergraphs, North Holland Mathematical Library, vol. 45, 1989.

[7] D. Bhagavathi, V. Bokka, H. Gurla, S. Olariu, and J. L. Schwing, “Time-Optimal
Visibility-related Algorithms on Meshes with Multiple Broadcasting,” IEEE Trans.
Parallel & Distributed Systems, 6, 1995, pp. 687-702.

[8] D. Bhagavathi, P. J. Looges, S. Olariu, J. L. Schwing, and J. Zhang, “A Fast Selection
Algorithm for Meshes with Multiple Broadcasting,” IEEE Trans. Parallel & Distributed
Systems, 5, 1994, pp. 772-777.

[9] L. N. Bhuyan and A. K. Nanda, “Multistage Bus Networks (MBN): An Interconnection
Network for Cache Coherent Multiprocessors,” Proc. 3rd IEEE Symposium on Parallel
and Distributed Processing, 1991, pp. 780-787.

[10] S. H. Bokhari, “Finding Maximum on an Array Processor with a Global Bus,” IEEE
Trans. Computers, 33, 1984, pp. 133-139.

[11] V. Bokka, H. Gurla, S. Olariu, J. L. Schwing, and L. Wilson, “Time-Optimal
Domain-Specific Querying on Enhanced Meshes,” IEEE Trans. Parallel & Distributed
Systems, 8, 1997, pp. 13-23.

[12] D. Bulka and J. B. Dugan, “Design and Analysis of Multibus Systems Using Projective
Geometry,” Proc. International Symposium on Fault Tolerant Computing, 1992, pp.
122-129.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

[13] D. A. Carlson, “Solving Linear Recurrence Systems on Mesh Connected Computers
with Multiple Global Buses,” J. Parallel & Distributed Computing, 8, 1990, pp. 89-95.

[14] C.-H. Chen and F.-F. Lin, “An Easy to Use Approach for Practical Bus-Based System
Design,” IEEE Trans. Computers, 48, 1999, pp. 780-793.

[15] T. Chen, T. Kang and R. Yao, “The Connectivity in Hypergraphs and the Design
of Fault-Tolerant Multiple Bus Systems,” Proc. International Symposium on Fault
Tolerant Computing, 1988, pp. 374-379.

[16] W. T. Chen and J. P. Sheu, “Performance Analysis of Multiple Bus Interconnection
Networks with Hierarchical Requesting Models,” IEEE Trans. Computers, 40, 1991,
p p . 8 3 4 -8 4 2 .

[17] Y. Chen, W. Chen, G. Chen, and J. Sheu, “Designing Efficient Parallel Algorithms
on Mesh Connected Computers with Multiple Broadcasting,” IEEE Trans. Parallel &
Distributed Systems, 1, 1990, pp. 241-246.

[18] I. Chlamtac and S. Kutten, “Tree-based Broadcasting in Multihop Radio Networks,”
IEEE Trans. Computers, 36, 1987, pp. 1209-1223.

[19] K.-L. Chung, “Prefix Computations on a Generalized Mesh-Connected Computer with
Multiple Buses,” IEEE Trans. Parallel & Distributed Systems, 6, 1995, pp. 196-199.

[20] D. Coudert, A. Ferreira and X. Munoz, “Multiprocessor Architectures Using Multi-
OPS Lightwave Networks and Distributed Control,” International Parallel Processing
Symposium, 12, 1998, pp. 151-155.

[21] C. Das and L. Bhuyan, “Bandwidth Availability of Multiple-Bus Multiprocessors,”
IEEE Trans. Computers, 34, 1985, pp. 918-926.

[22] R. Decher and L. Kleinrock, “Broadcast Communication and Distributed Algorithms,”
IEEE Trans. Computers, 35, 1986, pp. 210-219.

[23] H. P. Dharmasena and R. Vaidyanathan, “An-Optimal Multiple Bus Networks for
Fan-in Algorithms,” Proc. International Conference on Parallel Processing, 1997,
pp. 100-103.

