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Multiple Clustering Guided Nonnegative Matrix
Factorization for Hyperspectral Unmixing

Wenhong Wang *“, Yuntao Qian

Abstract—Spectral unmixing is an important technique for
quantitatively analyzing hyperspectral remote sensing images. Re-
cently, constrained nonnegative matrix factorization (NMF) has
been demonstrated to be a powerful tool for spectral unmixing.
However, acquiring the problem-dependent prior knowledge and
incorporating it into NMF as effective constraints is a challenging
task. In this article, a multiple clustering guided NMF unmixing
approach is proposed under a self-supervised framework, which
has been used to effectively learn high-level semantic information
from the data with a surrogate task in many applications. Specif-
ically, in order to provide self-supervised information to guide
the NMF-based unmixing model, multiple clustering is integrated
into the optimization process of NMF. Moreover, by introducing
interaction between each clustering and the unmixing procedure,
more accurate proximate endmember signatures and proximate
abundance distributions are expected to be acquired and used to im-
pose self-supervised constraints on endmembers and abundances,
respectively. Consequently, effective prior information about end-
member signatures and abundance distributions is captured and
simultaneously integrated into NMF as valuable constraints to
promote unmixing performance. Experiments are conducted on
both synthetic data and real hyperspectral images, and the superior
performance of our method is shown by comparing it with several
state-of-the-art algorithms.

Index  Terms—Hyperspectral image (HSI) unmixing,
multiple clustering, nonnegative matrix factorization (NMF),
self-supervised learning.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) are usually captured
H using many different electromagnetic bands and can con-
tain rich spatial and spectral information about the observed
scene, and thereby have many real applications. Limited by the
low spatial resolution of the sensors, each pixel of an HST usually
cover a relatively large ground area, so that its spectral informa-
tion may be a mixture of several pure spectra (i.e., endmembers)
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of the materials present in this area [1]. These mixed pixels
sometimes have serious implications for quantitative analysis of
HSIs. One of the techniques to tackle this problem is hyperspec-
tral unmixing (HU), by which a set of endmembers included in
an HSI and the corresponding proportions (i.e., abundances) of
them in each pixel are estimated. To solve HU problem, two types
of spectral mixture models are commonly used for HU: the linear
spectral mixture model (LSMM) [1] and the nonlinear spectral
mixture model (NLSMM) [2]. NLSMM is mainly adopted to ex-
press a complex spectral mixing mechanism caused by multiple
scattered effects of source radiation among several endmembers.
LSMM assumes that source radiation is only reflected once by
the ground materials before being captured by the sensor. Owing
to the flexibility and tractability, LSMM is a widely used model
to express the mixture mechanism of HSIs.

Under LSMM, numerous HU methods have been proposed
over decades [2]. A type of representative methods is developed
based on the principle of convex geometry, which supposes that
the observed pixels can constitute a simplex in the Euclidean
space with vertices denoting endmembers. Then, the task of
unmixing is transformed to find a group of vertices that can form
a simplex with maximum volume, such as N-FINDR algorithm
[3], pixel purity index [4], vertex component analysis (VCA) [5],
and so on. Recently, nonnegative matrix factorization (NMF) [6],
[7] based HU approaches have attracted much attention because
of its several advantages, such as the natural nonnegativity and
good interpretability of unfixing results. NMF regards HU as
a blind source separation problem and aims to decompose an
HSTinto two nonnegative factor matrices. Thus, it can unmix the
endmembers and the corresponding abundances simultaneously.
However, because of the nonconvexity of its objective function,
the standard NMF is prone to fall into local minima, and also
vulnerable to the effects of initial values [8]. One effective
measure to tackle these issues is to impose additional constraints
on the factor matrices. For example, Miao and Qi [9] introduced
geometrical principle-based constraint on endmembers, so that
the obtained minimum volume constrained NMF (MVCNMF)
can unmix the highly mixed data. Qian et al. [10] proposed a
L/, sparsity-constrained NMF (L /o-NMF) unmixing method
by employing an effective L, regularizer that can enforce the
estimated abundances to be more accurate and sparse. Following
the same tactic, graph regularized NMF variant (GLNMF) [11]
and spatial group sparsity regularized NMF (SGSNMF) [12]
have been proposed in pursuit of abundance estimation with
structured sparsity. In addition, spatial information has also
been used to construct effective constraints for the NMF model,
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such as abundance separation [13], piecewise smooth [14], and
substance dependence constraints [15]. Differ from the NMF-
based unmixing framework, some recent works tackle the HU
problems by decomposing a third-order tensor of the target HSI
via tensor factorization, so that the intrinsic spectral-spatial joint
structure of HSIs can be fully utilized. For example, Qian ef al.
[16] proposed a matrix-vector nonnegative tensor factorization
(MVNTF) method by integrating the characteristics of canoni-
cal polyadic decomposition and Tucker decompositions. Xiong
etal. [17] introduced total variation regularization into MVNTF-
based unmixing model, by which the global spectral-spatial
information and local spatial information were simultaneously
exploited. Using the idea of increasing additional constraints,
Feng and Wang [18] improve the plain MVNTF method by
integrating sparseness, volume, and nonlinearity constraints into
the cost function. Besides, low-rank constraints for abundance
and endmember tensors have also been adopted in NTF-based
unmixing methods [19], [20].

Some NMF variants for HU are developed by making use
of semisupervised information. Recently, the prior signature
information of partial known endmembers has been recognized
as another important problem-dependent knowledge for HU.
This is reasonable due to the fact that some land covers can be
known in advance, for example, by field investigation [21], in
real applications. Under such circumstances, spectral signatures
of known materials can be obtained from the spectral library
[2], or even be retrieved directly from the image regions that
contain only pure endmembers [22]. Based on the prior spectra,
different regularizations have been devised to impose effective
constraints on endmembers in NMF-based unmixing models
[21]-[24]. For example, Tang et al. [21] proposed an unmixing
method, referred to as NMFupk, in which the known endmem-
bers in the endmember matrix are constrained to be fixed in
the optimized process, whereas the remainder elements of the
endmember matrix need to be updated iteratively. To improve
NMFupk, Wang et al. [23] explored the correlation between
the known and unknown endmembers by introducing a function
into the unmixing model, which describes the property that the
known and unknown endmembers lie in the nearly orthogonal
planes. This made the known endmembers can be used to
help the estimation of the unknown endmembers. Tong et al.
[22] developed an NMF-based unmixing method with partially
known endmembers (called NMF-PPK) by incorporating a reg-
ularization that can minimize the difference between the known
endmembers and the estimated ones. Although these works have
improved the unmixing performance of NMF effectively, they
also suffer from the following three problems: first, the spectra
in the spectral libraries are seldom acquired under the same
conditions with real HSIs [25]. As a result, there may be a
large deviation when the spectra from these libraries are used
as known endmember signatures; second, the completeness of
these libraries is not guaranteed [22], which limits the successful
application of these methods; third, it is often the case that
prior knowledge of only rare endmembers is available on the
target scene in practical applications, so that the performance
enhancement of these methods is more confined. Therefore,
how to accurately mine the implicit signature information of
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all the endmembers from the data, and take it as semisupervised
information to devise effective regularizations for NMF remains
a challenging problem.

