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Abstract

Object-based segmentation is a challenging topic. Most of the previous algorithms focused on
segmenting a single or a small set of objects. In this paper, the multiple class object-based
segmentation is achieved using the appearance and bag of keypoints models integrated over mean-
shift patches. We also propose a novel affine invariant descriptor to model the spatial relationship
of keypoints and apply the Elliptical Fourier Descriptor to describe the global shapes. The algorithm
is computationally efficient and has been tested for three real datasets using less training samples.
Our algorithm provides better results than other studies reported in the literature.

1. Introduction

Region based segmentation, such as K-means, mean-shift [4], graph cut [23] and normalized
cut [23], has been successfully applied in many applications. These methods treat image
segmentation as a clustering or optimal grouping problem based on the low-level features.
However, they only utilize the bottom-up information which makes it difficult to guarantee
meaningful segmentation results. Recently, top-down prior knowledge has been combined with
bottom-up features to improve the object-based segmentation results.

The pictorial structures model was proposed in [6] for visual object recognition. Kumar et al.
[13] presented the OBJ CUT algorithm which applied the pictorial structure (PS) model and
Markov Random Field (MRF) to segment objects from background. Borenstein et al [1]
constructed a Bayesian model to integrate top-down and bottom-up information with the shape
priors obtained from multiple scale segmentation. Orbanz et al [21] applied a nonparametric
Bayesian model for image segmentation and used MRF as smoothing constraints. Levin et al.
[16] integrated bottom-up and top-down cues into CRF and the training was performed jointly.

As the number of classes increases, these specific models become complex both for training
and parameter tuning. Winn [28] obtained good segmentation results with a simpler model
using boosting on image appearance (texton histograms). Spatial weighting [18] and spatial
pyramid [14] were used to improve the accuracy of the bag of keypoints model [25].
Robinovich [22] proposed to treat the segmentation as optimal grouping problem and develop
a model order selection schema to find the most stable segmentation from a number of possible
segmentations. All these methods suggest that a general framework can be suitable to perform
multiple class object-based segmentation too.

In this paper, using an idea similar to [11,27], where the patches are used for outdoor scene
labeling and video-cut, the segmentation problem is treated as an optimal grouping of
patches in the image. A small group of pixels (patches) are labeled together to increase the
robustness and decrease the running time. The traditional mean-shift algorithm [4] is used to
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combine image appearance [28] with the bag of keypoints model [25] for segmentation. We
also propose a novel affine invariant representation of spatial co-occurence of keypoints. The
global shapes of objects are modeled using Elliptical Fourier Descriptor (EFD). All these
features are combined in a unified framework to segment objects from a large number of
classes. The contributions of this paper are:

• the appearance model and bag of keypoints are simple but surprisingly successful
methods for generic object recognition. We demonstrate that for segmentation these
two methods can be linked together over mean-shift patches to provide successful
segmentation results too;

• the spatial relationship among the keypoints, which is disregarded in the traditional
bag of keypoints model, are modeled using a novel and simple affine invariant
descriptor;

• the algorithm we propose is much faster for both training and testing;

• the experimental results using three real datasets demonstrate that our algorithm
provides satisfactory results.

In Section 2 we introduce the unified feature representation model. In Section 3 and Section
4, we describe our training method and the segmentation algorithm. Section 5 provides the
experimental results and Section 6 concludes the paper.

2. Unified Feature Representation Model

In Figure 1, we represent the general model of our algorithm. The pixels P in the image are
segmented using mean-shift algorithm to generate patches M. For each patch, the image
appearance is represented with texton histogram T. Multiple hypothesis are generated based
on appearance and refined by top-down information: through the bag of key-points histogram
K, the spatial correlation S (spatial keyton histogram) and the global shape G (EFD). The final
label L is assigned to each patch considering all the cues.

2.1. Mean-Shift Texton Histogram

In order to generate the mean-shift texton histogram, we first apply the five-dimensional mean-
shift segmentation using two dimension for x, y coordinates and three dimensions for Luv color
[4]. The parameters for all the datasets have spatial radius 2hs + 1 = 7 and color radius 2hc =
7. The kernel we used is Epanechnikov kernel.

