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Abstract. We propose a new approach for dealing with the estimation of the location

of change-points in one-dimensional piecewise constant signals observed in white noise.

Our approach consists in reframing this task in a variable selection context. We use a

penalized least-square criterion with a ℓ1-type penalty for this purpose. We explain how to

implement this method in practice by using the LARS/LASSO algorithm. We then prove

that, in an appropriate asymptotic framework, this method provides consistent estimators

of the change-points with an almost optimal rate. We finally provide an improved practical

version of this method by combining it with a reduced version of the dynamic programming

algorithm and we successfully compare it with classical methods.

1. Introduction

Retrospective Multiple Change-point Estimation consists in partitioning a nonstation-

ary series of observations into several contiguous stationary segments of variable dura-

tions, see Brodsky and Darkhovsky (1993, 2000). It is particularly appropriate for analyz-

ing a posteriori time series in which the quantity driving the behavior of the time series

jumps from one level to another different level at random instants called change-points.

Such a task, also known as temporal signal segmentation in signal processing, arises in

many applications, ranging from EEG to speech processing and network intrusion detec-

tion (Basseville and Nikiforov, 1993; Ruanaidh and Fitzgerald, 1996).

As argued by both Carlstein et al. (1994) and Brodsky and Darkhovsky (2000), in most

cases detecting changes of a time-evolving statistical quantity may be reduced to the de-

tection of changes in the mean of a new sequence derived from the initial one. Thus, we
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are interested in the estimation of the change-point locations t⋆k in the following model:

Yt = µ⋆
k + εt, t⋆k−1 ≤ t ≤ t⋆k − 1, k = 1, . . . , K⋆ + 1, t = 1, . . . , n, (1)

with the convention t⋆0 = 1 and t⋆K⋆+1 = n+ 1 and where the {εt}0≤t≤n are i.i.d zero-mean

random variables, having a sub-Gaussian distribution.

This problem has recently received much attention on the theoretical side, both in a

nonasymptotic and in an asymptotic setting by (Massart, 2004) and (Yao and Au, 1989;

Lavielle and Moulines, 2000; Boysen et al., 2009) respectively. From a practical point of

view, the standard approach for estimating the change-point locations is based on least-

square fitting, performed via a dynamic programming algorithm (DP), coupled with an

informational criterion such as the Schwarz criterion (Yao and Au, 1989) for choosing the

unknown number of change-points. Indeed, for a given number of change-points K, the

dynamic programming algorithm, proposed by Fisher (1958) and Bellman (1961), takes ad-

vantage of the intrinsic additive nature of the least-square objective to recursively compute

the optimal change-points locations with a complexity of O(Kn2) in time. Then select-

ing the number of change-points is usually performed thanks to a Schwarz-like penalty

λnK, where λn is often calibrated on data (Lavielle and Moulines, 2000; Lavielle, 2005),

or a penalty K(a + b log(n/K)) as in (Massart, 2004; Lebarbier, 2005), where a and b

are data-driven as well. We should also mention that an abundant literature tackles both

change-point estimation and model selection issues from a Bayesian point of view, see

Ruanaidh and Fitzgerald (1996), Fearnhead (2006) and references therein; we shall not

adopt such a point of view in this work.

While optimal from a maximum likelihood point of view in the case of Gaussian noise,

the application of the standard least-square approach, called LS in the remainder, is se-

riously harmed by a quadratic time-complexity in the total duration of the series of ob-

servations in its exact implementation. Yet approximate dynamic programming proce-

dures were devised in other contexts, such as for Dynamic Time Warping or the Viterbi

algorithm (Kolesnikov and Fränti, 2003; Gales and Young, 2008). Moreover, as pointed
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in Hawkins (2001), a computationally efficient dynamic programming algorithm for change-

point estimation may be devised when a prior assumption of order-structure between the

segments is satisfied and therefore consists in restricting the change-point locations search

to a pre-specified set. Yet, designing a computationally efficient dynamic programming

algorithm for change-point estimation under general assumptions is still an open problem.

Therefore, an alternative formulation might be profitable from a computational point of

view, while keeping comparable performance when compared to the least-square method.

A natural way to lower the time-complexity of a ℓ0-penalized least-square problem is

to relax the ℓ0-penalty to an ℓ1-penalty. This strategy has proved to be appropriate in

other statistical problems such as sparse PCA, sparse LDA, see d’Aspremont et al. (2008),

and Moghaddam et al. (2006). Hence, it boils down to estimating the change-point loca-

tions by solving

Minimize
u∈Rn

1

n

n∑

i=1

(Yi − ui)
2 + λn

n−1∑

i=1

|ui+1 − ui| , (2)

and recovering the change-point locations from the jumps in the {ûi}i=1,...,n minimizing the

criterion in Eq. (2). This alternative formulation yields a subquadratic time-complexity

in the length of the sequence of observations, and still remains asymptotically consistent

in terms of change-point estimation. Note that Tibshirani and Wang (2008) introduced

the “fused lasso”, which corresponds to a two-step procedure where the first step is a

least-square change-point estimation with a total-variation penalty and the second is a

thresholding one to discard small jumps from the zero-mean, a method specifically designed

for spatial smoothing and hot spot detection in CGH data.

This article is organized as follows. In Section 2, we describe how Eq. (2) is related to the

the well-known Least Absolute Shrinkage eStimatOr (LASSO) in least-square regression

of Tibshirani (1996), usually used for efficient variable selection. We show that it turns out

to be also useful for change-point estimation as well when used with a particular design

matrix. We take advantage of this relationship to devise a subquadratic change-point

estimation algorithm, called LS-TV for Least-Square with Total Variation penalty. In

Section 3, we give theoretical results concerning the estimation of the underlying piecewise
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constant function and the estimation of the change-point locations. More precisely, we

provide rates of convergence for the underlying piecewise constant function and for the

change-point instants and we show that we can attain almost optimal rates of convergence

in both cases. In Section 4, we run numerical experiments to assess the empirical behavior

of LS-TV, and propose an enhanced version LS-TV* with better empirical performance.

2. Methodology

In this section, we describe the least-square change-point estimation with a total vari-

ation penalty LS-TV. In Section 2.1, we show how to recast the multiple change-point

estimation problem into a particular variable selection problem. Then in Section 2.2, we

describe a LAR-based implementation of LS-TV, and derive its time-complexity. The the-

oretical properties of LS-TV are given in Section 3.

2.1. From change-point estimation to variable selection. The multiple change-point

estimation problem may be relaxed into a LASSO-type problem using appropriate auxiliary

variables.

Recall the multiple change-point model (Yao and Au, 1989):

Yt = u⋆
t + εt , t = 1, . . . , n, (3)

where u⋆
t = µ⋆

k for t⋆k−1 ≤ t ≤ t⋆k − 1, k = 1, . . . , K⋆ + 1. We shall always assume in the

remainder of this section that the true number of change-points K⋆ is known. The issue

of dealing with an unknown number of change-points will be addressed later in Sections 3

and 4.

The least-square estimation method LS, which may also be viewed as the maximum-

likelihood approach in the case of Gaussian white noise, solves the following problem:






Minimizeu∈Rn
1
n

∑n
i=1(Yi − ui)

2

subject to
∑n−1

i=1 1{ui+1 − ui} = K⋆ .
(4)
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We propose here to relax the above ℓ0 constraint into an ℓ1 constraint on the magnitude

of the jumps as follows:





Minimizeu∈Rn
1
n

∑n
i=1(Yi − ui)

2

subject to
∑n−1

i=1 |ui+1 − ui| ≤ K⋆J⋆
max ,

(5)

where J⋆
max = max1≤k≤K⋆ |u⋆

k+1−u⋆
k|. This alternative setting was previously elusively men-

tioned several times, in e.g. Mammen and Van De Geer (1997) and Boysen et al. (2009).

In order to further understand the behavior of the solution (û1, . . . , ûn) of this criterion,

let us denote by Xn the n×n lower triangular matrix with nonzero elements equal to one.

Then, by straightforward algebra, the problem in Eq. (5) may be rewritten as:






Minimizeβ∈Rn
1
n
(Yi − (Xnβ)i)

2

subject to
∑n

i=1 |βi| ≤ K⋆J⋆
max .

(6)

The underpinning insight is the sparsity-enforcing property of the ℓ1-constraint, which

is expected to give a sparse vector β̂n, whose non-zero components would match with

change-points locations.

A major feature of Eq. (6) is that it exactly corresponds to the well-known Least Ab-

solute Shrinkage eStimatOr (LASSO) in least-square regression of Tibshirani (1996), used

for efficient variable selection. However, as far as we know, neither thorough practical im-

plementation nor theoretical grounding has been given so far to support such an approach

for change-point estimation. Actually, the corresponding minimization can be solved by

using the LAR/LASSO algorithm described in Efron et al. (2004) and Hesterberg et al.

(2008).

