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Multiple Clustering Guided Nonnegative Matrix

Factorization for Hyperspectral Unmixing
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Abstract—Spectral unmixing is an important technique for
quantitatively analyzing hyperspectral remote sensing images. Re-
cently, constrained nonnegative matrix factorization (NMF) has
been demonstrated to be a powerful tool for spectral unmixing.
However, acquiring the problem-dependent prior knowledge and
incorporating it into NMF as effective constraints is a challenging
task. In this article, a multiple clustering guided NMF unmixing
approach is proposed under a self-supervised framework, which
has been used to effectively learn high-level semantic information
from the data with a surrogate task in many applications. Specif-
ically, in order to provide self-supervised information to guide
the NMF-based unmixing model, multiple clustering is integrated
into the optimization process of NMF. Moreover, by introducing
interaction between each clustering and the unmixing procedure,
more accurate proximate endmember signatures and proximate
abundance distributions are expected to be acquired and used to im-
pose self-supervised constraints on endmembers and abundances,
respectively. Consequently, effective prior information about end-
member signatures and abundance distributions is captured and
simultaneously integrated into NMF as valuable constraints to
promote unmixing performance. Experiments are conducted on
both synthetic data and real hyperspectral images, and the superior
performance of our method is shown by comparing it with several
state-of-the-art algorithms.

Index Terms—Hyperspectral image (HSI) unmixing,
multiple clustering, nonnegative matrix factorization (NMF),
self-supervised learning.

I. INTRODUCTION

H
YPERSPECTRAL images (HSIs) are usually captured

using many different electromagnetic bands and can con-

tain rich spatial and spectral information about the observed

scene, and thereby have many real applications. Limited by the

low spatial resolution of the sensors, each pixel of an HSI usually

cover a relatively large ground area, so that its spectral informa-

tion may be a mixture of several pure spectra (i.e., endmembers)
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of the materials present in this area [1]. These mixed pixels

sometimes have serious implications for quantitative analysis of

HSIs. One of the techniques to tackle this problem is hyperspec-

tral unmixing (HU), by which a set of endmembers included in

an HSI and the corresponding proportions (i.e., abundances) of

them in each pixel are estimated. To solve HU problem, two types

of spectral mixture models are commonly used for HU: the linear

spectral mixture model (LSMM) [1] and the nonlinear spectral

mixture model (NLSMM) [2]. NLSMM is mainly adopted to ex-

press a complex spectral mixing mechanism caused by multiple

scattered effects of source radiation among several endmembers.

LSMM assumes that source radiation is only reflected once by

the ground materials before being captured by the sensor. Owing

to the flexibility and tractability, LSMM is a widely used model

to express the mixture mechanism of HSIs.

Under LSMM, numerous HU methods have been proposed

over decades [2]. A type of representative methods is developed

based on the principle of convex geometry, which supposes that

the observed pixels can constitute a simplex in the Euclidean

space with vertices denoting endmembers. Then, the task of

unmixing is transformed to find a group of vertices that can form

a simplex with maximum volume, such as N-FINDR algorithm

[3], pixel purity index [4], vertex component analysis (VCA) [5],

and so on. Recently, nonnegative matrix factorization (NMF) [6],

[7] based HU approaches have attracted much attention because

of its several advantages, such as the natural nonnegativity and

good interpretability of unfixing results. NMF regards HU as

a blind source separation problem and aims to decompose an

HSI into two nonnegative factor matrices. Thus, it can unmix the

endmembers and the corresponding abundances simultaneously.

However, because of the nonconvexity of its objective function,

the standard NMF is prone to fall into local minima, and also

vulnerable to the effects of initial values [8]. One effective

measure to tackle these issues is to impose additional constraints

on the factor matrices. For example, Miao and Qi [9] introduced

geometrical principle-based constraint on endmembers, so that

the obtained minimum volume constrained NMF (MVCNMF)

can unmix the highly mixed data. Qian et al. [10] proposed a

L1/2 sparsity-constrained NMF (L1/2-NMF) unmixing method

by employing an effective L1/2 regularizer that can enforce the

estimated abundances to be more accurate and sparse. Following

the same tactic, graph regularized NMF variant (GLNMF) [11]

and spatial group sparsity regularized NMF (SGSNMF) [12]

have been proposed in pursuit of abundance estimation with

structured sparsity. In addition, spatial information has also

been used to construct effective constraints for the NMF model,
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such as abundance separation [13], piecewise smooth [14], and

substance dependence constraints [15]. Differ from the NMF-

based unmixing framework, some recent works tackle the HU

problems by decomposing a third-order tensor of the target HSI

via tensor factorization, so that the intrinsic spectral-spatial joint

structure of HSIs can be fully utilized. For example, Qian et al.

[16] proposed a matrix-vector nonnegative tensor factorization

(MVNTF) method by integrating the characteristics of canoni-

cal polyadic decomposition and Tucker decompositions. Xiong

et al. [17] introduced total variation regularization into MVNTF-

based unmixing model, by which the global spectral-spatial

information and local spatial information were simultaneously

exploited. Using the idea of increasing additional constraints,

Feng and Wang [18] improve the plain MVNTF method by

integrating sparseness, volume, and nonlinearity constraints into

the cost function. Besides, low-rank constraints for abundance

and endmember tensors have also been adopted in NTF-based

unmixing methods [19], [20].

Some NMF variants for HU are developed by making use

of semisupervised information. Recently, the prior signature

information of partial known endmembers has been recognized

as another important problem-dependent knowledge for HU.