In this article, to take full advantage of the self-learning
semisupervised information about endmembers and abun-
dances, anovel NMF-based unmixing approach, named multiple
clustering guided NMF (MCG-NMF), is proposed. Our work
assumes that the distributions of practical land covers show
significant locality [10], [26], and lots of mixed pixels in an HSI
may include only one or very few kinds of dominant ground
objects [27]. Therefore, these pixels might carry the signature
information of endmembers to a large extent and can be extracted
to guide the unmixing. According to this observation, in this
article, the proximate endmember signatures (PESs) and prox-
imate abundance distributions (PADs) are captured to supply
valuable cues for more accurate estimation of endmembers and
abundances in NMF-based unmixing under the framework of
self-supervised learning [28]. As an important type of machine
learning approach, self-supervised learning can mine the high
level semantic information from the nature of data with a surro-
gate task, and has been successfully applied in many fields, such
as video hashing [28], classification of HSIs [29], and learning
visual representation [30]. With self-supervised learning, PESs
and PADs as semisupervised information can be effectively
learned from the data via multiple clustering tasks, rather than
supplied by the users. Specifically, to provide more accurate
PESs for the NMF-based unmixing model, we conduct multiple
clustering to the target HSI with the optimization progress of
NMEF. Although several clustering methods, such as hierarchical
clustering [31] and iterative self-organizing data [32], can be
used to make effective cluster analysis to HSIs, we adopt the
K-means method to achieve multiple clustering considering its
ease of implementation and computational effectiveness. Fur-
thermore, based on the obtained PESs, the corresponding PADs
are effectively calculated and integrated into NMF as semisu-
pervised guidance for abundance estimation. This can not only
effectively confine the solution space of NMF to meet the need
of HU application, but also promote more accurate estimation
results as well as stable unmixing performance. For the sake
of clarity, the contributions of this article are summarized as
follows.

1) We propose a novel NMF method for HU based on the
guidance of multiple clustering. By conducting clustering
analysis on target HSI, PESs and PADs are obtained as
semisupervised information and used to construct effec-
tive regularizations for NMF. This is reasonable consid-
ering that only one or few kinds of substances play a
dominant role in a local region because of the locality
property of HSIs in spatial domains [26], [27]. Thus,
effective clustering method can be used to extract valu-
able endmember and abundance information to guide the
unmixing process.

2) Our method integrates both self-supervised learning [29],
[30] and matrix factorization into a unified framework,
in which more accurate semisupervised information used
by NMF can be automatically learned via interactions be-
tween the multiple clustering and the procedure of matrix
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factorization. Consequently, the proposed method can be
effectively applied in scenarios where the endmember and
corresponding abundances are not known a priori.

3) The performance of our approach is validated on both
synthetic and real HSIs. The experimental results demon-
strate that the proposed method can outperform several
state-of-the-art algorithms.

The remainder of this article is structured as follows. A
brief description of LSMM and NMF is given in Section II.
Then, we present the formulation of our proposed MCG-NMF
and its optimization, as well as some implementation issues in
Section III. Next, extensive experimental results and analysis on
synthetic data and real HSIs are discussed in Section I'V. Finally,
we conclude this article and provide possible future research
directions in Section V.

II. RELATED WORK

In this section, we briefly describe the important research basis
of the proposed MCG-NMF method on HU, including LSMM
and NMFE.

A. Linear Spectral Mixture Model

LSMM is widely used in HU research because of its simplic-
ity and effectiveness. According to LSMM, an observed pixel
spectrum of an HSI can be represented as a linear combination
of a set of endmembers included, in which the weight of each
endmember corresponds to the fractional abundance of this pixel
spectrum. To be specific, LSMM can be formalized as follows:

yn:Ean+Vn (D

where vector y, denotes the nth pixel spectrum and
E = [ej,es,...,ep] € RE*P is the endmember matrix with
each column representing an endmember signature; a, =
(@n1,@n2,...,a,p) " stands for the abundance vector corre-
sponding t0 y,.; Vi, = (U1, Un2, ..., Upr) | denotes an additive
noise vector, in which the components can be assumed to subject
to independent and identically distributed (i.i.d.) zero-mean
Gaussian distribution [33]. In order to have explicit physical
meaning, the abundance vector is usually subject to the abun-
dance nonnegative constraint (ANC) and the abundance sum-
to-one constraint (ASC) [2], which are, respectively, defined as

ANC: app >0,p=1,..,P )
P

ASC: > ap, =1. 3
p=1

Using matrix operations, (1) can be rewritten as more compact
form, i.e.,

Y=EA+V (4)

where Y = [y1,y2,...,yn] € RE*N is the HSI matrix with
N pixels and L bands; A = [aj, ay,...,ay] € RP*N denotes
the abundance matrix; and V = [vy,va,...,vy] € RELxN rep-
resents the noise matrix. Note that the number of endmembers
included in a real HSI is usually much smaller than the number of
bands, i.e., P < L. Considering that both E and A are unknown
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in practice, the task of HU can be regarded as a matrix fac-
torization problem that aims to decompose a high-dimensional
observation matrix into two low-dimensional factor matrices
with the subjection of abundance matrix to ANC and ASC.

B. Nonnegative Matrix Factorization

The NMF method was originally proposed by Lee and Seung
[6] in Nature for the purpose of reducing the dimension of
high-dimensional data. Thereafter, it has been developed to be
a powerful tool for statistical analysis [8]. Specifically, NMF
aims to factorize a nonnegative data matrix into the product
of two factor matrices with nonnegative entries, so that the
reconstructed data matrix can approximate the original one as far
as possible. Given that Y denotes the nonnegative observation
matrix with each column as a data sample, the standard NMF
can be formally modeled as

min F(E, A) = Y —EA|%, st.E,A=0  (5)

where E and A represent nonnegative matrix factors; || - || »
and “>" stand for the Frobenius norm and the componentwise
greater-or-equal relation of a matrix, respectively.

To optimize both matrix factors EE and A of the objective
function in (5), Lee and Seung [7] presented the famous multi-
plicative update rules (MURs) as follows:

E—Eo (YA 9EAAT) (6)
A+~ AOE'YOE'EA) (7)

where (-) " denotes the matrix transpose; “®” and “©” represent
elementwise multiplication and division between two matri-
ces, respectively. In addition, some representative optimization
methods for NMF were also investigated, such as the active set
method [34], projected gradient method [35], projected non-
negative least squares [36], and optimal gradient method [37].
However, the numerical minimization of the objective function
F(E, A) in (5) still encounters some challenges owing to the
nonconvexity of F(E, A) w.r.t. matrices E and A simultane-
ously. This causes the solutions of standard NMF to be prone to
being trapped into local minima. Additionally, the standard NMF
also suffers from the problem of nonunique solution [38]. To
alleviate these problems, various constraints, such as manifold
[39], sparseness [40], and low-rank constraints [41], as well as
smooth constraint [42], have been introduced into the standard
NMF according to the requirements of different applications,
and the resulting variants of NMF are called constrained NMF
(CNMF). Generally, the CNMF can be expressed as

min C(E, A)=|Y - EA|% + aJ1(E) + BJ2(A),

st. E,A=0 (8)

where functions .J; (E) and J2(A) are regularization terms with
the role of enforcing certain constraints on both matrix factors;
« and 3 are two regularization parameters used to adjust the
effects of the corresponding regularization term on the objective
function C'(E, A).
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In order to solve the CNMF problem defined by (8), the
Lagrange multipliers method is one of the commonly used
methods to deduce the update rules of matrix factors under
the alternating optimization framework [11], [39]. Considering
the objective function C'(E, A) in (8), the Lagrange function
associated with it is

[(E,A,9,9) = ||Y - EA|% + aJi(E) + 5J2(A)
+ Tr(®E") + Tr(PAT) )

where ® and ¥ are two Lagrange multipliers matrices associated
with E and A, respectively. Then, the following conditions,
called Karush—Kuhn-Tucker (KKT) conditions [43], for the
CNMF problem have to hold:

or
OE|g=£.=0, §x|a=A.=0

POE =0,¥®A* =0
®=0,>0
E*>=0,A* >0

(10)

where (E*, A*) denotes alocal minimum of the CNMF problem.

III. MCG-NMF UNMIXING METHOD

Here, we first address the regularization terms introduced for
NMEF, as well as the proposed MCG-NMF unmixing model that
can exploit the self-learning semisupervised information during
the unmixing process. Then, the MURs and the corresponding
optimization technique are introduced. Then, the implementa-
tion issues and the MCG unmixing algorithm are presented.