2.2. Implementation with Least-Angle Regression. In this Section, we detail the

process of the Least-Angle Regression (LAR) algorithm of (Efron et al., 2004). For the sake

of generality, we shall describe here this algorithm when we look for Kmax change-points,

Kmax being a known upper bound on the true number of change-points. When implemented

with care, we get a time-complexity in O(n log(n)) of the LAR/LASSO algorithm in the
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particular case of our model. This substantial reduction of the computational complexity

has to be contrasted with the complexity O(Kmaxn
2) of DP. We use in this section standard

notation given for instance in Cormen et al. (2001).

The process is described in Table 1, the different notations involved being explained

in the following in the description of each step of the algorithm. It essentially involves

four steps, each of them being solved in sub-quadratic time-complexity with respect to the

number of observations n. Suppose we have performed k − 1 iterations in the main loop

of the algorithm, then the current set of estimated change-points, that is the active set in

the variable selection framework, is T̂n,k−1 = {t̂1, . . . , t̂k−1} and the current set of estimated

segment levels is {û1(k − 1), . . . , ûn(k − 1)}. We are now describing the computational

requirements of the k-th iteration of the algorithm.

First, we look for the next change-point t̂k to add to T̂n,k−1 yielding the largest discrep-

ancy with the true signal. This requires, given {û1(k−1), . . . , ûn(k−1)}, the computation

of the n cumulative sums {∑n
i=j ûi(k − 1)}j=1,...,n. These cumulative sums may actually

be computed in O(n) operations in time, using the simple recursion
∑n

i=j ûi(k − 1) =
∑n

i=j+1 ûi(k − 1) + ûj(k − 1). Besides, to be included in the current set of change-point

estimates (“active set”), we need to locate the new change-point estimate with regard to

the other change-point estimates, which is formally equivalent to sort the set of obser-

vations. Therefore, the “change-point addition”-step in Table 1 has a O(n + n log(n))

time-complexity as long as k is smaller than Kmax.

Second, we have to compute the descent direction, which involves the multiplication of

the inverse of a (k×k)-matrix by a k-long vector. Indeed, Xk is a matrix which consists of

the columns of X indexed by the elements of T̂n,k and 1k denotes a vector of dimension k

with each component equal to one. Given the current set of change-points T̂n,k, the inverse

may be computed in O(k2) operations, since the entries of the inverse matrix of size (k×k)
are available in close-form beforehand, see (35) in the Appendix. Then, the multiplication

of the (k × k)-inverse by 1k is computed in O(k2) operations. If k < Kmax, then the

time-complexity of “descent direction computation”-step is upper-bounded by O(K2
max).
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LS-TV with LAR/LASSO

Initialization, k = 0.

(a) Set T̂n,0 = ∅.
(b) Set ûi(0) = 0, for all i = 1, . . . , n.

While k < Kmax

(a) Change-point addition:

Find t̂k such that

t̂k = Argmax
t∈{1,...,n}\bTn,k−1

∣∣∣∣∣

n∑

i=t

Yi −
n∑

i=t

ûi(k − 1)

∣∣∣∣∣ .

(b) Descent direction computation:

Compute

wk = (XT
k Xk)

−11k .

(c) Descent step search:

Search for γ̂ such that

γ̂ = Min
t∈{1,...,n}\bTn,k

(∑n
i=t Yi −

∑n
i=t ûi(k)

1 −∑n
i=twk,i

,

∑n
i=t Yi +

∑n
i=t ûi(k)

1 +
∑n

i=twk,i

)
.

(d) Zero-crossing check:

If

γ̂ > γ̃
def
= min

j
(αjwk,j)

−1

(
n∑

i=j

ûi(k)

)

,

then, decrease γ̂ down to γ̂ = γ̃, and remove t̃ from T̂n,k, where

t̃
def
= Argmin

j
(αjwk,j)

−1

(
n∑

i=j

ûi(k)

)
.

Table 1. Description of the adaptation of LAR/LASSO algorithm for solv-

ing the LS-TV problem.
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Third, we search for the descent step. For similar reasons as for the first step, the

“descent step search”-step may be performed in linear-time O(n) time-complexity. Indeed,

again, this step involves the computation of n cumulative sums, which may be computed

recursively.

Fourth, we check the zero-crossing of the coefficients to exactly track the regularization

path of the LASSO. In this step, αj = sign(ûj+1(k) − ûj(k)). Again, all computations

involved in this step hinge on cumulative sums as previously in the first step, and therefore

may be performed in O(n) time-complexity. Note that the maximum number of iterations

N needed in practice to decrease γ̂ to a small enough value to satisfy γ̂ = γ̃ is unknown in

general, and no theoretically grounded upper-bound on N was provided in the literature

so far. In practice, we set N < Kmax in our implementation, and we never encountered

any numerical issue which demanded a different (larger) setting of N . Hence, the “zero-

crossing”-step has at most O(Kmax n) time-complexity.

Thus, the implementation of LS-TV based upon the LAR/LASSO algorithm runs in

O(K3
max +Kmaxn log n) in time.

3. Theoretical results

In this section, we give some theoretical results providing justification on the relevance of

LS-TV for multiple change-point estimation. First, in Section 3.1, we prove that LS-TV is

consistent in terms of estimation of the underlying signal. Second, in Section 3.2, we show

that LS-TV is also consistent in terms of change-point estimation.

The main point of both Section 3.1 and Section 3.2 is the following. While the equivalence

of LS-TV to a particular LASSO problem is fruitful from a computational point of view, it

turns out to be less relevant for theoretical analysis. To get optimal results for LS-TV both

in terms of means and change-points estimation, the original formulation (2) is more useful

than the LASSO formulation.
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3.1. Estimation of the means. We consider here the multiple changes in the mean

problem as described in (1). Our purpose is to estimate the unknown means µ⋆
1, . . . , µ

⋆
K⋆+1

together with the change-points from observations Y1, . . . , Yn.

Let us first work with the LASSO formulation to establish the consistency in terms of

means estimation. The model (1) can be rewritten as:

Y n = Xnβ
n + εn , (7)

where Y n = (Y1, . . . , Yn)′ is the n× 1 vector of observations, Xn the n×n lower triangular

matrix with nonzero elements equal to one and εn = (εn
1 , . . . , ε

n
n)′ is a zero mean random

vector such that the εn
j ’s are i.i.d random variables with finite variance equal to σ2. As for

βn, it is a n× 1 vector having all its components equal to zero except those corresponding

to the change-points instants.

Let us denote by A the set of non-zero components of βn and by Ā its complementary

set defined as follows:

A = {k, βn
k 6= 0} and Ā = {1, . . . , n}\A . (8)

With the reformulation (7), the evaluation of the means estimation rate amounts to finding

the rate of convergence of ‖Xn(β̂n(λn) − βn)‖n to zero, β̂n(λn) satisfying:

β̂n(λn) = (β̂1(λn), . . . , β̂n(λn))′ = Arg min
β∈Rn

{
‖Y n −Xnβ‖2

n + λn‖β‖1

}
, (9)

where ‖u‖n and ‖u‖1 are defined for a vector u = (u1, . . . , un) ∈ Rn by ‖u‖n = n−1
∑n

j=1 u
2
i

and ‖u‖1 =
∑n

j=1 |uj| respectively. Hence, within this framework, we are able to prove the

following result regarding the consistency in means estimation of LS-TV.

Proposition 1. Consider Y1, . . . , Yn a set of observations following the model described

in (7). Assume that the εn
j ’s are centered i.i.d Gaussian random variables with variance

σ2 > 0. Assume also that there exists βmax such that for all k in A, |βn
k | ≤ βmax, the set A

being defined in (8). Then, for all n ≥ 1 and C > 2
√

2, we obtain that with a probability



10 Z. HARCHAOUI AND C. LÉVY-LEDUC

larger than 1 − n1−C2/8, if λn = Cσ
√

log n/n,

‖Xn(β̂n(λn) − βn)‖n ≤ (2CσβmaxK
⋆)1/2

(
log n

n

)1/4

.

The proof, which follows similar lines as Bickel et al. (2009), is postponed to Section 7.

Note that in Proposition 1, where no upper bound on the number of change-points is

assumed to be known, we do not attain the known (parametric) optimal rate which is

of order 1/
√
n derived by Yao and Au (1989) where an upper bound for the number of

change-points is available. But, as we shall see in Proposition 2, the rate of Proposition 1

can be improved if the model and the criterion are rewritten in a different way and if an

upper bound for the number of change-points is available.

Indeed, let us now work in the standard formulation of LS-TV instead of its LASSO

counterpart, and write model (1) as:

Yt = u⋆
t + εt , t = 1, . . . , n , (10)

where u⋆
t = µ⋆

k for t⋆k−1 ≤ t ≤ t⋆k −1, k = 1, . . . , K⋆ +1 and estimate the vector (u⋆
1, . . . , u

⋆
n)

by using a criterion based on a total variation penalty as in Mammen and Van De Geer

(1997):

û(λn) = (û1(λn), . . . , ûn(λn)) = Arg min
u∈Rn

{

‖Y n − u‖2
n + λn

n−1∑

i=1

|ui+1 − ui|
}

. (11)

The following Proposition gives the rate of convergence of û(λn) when an upper bound

for the number of change-points is known and equal to Kmax.