This is reasonable due to the fact that some land covers can be

known in advance, for example, by field investigation [21], in

real applications. Under such circumstances, spectral signatures

of known materials can be obtained from the spectral library

[2], or even be retrieved directly from the image regions that

contain only pure endmembers [22]. Based on the prior spectra,

different regularizations have been devised to impose effective

constraints on endmembers in NMF-based unmixing models

[21]–[24]. For example, Tang et al. [21] proposed an unmixing

method, referred to as NMFupk, in which the known endmem-

bers in the endmember matrix are constrained to be fixed in

the optimized process, whereas the remainder elements of the

endmember matrix need to be updated iteratively. To improve

NMFupk, Wang et al. [23] explored the correlation between

the known and unknown endmembers by introducing a function

into the unmixing model, which describes the property that the

known and unknown endmembers lie in the nearly orthogonal

planes. This made the known endmembers can be used to

help the estimation of the unknown endmembers. Tong et al.

[22] developed an NMF-based unmixing method with partially

known endmembers (called NMF-PPK) by incorporating a reg-

ularization that can minimize the difference between the known

endmembers and the estimated ones. Although these works have

improved the unmixing performance of NMF effectively, they

also suffer from the following three problems: first, the spectra

in the spectral libraries are seldom acquired under the same

conditions with real HSIs [25]. As a result, there may be a

large deviation when the spectra from these libraries are used

as known endmember signatures; second, the completeness of

these libraries is not guaranteed [22], which limits the successful

application of these methods; third, it is often the case that

prior knowledge of only rare endmembers is available on the

target scene in practical applications, so that the performance

enhancement of these methods is more confined. Therefore,

how to accurately mine the implicit signature information of

all the endmembers from the data, and take it as semisupervised

information to devise effective regularizations for NMF remains

a challenging problem.

In this article, to take full advantage of the self-learning

semisupervised information about endmembers and abun-

dances, a novel NMF-based unmixing approach, named multiple

clustering guided NMF (MCG-NMF), is proposed. Our work

assumes that the distributions of practical land covers show

significant locality [10], [26], and lots of mixed pixels in an HSI

may include only one or very few kinds of dominant ground

objects [27]. Therefore, these pixels might carry the signature

information of endmembers to a large extent and can be extracted

to guide the unmixing. According to this observation, in this

article, the proximate endmember signatures (PESs) and prox-

imate abundance distributions (PADs) are captured to supply

valuable cues for more accurate estimation of endmembers and

abundances in NMF-based unmixing under the framework of

self-supervised learning [28]. As an important type of machine

learning approach, self-supervised learning can mine the high

level semantic information from the nature of data with a surro-

gate task, and has been successfully applied in many fields, such

as video hashing [28], classification of HSIs [29], and learning

visual representation [30]. With self-supervised learning, PESs

and PADs as semisupervised information can be effectively

learned from the data via multiple clustering tasks, rather than

supplied by the users. Specifically, to provide more accurate

PESs for the NMF-based unmixing model, we conduct multiple

clustering to the target HSI with the optimization progress of

NMF. Although several clustering methods, such as hierarchical

clustering [31] and iterative self-organizing data [32], can be

used to make effective cluster analysis to HSIs, we adopt the

K-means method to achieve multiple clustering considering its

ease of implementation and computational effectiveness. Fur-

thermore, based on the obtained PESs, the corresponding PADs

are effectively calculated and integrated into NMF as semisu-

pervised guidance for abundance estimation. This can not only

effectively confine the solution space of NMF to meet the need

of HU application, but also promote more accurate estimation

results as well as stable unmixing performance. For the sake

of clarity, the contributions of this article are summarized as

follows.

1) We propose a novel NMF method for HU based on the

guidance of multiple clustering. By conducting clustering

analysis on target HSI, PESs and PADs are obtained as

semisupervised information and used to construct effec-

tive regularizations for NMF. This is reasonable consid-

ering that only one or few kinds of substances play a

dominant role in a local region because of the locality

property of HSIs in spatial domains [26], [27]. Thus,

effective clustering method can be used to extract valu-

able endmember and abundance information to guide the

unmixing process.

2) Our method integrates both self-supervised learning [29],

[30] and matrix factorization into a unified framework,

in which more accurate semisupervised information used

by NMF can be automatically learned via interactions be-

tween the multiple clustering and the procedure of matrix
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factorization. Consequently, the proposed method can be

effectively applied in scenarios where the endmember and

corresponding abundances are not known a priori.

3) The performance of our approach is validated on both

synthetic and real HSIs. The experimental results demon-

strate that the proposed method can outperform several

state-of-the-art algorithms.

The remainder of this article is structured as follows. A

brief description of LSMM and NMF is given in Section II.

Then, we present the formulation of our proposed MCG-NMF

and its optimization, as well as some implementation issues in

Section III. Next, extensive experimental results and analysis on

synthetic data and real HSIs are discussed in Section IV. Finally,

we conclude this article and provide possible future research

directions in Section V.

II. RELATED WORK

In this section, we briefly describe the important research basis

of the proposed MCG-NMF method on HU, including LSMM

and NMF.