[24] H. P. Dharmasena and R. Vaidyanathan, “Lower Bound on the Loading of Degree-2
Multiple Bus Networks for Binary-Tree Algorithms,” Proc. International Parallel
Processing Symposium, 1999, pp. 21-25.

[25] O. M. Dighe, R. Vaidyanathan and S. Q. Zheng, ‘The TBN: A Versatile Building
Block for VLSI Parallel Architectures,” Proc. 6 th ISCA International Conference on
Computer Applications in Design, Simulation and Analysis, 1993, pp. 52-55.

[26] O. M. Dighe, R. Vaidyanathan and S. Q. Zheng, “Bus-Based Tree Structure for
efficient Parallel Computation,” Proc. International Conference on Parallel Processing,
1993, pp. 158-161.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

[27] O. M. Dighe, R_ Vaidyanathan and S. Q. Zheng, “The Bus-Connected Ringed Tree:
A Versatile Interconnection Network,” J. Parallel & Distributed Computing, 33, 1996,
pp. 189-196.

[28] M. Dubois, “Throughput Analysis of Cahche-Based Multiprocessors with Multiple
Buses,” IEEE Trans. Computers, 37, 1988, pp. 58-70.

[29] M. Feldman, R. Vaidyanathan and A. El-Amawy, “High Speed, High Capacity Bused
Interconnects Using Optical Slab Waveguides,” Proc. 1999 Workshop on Optics in
Computer Science, Springer Verlag Lecture Notes in Computer Science, vol. 1586, pp.
924-937.

[30] S. Fujita and M. Yamashitar, “Fast Gossiping on Mesh-Bus Computers,” IEEE Trans.
Computers, 45, 1996, pp. 1326-1330.

[31] A. Ghafoor, A. L. Goel, J. K. Chan and S. Sheikh, “Reliability Analysis of a
Fault-Tolerant Multi-Bus Multiprocessor Systems,” Proc. 3rd IEEE Symposium on
Parallel and Disributed Processing, 1991, pp. 436-443.

[32] R. Giorgi and C. Antonio, “PSCR: A Coherence Protocol for Eliminating Passive
Sharing in Shared-Bus Shared-Memory Multiprocessors,” IEEE Trans. Parallel &
Distributed Systems, 7, 1999, pp. 742-761.

[33] Z. Guo and R. G. Melhem, “Embeddding Binary X-Trees and Pyramids in Processor
Arrays with Spanning Buses,” IEEE Trans. Parallel & Distributed Systems, 5, 1994,
pp. 664-672.

[34] J. D. Hadley and B. L. Hutchings, “Design Methodologies for partially Reconfigured
Systems,” Proc. Workshop on FPGAs for Custom Computing Machines, 1995, pp.
78-84.

[35] T. Hayashi, K. Nakano and S. Olariu, “Randomized Initialization Protocols for
Packet Radio Networks,” Proc. International Parallel Processing Symposium, 1999, pp.
544-548.

[36] M. A. Holliday and M. K. Vernon, “Exact Performance Estimates for Multiprocessor
Memory and Bus Interferences,” IEEE Trans. Computers, 36, 1987, pp. 76-85.

[37] K. Hwang, P. S. Tseng and D. Kim, “An Orthogonal Multiprocessor for Parallel
Scientific Computations,” IEEE Trans. Computers, 36, 1989, pp. 47-60.

[38] J. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley Publishing Co., 1992.

[39] H. Jiang and K. C. Smith, “PPMB: A Partial-Multiple-Bus Multiprocessor Ar
chitecture with Improved Cost Effectiveness,” IEEE Trans. Computers, 41, 1992,
pp. 361-366.

[40] S. T. Kamath and R. Vaidyanathan, “Running Weak Hypercube Algorithms on Mul
tiple Bus Networks,” Proc. ISCA International Conference on Parallel and Distributed
Systems, 1997, pp. 217-222.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

[41] M. A. S. Khalid and J. Rose, “Hardwired-Clusters Partial-Cross bar: A Hierarchical
Routing Architecture for Multi-FPGA Syatems,” Proc. 6 th Reconfigurable Architecture
Workshop, 1999, pp. 597-605.