Proposition 2. Consider Y1, . . . , Yn a set of observations following the model described in

(10) where the εt’s are zero-mean i.i.d Gaussian random variables with a variance σ2 > 0.

Assume also that û defined in (11) belongs to a set of dimension at most Kmax − 1. Then,

for all n ≥ 1, A in (0, 1) and B > 0, if λn = σ(A
√
B/2)(Kmax logn)1/2n−3/2 − σ(2Kmax +

1)1/2n−3/2,

P
(
‖û− u⋆‖n ≥ σ(BKmax log n/n)1/2

)
≤ Kmax n

{1−B(1−A)2/8}Kmax . (12)
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The proof of this Proposition is postponed to Section 7. The rate of convergence that we

obtain for the estimation of the means is almost optimal up to a logarithmic factor since

the optimal rate derived by Yao and Au (1989) is O(n−1/2).

Let us now study the consistency in terms of change-point estimation, which is more

of interest in this paper. Again, we shall see that the LASSO formulation is less relevant

than the standard formulation for establishing the change-point estimation consistency.

3.2. Estimation of the change-point locations. In this section, we aim at estimating

the change-point locations from the observations (Y1, . . . , Yn) satisfying model (7). The

change-point estimates that we propose to study are obtained from the β̂i(λn)’s satisfying

the criterion (9) as follows. Let us define the set of active variables by:

Â(λn) =
{
i ∈ {1, . . . , n}, β̂i(λn) 6= 0

}
. (13)

Then, we define the change-point estimates by t̂i(λn) satisfying:

Â(λn) =
{
t̂1(λn), . . . , t̂|Â(λn)|(λn)

}
, where t̂1(λn) < · · · < t̂|Â(λn)|(λn) , (14)

|Â(λn)| denoting the cardinal of the set Â(λn).

Discussion and related works. With such a reformulation of the change-point in the mean

problem, the change-point estimates can be seen as Lasso-type estimates in a sparse frame-

work. But, many classical assumptions under which the asymptotic properties of the Lasso

estimates have been studied are not satisfied.

For instance, the irrepresentable condition as defined in Meinshausen and Yu (2009)

(P. 5) which ensures sign consistency defined in Zhao and Yu (2006) is not satisfied in

the change-point in the mean problem. More precisely, sign consistency ensures that

P(sign(β̂n(λn) = sign(βn)) tends to one as n tends to infinity and the irrepresentable

condition is a condition on the covariance matrix Cn defined by

Cn = n−1X ′
nXn ,
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which requires that the following inequality holds element-wise:

∣∣Cn
ĀA(Cn

AA)−1sign(βn
A)
∣∣ < 1 , (15)

where Cn
IJ is a sub-matrix of Cn obtained by keeping rows with index in the set I and

columns with index in J . The vector βn
A is defined by βn

A = (βn
k )k∈A and sign denotes a

function mapping positive entries of a vector to 1, negative entries to -1 and null entries

to zero. In our case, there exists at least one component i0 such that

(|Cn
ĀA(Cn

AA)−1sign(βn
A)|)i0 = 1

This can be proved by computing explicitly the matrices Cn
ĀA

and (Cn
AA)−1, see the Appen-

dix for further details. In terms of change-point estimation, it means, as already known,

see for example Yao and Au (1989) or Lavielle and Moulines (2000), that we cannot have

a perfect estimation of the change-points.

Note that, Meinshausen and Yu (2009) brought to light some less restrictive conditions

than the irrepresentable condition on the matrix Cn under which the Lasso estimates can

be proved to be consistent in the ℓ2-norm sense. The main assumption consists in assuming

a mn-incoherent design which means:

lim inf
n→∞

φmin(mn) > 0 , where φmin(m) = min
β:‖β‖ℓ0

≤m

β ′Cnβ

β ′β
, (16)

with mn = sn log n, sn being the sparsity of the model that is the number of non-zero

coefficients. In other words, a design is called mn-incoherent if the minimal eigenvalue of a

collection of mn variables is bounded from below by a positive constant. In our setting, if

the distance between two consecutive indices of non null coefficients is equal to one, then

for all n ≥ 1

φmin(mn) ≤ 1/n ,

this making the condition (16) not satisfied in our case. A justification of this statement

is given in the Appendix.

These particularities of the change-point in the mean model prevent us from using the

techniques recently devised to study the asymptotic properties of the Lasso estimates in
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a general regression framework. However, the consistency of the t̂i(λn) defined in (14) is

established in Proposition 5.

Let us now detail the assumptions under which our theoretical results are established.

Define

I⋆
min = min

1≤k≤K⋆
|t⋆k+1 − t⋆k|, J⋆

min = min
1≤k≤K⋆

|µ⋆
k+1 − µ⋆

k|, J⋆
max = max

1≤k≤K⋆
|µ⋆

k+1 − µ⋆
k|,

which are respectively the minimum interval length, the minimum and maximum jump

sizes. From now on, we shall work under the following assumptions

(A1) The ε1, . . . , εn are iid zero-mean random variables with Var[ε1] = σ2 satisfying:

there exists a positive constant β such that for all ν ∈ R, E{exp(νε1)} ≤ exp(βν2).

(A2) The sequence {δn}n≥1 is a non increasing and positive sequence tending to zero as

n tends to infinity and satisfying nδn(J⋆
min)

2/ log(n) → ∞.

(A3) The change-points t⋆1, . . . , t
⋆
K⋆ satisfy I⋆

min ≥ nδn, for all n ≥ 1.

(A4) The sequence of regularization parameters {λn}n≥1 is such that (nδnJ
⋆
min)

−1nλn →
0, as n tends to infinity.

We first state a Lemma arising from the Karush-Kuhn-Tucker conditions of the opti-

mization problem stated in (9) which will be useful in the proof of the consistency of our

procedure.

Lemma 3. Consider Y1, . . . , Yn a set of observations following the model described in (10).

Then, (t̂1(λn), . . . , t̂n(λn)) defined by (14) and (û1(λn), . . . , ûn(λn)) defined by: ûi(λn) =

(Xnβ̂
n(λn))i, where Xn is a n× n lower triangular matrix with nonzero elements equal to

one and the (β̂i(λn))1≤i≤n are obtained in (9), satisfy:

n∑

i=t̂ℓ(λn)

Yi −
n∑

i=t̂ℓ(λn)

ûi =
nλn

2
α̂ℓ , for all ℓ = 1, . . . , |Â(λn)| , (17)

and ∣∣∣∣∣

n∑

i=j

Yi −
n∑

i=j

ûi

∣∣∣∣∣ ≤
nλn

2
, for all j = 1, . . . , n , (18)
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using the convention: α̂ℓ = +1, if ût̂ℓ(λn) > ût̂ℓ(λn)−1 and α̂ℓ = −1, otherwise. The vector

(û1(λn), . . . , ûn(λn)) has the following additional property:

ût(λn) = µ̂k , for t̂k−1(λn) ≤ t ≤ t̂k(λn) − 1, k = 1, . . . , |Â(λn)| + 1 , (19)

where |A(λn)| denotes the cardinal of the set A(λn) defined in (14).

The proof of Lemma 3 is given in Section 7. Then, we state a Lemma which allows us to

control the supremum of the average of the noise and which will also be useful for proving

the consistency of our estimation criterion.

Lemma 4. Let (εi)1≤i≤n be a sequence of random variables satisfying Assumption (A1).

If {vn}n≥1 and {xn}n≥1 are two positive sequences such that vnx
2
n/ log(n) → ∞ , then

P



 max
1≤rn<sn≤n

|rn−sn|≥vn

|(sn − rn)−1

sn−1∑

i=rn

εi| ≥ xn



→ 0 , as n→ ∞ .

The proof of Lemma 4 is postponed to Section 7.

Proposition 5. Let Y1, . . . , Yn be a set of observations satisfying model (1) then under

Assumptions (A1)–(A4), the change-points estimators {t̂1(λn), . . . , t̂|Â(λn)|(λn)}n≥1 defined

by (14), satisfy, if |Â(λn)| = K⋆ with probability tending to one:

P

(
max

1≤k≤K⋆
|t̂k − t⋆k| ≤ nδn

)
→ 1, as n→ ∞ . (20)

The proof of Proposition 5 is given in Section 7.

Under the assumptions of Proposition 5, the τ̂k’s defined for all k ∈ {1, . . . , K⋆} by

t̂k = [nτ̂k] are consistent estimators of the τ ⋆
k ’s defined by t⋆k = [nτ ⋆

k ], for all k ∈ {1, . . . , K⋆}
with the rate δn.

Note that with δn = (log n)2/n, J⋆
min ≥ (log n)1/4, λn =

√
log n/n or λn =

√
log n/n3/2,

the assumptions (A2)–(A4) are satisfied leading thus to a rate of order (log n)2/n for the

estimation of the τ̂k. With this choice of parameters, we obtain an almost optimal rate for

the estimation of the τ ⋆
k (up to a logarithmic factor) since the optimal rate is of order 1/n

according to Yao and Au (1989).
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This result has also to be compared with the work by Lavielle and Moulines (2000).