A. Linear Spectral Mixture Model

LSMM is widely used in HU research because of its simplic-

ity and effectiveness. According to LSMM, an observed pixel

spectrum of an HSI can be represented as a linear combination

of a set of endmembers included, in which the weight of each

endmember corresponds to the fractional abundance of this pixel

spectrum. To be specific, LSMM can be formalized as follows:

yn = Ean + vn (1)

where vector yn denotes the nth pixel spectrum and

E = [e1, e2, ..., eP ] ∈ R
L×P is the endmember matrix with

each column representing an endmember signature; an =
(an1, an2, ..., anP )

⊤ stands for the abundance vector corre-

sponding to yn; vn = (vn1, vn2, ..., vnL)
⊤ denotes an additive

noise vector, in which the components can be assumed to subject

to independent and identically distributed (i.i.d.) zero-mean

Gaussian distribution [33]. In order to have explicit physical

meaning, the abundance vector is usually subject to the abun-

dance nonnegative constraint (ANC) and the abundance sum-

to-one constraint (ASC) [2], which are, respectively, defined as

ANC: anp ≥ 0, p = 1, ..., P (2)

ASC:

P
∑

p=1

anp = 1. (3)

Using matrix operations, (1) can be rewritten as more compact

form, i.e.,

Y = EA+V (4)

where Y = [y1,y2, ...,yN ] ∈ R
L×N is the HSI matrix with

N pixels and L bands; A = [a1,a2, ...,aN ] ∈ R
P×N denotes

the abundance matrix; and V = [v1,v2, ...,vN ] ∈ R
L×N rep-

resents the noise matrix. Note that the number of endmembers

included in a real HSI is usually much smaller than the number of

bands, i.e.,P ≪ L. Considering that bothE andA are unknown

in practice, the task of HU can be regarded as a matrix fac-

torization problem that aims to decompose a high-dimensional

observation matrix into two low-dimensional factor matrices

with the subjection of abundance matrix to ANC and ASC.

B. Nonnegative Matrix Factorization

The NMF method was originally proposed by Lee and Seung

[6] in Nature for the purpose of reducing the dimension of

high-dimensional data. Thereafter, it has been developed to be

a powerful tool for statistical analysis [8]. Specifically, NMF

aims to factorize a nonnegative data matrix into the product

of two factor matrices with nonnegative entries, so that the

reconstructed data matrix can approximate the original one as far

as possible. Given that Y denotes the nonnegative observation

matrix with each column as a data sample, the standard NMF

can be formally modeled as

min
E,A

F (E,A) = ‖Y −EA‖2F , s.t. E,A � 0 (5)

where E and A represent nonnegative matrix factors; ‖ · ‖F
and “�” stand for the Frobenius norm and the componentwise

greater-or-equal relation of a matrix, respectively.

To optimize both matrix factors E and A of the objective

function in (5), Lee and Seung [7] presented the famous multi-

plicative update rules (MURs) as follows:

E ← E⊙ (YA⊤ ⊘EAA⊤) (6)

A ← A⊙ (E⊤Y ⊘E⊤EA) (7)

where (·)⊤ denotes the matrix transpose; “⊙” and “⊘” represent

elementwise multiplication and division between two matri-

ces, respectively. In addition, some representative optimization

methods for NMF were also investigated, such as the active set

method [34], projected gradient method [35], projected non-

negative least squares [36], and optimal gradient method [37].

However, the numerical minimization of the objective function

F (E,A) in (5) still encounters some challenges owing to the

nonconvexity of F (E,A) w.r.t. matrices E and A simultane-

ously. This causes the solutions of standard NMF to be prone to

being trapped into local minima. Additionally, the standard NMF

also suffers from the problem of nonunique solution [38]. To

alleviate these problems, various constraints, such as manifold

[39], sparseness [40], and low-rank constraints [41], as well as

smooth constraint [42], have been introduced into the standard

NMF according to the requirements of different applications,

and the resulting variants of NMF are called constrained NMF

(CNMF). Generally, the CNMF can be expressed as

min
E,A

C(E,A)=‖Y −EA‖2F + αJ1(E) + βJ2(A),

s.t. E,A�0 (8)

where functions J1(E) and J2(A) are regularization terms with

the role of enforcing certain constraints on both matrix factors;

α and β are two regularization parameters used to adjust the

effects of the corresponding regularization term on the objective

function C(E,A).



WANG et al.: MULTIPLE CLUSTERING GUIDED NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING 5165

In order to solve the CNMF problem defined by (8), the

Lagrange multipliers method is one of the commonly used

methods to deduce the update rules of matrix factors under

the alternating optimization framework [11], [39]. Considering

the objective function C(E,A) in (8), the Lagrange function

associated with it is

Γ(E,A,Φ,Ψ) = ‖Y −EA‖2F + αJ1(E) + βJ2(A)

+ Tr(ΦE⊤) + Tr(ΨA⊤) (9)

whereΦ andΨ are two Lagrange multipliers matrices associated

with E and A, respectively. Then, the following conditions,

called Karush–Kuhn–Tucker (KKT) conditions [43], for the

CNMF problem have to hold:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂Γ
∂E|E=E∗=0, ∂Γ

∂A
|A=A∗=0

Φ⊙E∗ = 0,Ψ⊙A∗ = 0

Φ � 0,Ψ � 0

E∗ � 0,A∗ � 0

(10)

where (E∗,A∗)denotes a local minimum of the CNMF problem.

III. MCG-NMF UNMIXING METHOD

Here, we first address the regularization terms introduced for

NMF, as well as the proposed MCG-NMF unmixing model that

can exploit the self-learning semisupervised information during

the unmixing process. Then, the MURs and the corresponding

optimization technique are introduced. Then, the implementa-

tion issues and the MCG unmixing algorithm are presented.

As aforementioned, incorporating prior signatures of particu-

lar endmembers into NMF as semisupervised information plays

an important role in improving the unmixing performance. The

related methods [21]–[24] commonly assume that the signatures

of endmembers known in advance can be acquired from the

available spectral libraries. However, the practical applications

of these methods suffer from the incompleteness of dependent

libraries or the diversity between the spectra of the libraries and

the corresponding actual endmember signatures of HSIs [25].