As aforementioned, incorporating prior signatures of particu-
lar endmembers into NMF as semisupervised information plays
an important role in improving the unmixing performance. The
related methods [21]-[24] commonly assume that the signatures
of endmembers known in advance can be acquired from the
available spectral libraries. However, the practical applications
of these methods suffer from the incompleteness of dependent
libraries or the diversity between the spectra of the libraries and
the corresponding actual endmember signatures of HSIs [25].
As a result, the performance of such methods is not always
satisfactory. Fortunately, a recently proposed weakly supervised
NMF [44] that has been successively applied in cluster analysis
provides the chance to introduce imprecise prior information
about endmembers and abundances into NMF-based unmixing
model. However, specifying prior information for endmember
signatures and abundance distributions remains a hard work
in practice. In this article, inspired by the principle of self-
supervised learning [28]-[30], we aim to extract prior infor-
mation about signatures of all the endmembers and correspond-
ing abundance distributions by conducting multiple clustering
analysis on HSIs during the optimization process of NMEF,
so that problem-dependent knowledge about endmembers and
abundances can be acquired via self-learning means, and used
as effective semisupervised guidance for NMF-based unmixing
procedure.
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A. Self-Supervised Constraint for Endmembers

Because of the locality of material distribution in a real scene,
all endmembers in general contribute unequally to a specific
pixel in HSIs [10], [26], [45], so that many pixels are dominated
by only one or very few kinds of endmembers [27]. Thus,
effective cluster analysis technology can be used to approxi-
mately estimate endmember signatures from the data with the
number of clusters and endmembers being the same [45]-[47].
For example, in [46], endmember signatures used to construct
desired constraints for Bayesian NMF are estimated from data
via subspace clustering. In another study [45], spectral unmixing
is formulated as a clustering problem, and endmember extraction
is implemented by a modified K-means method. Considering
its computational efficiency and ease of implementation, the
K-means method is integrated into NMF to help estimating PESs
of all the endmembers in this study.

First, we present how to extract PESs of all the endmembers
by conducting cluster analysis on the target HSI via the K-means
method. Based on the clustering results, we construct a group
of PESs for each type of endmember by first generating a mean
pixel in the corresponding cluster, and then select a set of pixels
that have better similarity to this mean pixel. Specifically, clus-
tering analysis is conducted on the data matrix Y first, and a set
of clusters {Cy, Cy, ..., Cp} is obtained, in which each cluster
includes a subset of all pixels in the data and the intersection of
C; and Cj, ¢ # j is the empty set. Next, the mean pixel r;, of
each (), is calculated by

r

Z yvi,p=12,..., P

Yi ch

"G

where |C},| denotes the number of pixels in cluster C),. Then,
based on r,, we select K pixels, i.e., Gp = {y,,ya, .., ¥o },
from each cluster C), according to the principle of K-nearest
neighbors [48], which consider the Euclidean distance be-
tween r, and the other pixels y; € C,, i.e., |[r, —y;|. Here,
without loss of generality, we let |lr, — y&| < |[jr, — ys ™|,
where k =1,2,..., K — 1. Accordingly, for each endmember
e,, K + 1 pixels, i.e., {r,}|JG, , are obtained and regarded
as its PESs. Finally, we construct X + 1 PES matrices R*, k =
1,2,..., K + 1, as follows:

R — {[y’ﬁy’g,...,y’;, o yh], fork=1,2,..., K

(12)
U, fork = K +1

where U = [rq,r2,...,Tp, ..., Tp; y’lf, p=1,2,....,Pand k =
1,2, ..., K, represents a PES with index k taken from the cor-
responding G,. As an illustration, the generation procedure of
PESs and the PES matrices is shown in Fig. 1.

In order to make full use of the estimated PES matrices
in NMF-based HU, we introduce a self-supervised constraint
for endmembers, by which each estimated endmember is com-
pelled to be similar with the corresponding PESs in all PES
matrices. To be specific, a function J(E) that measures the
average difference between each estimated endmember e, in

k

endmember matrix E and the corresponding signatures ry in

matrices R*, k = 1,2, ..., K + 1, is constructed via the F-norm
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K-nearest neighbors of PES Matrices with Each

Each Pixel Spectrum  Column Denoting a PES
. "
- J
R2
R3
R4
\d

Ilustration of the generation procedure of PESs and the PES matrices with &K' = 3. By conducting clustering analysis on the data matrix via K-means, a

set of clusters and corresponding mean pixel spectra are obtained. Then, the K-nearest neighbors of each mean pixel spectrum are found with K = 3 according to
the Euclidean distance between this mean pixel spectrum and the other pixels within the same cluster. Consequently, each mean pixel spectra and their K-nearest
neighbors are regarded as a group of PESs of a certain type of endmember. Based on the obtained PESs, each PES matrix R¥, k = 1...4, is constructed by selecting
a PES from different PES group, except for R* that is consist of all the mean pixel spectra.

of the matrix, which is formalized as

K+1

— 1 k _ 2
J(EB) = ; I(R* — E)|f. (13)

Then, the function J (E), as aregularization term, is incorporated
into the objective function of standard NMF, and the obtained
objective function is given by

K+1
(6%
F(E,A) =Y -EA|% + i Y IR -B)E 14
k=1

where « is the regularization parameter that controls the in-
fluence of J(E). Note that the second term at the right-hand
side of (14) can act as a driving force to impel each estimated
endmember located near the corresponding PES in the input
space, whereas the first term can minimize error between the
original data matrix and the reconstructed one. To achieve a
better compromise between these two acting forces, a suitable
value should be chosen for a.

Although several groups of PESs have been extracted and
used to impose the self-supervised constraint on endmembers,
we can further acquire another type of valuable information from
the clustering results to designate the significance of each set of
PESs. In other words, the proximate degree of each PES set
{r,} UG, is worth exploring and using to optimize the design
of function J(E) as follows:

K+1
1
Jweight(E) = K+1 E ”(Rk - E) vV ”% s)
k=1

where W stands for the diagonal matrix and is referred to as
proximate matrix; wy p,p = 1,2, ..., P, denotes the proximate

degree of PES set {r,, } | G). In order to determine the diagonal
elements of the proximate matrix W, we consider the similarity
relationship between each pixel in {r,} |G, and their mean

pixel m, = m Yyieir,jUG, Vi - If the average simi-
larity is high, this means the PES set {r, } | G, has high purity,
and hence has a great probability of containing the proximate
signatures of a latent endmember. Accordingly, a bigger weight
value should be assigned to the corresponding w,, , so that the
estimated endmember e, holds a smaller distance with each
pixel in {r,}|JG,. To achieve this effect, inspired by the
approach of generating hyperedge weight in the hypergraph
model [49], the diagonal elements w,, ,, is calculated by

ly; — my|
exp <_JU—2P

where 0 = 775 Yot Ytysefen} UG, [y — my|| repre-
sents the average distance between the mean pixel m,, and all
the pixels y; € {r,} | G,. With this strategy, the value of each
diagonal element wy, ,, is determined by making a better tradeoff
between the similarity in each class and the average similarity
among all the classes.