They also obtained a rate in 1/n using a least-square approach in the case where the (εt)

are not necessarily independent random variables but with more restrictive assumptions

than ours on I⋆
min and J⋆

min. Indeed, it is assumed in Theorem 7 of Lavielle and Moulines

(2000), that min1≤k≤K⋆ |τ ⋆
k+1 − τ ⋆

k | = ∆⋆
τ where ∆⋆

τ is a positive constant and that J⋆
min is

a positive constant.

In Proposition 5, the number of estimated change-points is assumed to be equal to the

true number of change-points. Since this information is not in general available, we propose

to evaluate the distance between the set T̂n,K = {t̂1, . . . , t̂K} of K estimated change-points

and the set of the true change-points T ⋆
n = {t⋆1, . . . , t⋆K⋆} by using as in Boysen et al. (2009)

the two quantities E(T̂n,K‖T ⋆
n ) and E(T ⋆

n ‖T̂n,K), where E(·‖·) is defined for two sets A and

B by

E(A‖B) = sup
b∈B

inf
a∈A

|a− b| . (21)

Note that we recover the Hausdorff distance between the sets A and B with

∆(A,B) = sup{E(A‖B); E(B‖A)} .

Obviously, when K = K⋆, Proposition 5 implies that, under the same assumptions,

E(T̂n,K⋆‖T ⋆
n ) ≤ nδn and E(T ⋆

n ‖T̂n,K⋆) ≤ nδn with probability tending to one as n tends to

infinity. In the case where K > K⋆, we prove in Proposition 6 that E(T̂n,K‖T ⋆
n ) ≤ nδn with

probability tending to one as n tends to infinity.

Proposition 6. Let Y1, . . . , Yn be a set of observations satisfying model (1) then under As-

sumptions (A1), (A3), (A4) and if nδnJ
⋆
min

2/ log(n3/λ2
n) → ∞, the change-points estima-

tors {t̂1(λn), . . . , t̂|Â(λn)|(λn)}n≥1 defined by (14), satisfy, if |Â(λn)| ≥ K⋆ with probability

tending to one:

P
(
E(T̂n,|Â(λn)|‖T ⋆

n ) ≤ nδn

)
→ 1, as n→ ∞ . (22)

Note that with δn = (log n)2/n, J⋆
min ≥ (log n)1/4, λn =

√
log n/n or λn =

√
log n/n3/2,

the assumptions (A3), (A4) and nδnJ
⋆
min

2/ log(n3/λ2
n) → ∞ of Proposition 6 are fulfilled.
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Now, we shall investigate the empirical behavior of LS-TV on simulated data. In the

remainder, we focus on the so-called Blocks dataset introduced in Donoho and Johnstone

(1995) which contains K⋆ = 11 change-points. One may indeed consider the Blocks dataset

as a typically difficult dataset for multiple change-point estimation, since both segment

levels and segment lengths are highly heterogeneous.

4. Experimental results

4.1. Specified number of change-points. The Blocks dataset introduced in the paper

(Donoho and Johnstone, 1995, page 1201, Table 1) was subsampled down to 1000 points

as depicted in Figure 1, and corrupted with Gaussian white noise at three different levels:

low-noise when σ = 0.05, medium-noise when σ = 0.10, and high-noise when σ = 0.50.
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0
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Figure 1. The Blocks dataset, subsampled to 1000 observations, and rescaled

to mean zero and variance one, displayed without noise (on the far left), and with

respectively low-noise, medium-noise and high-noise (from left to right).

To assess our large-sample consistency result which stated that n−1E(T̂n,K⋆‖T ⋆) = oP (1),

as n tends to infinity, we ran Monte-Carlo simulations to investigate the empirical per-

formance of LS-TV in terms of n−1E(T̂n,K⋆‖T ⋆) = n−1 maxk=1,...,K⋆ |t̂k − t⋆k| in the three

different noise settings. For each noise setting, we generated 100 replications of the Blocks

dataset corrupted with Gaussian white noise. The results are displayed in Table 2. In all

noise conditions, the large-sample change-point estimation consistency of LS-TV is con-

firmed. In high-noise conditions, even for medium-scale samples, that is for n = 1000,

the change-point detection ability of LS-TV remains satisfactory. For large-scale samples,

that is for n = 5000, the performance continue improving both on average and standard

deviation.
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Low-noise Medium-noise High-noise

n=1000 0.0200± 0.0068 0.0200± 0.0098 0.0230± 0.0185

n=5000 0.0127± 0.0059 0.0127± 0.0082 0.0127± 0.0169

Table 2. Performance in terms of E(T̂n,K⋆‖T ⋆) of LS-TV on the Blocks dataset

corrupted with low-noise (σ = 0.05), medium-noise (σ = 0.10), and high-noise

(σ = 0.50). The values after ± correspond to the standard deviations.

Since, in general, the number of change-points is unknown, we shall investigate in the

next section the impact of misspecifying the number of change-points. For this purpose,

we study the evolution of both {E(T̂n,K‖T ⋆), E(T ⋆‖T̂n,K)}, as K = 1, . . . , 3K⋆ in the three

different noise settings.

4.2. Unspecified number of change-points.

4.2.1. Performance of LS-TV. We consider here the performance of LS-TV on the Blocks

dataset corrupted with three different levels of noise, when the true number of change-

points is unknown. For each noise level, we generated 100 replications of corrupted versions

of the Blocks dataset. For each noise replication, we measured both E(T̂n,K‖T ⋆) and

E(T ⋆‖T̂n,K) for all K = 1, . . . , 3K⋆. We display in Figure 2 the results averaged over all

replications for both errors. Also, note that the optimal trade-off between the two types

of error is reached almost exactly at the true number of change-points K = K⋆.
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Figure 2. The evolution of the two types of error as K = 1, . . . , 3K⋆, that is

{E(T̂ LS-TV
n,K ‖T ⋆)}K=1,...,3K⋆ (“o”) and {E(T ⋆‖T̂ LS-TV

n,K )}K=1,...,3K⋆ (“×”), in differ-

ent noise settings (low, medium, high noise from left to right).
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4.2.2. Comparison with the standard least-square (LS) approach. Let us now compare the

performance of LS-TV with the performance of the standard least-square estimation of

multiple change-points theoretically studied by Yao and Au (1989). The latter criterion

provides a number of K change-points for the model (1) by

Minimize
t1<···<tK

K∑

k=1

tk∑

i=tk−1+1

(Yi − µ̄k)
2, where µ̄k

def
= (tk − tk−1)

−1

tk∑

i=tk−1+1

Yi .

A computationally efficient way of solving this minimization is based on a dynamic pro-

gramming algorithm (DP), originally proposed by Fisher (1958); Bellman (1961) and de-

scribed in (Kay, 1993, Chapter 12). While a naive approach would require a O(2n) time-

complexity, DP has a time-complexity of O(K n2) if we look for at most K change-points

within the signal. For a fair comparison, we used exactly the same settings for both meth-

ods LS-TV and LS.

From Table 4 displayed in Section 5, we can see that LS-TV reaches satisfactory perfor-

mance, in terms of both types of errors, in all noise settings as well as LS. It is worthwhile

to emphasize that, while LS has a O(Kn2) time-complexity when implemented with the

DP algorithm, our method LS-TV has only O(Kn log(n)) time-complexity. We can also

remark that the variance of E(T ⋆‖T̂ LS-TV
n,K ) is larger than the variance of E(T ⋆‖T̂ LS

n,K). It is

then interesting to remedy this issue, without harming the sub-quadratic time-complexity

of LS-TV.
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Figure 3. The evolution of the two types of error as K = 1, . . . , 3K⋆,

that is {E(T̂ LS-TV*
n,K ‖T ⋆)}K=1,...,3K⋆ displayed with squares and

{E(T ⋆‖T̂ LS-TV*
n,K )}K=1,...,3K⋆ (“+”), in different noise settings (low, medium

and high noise from left to right).
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In the next section, we show how LS-TV may be further enhanced, both in mean and

variance in both types of errors, when combined with an additional step based on a reduced-

search dynamic programming algorithm.

5. An enhanced version of LS-TV: LS-TV*

We now propose an enhanced version of LS-TV, called LS-TV*, which combines two

steps. First, we run LS-TV with K = Kmax larger than K⋆, and get a set of change-point

estimates T̂n,Kmax
. Second, we run a reduced version of DP searching L < Kmax change-

points over the set T̂n,Kmax
, instead of {1, . . . , n} as in the raw DP algorithm, which finally

yields a new set of change-point estimates Sn,L ( T̂n,Kmax
.

From Table 4, we observe that for K = 30 the error E(T ⋆‖T̂ LS
n,K) becomes larger than

E(T ⋆‖T̂ LS-TV
n,K ) in all noise settings. This suggests that one type of error made by LS-

TV stabilizes in the over-segmentation regime, that is when K ≫ K⋆, whereas the same

type of error made by LS still increases. Therefore, one might think of running LS-TV to

look for an a priori much larger set of change-points than the true number of change-points,

that is to look for Kmax ≫ K⋆ change-points with Kmax ≪ n, and then propose a way

of selecting the best change-point estimates within the large set of change-point estimates

obtained by LS-TV.