As a result, the performance of such methods is not always

satisfactory. Fortunately, a recently proposed weakly supervised

NMF [44] that has been successively applied in cluster analysis

provides the chance to introduce imprecise prior information

about endmembers and abundances into NMF-based unmixing

model. However, specifying prior information for endmember

signatures and abundance distributions remains a hard work

in practice. In this article, inspired by the principle of self-

supervised learning [28]–[30], we aim to extract prior infor-

mation about signatures of all the endmembers and correspond-

ing abundance distributions by conducting multiple clustering

analysis on HSIs during the optimization process of NMF,

so that problem-dependent knowledge about endmembers and

abundances can be acquired via self-learning means, and used

as effective semisupervised guidance for NMF-based unmixing

procedure.

A. Self-Supervised Constraint for Endmembers

Because of the locality of material distribution in a real scene,

all endmembers in general contribute unequally to a specific

pixel in HSIs [10], [26], [45], so that many pixels are dominated

by only one or very few kinds of endmembers [27]. Thus,

effective cluster analysis technology can be used to approxi-

mately estimate endmember signatures from the data with the

number of clusters and endmembers being the same [45]–[47].

For example, in [46], endmember signatures used to construct

desired constraints for Bayesian NMF are estimated from data

via subspace clustering. In another study [45], spectral unmixing

is formulated as a clustering problem, and endmember extraction

is implemented by a modified K-means method. Considering

its computational efficiency and ease of implementation, the

K-means method is integrated into NMF to help estimating PESs

of all the endmembers in this study.

First, we present how to extract PESs of all the endmembers

by conducting cluster analysis on the target HSI via the K-means

method. Based on the clustering results, we construct a group

of PESs for each type of endmember by first generating a mean

pixel in the corresponding cluster, and then select a set of pixels

that have better similarity to this mean pixel. Specifically, clus-

tering analysis is conducted on the data matrix Y first, and a set

of clusters {C1, C2, ..., CP } is obtained, in which each cluster

includes a subset of all pixels in the data and the intersection of

Ci and Cj , i �= j is the empty set. Next, the mean pixel rp of

each Cp is calculated by

rp =
1

|Cp|

∑

yi∈Cp

yi, p = 1, 2, ..., P (11)

where |Cp| denotes the number of pixels in cluster Cp. Then,

based on rp, we select K pixels, i.e., Gp = {y1
p,y

2
p, ...,y

K
p },

from each cluster Cp according to the principle of K-nearest

neighbors [48], which consider the Euclidean distance be-

tween rp and the other pixels yi ∈ Cp, i.e., ‖rp − yi‖. Here,

without loss of generality, we let ‖rp − yk
p‖ ≤ ‖rp − yk+1

p ‖,

where k = 1, 2, ...,K − 1. Accordingly, for each endmember

ep, K + 1 pixels, i.e., {rp}
⋃

Gp , are obtained and regarded

as its PESs. Finally, we construct K + 1 PES matrices Rk, k =
1, 2, ...,K + 1, as follows:

Rk =

{

[yk
1 ,y

k
2 , ...,y

k
p , ...,y

k
P ], fork = 1, 2, ...,K

U, fork = K + 1
(12)

where U = [r1, r2, ..., rp, ..., rP ]; y
k
p , p = 1, 2, ..., P and k =

1, 2, ...,K, represents a PES with index k taken from the cor-

responding Gp. As an illustration, the generation procedure of

PESs and the PES matrices is shown in Fig. 1.

In order to make full use of the estimated PES matrices

in NMF-based HU, we introduce a self-supervised constraint

for endmembers, by which each estimated endmember is com-

pelled to be similar with the corresponding PESs in all PES

matrices. To be specific, a function J(E) that measures the

average difference between each estimated endmember ep in

endmember matrix E and the corresponding signatures rkp in

matrices Rk, k = 1, 2, ...,K + 1, is constructed via the F-norm
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Fig. 1. Illustration of the generation procedure of PESs and the PES matrices with K = 3. By conducting clustering analysis on the data matrix via K-means, a
set of clusters and corresponding mean pixel spectra are obtained. Then, the K-nearest neighbors of each mean pixel spectrum are found with K = 3 according to
the Euclidean distance between this mean pixel spectrum and the other pixels within the same cluster. Consequently, each mean pixel spectra and their K-nearest
neighbors are regarded as a group of PESs of a certain type of endmember. Based on the obtained PESs, each PES matrix R

k, k = 1...4, is constructed by selecting
a PES from different PES group, except for R4 that is consist of all the mean pixel spectra.

of the matrix, which is formalized as

J(E) =
1

K + 1

K+1
∑

k=1

‖(Rk −E)‖2F . (13)

Then, the functionJ(E), as a regularization term, is incorporated

into the objective function of standard NMF, and the obtained

objective function is given by

F (E,A) = ‖Y −EA‖2F +
α

K + 1

K+1
∑

k=1

‖(Rk −E)‖2F (14)

where α is the regularization parameter that controls the in-

fluence of J(E). Note that the second term at the right-hand

side of (14) can act as a driving force to impel each estimated

endmember located near the corresponding PES in the input

space, whereas the first term can minimize error between the

original data matrix and the reconstructed one. To achieve a

better compromise between these two acting forces, a suitable

value should be chosen for α.