By replacing the second term of the objective function in (14),
we obtain the following objective function:

Wp,p = E ,

yie{rpt UGy

(16)

K+1
«
F(E.A) = Y ~BAl} + =57 > (R~ EIW]3.
k=1

a7
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B. Self-Supervised Constraint for Abundances

Based on the obtained PESs of all the endmembers and class
information of each pixel spectrum, we estimate the PADs for
each type of endmember, so that effective constraint is imposed
on the abundance matrix of the NMF-based unmixing model.
Specifically, a matrix A is first obtained using the least squares
method as follows:

A = max(0, (R)'R)'(R)TY) (18)
where function max(+) is used to guarantee the nonnegativity of

A, whereas R denotes the average PES matrix given by

K+1

e PILE

In order to acquire more accurate PADs, the class informa-
tion of each pixel spectrum is further used to estimate the
PADs via the binary masking technique [50], which aims to
capture the dominant material present in a pixel. Specifically,
we construct another matrix A. € R”*¥ based on the clusters
{C1,C4,...,Cp, ...,Cp} as follows:

19)

{1, if pixel spectrumy; € Cp,i =1,2,..., N
[AC]pi = . .
0, otherwise

(20)

So far, two kinds of strategies to estimate the PADs are intro-
duced. Each strategy, if used separately, has its own advantages
and disadvantages. To integrate the estimated PADs effectively,
a common measure is to formulate them as a linear summation
with data-dependent weights. Nevertheless, this will lead to
more complex unmixing model and introduce another algorithm
parameter requiring to be set. To balance the simplicity of the
proposed unmixing model and the accuracy of the fused PADs,
based on the obtained matrices A and A, we generate the
integrated PAD matrix H by

= %(A +A.) (1)
which leverage the value of the two kinds of PADs in a balanced
way. It is worth noting that each column vector of A, only
includes one nonzero element, which enforces that each pixel
spectrum only contains one kind of endmember corresponding
to the main component in that pixel. Moreover, the obtained
PAD matrix H has a certain degree of sparseness owing to the
existence of zeros elements in matrices A . and A, which is in
accordance with the nature of abundance distributions of ground
objects in a real scene.

Considering that abundance matrix A should meet the ASC
constraint, the divergence-based function is used to quantify
the approximation degree of H from abundance matrix A.
Specifically, it is expressed as [7], [39]

D(E1A) = 33 (1

n=1p=1

2 apn) .2

This function reduces to the Kullback-Leibler divergence or rel-
ative entropy when 25:1 hpn = 25:1 apn,n = 1...N holds
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[39], so that each column of H and A can be regarded as the
probability distributions.

By introducing (22) into the objective function in (17) as a
self-supervised constraint for abundances, the unmixing model
of MCG-NMF is given as follows:

K+1
. _ _ 2 a E 2
gip F(B,A) = [Y ~BAJ + 257 > IR ~E)WI}
+ BD(H||A), st.E,A >0 (23)

where [ is the regularization parameter that controls the impact
of the corresponding regularization term. Note that rather than
keeping fixed, the matrix R* k = 1...(K + 1), W, as well as
H will be updated during the optimization procedure of MCG-
NMF based on a self-learning process, which is presented in
Section III-D.

C. Multiplicative Update Rules

Considering the nonconvexity of the objective function of
MCG-NMF in (23), we solve the proposed unmixing model
by alternately optimizing [51] each factor matrix with another
being fixed. Next, we deduce the MURs of MCG-NMF using
the method of Lagrange multipliers.

First, the objective function in (23) is re-expressed as

FE,A=Tr((Y —EA)(Y —EA)") + SD(H||A)

K+1

K_HZTr (EW — R*W)(EW — R*W)")

=Tr(YY') - 2Tr(YA'E") + Tr(EAA'E")

+ 522 hpnlog — hyn+ ) +aTHEWW'E")
K+1
+ ﬁ Z(Tr(RkWWT(R’W) —2TrEWW'R"))
(24)

where the first equality is based on the definition of matrix Frobe-
nius norm || D% = Tr(DD") with Tr(X) denoting the trace of
matrix X, and the second equality uses the properties of matrix
trace, i.e., Tr(BD) = Tr(DB) and Tr(D) = Tr(D"). Since the
factor matrices in (23) must meet Ey, > 0 and A, > 0, the
Lagrange multipliers corresponding to them can be defined as
®;, > 0and ¥, > O,respectively. Then, the Lagrange function
is defined by

I=Tr(YY")—2Tr(YA'E)+ Tr(EAA'E") +-aTr(EWW'E')
K+1

+KLHZ( OTH(EWW (RF)))+ Tr(RFWW' (RF)T)

P N
+Tr(QE )+ Tr(TAN)+8> ) (hpn log ZP - hpn+apn) .
pn

p=1n=1

(25)
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By taking the partial derivatives of I' w.r.t. E, we can obtain

r
ng = —2YA" + 2EAA" + 20EWW
2a Kl
e RFWW' 4+ @. 26
o ; + (26)

Next, we deduce the partial derivative of I w.r.t. A. Considering
the last term of (25), its derivative is calculated as

J0BD(H|A Bopn
98D(H]\A) )=B<—”+1). (27)
Oapn Qpn
Thus, we obtain the partial derivative g—g as follows:
r
g—A = 2E'Y+2E'EA+ TV -BHOA-Q) (28)

where Q € R”*¥ is an all-ones matrix. According to the KKT
conditions ®;,E;, = 0 and ¥,,,A,,,, = 0, the following formu-
las concerning E;, and A, can be deduced:

o(EWW ") Ey, + (EAAT),E,

K+1
= K+1 (RkWWT)lPElP + (YAT)lpElp (29)
k=1
B
(ETEA)Z?TLAPTL + §QpnApn = (ETY>pnApn
b HOoA),, A
+ 5 (HOA) p Ay (30)

Using these two equations, the MURs of matrices E and A can
be deduced as follows:

(YAT)ZP + KL-H Zf;ll(RkWWT)lp
(EAAT), + a(EWWT),,

Elp — Elp

3D

(B'Y)pn+ 5(HOA),,

A, +— A,
P P (ETEA + 2Q),n

(32)

D. Algorithm Implementation

In this section, several implementation issues of our algorithm
are presented. As the first issue, we address the multiple cluster-
ing strategy adopted in the proposed algorithm. As aforemen-
tioned, each type of PES is extracted based on the corresponding
cluster given by K-means, and it is expected that the mean vector
of each cluster is as similar as possible to the corresponding real
endmember. However, the clustering performance of K-means
is clearly affected by its initial values. To tackle this problem
and inspired by the hyperspectral clustering method developed
in [52], in our algorithm, we use the phased unmixing results
of NMF to construct effective initial values for K-means, and
run it multiple times on the target HSI with the optimization
progress of NMF. Specifically, let matrix U = [ry, s, ...,rp]
comprises the mean vector r;,, k = 1,2, ..., P of corresponding
clusters given by K-means the last time. After the two matrix
factors of NMF are optimized N I times iteratively, the K-means
algorithm is executed once more with its initial values taken
from the columns of matrix %(E + U), by which the estimated
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endmembers so far and the clusters given by K-means the last
time are expected to contribute equally to obtaining better initial
values for K-means. Based on the clustering results, we then
update R* W,aswellas H by (12), (16), and (21), respectively.
Note that when the K-means algorithm is run for the first time,
we initialize it by selecting P data points uniformly at random
from the range of HSI matrix Y, that is, each of P initial values
is generated by min(Y) + rand(0, 1) * (max(Y) — min(Y)),
where rand(0, 1) denotes the function producing the uniformly
distributed random numbers in the interval [0,1].

The second issue concerns the initialization of the proposed
algorithm. Given that the objective function of MCG-NMF in
(23) is nonconvex, the initial values of matrices E and A will
make a noticeable impact on the unmixing performance as
demonstrated by relevant research. Therefore, effective initial
values should be provided for these two matrices. According
to the characteristics of our objective function, we initialize E
and A using two methods: random initialization and clustering-
based initialization. By random initialization that provides val-
ues for E and A randomly in the interval [0,1], we aim to test
our algorithm on synthetic data under general conditions. In the
experiments on real HSIs, MCG-NMF employs clustering-based
initialization, which provides initial values for E and A as
follows.

1) The clustering analysis is conducted on the HSI matrix Y

using K-means.
2) Set E = U, where U comprises the mean pixels given by
the first run of K-means and is constructed according to
(12).

3) Using the obtained matrix E, the initial value of A is
provided by the fully constrained least squares (FCLS)
[53] algorithm.