We suggest running a dynamic programming algorithm to perform this post-selection.

More precisely, we aim at minimizing, for each K in {1, . . . , Kmax}:

Minimize
t1<···<tK

s.t t1,...,tK∈bTn,Kmax

K∑

k=1

tk∑

i=tk−1+1

(Yi − µ̄k)
2, where µ̄k

def
= (tk − tk−1)

−1

tk∑

i=tk−1+1

Yi . (23)

The above algorithm, subsequently called rDP, outputs for each K = 1, . . . , Kmax a new

set of change-point estimates Sn,K ( T̂n,Kmax
. We call LS-TV* the method which combines

LS-TV with a post-selection based on rDP.

First, we investigate how LS-TV* improves on LS-TV in terms of error variance. The

settings are the same as previously. We observe in Table 4 that the post-selection step

indeed consistently reduces the variance of both errors obtained by LS-TV.
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Figure 4. The evolution of the two types of error as K = 1, . . . , 3K⋆, that is

{E(T̂ LS-TV*
n,K ‖T ⋆)}K=1,...,3K⋆ (“♦”) and {E(T ⋆‖T̂ LS-TV*

n,K )}K=1,...,3K⋆ (“∗”), in dif-

ferent noise settings (low, medium and high noise from left to right).

Second, we check whether LS-TV* improves, on average, the performance of LS-TV. As

Figures 2, 4 and Table 4 show, not only LS-TV* yields much lower error rates than LS-TV in

both types of errors, but LS-TV* also obtains similar error rates when compared to LS.

Since the overall time-complexity of LS-TV* is O(K3
max + Kmaxn log(n)), and the overall

time-complexity of LS is O(Kmaxn
2), then, as long as K⋆ < Kmax ≪ n, LS-TV* obtains

the same performance results as LS at a much lower computational cost. In order to give

an idea to the reader of the actual computation times of LS-TV*and LS, we give in Table

3 the computation times of both methods when they are applied to the Blocks dataset for

several values of n and Kmax.

(n,Kmax) (100,5) (500,15) (1000,30)

LS 0.021s 0.466s 2.464s

LS-TV* 0.005s 0.119s 0.689s

Table 3. Computation times in seconds of LS and LS-TV* for several values of

n and Kmax.

Note that Figure 4 gives an appealing intuitive understanding of the statistical behavior

of multiple change-point estimation methods. While the first type of error E(T̂ ‖T ⋆) may

be interpreted as the maximum error in the change-point location from estimated change-

points to true change-points, the second type of error E(T ⋆‖T̂ ) may be interpreted as the
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maximum error in the change-point location from true change-points to estimated change-

points. As the number of estimated change-points increases, the first type of error E(T̂ ‖T ⋆)

decreases while the second type of error E(T ⋆‖T̂ ) increases. Finally, E(T̂ ‖T ⋆) quantifies

the over-segmentation error while E(T ⋆‖T̂ ) quantifies the under-segmentation error.

As presented here LS-TV* does not include a model selection part. A thorough practical

version of LS-TV* should incorporate a data-driven way of choosing the optimal number

of change-points K̂, and hence the optimal set of change-point estimates Sn, bK . This issue

is left for future research.

6. Conclusion and prospects

The standard least-square estimation approach LS suffers from an overwhelming time-

complexity for performing change-point estimation in long time series of observations. We

showed, both theoretically and practically, that an alternative solution to the multiple

change-point estimation problem, solved by a least-square fitting with a total variation

penalty LS-TV, allowed us to get a lower time-complexity while keeping competitive per-

formance in terms of change-point estimation, even in high-noise settings.

We see several future research directions for this work. In the last section of the paper, we

proposed an enhanced version of LS-TV called LS-TV*, with better empirical performance

and similar time-complexity. We would like to provide thorough theoretical support to this

method, which would involve a statistical analysis of the two steps LS-TV and reduced DP

(rDP). Besides, since a lot of real datasets include a non-negligible proportion of outliers,

we would like to derive a robust version of both LS-TV and LS-TV*, and establish the

corresponding theoretical results.

7. Proofs

Proof of Proposition 1. By definition of β̂n(λn) given by (9), we have

‖Y n −Xnβ̂
n(λn)‖2

n + λn‖β̂n(λn)‖1 ≤ ‖Y n −Xnβ
n‖2

n + λn‖βn‖1 .
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K = 1 K = 11 K = 20 K = 30

Low Medium High Low Medium High Low Medium High Low Medium High

.169 .169 .169 .000 .000 .001 .000 .000 .001 .000 .000 .001

LS
(.014) (.033) (.041) (.000) (.000) (.001) (.000) (.000) (.001) (.000) (.000) (.001)

.000 .000 .000 .023 .023 .027 .072 .072 .072 .086 .086 .086

(.000) (.000) (.001) (.025) (.025) (.025) (.018) (.018) (.017) (.014) (.014) (.014)

.250 .250 .250 .020 .020 .040 .000 .000 .020 .000 .000 .019

LS-TV
(.000) (.000) (.042) (.006) (.006) (.009) (.000) (.000) (.007) (.000) (.000) (.009)

.000 .000 .001 .034 .041 .042 .071 .071 .075 .081 .081 .081

(.000) (.000) (.002) (.030) (.031) (.028) (.025) (.025) (.022) (.020) (.020) (.020)

.169 .169 .169 .000 .000 .001 .000 .000 .001 .000 .000 .001

LS-TV*
(.014) (.033) (.041) (.000) (.000) (.005) (.000) (.000) (.001) (.000) (.000) (.001)

.000 .000 .000 .029 .029 .033 .071 .071 .072 .082 .082 .082

(.000) (.000) (.001) (.023) (.023) (.024) (.015) (.015) (.014) (.013) (.013) (.013)

Table 4. Performance in terms of E(T̂n,K‖T ⋆) and E(T ⋆‖T̂n,K) for different

values of K of LS, LS-TV and LS-TV* on the Blocks dataset corrupted with low-

noise (σ = 0.05), medium-noise (σ = 0.10) and high-noise (σ = 0.50). For each

method, the first and second lines correspond to the mean and standard deviation

of E(T̂n,K‖T ⋆) respectively and the third and fourth lines correspond to the mean

and standard deviation of E(T ⋆‖T̂n,K) respectively. Kmax was set to 30 in all

experiments.

Using (7), we get

‖Xn(βn − β̂n(λn))‖2
n +

2

n
(βn − β̂n(λn))′X ′

nε
n + λn

n∑

k=1

|β̂k(λn)| ≤ λn

n∑

k=1

|βn
k | .

Thus,

‖Xn(βn − β̂n(λn))‖2
n ≤ 2

n
(β̂n(λn) − βn)′X ′

nε
n + λn

∑

j∈A

(|βn
j | − |β̂j(λn)|) − λn

∑

j∈Ā

|β̂j(λn)| .
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Observe that

2

n
(β̂n(λn) − βn)′X ′

nε
n = 2

n∑

j=1

(β̂j(λn) − βn
j )

(
1

n

n∑

i=j

εn
i

)

.

Let us define the event E =
⋂n

j=1

{
n−1

∣∣∣
∑n

i=j ε
n
i

∣∣∣ ≤ λn/2
}

. Then, given that the εn
i ’s are

iid zero-mean Gaussian random variables with variance σ2, we obtain that

P(Ē) ≤
n∑

j=1

P

(
n−1

∣∣∣∣∣

n∑

i=j

εn
i

∣∣∣∣∣ > λn/2

)
≤

n∑

j=1

exp

(
− n2λ2

n

8σ2(n− j + 1)

)
.

Thus, if λn = Cσ
√

log n/n,

P(Ē) ≤ n1−C2/8 .

With a probability larger than 1 − n1−C2/8, we get

‖Xn(βn − β̂n(λn))‖2
n ≤ λn

n∑

j=1

|β̂j(λn) − βn
j | + λn

∑

j∈A

(|βn
j | − |β̂j(λn)|) − λn

∑

j∈Ā

|β̂j(λn)| ,

where A and Ā are defined in (8). Given that

n∑

j=1

|β̂j(λn) − βn
j | =

∑

j∈A

|β̂j(λn) − βn
j | +

∑

j∈Ā

|β̂j(λn)| ,

we obtain that, with a probability larger than 1 − n1−C2/8,

‖Xn(βn − β̂n(λn))‖2
n ≤ 2λn

∑

j∈A

|βn
j | = 2Cσ

√
logn

n

∑

j∈A

|βn
j | ≤ 2CσβmaxK

⋆

√
log n

n
.

�

Proof of Proposition 2. For notational simplicity, we shall remove the dependence of û in

λn. By definition of û as a minimizer of the criterion (11), we get:

‖Y n − û‖2
n + λn

n−1∑

i=1

|ûi+1 − ûi| ≤ ‖Y n − u⋆‖2
n + λn

n−1∑

i=1

|u⋆
i+1 − u⋆

i | .