Texture and color are computed from the image through a set of linear filters using a modified
MR filter bank [26]. The feature vector is composed of two LoG filter responses on the L
channel (σ = 2, 4), six one-dimensional Gaussian filter responses on the L, u and v channel
(σ = 2, 4) and the maximum bar and edge responses on six different directions between 0 and
5π6 and three different variances (σ = 1, 2, 4). In total, each image pixel is represented by a 10
dimensional feature vector. All the filter responses obtained from the training set are put
together and clustered using K-means to build the texton library.

For the traditional histogram-based segmentation, the windowed texton histogram is used to
model the image appearance of the training set. Instead, we computed the texton histograms
for each mean-shift patch separately

(1)
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where M denotes the mean-shift patch, i is the ith element of the texton histogram, T (j) returns
the texton assigned to pixel j. The advantages of applying the texton histogram over mean-shift
patches are:

• mean-shift patches take the edges into the consideration;

• the number of mean-shift patches is much smaller, which decrease the complexity for
training and classification;

• visually similar and spatially close pixels are grouped together and given the same
label, which is a more natural approach than arbitrary square windows;

• mean-shift patches provide a natural link between the appearance and the bag of
keypoints model.

Although this method may still mislabel a whole mean-shift patch based on appearance, we
will show that the top-down information in our framework helps to correct these types of errors.

In Figure 2, an example is shown where mean-shift patches provide more distinctive
information than an arbitrary square window. The original image (top-left) is processed with
mean-shift (top-right). The single mean-shift patch (middle-left) is represented by texton
histogram (bottom-left), where a 31×31 square window (middle-right) has a completely
different texton histogram (bottom-right). The classification based on these two texton
histograms labeled the mean-shift patch as airplane, but the square window patch as sky.

2.2. Spatial Keyton Histogram

Given a training image, the Harris corner detector is applied on the gray-level image to detect
the interesting points. Affine invariant features are extracted from the neighborhood of the
detected points. We choose the 20 dimensional moment invariants [9] as keypoint descriptors
because of their low dimensionality and satisfactory performance. Although SIFT features
[17] are shown to be superior to other local descriptors for recognition [19], it did not provide
better results in our segmentation experiments. This observation is also shown in [20, p.81]
for Fergus et al. dataset [7].

The descriptors of all the keypoints in the training set are put together and K-means clustering
is used to build the dictionary of the cluster centers. Similar to the definition of textons, we
call the cluster centers of keypoints as ”keytons”. Each object in the training image is
represented by a histogram, h(i), of the keytons calculated from the keyton dictionary. Each
keypoint is assigned to its closest keyton based on the Euclidean distance

(2)

where O denotes the set of keypoints of a given object in the image. The O(j) returns the keyton
assigned to the ith keypoint.

Although bag of keypoints model, which we call the keyton histogram, has been successfully
used for object classification in many applications [25,18], it has been shown that recognition
accuracy is increased by considering the spatial correlation of keypoints [15,18]. We propose
a novel spatial keyton histogram to model the spatial configuration of keypoints.

The Figure 3 shows a set of keypoints which belong to three different keytons, noted as ◻,Δ
and ◇. For each keypoint in the image, we separate the image plane into cocentered circles
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using this keypoint position as the origin. In general, the range of r is from 1 to 5 in relative
distance, and θ has four values. Assume the ith keyton has Ni keypoints, then the spatial keyton
histogram h(i, j) is defined as the average of the jth keytons spatial distribution relative to all
the keypoints of the ith keyton. It can be calculated as

(3)

where k denotes the kth bin of h(i, j) and it is defined from r = 1 and θ = 0 to r = 5 and θ =
3π/2, a total of 20 values. The bin(k, m) is the kth bin of the coordinate system with mth keypoint
as the origin (refer to Figure 3). A four-tap Gaussian smoothing filter is used to postprocess
the histograms. The proposed spatial keyton histogram is quasi affine invariant.