The third issue is about the ASC constraint in LSMM. Con-
sidering that the abundance matrix A is subject to the ASC
constraint according to LSMM, we tackle this issue following
the method in [10] and [53], by which the ASC constraint is grad-
ually satisfied during the optimization process of MCG-NMF.
Specifically, the HSI matrix Y and the endmember matrix E
are, respectively, augmented as

Y, [;L} (33)
E
E, « [51;} (34)

where § is the punishment coefficient that adjusts the impact
of the ASC constraint on the objective function; 15 and 1p
are all-ones vectors. Then, in each update of A with MUR in
(32), the matrices Y, and E, are employed to replace Y and
E, respectively. Note that an appropriate value for § should
be given to balance its effects between the ASC constraint
and the convergence speed of the proposed algorithm. In our
experiments, it is set to 15 as suggested in [54].

The fourth issue concerns how to determine the number of
endmembers P. Recently, some effective methods have been
proposed to estimate the number of endmembers in HSIs, such as
hyperspectral signal subspace identification by minimum error
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Algorithm 1: MCG-NMF Algorithm For HU

Input: The HSI matrix Y =[y1,y2,...,yn] ERPY, the
algorithm parameter VI, the regularization
parameters « and [3;

Output: The endmember matrix E and the abundance

matrix A;

Determine the number of endmembers P;

Initialize matrices E and A;

Normalize the column of A to unit;

Augment Y to generate Y, according to Eq. (33);

Conduct clustering analysis on Y via K-means, then

obtain mean pixels rp,,p = 1,2, ..., P by Eq. (11);

Set matrix U = [ry,ra,...,rp;

7 Obtain R* k=1,...,K+1 and W by Eqs. (12) and (16)

respectively;
8 Generate H following Eq. (21);
9 Set iterCounter = 0;
10 while the algorithm stopping criteria are not satisfied do
11 if iterCounter == N1 then

N R W N =

=)

12 Conduct clustering analysis on Y via K-means
with initial values % (E + U);

13 Generate mean pixels r,,p=1, ..., P by Eq. (11);

14 Set U = (1‘1,1‘2,...71'13);

15 Compute R*, W, as well as H by Egs. (12),
(16) and (21) respectively;

16 Set iterCounter = 0;

17 end

18 Update E according to Eq. (31);

19 Augment E to obtain E, following Eq. (34);
20 Update A by Eq. (32);

21 iterCounter = iterCounter + 1;

22 end

(HySime) [55] and virtual dimensionality (VD) [56]. The K-
means method needs to know the number of clusters in advance.
The value of P estimated by HySime or VD can also be used as
the number of clusters in K-means. However, in our experiments,
the number of endmembers is assumed to be known a priori [10],
[11].

The fifth issue is about how to determine the appropriate value
of K, which remains a problem when the K-nearest neighbors of
the mean vector in each cluster are selected. Recall that we regard
the K-nearest neighbors of the mean vector as PESs of some sort
of endmember. If a smaller value of K is adopted, the obtained
PESs may lack accuracy owing to the noise interference in the
data. However, too big a value of K will cause the selected PESs
to be scattered, especially for HSIs with a high mixing degree.
In order to make a better balance between these two factors, we
set K = 4 in the experiments of this article.

The last issue concerns the termination criteria of the proposed
algorithm. We use two stopping criteria in our algorithm: 1)
the error tolerance of objective function F(E, A) in successive
iterations, i.e.,

|F(E(t),A(t)) _ F(E(t‘l),A(t‘l)ﬂ
F(E(t—l)vA(t—l))

(35)

5169

falls below a predefined threshold 10~* in ten successive it-
erations; 2) the maximum number of iterations reaches a pre-
specified value, which is set to 3000 in our experiments. With
these termination criteria, our algorithm will iteratively optimize
the two matrices E and A until either of the two conditions is
reached.

Based on the above implementation techniques, the pseu-
docode of the proposed MCG-NMF algorithm is given in Al-
gorithm 1. As can be seen from Algorithm 1, it mainly consists
of two parts: the initial part and the iteration part. The initial
part includes lines 1-9, by which we aim to initialize some
matrices needed by the iteration part. Based on lines 1-4, our
algorithm can determine parameter P, initial matrices E and
A, as well as construct matrix Y. In line 5, Algorithm 1 runs
K-means for the first time and the initial values for K-means
are generated by selecting P data points uniformly at random
from the range of HSI matrix Y as aforementioned. Based on
the clustering results via K-means, some matrices, such as U,
R*, W, and H, are obtained by lines 5-8, respectively. To
count the number of iterations of the algorithm, we initialize
a count variable iterCounter in line 9. Next, in the iteration
part, Algorithm 1 will iteratively update matrices E and A by
lines 18-20 until the number of iterations reach to a prespecified
amount NI. In this case, our algorithm will run lines 12-16,
by which K-means is executed once more based on the new
initial values given by % (E + U) according to line 12. Then,
by lines 13-15, the values for matrices U, R*, W, and H are
updated based on the clustering results of K-means. In line 16,
the algorithm reinitializes the variable iterCounter = 0 so that
it can run lines 12—16 once again after lines 18-21 are executed
NT times.

E. Complexity Analysis

Before presenting the experimental results, we briefly discuss
the computational complexity of MCG-NMF. According to Al-
gorithm 1, its computational cost mainly concerns the algorithm
steps of conducting clustering analysis via K-means, computing
R” and H, as well as updating E and A in the main loop. Given
the dimension of pixel spectrum L, the total number of pixels NV,
and the endmember numbers P, the computation cost involved
by the K-means method is O(tLPN), where ¢ is the iteration
numbers of K-means. Considering the computation of R,
k=1,2,..., K,by(12) primarily concerns finding the K-nearest
neighbors of each mean pixel in the corresponding cluster, it
needs the time complexity of O(LN + K N). The computation
of the matrix H primarily consists of two parts: namely the
least-squares method used in (18) and the weight mean matrix
calculated by (21) with matrix addition and multiplication opera-
tions, which have the time complexity of O(LPN + P?N) and
O(PN + (K + 1)LP), respectively. In the steps of updating
E and A, it mainly involves the matrix operations of addition
and multiplication with the order of O(N (LP + P?)). Recall
that the K-means is executed once after matrix factors E and
A are optimized NI times iteratively. Taking all the operations
and the range of values of each variable into consideration, the
overall complexity of Algorithm 1 is O(tLPN) per iteration in
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the worst case. In addition, an empirical runtime comparison is
given in Section I'V-C.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the effectiveness of our method, we conduct a
series of experiments on synthetic datasets and two real-world
HSIs. In the experiments on synthetic data, the proposed method
is compared with four representative NMF-based unmixing
methods, namely, GLNMF, NMF-PPK, SGSNMF, and MVC-
NMEF. Among them, GLNMF is a graph regularized NMF that
jointly enforces sparseness and manifold constraints on the
abundance matrix. In the NMF-PPK method, a priori informa-
tion for part of endmembers is used as semisupervised guidance
to enhance the unmixing performance. SGSNMF is a method
based on spatial information, which imposes group-sparseness
constraint on abundances. MVCNMF utilizes the geometrical
property of HSIs to improve the unmixing performance of NMF,
and it attempts to minimize the volume of the simplex enclosed
by the candidate endmembers in the unmixing procedure. The
algorithm parameters for each of state-of-the-art method are set
to the same values as those in their original works. To com-
pare the performance of all the algorithms, each is run twenty
times and the average performance metrics are adopted. Since
NMF-PPK needs the prior knowledge of partial endmembers, we
randomly choose two endmembers as prior information in each
run. In addition, the initial values of all the algorithms are chosen
randomly in the interval [0,1], except for SGSNMF, which
includes a special initial method. In the experiments on real
HSIs, our method is tested on the widely used Washington DC
Mall and Cuprite data. All the algorithms used in the experiments
were implemented with MATLAB R2016b version and executed
on a computer with 1.99 GHz Intel(R) Core(TM) i7 CPU, 16 GB
main memory and Windows 10 operating system.