Although several groups of PESs have been extracted and

used to impose the self-supervised constraint on endmembers,

we can further acquire another type of valuable information from

the clustering results to designate the significance of each set of

PESs. In other words, the proximate degree of each PES set

{rp}
⋃

Gp is worth exploring and using to optimize the design

of function J(E) as follows:

Jweight(E) =
1

K + 1

K+1
∑

k=1

‖(Rk −E)W‖2F (15)

where W stands for the diagonal matrix and is referred to as

proximate matrix; wp,p, p = 1, 2, ..., P , denotes the proximate

degree of PES set {rp}
⋃

Gp. In order to determine the diagonal

elements of the proximate matrix W, we consider the similarity

relationship between each pixel in {rp}
⋃

Gp and their mean

pixel mp = 1
|{rp}

⋃
Gp|

∑

yi∈{rp}
⋃

Gp
yi . If the average simi-

larity is high, this means the PES set {rp}
⋃

Gp has high purity,

and hence has a great probability of containing the proximate

signatures of a latent endmember. Accordingly, a bigger weight

value should be assigned to the corresponding wp,p so that the

estimated endmember ep holds a smaller distance with each

pixel in {rp}
⋃

Gp. To achieve this effect, inspired by the

approach of generating hyperedge weight in the hypergraph

model [49], the diagonal elements wp,p is calculated by

wp,p =
∑

yj∈{rp}
⋃

Gp

exp

(

−
‖yj −mp‖

2

σ2

)

(16)

where σ = 1
(K+1)P

∑P
p=1

∑

{yj∈{rp}
⋃

Gp}
‖yj −mp‖ repre-

sents the average distance between the mean pixel mp and all

the pixels yj ∈ {rp}
⋃

Gp. With this strategy, the value of each

diagonal element wp,p is determined by making a better tradeoff

between the similarity in each class and the average similarity

among all the classes.

By replacing the second term of the objective function in (14),

we obtain the following objective function:

F (E,A) = ‖Y −EA‖2F +
α

K + 1

K+1
∑

k=1

‖(Rk −E)W‖2F .

(17)
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B. Self-Supervised Constraint for Abundances

Based on the obtained PESs of all the endmembers and class

information of each pixel spectrum, we estimate the PADs for

each type of endmember, so that effective constraint is imposed

on the abundance matrix of the NMF-based unmixing model.

Specifically, a matrix Â is first obtained using the least squares

method as follows:

Â = max(0, ((R̄)⊤R̄)−1(R̄)⊤Y) (18)

where function max(·) is used to guarantee the nonnegativity of

Â, whereas R̄ denotes the average PES matrix given by

R̄ =
1

(K + 1)

K+1
∑

k=1

Rk. (19)

In order to acquire more accurate PADs, the class informa-

tion of each pixel spectrum is further used to estimate the

PADs via the binary masking technique [50], which aims to

capture the dominant material present in a pixel. Specifically,

we construct another matrix Ac ∈ R
P×N based on the clusters

{C1, C2, ..., Cp, ..., CP } as follows:

[Ac]pi =

{

1, if pixel spectrumyi ∈ Cp, i = 1, 2, ..., N

0, otherwise
.

(20)

So far, two kinds of strategies to estimate the PADs are intro-

duced. Each strategy, if used separately, has its own advantages

and disadvantages. To integrate the estimated PADs effectively,

a common measure is to formulate them as a linear summation

with data-dependent weights. Nevertheless, this will lead to

more complex unmixing model and introduce another algorithm

parameter requiring to be set. To balance the simplicity of the

proposed unmixing model and the accuracy of the fused PADs,

based on the obtained matrices Â and Ac, we generate the

integrated PAD matrix H by

H =
1

2
(Â+Ac) (21)

which leverage the value of the two kinds of PADs in a balanced

way. It is worth noting that each column vector of Ac only

includes one nonzero element, which enforces that each pixel

spectrum only contains one kind of endmember corresponding

to the main component in that pixel. Moreover, the obtained

PAD matrix H has a certain degree of sparseness owing to the

existence of zeros elements in matrices Ac and Ā, which is in

accordance with the nature of abundance distributions of ground

objects in a real scene.

Considering that abundance matrix A should meet the ASC

constraint, the divergence-based function is used to quantify

the approximation degree of H from abundance matrix A.

Specifically, it is expressed as [7], [39]

D(H‖A) =
N
∑

n=1

P
∑

p=1

(

hpn log
hpn

apn
− hpn + apn

)

. (22)

This function reduces to the Kullback–Leibler divergence or rel-

ative entropy when
∑P

p=1 hpn =
∑P

p=1 apn, n = 1...N holds

[39], so that each column of H and A can be regarded as the

probability distributions.

By introducing (22) into the objective function in (17) as a

self-supervised constraint for abundances, the unmixing model

of MCG-NMF is given as follows:

min
E,A

F (E,A) = ‖Y −EA‖2F +
α

K + 1

K+1
∑

k=1

‖(Rk −E)W‖2F

+ βD(H‖A), s.t. E,A � 0 (23)

where β is the regularization parameter that controls the impact

of the corresponding regularization term. Note that rather than

keeping fixed, the matrix Rk, k = 1...(K + 1), W, as well as

H will be updated during the optimization procedure of MCG-

NMF based on a self-learning process, which is presented in

Section III-D.

C. Multiplicative Update Rules

Considering the nonconvexity of the objective function of

MCG-NMF in (23), we solve the proposed unmixing model

by alternately optimizing [51] each factor matrix with another

being fixed. Next, we deduce the MURs of MCG-NMF using

the method of Lagrange multipliers.