Using model (10), the previous inequality can be rewritten as follows:

‖û− u⋆‖2
n ≤ λn

(
n−1∑

i=1

|u⋆
i+1 − u⋆

i | −
n−1∑

i=1

|ûi+1 − ûi|
)

+
2

n

n∑

i=1

εi(ûi − u⋆
i ) .
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Using the Cauchy-Schwarz inequality, we obtain

‖û− u⋆‖2
n ≤ 2nλn‖û− u⋆‖n +

2

n

n∑

i=1

εi(ûi − u⋆
i ) .

Thus, defining G(.) for v in Rn, by: G(v) = (
∑n

i=1 εi(vi − u⋆
i ))/(σ

√
n‖v − u⋆‖n), we get:

‖û− u⋆‖2
n ≤ 2nλn‖û− u⋆‖n +

2σ√
n
‖û− u⋆‖nG(û) .

Let {SK}1≤K≤Kmax
be the collection of linear spaces to which û may belong, SK denoting

a space of dimension K. Then, given that the number of sets of dimension K is bounded

by nK , we obtain

P(‖û− u⋆‖n ≥ αn) ≤ P(nλn + σn−1/2G(û) ≥ αn/2)

≤
Kmax∑

K=1

nK P( sup
v∈SK

G(v) ≥ n1/2σ−1αn/2 − n3/2σ−1λn) . (24)

Using that, Var(G(v)) = 1, for all v in Rn, we obtain by using an inequality due to Cirel’son,

Ibragimov and Sudakov in the same way as in the proof of Theorem 1 in Birgé and Massart

(2001), that for all β > 0,

P(supv∈SK
G(v) ≥ E[supv∈SK

G(v)] + β) ≤ exp(−β2/2) . (25)

Let us now find an upper bound for E[supv∈SK
G(v)]. Denoting by W the D-dimensional

space to which v − u⋆ belongs and some orthogonal basis ψ1, . . . , ψD of W , we obtain

sup
v∈SK

G(v) ≤ sup
w∈W

∑n
i=1 εiwi

σ
√
n‖w‖n

= sup
α∈RD

∑n
i=1 εi(

∑D
j=1 αjψj,i)

σ
√
n‖∑D

j=1 αjψj‖n

= sup
α∈RD

∑n
i=1 εi(

∑D
j=1 αjψj,i)

σ
√
n(
∑D

j=1 α
2
j )

1/2
.

Using the Cauchy-Schwarz inequality, we derive

sup
v∈SK

G(v) ≤ sup
α∈RD

∑D
j=1 αj(

∑n
i=1 εiψj,i)

σ
√
n(
∑D

j=1 α
2
j )

1/2
≤ (σ2n)−1/2






D∑

j=1

(
n∑

i=1

εiψj,i

)2





1/2

.

By the concavity of the square root function and by using that D ≤ Kmax + K⋆ + 1 ≤
2Kmax + 1, we get

E[supv∈SK
G(v)] ≤ (2Kmax + 1)1/2 . (26)
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Using (24), (25) and (26) with β = n1/2σ−1αn/2 − n3/2σ−1λn − (2Kmax + 1)1/2, we get

P(‖û−u⋆‖n ≥ αn) ≤ Kmax exp

{
Kmax log n− 1

2

(
n1/2αn

2σ
− n3/2σ−1λn − (2Kmax + 1)1/2

)2
}
,

which is valid only if β = n1/2σ−1αn/2 − n3/2σ−1λn − (2Kmax + 1)1/2 is positive. Thus,

writing for a constant A in (0, 1),

n3/2σ−1λn + (2Kmax + 1)1/2 = An1/2σ−1αn/2 ,

gives

P(‖û− u⋆‖n ≥ αn) ≤ Kmax exp

{
Kmax logn− (1 − A)2

8

nα2
n

σ2

}
.

Thus, if αn = (Bσ2Kmax log n/n)1/2, we obtain the expected result. �

Proof of Lemma 3. A necessary and sufficient condition for a vector β̂ in Rn to minimize

Φ defined by: Φ(β) =
∑n

i=1(Yi − (Xnβ)i)
2 + nλn

∑n
i=1 |βi|, is that the zero vector in Rn

belongs to the subdifferential of Φ at point β̂ that is:

(XT
n (Y n −Xnβ̂))j =

nλn

2
sign(β̂j), if β̂j 6= 0 ,

|(XT
n (Y n −Xnβ̂))j| ≤

nλn

2
, if β̂j = 0 .

Using that (XT
n Y

n)j =
∑n

k=j Yk and that (XT
n û)j =

∑n
k=j ûk, since Xn is a n × n lower

triangular matrix having all its non zero elements equal to one, we obtain the expected

result. �

In the remainder, for any sequence of random variables, say, Z1, . . . , Zn, we shall use the

following notation

Z(r; s)
def
=

s∑

i=r

Zi, for any 1 ≤ r < s ≤ n. (27)

Proof of Lemma 4. Using the notation introduced in (27), we obtain

P



 max
1≤rn<sn≤n

|rn−sn|≥vn

∣∣∣∣
ε(rn; sn − 1)

sn − rn

∣∣∣∣ ≥ xn



 ≤
∑

1≤rn<sn≤n

|rn−sn|≥vn

P

(∣∣∣∣
ε(rn; sn − 1)

sn − rn

∣∣∣∣ ≥ xn

)
.
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Using Assumption (A1), we get that for all η > 0,

P

(
ε(rn; sn − 1)

sn − rn

≥ xn

)
≤ exp[−η(sn − rn)xn][E{exp(ηε)}](sn−rn)

≤ exp[−η(sn − rn)xn + βη2(sn − rn)] .

Since the sharpest bound holds for η = xn/2β, we get

P

(
ε(rn; sn − 1)

sn − rn
≥ xn

)
≤ exp[−x2

n(sn − rn)/4β] .

Since the same bound is valid when εi is replaced by −εi, we get that

P

(∣∣∣∣
ε(rn; sn − 1)

sn − rn

∣∣∣∣ ≥ xn

)
≤ 2 exp[−x2

n(sn − rn)/4β] .

Hence, we obtain that

P



 max
1≤rn<sn≤n

|rn−sn|≥vn

∣∣∣∣
ε(rn; sn − 1)

sn − rn

∣∣∣∣ ≥ xn



 ≤ 2n2 exp[−vnx
2
n/4β] ,

which completes the proof. �

Proof of Proposition 5. In this proof, we shall use the notation introduced in (27). Since

P(max1≤k≤K⋆ |t̂k − t⋆k| > nδn) ≤ ∑K⋆

k=1 P(|t̂k − t⋆k| > nδn), it suffices to prove that for all

k = 1, . . . , K⋆, P(An,k) → 0, where An,k = {|t̂k − t⋆k| ≥ nδn}. Defining the set Cn by

Cn =

{
max

0≤k≤K⋆
|t̂k − t⋆k| < I⋆

min/2

}
, (28)

it is enough to prove that P(An,k ∩Cn) → 0, and that P(An,k ∩Cn) → 0. Let us first prove

the first statement. Note that (28) implies that

t⋆k−1 < t̂k < t⋆k+1, for all k ∈ {1, . . . , K⋆} .

Let us first consider the case where t̂k ≤ t⋆k. Applying (18) in Lemma 3 with j = t⋆k and

(17) in Lemma 3 with ℓ = k gives respectively
∣∣∣∣∣∣

n∑

i=t⋆
k

Yi −
n∑

i=t⋆
k

ûi

∣∣∣∣∣∣
≤ nλn/2 and

n∑

i=t̂k

Yi −
n∑

i=t̂k

ûi = nα̂kλn/2 .
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This yields, using (19) in Lemma 3, that the event Cn,k defined as follows, occurs with

probability one:

Cn,k =
{
|(t̂k − t⋆k)(µ

⋆
k+1 − µ⋆

k) + (t̂k − t⋆k)(µ̂k+1 − µ⋆
k+1) + ε(t̂k; t

⋆
k − 1) ≤ nλn

}
.

Using that P(An,k ∩ Cn) = P(An,k ∩ Cn,k ∩ Cn), we get

P(An,k ∩ Cn) ≤ P
(
nλn/nδn ≥ |µ⋆

k+1 − µ⋆
k|/3

)
+ P

(
{|µ̂k+1 − µ⋆

k+1| ≥ |µ⋆
k+1 − µ⋆

k|/3} ∩ Cn

)

+ P

({∣∣∣∣
ε(t̂k; t

⋆
k − 1)

t⋆k − t̂k

∣∣∣∣ ≥ |µ⋆
k+1 − µ⋆

k|/3
}
∩An,k

)

def
= P(An,k,1) + P(An,k,2) + P(An,k,3) .

By Assumption (A4), nλn/(nδnJ
⋆
min) < 1/3, for n large enough, leading to P(An,k,1) → 0.

By Lemma 4 with xn = J⋆
min/3, vn = nδn and Assumption (A2), P(An,k,3) → 0. Let us

now address P(An,k,2). Using (18) in Lemma 3 with j = (t⋆k + t⋆k+1)/2 and with j = t⋆k, and

using the triangle inequality, we get
∣∣∣∣∣∣

(t⋆
k
+t⋆

k+1
)/2 −1∑

i=t⋆
k

Yi −
(t⋆

k
+t⋆

k+1
)/2 −1∑

i=t⋆
k

ûi

∣∣∣∣∣∣
≤ nλn .