A. Performance Metrics

Two performance metrics, i.e., spectral angle distance (SAD)
and root mean square error (RMSE) [10] are adopted to evaluate
the unmixing accuracy of our algorithm. The SAD criterion is
used to measure the similarity between the estimated endmem-
ber signature €, and the reference signature e,,, which is defined

as
TA
e e
SAD,, = arccos pilj
leplllle|l

where || - || denotes the Euclidean norm of the vector.

To measure the similarity between the estimated abundances
and the reference abundances, we adopt the RMSE criterion,
which is defined as

(36)

1 A
RMSE, = NHA’” —A,l3 (37)
where A, and A, denote the reference abundance distributions
and the estimated ones corresponding to the pth endmember,
respectively. Note that in the experiments on synthetic data, the
mean SAD and RMSE values over all the endmembers are used

to test all the algorithms.
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B. Experiments on Synthetic Data

In our experiments, the synthetic datasets are generated by five
spectral signatures chosen from the United States Geological
Survey (USGS) spectral library. Each of the selected spectra
includes 224 spectral bands with wavelengths varying from 0.38
to 2.5 um. Fig. 2 shows the signatures of all the selected spectra.
These spectra are linearly independent and used as endmembers
to create the synthetic data. By making some modifications to
the procedure in [10], we generate a set of synthetic datasets as
follows.

1) A b% x b? synthetic image is divided into b? blocks, each

of which has b x b pixels.

2) All pixels within each block are assigned a kind of end-
member randomly selected from the endmember set.

3) A (b+1)x (b+1) averaging filter is applied to the
image, by which the pixels are linearly mixed and the
abundances of each pixel are obtained.

4) For each pixel of the synthetic image, if one of its fractional
abundances is larger than a specified threshold 6, this
pixel will be replaced by a new pixel that is mixed by
randomly selected four endmembers in equal proportions.
In this way, the synthetic images are highly mixed without
the existence of pure pixels. In addition, the abundance
fractions of each pixel are normalized to unity to satisfy
with the ASC constraint.

5) The zero-mean white Gaussian noise is added to the
obtained images according to the prespecified signal-to-
noise ratio (SNR).

Experiment 1 (Select the Algorithm Parameters): The pur-
pose of this experiment is to select the proper values for
the algorithm parameters of MCG-NMEFE. The setting of
NI, a and ( are, respectively, tested using synthetic data
with 64x64 pixels, which is generated by five endmem-
bers with § = 0.7 and SNR= 30 dB. We first hold « and
[ to be fixed and choose different values for NI from the
set {10, 20, 30, 40, 50, 60, 80, 100, 200, 300, 400, 500, 600}. As
shown in Fig. 3(a), the algorithm has better SAD and RMSE
when NI varies from 80 to 300, and N/ = 100 is the optimal
selection.

Next, the influence of parameter o on the algorithm per-
formance is examined on the condition that N/ = 100 and
B = 0.001 whilst selecting different values for avin the collection
{le — 3,5e — 3,0.01,0.05,0.1,0.5,1,1.5,2, 2.5, 3}. Based on
the results shown in Fig. 3(b), we can see that MCG-NMF
achieves better performance w.r.t. the SAD criterion when o
is changed from 0.1 to 2.5. For the RMSE criterion, MCG-
NMF can perform better when « is in the interval of [0.5,
2.5]. Tt is not hard to verify that our algorithm can perform
best when o = 1. To find the proper value for parameter [,
we fix NI = 100 and o« = 1, and then select different values
for § from the set {1e — 5,5¢ — 5, 1e — 4,5e — 4, le — 3,5e —
3,0.01,0.05,0.1,0.5, 1}. Fig. 3(c) shows the influence of 8 on
the performance. Note that the values of harmonic mean (HM)
w.r.t. SAD and RMSE are also plotted in Fig. 3(c) for the sake of
clarity. As can be seen from HM values, our algorithm performs
best in case of § = le — 3. Based on these analysis, NI = 100,
a = 1and 8 = le — 3 are used in our experiments.
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Examples of the synthetic data. (a) Endmembers used to generate the synthetic data. (b) 188th band of a 64 x 64 synthetic data with SNR of 30 dB. (c)—(g)
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Experiment 2 (Robustness to Noise): In this experiment, we
aim to test the robustness of MCG-NMF on the data with dif-
ferent levels of SNR. The datasets employed here are generated
under the same conditions as the previous experiment except
that their SNRs vary from 15 to 35 dB at an interval of 5 dB.
Additionally, the data with SNR at infinity are also used to
test MCG-NMF under the noise-free condition. Fig. 4(a) and
(b) shows the performance of all the algorithms according to
SAD and RMSE, respectively. We can see that MCG-NMF
outperforms other baseline algorithms on all of the datasets with
significant performance improvement for both endmembers and
abundances. As is expected, both SAD and RMSR of all the
algorithms get worse with decreasing SNR, especially for the
SAD values of MVCNMF and SGSNMEF. This indicates noise
interference is an important factor affecting the performance.
Moreover, compared with the other methods, MCG-NMF shows
more stable performance by providing similar SAD and RMSE
values, respectively, on datasets with different levels of noise.

0
1e-3 5e-3 0.01 0.05 0.1 0.5
a

(b)

0.1
1e-5 5e-5 1e-4 5e-4 1e-3 5e-3 0.01 0.05 0.1 0.5
&)

(©)

1 16 2 25 3 1

Performance of MCG-NMF with respect to algorithm parameters NI, c, and 3. (a) Parameter NI. (b) Parameter . (c) Parameter /3.

This demonstrates that our method has better robustness to noise
disturbance.

Experiment 3 (Generalization to Mixing Degree): Our goal
here is to investigate the generalization capability of MCG-NMF
on the datasets with different mixing degrees. We generate the
desired data by adjusting 6 from 0.5 to 0.9 at an interval of 0.1
and fixing SNRs of all the data to be 30 dB. The performance of
all the methods on different datasets is given in Fig. 5. Note that
the term “purity” in Fig. 5 is used to indicate different mixing
degrees of the data. We can see that the performance of all the
methods gets better with the increase of purity. According to
the SAD measures, MVCNMF shows the worst performance
on all datasets, whereas MCG-NMF performs better than the
others when the data have higher purity, such as 0.7 to 0.9.
On the datasets with lower purity, such as 0.7, our method
has comparative SAD with GLNMF; it shows slightly worse
performance than GLNMF when the purity is 0.5. As for the
RMSE values, it can be seen from Fig. 5(b) that MCG-NMF is
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Fig. 6. Performance of MCG-NMF on synthetic datasets with different number of pixels. (a) SAD. (b) RMSE.

better than the other methods when the purity varies from 0.7 to
0.9. Meanwhile, it has comparative performance with GLNMF,
SGSNMF, NMF-PPK when purity equals to 0.6. On data with
purity 0.5, our method performs slightly worse than GLNMF and
SGSNME. On the whole, MCG-NMF has better generalization
ability on datasets with different mixing degrees.