First, the objective function in (23) is re-expressed as

F(E,A)=Tr((Y −EA)(Y −EA)⊤) + βD(H‖A)

+
α

K+1

K+1
∑

k=1

Tr((EW −RkW)(EW −RkW)⊤)

= Tr(YY⊤)− 2Tr(YA⊤E⊤) + Tr(EAA⊤E⊤)

+β

P
∑

p=1

N
∑

n=1

(hpnlog
hpn

apn
−hpn+apn)+αTr(EWW⊤E⊤)

+
α

K+1

K+1
∑

k=1

(Tr(RkWW⊤(Rk)⊤)−2Tr(EWW⊤(Rk)⊤))

(24)

where the first equality is based on the definition of matrix Frobe-

nius norm ‖D‖2F = Tr(DD⊤) with Tr(X) denoting the trace of

matrix X, and the second equality uses the properties of matrix

trace, i.e., Tr(BD) = Tr(DB) and Tr(D) = Tr(D⊤). Since the

factor matrices in (23) must meet Elp ≥ 0 and Apn ≥ 0, the

Lagrange multipliers corresponding to them can be defined as

Φlp ≥ 0 andΨpn ≥ 0, respectively. Then, the Lagrange function

is defined by

Γ=Tr(YY⊤)−2Tr(YA⊤E⊤)+Tr(EAA⊤E⊤)+αTr(EWW⊤E⊤)

+
α

K+1

K+1
∑

k=1

(−2Tr(EWW⊤(Rk)⊤))+Tr(RkWW⊤(Rk)⊤)

+Tr(ΦE⊤)+Tr(ΨA⊤)+β

P
∑

p=1

N
∑

n=1

(

hpn log
hpn

apn
−hpn+apn

)

.

(25)
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By taking the partial derivatives of Γ w.r.t. E, we can obtain

∂Γ

∂E
= − 2YA⊤ + 2EAA⊤ + 2αEWW⊤

−
2α

K + 1

K+1
∑

k=1

RkWW⊤ +Φ. (26)

Next, we deduce the partial derivative of Γ w.r.t. A. Considering

the last term of (25), its derivative is calculated as

∂βD(H‖A)

∂apn
= β

(

−
hpn

apn
+ 1

)

. (27)

Thus, we obtain the partial derivative ∂Γ
∂A as follows:

∂Γ

∂A
= −2E⊤Y + 2E⊤EA+Ψ− β(H⊘A−Q) (28)

where Q ∈ R
P×N is an all-ones matrix. According to the KKT

conditions ΦlpElp = 0 and ΨpnApn = 0, the following formu-

las concerning Elp and Apn can be deduced:

α(EWW⊤)lkElp + (EAA⊤)lpElp

=
α

K + 1

K+1
∑

k=1

(RkWW⊤)lpElp + (YA⊤)lpElp (29)

(E⊤EA)pnApn+
β

2
QpnApn=(E⊤Y)pnApn

+
β

2
(H⊘A)pnApn. (30)

Using these two equations, the MURs of matrices E and A can

be deduced as follows:

Elp ← Elp

(YA⊤)lp +
α

K+1

∑K+1
k=1 (RkWW⊤)lp

(EAA⊤)lp + α(EWW⊤)lp
(31)

Apn ← Apn

(E⊤Y)pn + β
2 (H⊘A)pn

(E⊤EA+ β
2Q)pn

. (32)

D. Algorithm Implementation

In this section, several implementation issues of our algorithm

are presented. As the first issue, we address the multiple cluster-

ing strategy adopted in the proposed algorithm. As aforemen-

tioned, each type of PES is extracted based on the corresponding

cluster given by K-means, and it is expected that the mean vector

of each cluster is as similar as possible to the corresponding real

endmember. However, the clustering performance of K-means

is clearly affected by its initial values. To tackle this problem

and inspired by the hyperspectral clustering method developed

in [52], in our algorithm, we use the phased unmixing results

of NMF to construct effective initial values for K-means, and

run it multiple times on the target HSI with the optimization

progress of NMF. Specifically, let matrix U = [r1, r2, ..., rP ]
comprises the mean vector rp, k = 1, 2, ..., P of corresponding

clusters given by K-means the last time. After the two matrix

factors of NMF are optimizedNI times iteratively, the K-means

algorithm is executed once more with its initial values taken

from the columns of matrix 1
2 (E+U), by which the estimated

endmembers so far and the clusters given by K-means the last

time are expected to contribute equally to obtaining better initial

values for K-means. Based on the clustering results, we then

updateRk,W, as well asH by (12), (16), and (21), respectively.

Note that when the K-means algorithm is run for the first time,

we initialize it by selecting P data points uniformly at random

from the range of HSI matrix Y, that is, each of P initial values

is generated by min(Y) + rand(0, 1) ∗ (max(Y)−min(Y)),
where rand(0, 1) denotes the function producing the uniformly

distributed random numbers in the interval [0,1].

The second issue concerns the initialization of the proposed

algorithm. Given that the objective function of MCG-NMF in

(23) is nonconvex, the initial values of matrices E and A will

make a noticeable impact on the unmixing performance as

demonstrated by relevant research. Therefore, effective initial

values should be provided for these two matrices. According

to the characteristics of our objective function, we initialize E

and A using two methods: random initialization and clustering-

based initialization. By random initialization that provides val-

ues for E and A randomly in the interval [0,1], we aim to test

our algorithm on synthetic data under general conditions. In the

experiments on real HSIs, MCG-NMF employs clustering-based

initialization, which provides initial values for E and A as

follows.

1) The clustering analysis is conducted on the HSI matrix Y

using K-means.