[42] J. Kilian, S. Kipnis and C. E. Leiserson, “The Organization of Permutation Architec
tures with Bussed Interconnections,” IEEE Trans. Computers, 39, 1990, pp. 1346-1358.

[43] J. Kim, “Segmented Multiple Bus Systems,” Ph.D Thesis, Dept, of Electrical &
Computer Eng., Louisiana State University, 1997.

[44] J. H. Kim and P. K. Rhee, “The Rule-Based Approach to Reconfiguration of 2-D
Processor Arrays,” IEEE Trans. Computers, 42, 1993, pp. 1403-1408.

[45] H.-K. Ku and J. P. Hayes, “Connective Fault tolerance in Multiple-Bus Systems,”
IEEE Trans. Parallel & Distributed Systems, 8 , 1997, pp. 574-586.

[46] P. Kulasinghe and A. El-Amawy, “On the Complexity of Bussed Interconnections,”
IEEE Trans. Computers, 44, 1995, pp. 1248-1251.

[47] P. Kulasinghe and A. El-Amawy, “Optimal Realizations of Sets of Interconnection
Functions on Synchronous Multiple Bus Systems,” IEEE Trans. Computers, 45, 1996,
pp. 964-969.

[48] P. Kulasinghe, “Combinatorial Analysis and Design of Optimal Multiple Bus Systems
for Parallel Algorithms,” Ph.D Thesis, Dept, of Electrical & Computer Eng., Louisiana
State University, 1995.

[49] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays - Trees
■ Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[50] Y. Li, J. Wu and S. Q. Zheng, “An Interconnection Network Based on the Dual
of a Hypercube,” Proc. ISC A International Conference on Parallel and Distributed
Systems, 1997, pp. 263-268.

[51] R. Lin, S. Olariu, J. L. Schwing and B. F. Wang, “The Mesh with Hybrid Buses:
An Efficient Parallel Architecture for Digital Geometry,” IEEE Trans. Parallel &
Distributed Systems, 10, 1999, pp. 266-280.

[52] J. M. Marberg and E. Gafhi, “Sorting and Selection in Multi-Channel Broadcast
Networks,” Proc. International Conference on Parallel Processing, 1985, pp. 846-850.

[53] S. M. Mahmud, “Performance Analysis of Multilevel Bus Networks for Hierarchical
Multiprocessors,” IEEE Trans. Computers, 7, 1994, pp. 789-799.

[54] M. D. Mickunas, “Using Projective Geometry to Design Bus-Connection Networks,”
Proc. ACM/IEEE Workshop on Interconnection Networks for Parallel and Distributed
Processing, 1980, pp. 47-55.

[55] T. N. Mudge and A. B. Al-Sadoun, “A Semi-Markov Model for the Performance of
Multiple-Bus Systems ,” IEEE Trans. Computers, 34, 1985, pp. 934-942.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

[56] T. N. Mudge, J. P. Hayes and D. C. Winsor, “Multiple Bus Architectures,” IEEE
Computer, 1987, pp. 42-48.

[57] S. Nadella, “Fault Tolerant Multiple Bus Networks for Fan-in Algorithms,” Mas
ters Thesis, Dept, of Electrical & Computer Eng., Louisiana State University, 1993.

[58] H. Nagano, A. Matsura and A. Nagoya, “An Efficient Implementation Method of
Fractal Image Compression on Dynamically Reconfigurable Architecture,” Proc. 6 th
Reconfiguruble Architecture Workshop, 1999, pp. 670-678.

[59] K. Nakano, “A Bibliography of Published Papers on Dynamically Reconfigurable
Architectures,” Parallel Processing Letters, 5, 1995, pp. 111-124.

[60] K. Nakano, S. Olariu, and J. L. Schwing, “Broadcast-Efficient Sorting in the Presence of
Few Channels,” Proc. International Conference on Parallel Processing, 1997, pp. 12-15.

[61] K. Nakano, S. Olariu and J. L. Schwing, “Broadcast-Efficient Algorithms on the
Coarse-Grain Broadcast Communication Model with Few Channels,” Proc. Interna
tional Parallel Processing Symposium, 1998, pp. 1-6.