Experiment 4 (Sensitivity to Pixel Numbers): The purpose of
this experiment was to analyze the sensitivity of MCG-NMF
to the number of pixels in the data. We used datasets with

the pixel numbers of 36 x 36, 64 x 64, 100 x 100, 144 x 144,
and 196 x 196, respectively. The other generating parameters
of these datasets remain the same as those employed in Exper-
iment 1. The SAD and RMSE values of all the algorithms are
shown in Fig. 6(a) and (b), respectively. As can be seen, the
unmixing accuracy increases when the data have more pixels,
which is rational since NMF-based methods can obtain more
accurate statistical information as the sample size increases.
By comparing all algorithms according to RMSE values, we
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TABLE I
MEANS AND STANDARD DEVIATIONS (%) OF THE SAD ON WASHINGTON DC MALL DATASET
Endmembers  MCG-NMF GLNMF NMF-PPK SGSNMF MVCNMF SDNMF-TV MVNTF VCA
Tree 0.0486 = 0.03 0.1384 £ 1.41  0.1858 £4.90  0.1621 £2.68  0.2372+£0.89  0.0827 £4.22 0.2251 £0.38 0.1937 £ .75
Grass 0.0824 +0.01  0.3455+3.80 0.2181+£11.15  0.1485+2.50  0.2571+6.64  0.2149+6.43  0.2426 £5.94  0.2912 4+ 5.64
Street 03760 £ 0.01  0.4094 +4.66  0.3454 £ 5.65  0.6139+£17.21  0.5859 £17.18 03423 +11.38  0.3582+£4.25 0.3612+4.15
Roof 0.1160 + 0.04  0.1409 +7.07  0.2252+£4.96  0.2520+1.56  0.1663+£4.00  0.3455+5.14  0.1505+7.91  0.2087 =+ 5.22
Water 0.10214+0.01  0.0734£0.67  0.0925 + 4.33  0.0970+1.16  0.11174+1.97  0.0961 +3.87 0.1040 + 0.68  0.0438 + 0.09
Average 0.1450 £ 0.02 02215 +3.52 0.2134£6.20  0.2547 £5.02 02716 £ 6.14  0.2163 £6.21  0.2161 £3.83  0.2197 + 3.37
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fact that the adopted multiple clustering strategy can provide
more accurate guidance for the endmember estimations when TN T TTmi—imimi—mio——
the data comprise more pixels.
. . 1 500 1000 1500 2000 2500 3000
Experiment 5 (Effectiveness to Endmember Numbers): Here, # lterations
the performance of the five algorithms is evaluated on the
s . Fig. 8. Convergence curves of MCG-NMF on datasets with different sizes.
datasets generated by mixing a different number of endmembers
from five to ten. Apart from the endmember numbers, all the
synthetic data have the same size of 64x64 pixels, and are
created with 6 = 0.7 and SNR= 30 dB. Fig. 7(a) and (b) shows
the performance of the five algorithms w.r.t. SAD and RMSE
criteria, respectively. We can see that the performance of all
the algorithms will degrade when the number of endmembers
increases in the data. As shown in Fig. 7(a), it is apparent that
MVCNMF gives the worst performance on all the datasets and
MCG-NMF performs better than the other alternative methods.
As regards the RMSE values, we can see from Fig. 7(b) that Fig. 9. Pseudocolor image of the HYDICE Washington DC Mall data.

MVCNMEF performs worse than the other four methods, whereas
MCG-NMF can perform best when the data contain a relatively
small number of endmembers, such as 5-7. When the datasets
have more endmembers, e.g., 8—10, MCG-NMF can show an
RMSE performance comparable with NMF-PPK, GLNMEF, and
SGSNME. On the whole, MCG-NMF can provide effective per-
formance on the datasets with different numbers of endmembers.

Experiment 6 (Convergence on Different Datasets): In this
experiment, we investigate the convergence of our method by

testing it on datasets with different sizes. We adopt the same
data as those used in the previous experiment. Fig. 8 plots the
curves of reconstruction error between the original data and the
reconstructed ones given by our algorithm. By comparing the
curves shown in Fig. 8, we can see that MCG-NMEF converges
faster on datasets with smaller size. This is reasonable consider-
ing that fewer components need to be estimated in the abundance
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MCG-NMF

GLNMF

NMF-PPK

SGSNMF

MVCNMF

VCA-FCLS

(a)

Fig. 10.
Mall data. (a) Grass. (b) Tree. (c) Roof. (d) Street. (e) Water.

matrix when MCG-NMF is tested on the data with smaller size.
It is easy to see that for datasets with a size of 36 x 36 and
64 x 64 pixels, respectively, MCG-NMF can converge within
1000 iterations. When it runs on the data with moderate size,
suchas 100 x 100 and 144 x 144 pixels, MCG-NMF will iterate
about 1500 times before its convergence. On datasets of larger
size, e.g., 196 x 196 pixels, 2500 iterations are needed to reach
its convergence.
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Abundance maps estimated by MCG-NMF, GLNMF, NMF-PPK, SGSNMF, MVCNMF, SDNMF-TV, MVNTF, and VCA-FCLS on Washington DC

C. Experiments on Real Hyperspectral Data

In this section, the proposed MCG-NMF method is applied
to two widely used real-world HSIs: the Washington DC Mall
dataset and the Cuprite dataset. We compare the performance
of our method with seven representative methods: GLNME,
NMF-PPK, SGSNMF, MVCNMEF, sparsity-constrained deep
NMF with total variation (SDNMFE-TV) [57], MVNTE, and
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VCA [5] followed by FCLS [53] (VCA-FCLS). The first four are
NMF-based methods and have been used in the experiments with
synthetic data. SDNMF-TYV is a recently proposed deep NMF
unmixing method with the sparsity and piecewise smoothness
constraints enforced on the abundances. MVNTF performs the
unmixing tasks under the framework of nonnegative tensor
factorization. VCA is a method based on the geometrical char-
acteristic of HSIs. It can only be used to extract endmembers,
and corresponding abundances are next estimated by the FCLS
approach. In our experiments, average results are obtained by
running each algorithm twenty times. The algorithm parameters
for all baseline methods adopt the same values as those in
their original works. Additionally, in each run of NMF-PPK on
the Washington DC Mall data, two endmembers are randomly
selected as known in advance, whereas on the Cuprite data, three
endmembers are enumerated randomly as prior information.

1) Washington DC Mall Dataset: The first real HSI is the
Washington DC Mall dataset collected by the airborne HY-
perspectral Digital Imagery Collection Experiment (HYDICE)
sensor over the Washington DC Mall area. Recently, this datum
has been extensively used in experiments of HU. The original
data have 1280 x 307 pixels with 210 bands covering wave-
lengths from 0.4 to 2.5 um. Their spatial and spectral resolutions
are approximately 2.8 m and 10 nm, respectively. A subimage
with 150 x 150 pixels from the original data is used in the
experiments, and Fig. 9 shows its pseudocolor image. Here, we
assume there are mainly five kinds of endmembers contained in
the target area including tree, grass, roof, water, and street [58],
[59]. Before unmixing, the bands corrupted by noise seriously,
as well as the water vapor absorption bands (including bands
103-106, 138-148, and 207-210) were both removed from the
data and 191 bands remained. In the experiments, the reference
endmembers are generated by manually choosing some pixels
from the original data cube and their positions are marked with
red circles in Fig. 9.
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Comparison between the reference signatures of endmembers (blue solid line) and the estimated ones (red dotted line) given by MCG-NMF on Washington

Fig. 12.
data.

False-color image of the selected subimage from AVIRIS Cuprite

To evaluate the accuracy of endmember extraction quantita-
tively, the SAD values of all the algorithms are listed in Table I.
It can be seen from Table I that MCG-NMF shows the best
performance by achieving the lowest SAD for three cases, as
well as the lowest average SAD value. SDNMF-TV and VCA
only provide one case of the lowest SAD, respectively. We can
see that MCG-NMF can achieve much lower standard deviations
for both single endmember and the average value w.r.t. all the
endmembers. For comparison purposes, the visible abundance
maps obtained by our method and the other seven baselines are
shown in Fig. 10. In addition, Fig. 11 illustrates the estimated
endmember signatures by MCG-NMF and the reference sig-
natures. It can be seen that the estimated endmembers are in
good accordance with the referenced ones. It demonstrates that
MCG-NMF can provide satisfactory endmember estimations.