Since we are in the event Cn and t̂k ≤ t⋆k, ûi ≡ µ̂k+1 within the interval [t⋆k, (t
⋆
k+t⋆k+1)/2 −1],

which gives |(t⋆k+1− t⋆k)
(
µ⋆

k+1 − µ̂k+1

)
/2+ε(t⋆k; (t

⋆
k + t⋆k+1)/2 −1)| ≤ nλn. This implies that

(t⋆k+1 − t⋆k)
∣∣µ⋆

k+1 − µ̂k+1

∣∣ /2 ≤ nλn +
∣∣ε(t⋆k; (t⋆k + t⋆k+1)/2 − 1)

∣∣ .

Therefore, we may upper bound P(An,k,2) as follows

P
(
{|µ̂k+1 − µ⋆

k+1| ≥ |µ⋆
k+1 − µ⋆

k|/3} ∩ Cn

)

≤ P
(
nλn ≥ (t⋆k+1 − t⋆k)|µ⋆

k+1 − µ⋆
k|/12

)
+ P

(∣∣∣∣
ε(t⋆k; (t

⋆
k + t⋆k+1)/2 − 1)

t⋆k+1 − t⋆k

∣∣∣∣ ≥ |µ⋆
k+1 − µ⋆

k|/6
)
,

which is arbitrarily small if nλn < I⋆
min · J⋆

min/12 for n large enough, and, by Lemma 4, if

I⋆
min(J

⋆
min)

2/ log(n) → ∞, as n tends to infinity. The last two conditions hold thanks to

Assumptions (A2), (A3) and (A4). Since the proof in the case t̂k ≥ t⋆k follows from similar

reasoning, we have proved that P(An,k ∩ Cn) → 0, as n tends to infinity.
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We now prove that P(An,k ∩ Cn) → 0. Recall that by definition of Cn given in (28),

Cn =
{
maxk∈{1,...,K⋆} |t̂k − t⋆k| ≥ I⋆

min/2
}
. We now split P(An,k ∩ Cn) into three terms:

P(An,k ∩ Cn) = P(An,k ∩D(l)
n ) + P(An,k ∩D(m)

n ) + P(An,k ∩D(r)
n ) .

where

D(ℓ)
n

def
=
{
there exists p ∈ {1, . . . , K⋆} , t̂p ≤ t⋆p−1

}
∩ Cn ,

D(m)
n

def
=
{
for all k ∈ {1, . . . , K⋆} , t⋆k−1 < t̂k < t⋆k+1

}
∩ Cn ,

D(r)
n

def
=
{
there exists p ∈ {1, . . . , K⋆} , t̂p ≥ t⋆p+1

}
∩ Cn .

Let us first focus on P(An,k ∩D(m)
n ) and consider the case where t̂k ≤ t⋆k, since the other

case can be addressed in a similar way. Note that

P(An,k ∩D(m)
n ) ≤ P(An,k ∩Bk+1,k ∩D(m)

n ) +

K⋆∑

l=k+1

P(Cl,l ∩ Bl+1,l ∩D(m)
n ) , (29)

where Bp,q = {(t̂p − t⋆q) ≥ I⋆
min/2} with the convention BK⋆+1,K⋆ = {(n − t⋆K⋆) ≥ I⋆

min/2}
and Cp,q = {(t⋆p − t̂q) ≥ I⋆

min/2}. Let us now prove that the first term in the right-hand side

of (29) tends to zero as n tends to infinity, the arguments for addressing the other terms

being similar. Using (18) and (17) in Lemma 3 with j = t⋆k and ℓ = k, on the one hand

and (18) in Lemma 3 with j = t⋆k and (17) in Lemma 3 with ℓ = k + 1 on the other hand,

we obtain respectively:

∣∣t̂k − t⋆k
∣∣ |µ̂k+1−µ⋆

k| ≤ nλn+
∣∣ε(t̂k; t⋆k − 1)

∣∣ and
∣∣t̂k+1 − t⋆k

∣∣ ∣∣µ̂k+1 − µ⋆
k+1

∣∣ ≤ nλn+
∣∣ε(t⋆k; t̂k+1 − 1)

∣∣ .

(30)

Defining En by:

En = {|µ⋆
k+1−µ⋆

k| ≤ nλn/(nδn)+2nλn/I
⋆
min+(t⋆k−t̂k)−1|ε(t̂k; t⋆k−1)|+(t̂k+1−t⋆k)−1|ε(t⋆k; t̂k+1−1)|} ,
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we obtain

P(An,k ∩Bk+1,k ∩D(m)
n ) ≤ P(En ∩ {(t⋆k − t̂k) ≥ nδn} ∩ {(t̂k+1 − t⋆k) ≥ I⋆

min/2})

≤ P(nλn/(nδn) ≥ |µ⋆
k+1 − µ⋆

k|/4) + P(2nλn/I
⋆
min ≥ |µ⋆

k+1 − µ⋆
k|/4)

+ P({(t⋆k − t̂k)
−1|ε(t̂k; t⋆k − 1)| ≥ |µ⋆

k+1 − µ⋆
k|/4} ∩ {(t⋆k − t̂k) ≥ nδn})

+ P({(t̂k+1 − t⋆k)
−1|ε(t⋆k; t̂k+1 − 1)| ≥ |µ⋆

k+1 − µ⋆
k|/4} ∩ {(t̂k+1 − t⋆k) ≥ I⋆

min/2}) .

By Assumptions (A2), (A3) and (A4), P(An,k ∩Bk+1,k ∩D(m)
n ) → 0, as n tends to infinity,

which concludes that P(An,k ∩D(m)
n ) → 0.

Let us now focus on P(An,k ∩D(ℓ)
n ). The latter probability can be upper bounded by

P(D(ℓ)
n ) ≤

K⋆∑

k=1

2k−1P(max{1 ≤ l ≤ K⋆, t̂l ≤ t⋆l−1} = k)

≤ 2K⋆−1
K⋆−1∑

k=1

K⋆−1∑

m≥k

P({t⋆m − t̂m > I⋆
min/2} ∩ {t̂m+1 − t⋆m > I⋆

min/2})

+ 2K⋆−1P({t⋆K⋆ − t̂K⋆ > I⋆
min/2}) . (31)

Consider one term of the sum in the right-hand of (31). Using (30) with k = m, we get

P({t⋆m − t̂m > I⋆
min/2} ∩ {t̂m+1 − t⋆m > I⋆

min/2}) ≤ P(4nλn/I
⋆
min ≥ |µ⋆

m+1 − µ⋆
m|/3)

+ P({(t⋆m − t̂m)−1|ε(t̂m; t⋆m − 1)| ≥ |µ⋆
m+1 − µ⋆

m|/3} ∩ {(t⋆m − t̂m) ≥ I⋆
min/2})

+ P({(t̂m+1 − t⋆m)−1|ε(t⋆m; t̂m+1 − 1)| ≥ |µ⋆
m+1 − µ⋆

m|/3} ∩ {(t̂m+1 − t⋆m) ≥ I⋆
min/2}) .

By Assumptions (A2), (A3) and (A4), P({t⋆m − t̂m > I⋆
min/2}∩ {t̂m+1 − t⋆m > I⋆

min/2}) → 0,

as n tends to infinity. Let us now consider the last term in the right-hand side of (31).

Using (30) with k = K⋆ leads to

P({t⋆K⋆ − t̂K⋆ > I⋆
min/2}) ≤ P(3nλn/I

⋆
min ≥ |µ⋆

K⋆+1 − µ⋆
K⋆|/3)

+ P({(t⋆K⋆ − t̂K⋆)−1|ε(t̂K⋆; t⋆K⋆ − 1)| ≥ |µ⋆
K⋆+1 − µ⋆

K⋆|/3} ∩ {(t⋆K⋆ − t̂K⋆) ≥ I⋆
min/2})

+ P({(n− t⋆K⋆ + 1)−1|ε(t⋆K⋆;n)| ≥ |µ⋆
K⋆+1 − µ⋆

K⋆|/3}) .
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By Assumptions (A2), (A3) and (A4), P({t⋆K⋆ − t̂K⋆ > I⋆
min/2}) → 0, as n tends to infinity,

which gives: P(D
(ℓ)
n ) → 0. In a similar way, we can prove that: P(D

(r)
n ) → 0, as n tends to

infinity which gives that P(An,k ∩ Cn) → 0 and concludes the proof. �

Proof of Proposition 6. In this proof, we shall use the notation introduced in (27). By

Lemma 2 of Meinshausen and Yu (2009), we get that with probability tending to one

|Â(λn)| ≤ C
n

λ2
n

, (32)

where C is a positive constant equal to σ2 +K⋆2J⋆2
max. In order to prove that

P({E(T̂n,|Â(λn)|‖T ⋆
n ) ≥ nδn} ∩ {|Â(λn)| ≥ K⋆}) → 0, as n→ ∞ ,

it is enough to prove that

P({E(T̂n,|Â(λn)|‖T ⋆
n ) ≥ nδn} ∩ {K⋆ ≤ |Â(λn)| ≤ Cn/λ2

n}) → 0, as n→ ∞ .