[62] D. Nassimi, “Parallel Algorithms for Classes (±26) DESCEND and ASCEND Compu
tations on a SIMD Hypercube,” IEEE Trans. Parallel & Distributed Systems, 4, 1993,
pp. 1372-1381.

[63] A. Padmanabhan, “Design of Multibus Networks for ASCEND/DESCEND and
FAN-IN Algorithms,” Masters Thesis, Dept, of Electrical & Computer Eng., Louisiana
State University, 1992.

[64] Y. Pan, S. Q. Zheng, K.- L., and Hong Shen, “Semigroup and Prefix Computa
tions on Improved Generalized Mesh-Connected Computers with Multiple Buses,”
To appear in Proc. International Symposium on Parallel & distributed Processing, 2000.

[65] G. Panchapakesan and A. Sengupta, “On a Light Wave Network Topology Using
Kautz Diagraphs,” IEEE Trans. Computers, 48, 1999, pp. 1131-1137.

[66] R. C. Pearce, J. A. Field and W. D. Little, “Asynchronous Arbiter Module,” IEEE
Trans. Computers, 24, 1975, pp. 931-932.

[67] D. K. Pradhan, “Fault-Tolerant Multiprocessor Link and Bus Network Architectures,”
IEEE Trans. Computers, 34, 1985, pp. 33-45.

[68] D. K. Pradhan, Z. Hanquan and M. L. Schlumberger, “Fault-Tolerant Multibus
Architectures for Multiprocessors,” Proc. Symp. on Fault-Tolerant Computing, 1984,
pp. 400-408.

[69] V. K. Prasanna Kumar and C. S. Raghavendra, “Array Processor with Multiple
Broadcasting,” J. Parallel & Distributed Computing, 4, 1987, pp. 173-190.

[70] C. Qiao and R. G. Melhem, “Time-Division Optical Communications in Multiproces
sor Arrays,” IEEE Trans. Computers, 42, 1993, pp. 577-590.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

[71] C. S. Raghavendra, “HMESH: A VLSI Architecture for Parallel Processing,” Proc.
Conference on Algorithms and Hardware for Parallel Processing, Springer Verlag
Lecture Notes in Computer Science, vol. 237, 1986, pp. 76-83.

[72] S. Rajasekaran, “Mesh Connected Computers with Fixed and Reconfigurable Buses:
Packet Routing and Sorting,” IEEE Trans. Computers, 45, 1996, pp. 529-539.

[73] M. R. Samantham and D. K. Pradhan, “The De Bruijn Multiprocessor Network: A
Versatile Parallel Processing and Sorting Network for VLSI,” IEEE Trans. Computers,
38, 1989, pp. 567-581; Corrections in IEEE Trans. Computers, 40, 1991, pp. 122.

[74] S. M. Scalera, J. J. Murray and S. Lease, “A Mathematical Benefit Analysis of Context
Switching Reconfigurable Computing,” Proc. Reconfigurable Architecture Workshop,
1998, pp. 73-78.

[75] M. J. Serrano and B. Parhami, “Optimal Architectures and Algorithms for Mesh-
Connected Parallel Computers with Separable Row/Column Buses,” IEEE Trans.
Parallel & Distributed Systems, 4, 1993, pp. 1073-1080.

[76] Q. F. Stout, “Mesh-Connected Computer with Broadcasting,” IEEE Trans. Comput
ers, 32, 1983, pp. 826-829.

[77] R. K. Thiruchelvan, J. L. Ttahan and R. Vaidyanathan, “On the Power of Segmenting
and Fusing Buses,” J. Parallel & Distributed Computing, 34, 1996, pp. 82-94.

[78] C. D. Thompson, “Area-time Complexity for VLSI,” Proceedings of the 1 1 th Annual
ACM Symposium on Theory of Computing, 5, 1979, pp. 81-88.

[79] C. D. Thompson, “A Complexity Theory for VLSI,” Ph.D. Thesis, Dept, of Computer
Science, Caraegie-Mellon University, 1980.