2) Cuprite Dataset: The second real HSI used in our exper-
iment is the Cuprite data that was captured on June 19, 1997 by
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TABLE II
MEANS AND STANDARD DEVIATIONS (%) OF THE SAD ON CUPRITE DATASET

Endmembers MCG-NMF GLNMF NMEF-PPK SGSNMF MVCNMF SDNME-TV MVNTF VCA

Alunite 0.0903 + 0.03 0.1560 + 6.35 0.1269 +£2.59  0.1500 + 3.15  0.1832+9.39  0.2588 +3.01 0.1407 £3.30  0.1367 £ 4.27
Andradite 0.0757 £ 0.27  0.0683 £ 0.83  0.0865 + 4.18  0.0824 4 1.08 0.1050 £ 7.75 0.0646 +0.81  0.1065 +6.07  0.0910 4 1.52
Buddingtonite 0.1081 + 1.56 0.1251 £ 3.10  0.1461 £4.72 0.1175 £ 2.32 0.1304 £6.49  0.1269 +2.01 0.1301 £3.97 0.1410£1.95
Dumortierite 0.0780 £ 0.06 0.1104 £ 7.14  0.1009 + 1.65 0.0956 + 1.58 0.1446 £4.69  0.0818 +£0.23  0.1005+1.46 0.1151 £ 1.99
Kaolinite 0.2332+1.21  0.2787 & 4.24 0.2754 £ 6.68  0.2766 + 3.35 0.2868 £6.11  0.3135+1.13  0.2592 £ 4.35 0.2326 + 2.87
Montmorillonite ~ 0.0931 + 1.16 ~ 0.0997 + 4.33  0.1280 £ 3.09 0.1218 £ 0.62 0.1457£5.39  0.1835+4.40 0.1267£3.72  0.1414 +£2.37
Muscovite 0.1705 £ 0.98  0.2148 + 3.29 0.1961 £4.27  0.1936 £ 2.90 0.2630 + 6.48 0.1548 £1.40 0.2292+2.76  0.1998 £ 2.96
Nontronite 0.0811 + 0.13  0.0882 £ 0.50 0.0807 £+ 1.33 0.0914 +0.78 0.1127+2.64  0.0850+0.15 0.0854 +1.11  0.1033 £ 1.32
Pyrope 0.0651 £ 0.10 0.0633 +0.47  0.0897 £4.77  0.0930 4 2.82 0.0709 + 1.26 0.0618 +0.24  0.0928 +4.97  0.1378 £4.70
Sphene 0.1573 +0.76 0.1617 + 6.32 0.1365 + 6.74 0.1324 +£5.25 0.0639 + 1.70  0.0880+0.75  0.0571 + 0.38  0.1087 + 3.71
Average 0.1152 £ 0.63 0.1366 + 3.66 0.1367 + 4.00 0.1354 + 2.39 0.1506 £5.19  0.14194+1.41 0.1328£3.21  0.1407 £2.77

(2)
Fig. 13. Abundance maps estimated by MCG-NMF on Cuprite data. (a) Alunite. (b) Andradite. (c¢) Buddingtonite. (d) Dumortierite. (e) Kaolinite.

vv (f) Montmorillonite. (g) Muscovite. (h) Nontronite. (i) Pyrope. (j) Sphene.

the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over Cuprite, NV, USA. These data include 224 bands
with the wavelength from 0.4 to 2.5 um. Their spectral and space
resolutions are approximately 10 nm and 20 m, respectively.
Since Cuprite is a mining area, rich minerals, such as alunite,
nontronite, kaolinite, etc., are widely distributed in the scene,
and the minerals here are commonly highly mixed. Therefore,
these data are frequently used to test the HU methods. Also,
ground truth and a geological summary of this site were provided
in past literature [60]. We selected a subimage with 250 x 191
pixels from the original HSI, and the false-color image of it is
shown in Fig. 12. Before the experiment, the bands with low
SNR and water vapor absorption bands (including bands 1-2,
104-113, 148-167, and 221-224) are deleted, and the remaining
188 bands were used.

In our experiment, ten types of main minerals are assumed
to be present in the target scene in accordance with the existing
literature [5], [10]. The reference signatures used to evaluate
the unmixing performance of our method are chosen from the
USGS mineral spectral library [5]. Table II lists the SAD values
given by all algorithms. The best performance is marked in bold
font. According to the SAD values in Table 1I, MCG-NMF
has the largest number of best performance instances. When

comparing all the algorithms based on the average values w.r.t.
all the endmembers, our method also shows the best performance
by providing the lowest SAD. MCG-NMF shows better per-
formance improvement by giving a significantly smaller mean
standard deviation, which indicates the better robustness of the
proposed method. In addition, the abundance distributions of
all the endmembers estimated by MCG-NMF are shown as
color abundance maps in Fig. 13, in which the higher color
temperature of a pixel indicates the larger proportion of exis-
tence of corresponding endmembers. Besides, Fig. 14 illustrates
the comparison between the endmember signatures estimated
by MCG-NMF and the referenced ones. We can see that the
estimated signatures of Alunite, Buddingtonite, Dumortierite,
Montmorillonite, Nontronite, as well as Sphene, are in better
accordance with the referenced ones.

3) Running Time on Two Real Datasets: To validate the
efficiency of our algorithm on computation time, we tested
all the algorithms on Cuprite and Washington DC Mall data.
Table III gives the average running time of them. From Table III,
we can see that VCA needs much less running time compared
with the other methods since it is a geometric projection-based
method that needs fewer iterations. Among the methods based on
NMEF and NTF, MVNTF needs the most running time, followed
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Fig. 14.

Comparison between the reference endmembers (blue solid line) and the estimated ones (red dotted line) given by MCG-NMF on Cuprite data. (a)

Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite. (f) Montmorillonite. (g) Muscovite. (h) Nontronite. (i) Pyrope. (j) Sphene.

TABLE III
RUNNING TIME ON THE REAL DATASETS (IN SECONDS)

Data sets MCG-NMF ~ GLNMF  NMF-PPK ~ SGSNMF  MVCNMF  SDNMF-TV ~ MVNTF = VCA
Washington DC Mall 152.87 95.83 114.18 133.71 1060.70 877.26 1138.58 0.14
Cuprite 437.45 244.21 162.20 167.35 2984.20 2507.18 3972.90 0.40

by MVCNMEF, on both datasets. For the Washington DC Mall
data, the running time of GLNMF is the least, and our method
requires a slightly longer time than SGSNMF. As to Cuprite
data, NMF-PPK and SGSNMF consume less time than the other
factorization-based algorithms. Although MCG-NMF demands
more time than GLNME, it performs much better than MVNTE,
MVCNME, and SDNMF-TV.

V. CONCLUSION

In this article, an MCG-NMF method for HU is proposed
under a self-supervised framework. By conducting clustering
analysis on the HSI, the PESs implied in the data, as well as the
PADs for each endmember, are obtained as guidance information
to construct effective regularization for an NMF-based unmixing
model. Multiple clustering that can interact with the unmixing
model is incorporated into the optimization process of NMF. In
this way, more accurate PESs and abundance distributions can
be learned in a self-supervised manner, and help the estimated
endmembers and abundances to be more consistent with the
real ones. In addition, the proposed algorithm not only has
strong generalization capability for data with different mixing
degree and pixel numbers but also better robustness to noise
disturbance. With a series of experiments on synthetic data and
real hyperspectral images, the effectiveness of the proposed
algorithm has been demonstrated by comparing it with some
state-of-the-art algorithms.

Two issues are worth studying in further work. First, because
of the LSMM model adopted in this work, the unmixing per-
formance of the proposed method maybe degraded when an
HSI includes a number of pixels with an intimate mixture.
In this circumstance, the unmixing approach with a NLSMM

model is more suitable. Therefore, in a future study, we will
research nonlinear unmixing methods with semisupervised in-
formation based on effective nonlinear techniques, such as the
kernel method. Next, in this work, the PES and the PAD are
estimates based on the results of multiple clustering, which only
exploits the spectral information of an HSI without considering
its spatial contexture information. In further research, both the
spectral and spatial information will be jointly utilized to learn
the semisupervised information of endmembers and abundances
via effective techniques, e.g., superpixel segmentation. This is
expected to bring more accurate guidance for NMF and thus
provide superior unmixing performance.
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