Note that

P({E(T̂n,|Â(λn)|‖T ⋆
n )} ∩ {K⋆ ≤ |Â(λn)| ≤ Cn/λ2

n})

≤ P(E(T̂n,K⋆‖T ⋆
n ) ≥ nδn) +

Cn/λ2
n∑

K>K⋆

P(E(T̂n,K‖T ⋆
n ) ≥ nδn) . (33)

The first term of the right hand-side of (33) tends to zero as n → ∞ since it is upper

bounded by P(max1≤k≤K⋆ |t̂k − t⋆k| > nδn) which tends to zero by Proposition 5. Let us

now focus on the second term on the right hand-side of (33). Note that

Cn/λ2
n∑

K>K⋆

P(E(T̂n,K‖T ⋆
n ) ≥ nδn) ≤

Cn/λ2
n∑

K>K⋆

K⋆∑

k=1

P(∀1 ≤ l ≤ K, |t̂l − t⋆k| ≥ nδn)

def
=

Cn/λ2
n∑

K>K⋆

K⋆∑

k=1

P(En,k,1) + P(En,k,2) + P(En,k,3) ,
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where

En,k,1 = {∀1 ≤ l ≤ K, |t̂l − t⋆k| ≥ nδn and t̂l < t⋆k},

En,k,2 = {∀1 ≤ l ≤ K, |t̂l − t⋆k| ≥ nδn and t̂l > t⋆k},

En,k,3 = {∃1 ≤ l ≤ K − 1, |t̂l − t⋆k| ≥ nδn, |t̂l+1 − t⋆k| ≥ nδn and t̂l < t⋆k < t̂l+1} .

Let us first upper bound P(En,k,1). Remark that

P(En,k,1) = P(En,k,1 ∩ {t̂K > t⋆k−1}) + P(En,k,1 ∩ {t̂K ≤ t⋆k−1}).

Applying (18) in Lemma 3 with j = t⋆k and (17) in Lemma 3 with ℓ = K in the case where

t̂K > t⋆k−1 gives with probability one

|(t⋆k − t̂K){(µ⋆
k − µ⋆

k+1) + (µ⋆
k+1 − µ̂K+1)} + ε(t̂K ; t⋆k − 1)| ≤ nλn .

Thus,

P(En,k,1 ∩ {t̂K > t⋆k−1}) ≤ P(nλn/(nδn) ≥ |µ⋆
k − µ⋆

k+1|/3) + P(|µ⋆
k+1 − µ̂K+1| ≥ |µ⋆

k − µ⋆
k+1|/3)

+ P({|(t⋆k − t̂K)−1ε(t̂K ; t⋆k − 1)| ≥ |µ⋆
k − µ⋆

k+1|/3} ∩ {|t⋆k − t̂K | ≥ nδn})
def
= P(E

(1)
n,k,1) + P(E

(2)
n,k,1) + P(E

(3)
n,k,1) .

By Assumption (A4), nλn/(nδnJ
⋆
min) < 1/3, for n large enough, leading toCnK⋆/λ2

nP(E
(1)
n,k,1) →

0. By Lemma 4 with xn = J⋆
min/3, vn = nδn and using that nδnJ

⋆
min

2/ log(n3/λ2
n) → ∞,

CnK⋆/λ2
nP(E

(3)
n,k,1) → 0. Let us now address P(E

(2)
n,k,1). Using (18) in Lemma 3 with j = t⋆k

and with j = t⋆k+1, we get

(t⋆k+1 − t⋆k)|µ⋆
k+1 − µ̂K+1| ≤ nλn + |ε(t⋆k; t⋆k+1 − 1)| .

Therefore, we may upper bound P(E
(2)
n,k,1) as follows:

P(|µ⋆
k+1 − µ̂K+1| ≥ |µ⋆

k − µ⋆
k+1|/3)

≤ P(nλn ≥ (t⋆k+1 − t⋆k)|µ⋆
k − µ⋆

k+1|/6) + P(|(t⋆k+1 − t⋆k)
−1ε(t⋆k; t

⋆
k+1 − 1)| ≥ |µ⋆

k − µ⋆
k+1|/6) .
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By using Assumptions (A2), (A3) and nδnJ
⋆
min

2/ log(n3/λ2
n) → ∞, we conclude as pre-

viously that CnK⋆/λ2
nP(E

(2)
n,k,1) → 0. The same arguments can be used for addressing

P(En,k,1 ∩ {t̂K ≤ t⋆k−1}). We can address in the same way the term P(En,k,2).

Let us now focus on P(En,k,3). Note that P(En,k,3) can be split into four terms as follows:

P(En,k,3) = P(E
(1)
n,k,3) + P(E

(2)
n,k,3) + P(E

(3)
n,k,3) + P(E

(4)
n,k,3) ,

where

E
(1)
n,k,3 = En,k,3 ∩ {t⋆k−1 < t̂l < t̂l+1 < t⋆k+1} ,

E
(2)
n,k,3 = En,k,3 ∩ {t⋆k−1 < t̂l < t⋆k+1, t̂l+1 ≥ t⋆k+1} ,

E
(3)
n,k,3 = En,k,3 ∩ {t̂l ≤ t⋆k−1, t

⋆
k−1 < t̂l+1 < t⋆k+1} ,

E
(4)
n,k,3 = En,k,3 ∩ {t̂l ≤ t⋆k−1, t

⋆
k+1 ≤ t̂l+1} .

As for addressing P(En,k,1∩{t̂K > t⋆k−1}), we have to use Lemma 3 two times. For P(E
(1)
n,k,3),

we first use (18) and (17) in Lemma 3 with j = t⋆k and ℓ = l respectively. Second, we use

(18) and (17) in Lemma 3 with j = t⋆k and ℓ = l + 1 respectively. For P(E
(2)
n,k,3), we first

use Lemma 3 with j = t⋆k and ℓ = l. Second, we use Lemma 3 with j = t⋆k and j = t⋆k+1.

For P(E
(3)
n,k,3), we first use Lemma 3 with j = t⋆k−1 and j = t⋆k. Second, we use Lemma 3

with j = t⋆k and ℓ = l + 1. Finally, for P(E
(4)
n,k,3), we first use Lemma 3 with j = t⋆k−1 and

j = t⋆k. Second, we use Lemma 3 with j = t⋆k and j = t⋆k+1. �

Appendix

Discussion about Condition (15). Let us compute the different matrices arising in (15).

The matrix Cn
AA is a K⋆ ×K⋆ matrix defined by:

nCn
AA =





n− t⋆1 + 1 n− t⋆2 + 1 n− t⋆3 + 1 . . . n− t⋆K⋆ + 1

n− t⋆2 + 1 n− t⋆2 + 1 n− t⋆3 + 1 . . . n− t⋆K⋆ + 1

n− t⋆3 + 1 n− t⋆3 + 1 n− t⋆3 + 1 . . . n− t⋆K⋆ + 1
...

...
...

...

n− t⋆K⋆ + 1 n− t⋆K⋆ + 1 n− t⋆K⋆ + 1 . . . n− t⋆K⋆ + 1





. (34)
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As for (Cn
AA)−1, it is a K⋆ ×K⋆ symmetric tridiagonal matrix satisfying:

n−1(Cn
AA)−1 (35)

=





d2,1 −d2,1 0 0 . . . . . . 0

−d2,1 d2,1 + d3,2 −d3,2 0 . . . . . . 0

0 −d3,2 d3,2 + d4,3 −d4,3 0 . . . 0

0 0
. . .

. . .
. . .

...

0 0 . . . 0 0 −dK⋆,K⋆−1 dK⋆+1,K⋆ + dK⋆,K⋆−1





,

where dk,l = (t⋆k − t⋆l )
−1, for 1 ≤ k, l ≤ K⋆ and dK⋆+1,K⋆ = (n− t⋆K⋆ + 1)−1.

Since a1,1 = 1 where A = (ai,j)1≤i≤n−K⋆,1≤j≤K⋆ = Cn
ĀA

(Cn
AA)−1 and a1,j = 0, for all

2 ≤ j ≤ K⋆, the irrepresentable condition (15) is clearly not satisfied.

Discussion about Condition (16). Let M = {t1, . . . , tm} be a set of indices of cardinal m.

Using (35), one can see that, as soon as M is such that tj − ti = 1 for all i and j such

that j − i = 1, n−1(Cn
AA)−1 is a tridiagonal matrix with diagonal terms equal to 2 except

the first one which is equal to 1 and extra diagonal terms equal to -1. Such a matrix is

symmetric and positive since all the determinants of its sub-matrices are equal to 1. Thus,

the maximal eigenvalue of (Cn
AA)−1 is larger than n implying that the minimal eigenvalue

of Cn
AA is smaller than 1/n. Hence, Condition (16) is not fulfilled.
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