2) Set E = U, where U comprises the mean pixels given by

the first run of K-means and is constructed according to

(12).

3) Using the obtained matrix E, the initial value of A is

provided by the fully constrained least squares (FCLS)

[53] algorithm.

The third issue is about the ASC constraint in LSMM. Con-

sidering that the abundance matrix A is subject to the ASC

constraint according to LSMM, we tackle this issue following

the method in [10] and [53], by which the ASC constraint is grad-

ually satisfied during the optimization process of MCG-NMF.

Specifically, the HSI matrix Y and the endmember matrix E

are, respectively, augmented as

Ya ←

[

Y

δ1⊤
N

]

(33)

Ea ←

[

E

δ1⊤
P

]

(34)

where δ is the punishment coefficient that adjusts the impact

of the ASC constraint on the objective function; 1N and 1P

are all-ones vectors. Then, in each update of A with MUR in

(32), the matrices Ya and Ea are employed to replace Y and

E, respectively. Note that an appropriate value for δ should

be given to balance its effects between the ASC constraint

and the convergence speed of the proposed algorithm. In our

experiments, it is set to 15 as suggested in [54].

The fourth issue concerns how to determine the number of

endmembers P . Recently, some effective methods have been

proposed to estimate the number of endmembers in HSIs, such as

hyperspectral signal subspace identification by minimum error
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(HySime) [55] and virtual dimensionality (VD) [56]. The K-

means method needs to know the number of clusters in advance.

The value of P estimated by HySime or VD can also be used as

the number of clusters in K-means. However, in our experiments,

the number of endmembers is assumed to be known a priori [10],

[11].

The fifth issue is about how to determine the appropriate value

ofK, which remains a problem when the K-nearest neighbors of

the mean vector in each cluster are selected. Recall that we regard

the K-nearest neighbors of the mean vector as PESs of some sort

of endmember. If a smaller value of K is adopted, the obtained

PESs may lack accuracy owing to the noise interference in the

data. However, too big a value of K will cause the selected PESs

to be scattered, especially for HSIs with a high mixing degree.

In order to make a better balance between these two factors, we

set K = 4 in the experiments of this article.

The last issue concerns the termination criteria of the proposed

algorithm. We use two stopping criteria in our algorithm: 1)

the error tolerance of objective function F (E,A) in successive

iterations, i.e.,

|F (E(t),A(t))− F (E(t−1),A(t−1))|

F (E(t−1),A(t−1))
(35)

falls below a predefined threshold 10−4 in ten successive it-

erations; 2) the maximum number of iterations reaches a pre-

specified value, which is set to 3000 in our experiments. With

these termination criteria, our algorithm will iteratively optimize

the two matrices E and A until either of the two conditions is

reached.

Based on the above implementation techniques, the pseu-

docode of the proposed MCG-NMF algorithm is given in Al-

gorithm 1. As can be seen from Algorithm 1, it mainly consists

of two parts: the initial part and the iteration part. The initial

part includes lines 1–9, by which we aim to initialize some

matrices needed by the iteration part. Based on lines 1–4, our

algorithm can determine parameter P , initial matrices E and

A, as well as construct matrix Ya. In line 5, Algorithm 1 runs

K-means for the first time and the initial values for K-means

are generated by selecting P data points uniformly at random

from the range of HSI matrix Y as aforementioned. Based on

the clustering results via K-means, some matrices, such as U,

Rk, W, and H, are obtained by lines 5–8, respectively. To

count the number of iterations of the algorithm, we initialize

a count variable iterCounter in line 9. Next, in the iteration

part, Algorithm 1 will iteratively update matrices E and A by

lines 18–20 until the number of iterations reach to a prespecified

amount NI . In this case, our algorithm will run lines 12–16,

by which K-means is executed once more based on the new

initial values given by 1
2 (E+U) according to line 12. Then,

by lines 13–15, the values for matrices U, Rk, W, and H are

updated based on the clustering results of K-means. In line 16,

the algorithm reinitializes the variable iterCounter = 0 so that

it can run lines 12–16 once again after lines 18–21 are executed

NI times.

E. Complexity Analysis

Before presenting the experimental results, we briefly discuss

the computational complexity of MCG-NMF. According to Al-

gorithm 1, its computational cost mainly concerns the algorithm

steps of conducting clustering analysis via K-means, computing

Rk and H, as well as updating E and A in the main loop. Given

the dimension of pixel spectrumL, the total number of pixelsN ,

and the endmember numbers P , the computation cost involved

by the K-means method is O(tLPN), where t is the iteration

numbers of K-means. Considering the computation of Rk,

k = 1, 2, ...,K, by (12) primarily concerns finding the K-nearest

neighbors of each mean pixel in the corresponding cluster, it

needs the time complexity of O(LN +KN). The computation

of the matrix H primarily consists of two parts: namely the

least-squares method used in (18) and the weight mean matrix

calculated by (21) with matrix addition and multiplication opera-

tions, which have the time complexity of O(LPN + P 2N) and

O(PN + (K + 1)LP ), respectively. In the steps of updating

E and A, it mainly involves the matrix operations of addition

and multiplication with the order of O(N(LP + P 2)). Recall

that the K-means is executed once after matrix factors E and

A are optimized NI times iteratively. Taking all the operations

and the range of values of each variable into consideration, the

overall complexity of Algorithm 1 is O(tLPN) per iteration in
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the worst case. In addition, an empirical runtime comparison is

given in Section IV-C.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the effectiveness of our method, we conduct a