[80] J. Ullrnan, Computational Aspects of VLSI, Computer Science Press, Potomac, MD,
1984.

[81] A. Varma, “Combinatorial Design of Bus-based Interconnection Structures,” Research
Report RC 12550, IBM Research Division, September, 1986.

[82] R. Vaidyanathan, C. R. P. Hartmann and P. K. Varshney, “Running ASCEND, DE
SCEND and PIPELINE Algorithms in Parallel Using Small Processors ,” Information
Processing Letters, 46, 1993, pp. 31-36.

[83] R. Vaidyanathan, “Design of Multiple Bus Interconnection Networks for Fan-in
Computations,” Proc. 29th Annual Allerton Conf. on Communication, Control &
Computing, 1991, pp. 1093-1102.

[84] R. Vaidyanathan and S. Nadella, “Fault-Tolerant Multiple Bus Networks for Fan-In
Algorithms,” Proc. International Parallel Processing Symposium, 1996, pp. 674-681.

[85] R. Vaidyanathan and A. Padmanabhan, “Bus-Based Networks for Fan-in and Uniform
Hypercube Algorithms,” Parallel Computing, 21, 1995, pp. 1807-1821.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

[86] R. Vaidyanathan and J. L. Trahan, “Optimal Simulation of Multidimensional Recon
figurable Meshes by Two Dimensional Reconfigurable Meshes,” Information Processing
Letters, 47, 1993, pp. 267-273.

[87] T. A. Varvarigou, V. P. Roychowdhury and T. Kailath, “Reconfiguring Processor
Array Using Multiple Track Models: The 3-Track-1-Spare-Approach,” IEEE Trans.
Computers, 42, 1993, pp. 1281-1293.

[88] J. Villasenor and W. H. Mangione-Smith, “Configurable Computing,” Scientific
American, vol. 276 no. 6 1997, pp. 66-71.

[89] J. F. Wakerly, Digital System Design, Principles & Practice, Prentice Hall Inc., Upper
Saddle River, NJ, 1994.

[90] D. C. Winsor and T. N. Mudge, “Analysis of Bus Hierarchies for Multiprocessors,”
Proc. International Symposium on Computer Architecture, 1988, pp. 100-107.

[91] M. J. Wirthlin and B. L. Hutchings, “DISC: The Dynamic Instruction Set Computer,”
Proc. of the SPIE - Field Programmable Gate Arrays (FPGAs) for Fast Board and
Reconfigurable Computing, vol. 2607 1995, pp. 92-103.

[92] M. Wojko and H. ElGindy, “Configuration Sequencing with Self-Configurable Binary
Multipliers,” Proc. 6th Reconfigurable Architecture Worrkshop, 1999, pp. 643-651.

[93] “Xilink Inc. XC400E and XC4000X Series Field Programmable Gate Arrays,” product
specification, 1997.

[94] Q. Yang and L. N. Bhuyan, “Analysis of Packet-Switched Multiple-Bus Multiprocessor
Systems,” IEEE Trans. Computers, 40, 1991, pp. 352-357.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vita

Hettihewage Prasanna Dharmasena was born in Kurunegala, Sri Lanka. He received

the bachelor of science degree in electronics and telecommunication engineering from

the University of Moratuwa, in 1983. From 1983 to 1985 he worked as an assistant

lecturer a t the same University. He received the degree of master of science in electrical

and computer engineering from Louisiana S tate University in 1987. He is currently

employed as a computer analyst at Louisiana State University. He will receive the

degree of Doctor of Philosophy in May, 2000.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DOCTORAL EXAMINATION AND DISSERTATION REPORT

candidate: H. P. Dharmasena

Major Field: E le c t r ic a l Engineering

Title of Dissertation: Multip le Bus Networks fo r Binary - Tree Algorithms

Approved:

Graduate Sctaool

EXAMINING COMMITTEE:

t V -------------

O n «•■

Date of Kxaeination:

March 23, 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Multiple Bus Networks for Binary -Tree Algorithms.
	Recommended Citation

	tmp.1489519448.pdf.qyHHW