In Figure 4, we show two sets of data where each keyton has the same number of keypoints
but different spatial configurations (upper part of Figure 4). They can not be separated by the
bag of keypoints model, but have different spatial keyton histograms (lower part of Figure 4).
For each configuration, note that the affine invariant is shown in h(1, 1), h(2, 2), h(3, 3) and
the different spatial relationships between ◻, Δ and ◻, ◇ are captured in h(1, 2), h(2, 1) and
h(1, 3), h(3, 1) in bottom-left and bottom-right of Figure 4.

2.3. Global Shape Model

The global shape model is the top-down constraint used to group the image patches into real
objects. The pictorial structure model and PCA was used to encode the appearance and
represent the shape in a joint density for object recognition [7]. In stead of using complex shape
model, the Elliptic Fourier Descriptor (EFD), which was shown to be successful in [3], is
chosen to model the global shape of the objects. There are several reasons to use EFD:

• the EFD has a simple histogram-like representation. In our algorithm we use the first
32 (4 * 8) coefficients;

• the normalized EFD is invariant to rotation, translation and scaling;

• the close contour reconstructed from EFD is always closed.

EFD is the Fourier expansion of the chain coding. Assume we have M points on the close
contour. Following the approach of Kuhl and Giardina [12], the EFD coefficients of the nth

harmonic are:

(4)
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where si, . The Δxi and Δyi are the changes in the x and y
projection of the chain code at the ith contour point.

Figure 5 shows the 32 EFD coefficients for six images. It was found that the first 4 * 8 EFD
coefficients already contain enough information for separating the objects into different
classes.

3. Training Procedure

The training set contains images which were manually segmented into different objects. All
the features of the training images are put together and K-means are used to generate the texton
library. The exact value of K will be given in the experimental section. The mean-shift patches
are generated from each training image. The texton histograms are calculated for each patch
and saved in the training texton histogram dictionary. In our model each histogram corresponds
to one mean-shift patch.

The training images are transformed into gray-level and the Harris corner detector is applied
to detect the keypoints. The moment invariants are extracted and a keyton library is constructed
using K-means. For each training image, the keyton histogram is computed to record the
frequency of occurrence of each keyton. In order to save space and computation time, we are
using a more compact way to record the spatial keyton histogram.

Assume we have n = 1…N training images and each image contains keypoints from k = 1…
Mn keytons. The spatial keyton histogram h(i, j) of each training image contains Mn * Mn

histograms. For all training images, we get  histograms. All the histograms are
clustered using K-means with K equal to 50 and the clustering centers are recorded. For each
training image, we assign each histogram of h(i, j) into its closest clustering center. The number
of the histograms for the nth training image is decreased from Mn * Mn to 50. This compact
spatial keyton histogram represents the patterns of spatial arrangement among keypoints in the
training image.

The last step for training is the shape modeling using EFD. For each training image, we extract
the contours of the object from the masks and represent each contour using the first 32 EFD
coefficients. Note that the shape training based on EFD is optional because only certain type
of objects have discriminative contour information. Cars, airplanes, and tigers, etc. have
distinct contour shape but this is not the case for sky, water, etc. After the EFD coefficients of
all the exemplars contours are calculated, a simple agglomerative clustering is applied over
EFD descriptors to find the clustering centers for each class of objects.

4. Segmentation Algorithm and Testing

In this section we will explain the segmentation algorithm and testing procedure shown in
Algorithm 1. The T, K, S, G represent the four training dictionaries: texton, keyton, compact
spatial keyton, and EFD shape descriptors (refer to Figure 1). Given a test image, each detected
keypoint is assigned to a mean-shift patch based on its spatial coordinates. Because some
keypoints may locate on the borders of the patches, we inflate each patch with four pixels. For
each mean-shift patch j, the label(j) is the final label of this patch. The pt(label(j) = l|l), pk(label
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(j) = l|l) and ps(label(j) = l|l) are used to describe the likelihoods given label l based on texton,
keyton and compact spatial keyton histogram similarities with the three dictionaries T, K, S.
For abbreviation we write them as pt(j, l), pk(j, l), ps(j, l) and define a set fv = {t, k, s}.

For classification we are using the nonlinear support vector machine (SVM) with a Mercer

kernel [8]. Using the training dictionaries T, K and S, we train a  for each class l. The
SVM decision function in kernel formulation is

(5)

where κ is the Mercer kernel defined as . The xi ∈ {T, K, S}, yi

∈ {-1, + 1} are the training samples and their labels. The αi and b are the learned weights and
learned threshold. The τ is the mean value of χ2 distances between 100 pairs randomly selected
training histograms. The χ2 distance is

(6)

where h1 is the histogram of test patch and h2 is a member of {T, K, S} with P denoting the
dimension. Multiple object labels are assigned to the jth test patch with probabilities calculated
using the positive raw output of (5)

(7)

where ϰfv (j) is the histogram of test patch j.

Based on texton histogram, the appearance likelihood pt(j, l) for each patch j is calculated first.
Then multiple hypotheses are generated using the keypoints located in set J′ (please refer to
Algorithm 1 for definition). The likelihoods pk(j, l) and ps(j, l) are computed using (7). This
procedure form a loop until all the hypotheses are scored. The final label(j) for each mean-
shift patch j is decided by maximizing the sum of the log likelihoods.

Algorithm 1. Segmentation algorithm and testing procedure

Input: Given a test image x and the training histogram dictionaries T, K, S and possible
G. The number of classes is L, l = 1, …, L.

• Apply Harris corner detector and extract the moment invariant descriptors from
the gray level image.

• Calculate the mean-shift patches and represent the likelihoods of each patch as
pt(j, l), pk(j, l) and ps(j, l) where j = 1…J, the number of patches in image x is J.

• For j = 1…J
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– Build texton histogram ϰt (j).

–
For l = 1…L: calculate  using (5) and the negative outputs of
sum are forced to be 0.

–
For l = 1…L: if , use (7) to calculate appearance likelihood
pt(j, l).

• For l = 1…L

– Record the patches satisfied pt(j, l) > 0 as set J′, generate hypothesis

.

– Collect all the keypoints inside H(l) and compute the keyton histogram
and compact spatial keyton histogram ϰk (l), ϰs (l).

–
Using (5), calculate  and .

– For all patches j ∈ J′, compute pk(j, l) and ps(j, l) using (7).

• For j = 1…J

• For certain objects which have distinctive contours, the result is refined by
minimizing the cost function Φ (R(C))

where  and . The ϰg (l) and hg ∈ G (l) are the
testing and training EFD shape descriptor, respectively. The negative outputs of
svm are forced to be 0.

Some segmented objects can be refined using EFD shape descriptors. This step is completely
unsupervised. Only if the proposed objects contain distinctive contours, which are known in
the training stage, the EFD descriptors are applied for shape matching. This is implemented
by minimizing the cost function Φ(R(C)) where C is the envelop of all the patches labeled as
l and R(C) is the region inside the contour. The denominator is used to avoid trivial solutions.
The cost function can be calculated by simply flipping the labels of those object patches which
change the object's global shape from outside towards the center of the image. Because only
a small number of the object patches will change the global contour, it actually runs very fast.

Figure 6 shows one complete procedure of segmentation. We generate several hypotheses and
marked each patch by maximizing the likelihoods obtains from appearance and keypoints. The
final result is refined using global shape information. We also show in Figure 6j the hand-
drawn segmentation result rendered by a human.
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5. Experiments

We used real images to test our algorithm on three different datasets:

• our MHMS 11 which is composed of images taken from Caltech101 [5], COREL
[2] and Google search;

• the Sowerby 7 dataset [10], [24];

• the MSRC 21 dataset [24].

All the datasets contain multiple objects with different viewpoints, illuminations and scales.
For all the experiments we chose only 40% of the images for training and the remaining
60% for testing. For the Sowerby image database, in order to get enough sampling from the
objects that only shown in part of the images, such as car and road marking, we manually
selected the training images that do contain these objects.

MHMS 11

This dataset contains 100 color images of 192 × 128 and eleven different classes. We use mean-
shift segmentation with minimum region size of 100. The dimension of the texton library and
keyton library is 11 * 50 and 11 * 100. The segmentation accuracy of each class is shown in
Table 1. The overall pixelwise segmentation accuracy is 86.0%. For class plane, car, tiger and
zebra in this dataset, global shape prior is applied and found to be useful. It increases the
segmentation accuracy by 2.7%.

Sowerby 7

This dataset [10] contains 104 color images of 96 × 64 and seven different classes. We use
mean-shift segmentation with minimum region size of 40 because of the smaller image size.
The dimension of the texton library and keyton library is 7*50 and 7*100. The overall pixelwise
segmentation accuracy we obtained is 88.9%. Compared with the results reported in [10]
89.5%, and [24] 88.6%, where the highest percentage is obtained using about half for training
and context depended information. We have only used 40% images for training and did not
consider context information.

MSRC 21

This is one of the most complete multiple object database for segmentation. This dataset
contains 592 color images of 320 × 213 and twenty-one objects. We use mean-shift
segmentation with minimum region size of 150. The dimension of the texton library and keyton
library is 21 * 50 and 21 * 100. The overall pixelwise segmentation accuracy we obtained is
75.1%, which is higher than the accuracy reported in the literature [24] 72.7%. Our algorithm
also provides higher segmentation accuracy for 18 classes out of 21 classes than [24], which
are marked in grey in Table 2. When the segmented objects contain car, airplane, tree, face or
sign, EFD shape descriptors are used to refine the labeling. However, because of the inter-class
variability of this database, especially in some cases there exist multiple objects which belong
to the same class in one image, global shape prior doesn't provide big improvement. Figure 7
provides some segmentation results.

One of the major advantages of our method is the speed. As each mean-shift patch is labeled
once, we save the time. A 320×213 image can be processed less than 1 minute with a P3 1.5G
Hz processor with 1G RAM using the MATLAB implementation. It can be much faster using
C++.
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6. Conclusions

It is worth analyzing why this simple framework works well for multiple class object
segmentation. From our research we conclude that interleaved recognition and segmentation
might increase the accuracy for both tasks. Mean-shift patches provide a natural link between
recognition and segmentation with the reduction of the computational time as a valuable side
benefit. The keyton histogram, coupled with the spatial keyton histogram, gained benefits from
the bottom-up appearance information. However, mean-shift segmentation itself can provide
errors. It is also possible that the proposed method make mistakes for visually similar objects.
The ambiguity of sharing features between different classes makes the generic object
segmentation a very difficult problem.

In this paper, we have presented a simple but effective segmentation framework for performing
multiple class object-based segmentation. We have also proposed a novel and simple model
to represent the keypoint spatial configurations called spatial keyton histogram. The EFD shape
descriptor was applied to refine the final segmentation results for certain type of objects. We
demonstrate that our method provides good results for multiple class segmentation using real
datasets.
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Figure 1.

The graphic model of the segmentation framework.
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Figure 2.

A mean-shift patch and a 31 * 31 square patch and their corresponding texton histograms. See
text.
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Figure 3.

An illustration of spatial keyton histogram,where we only show r = 1, 2, and 3 in relative

distance and , π and . The yellow region is the 10th(2*4+2, r = 3 and ) bin (10,◇)
of the coordinate system with the position of the center as ◇ the origin.
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Figure 4.

Two spatial keyton histograms h(i, j) with three keytons ◻, Δ and ◇ denoting the 1st, 2nd
and 3rd keyton. Affine transformations are performed on the keypoints belong to each keyton
separately in the upper-left to produce the upper-right configuration. Nine h(i, j) are shown for
each of the two configurations.
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Figure 5.

Examples of the Elliptical Fourier Descriptors (EFD). The contour is superimposed on original
image.
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Figure 6.

A testing example. (a) The original test image. (b) The mean-shift segmentation results. (c)
The object labeling using appearance only. Different colors corresponding to different objects.
(d) - (g) Four hypothesis for car, building, chair and cow. The brighter intensity means higher
probability. (h) The object labeling which maximizes the sum of the log likelihood. (i) The
refined segmentation result using the global shape of the car. (j) The hand-draw segmentation
by a human.
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Figure 7.

Some segmentation results using our algorithm. The first row is the original image. The second
row is the mean-shift segmented patches. The third row is the Harris corner detector results
with red circles marking the keypoints. The fourth row is the labels provided by the algorithm.
The fifth row is the hand-draw label by human.
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