series of experiments on synthetic datasets and two real-world

HSIs. In the experiments on synthetic data, the proposed method

is compared with four representative NMF-based unmixing

methods, namely, GLNMF, NMF-PPK, SGSNMF, and MVC-

NMF. Among them, GLNMF is a graph regularized NMF that

jointly enforces sparseness and manifold constraints on the

abundance matrix. In the NMF-PPK method, a priori informa-

tion for part of endmembers is used as semisupervised guidance

to enhance the unmixing performance. SGSNMF is a method

based on spatial information, which imposes group-sparseness

constraint on abundances. MVCNMF utilizes the geometrical

property of HSIs to improve the unmixing performance of NMF,

and it attempts to minimize the volume of the simplex enclosed

by the candidate endmembers in the unmixing procedure. The

algorithm parameters for each of state-of-the-art method are set

to the same values as those in their original works. To com-

pare the performance of all the algorithms, each is run twenty

times and the average performance metrics are adopted. Since

NMF-PPK needs the prior knowledge of partial endmembers, we

randomly choose two endmembers as prior information in each

run. In addition, the initial values of all the algorithms are chosen

randomly in the interval [0,1], except for SGSNMF, which

includes a special initial method. In the experiments on real

HSIs, our method is tested on the widely used Washington DC

Mall and Cuprite data. All the algorithms used in the experiments

were implemented with MATLAB R2016b version and executed

on a computer with 1.99 GHz Intel(R) Core(TM) i7 CPU, 16 GB

main memory and Windows 10 operating system.

A. Performance Metrics

Two performance metrics, i.e., spectral angle distance (SAD)

and root mean square error (RMSE) [10] are adopted to evaluate

the unmixing accuracy of our algorithm. The SAD criterion is

used to measure the similarity between the estimated endmem-

ber signature êp and the reference signature ep, which is defined

as

SADp = arccos

(

e⊤p êp

‖ep‖‖êp‖

)

(36)

where ‖ · ‖ denotes the Euclidean norm of the vector.

To measure the similarity between the estimated abundances

and the reference abundances, we adopt the RMSE criterion,

which is defined as

RMSEp =

√

1

N
‖Ap: − Âp:‖22 (37)

whereAp: and Âp: denote the reference abundance distributions

and the estimated ones corresponding to the pth endmember,

respectively. Note that in the experiments on synthetic data, the

mean SAD and RMSE values over all the endmembers are used

to test all the algorithms.

B. Experiments on Synthetic Data

In our experiments, the synthetic datasets are generated by five

spectral signatures chosen from the United States Geological

Survey (USGS) spectral library. Each of the selected spectra

includes 224 spectral bands with wavelengths varying from 0.38

to 2.5 µm. Fig. 2 shows the signatures of all the selected spectra.

These spectra are linearly independent and used as endmembers

to create the synthetic data. By making some modifications to

the procedure in [10], we generate a set of synthetic datasets as

follows.

1) A b2 × b2 synthetic image is divided into b2 blocks, each

of which has b× b pixels.

2) All pixels within each block are assigned a kind of end-

member randomly selected from the endmember set.

3) A (b+ 1)× (b+ 1) averaging filter is applied to the

image, by which the pixels are linearly mixed and the

abundances of each pixel are obtained.

4) For each pixel of the synthetic image, if one of its fractional

abundances is larger than a specified threshold θ, this

pixel will be replaced by a new pixel that is mixed by

randomly selected four endmembers in equal proportions.

In this way, the synthetic images are highly mixed without

the existence of pure pixels. In addition, the abundance

fractions of each pixel are normalized to unity to satisfy

with the ASC constraint.

5) The zero-mean white Gaussian noise is added to the

obtained images according to the prespecified signal-to-

noise ratio (SNR).

Experiment 1 (Select the Algorithm Parameters): The pur-

pose of this experiment is to select the proper values for

the algorithm parameters of MCG-NMF. The setting of

NI , α and β are, respectively, tested using synthetic data

with 64×64 pixels, which is generated by five endmem-

bers with θ = 0.7 and SNR= 30 dB. We first hold α and

β to be fixed and choose different values for NI from the

set {10, 20, 30, 40, 50, 60, 80, 100, 200, 300, 400, 500, 600}. As

shown in Fig. 3(a), the algorithm has better SAD and RMSE

when NI varies from 80 to 300, and NI = 100 is the optimal

selection.

Next, the influence of parameter α on the algorithm per-

formance is examined on the condition that NI = 100 and

β = 0.001whilst selecting different values forα in the collection

{1e− 3, 5e− 3, 0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3}. Based on

the results shown in Fig. 3(b), we can see that MCG-NMF

achieves better performance w.r.t. the SAD criterion when α

is changed from 0.1 to 2.5. For the RMSE criterion, MCG-

NMF can perform better when α is in the interval of [0.5,

2.5]. It is not hard to verify that our algorithm can perform

best when α = 1. To find the proper value for parameter β,

we fix NI = 100 and α = 1, and then select different values

for β from the set {1e− 5, 5e− 5, 1e− 4, 5e− 4, 1e− 3, 5e−
3, 0.01, 0.05, 0.1, 0.5, 1}. Fig. 3(c) shows the influence of β on

the performance. Note that the values of harmonic mean (HM)

w.r.t. SAD and RMSE are also plotted in Fig. 3(c) for the sake of

clarity. As can be seen from HM values, our algorithm performs

best in case of β = 1e− 3. Based on these analysis, NI = 100,

α = 1 and β = 1e− 3 are used in our experiments.
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Fig. 2. Examples of the synthetic data. (a) Endmembers used to generate the synthetic data. (b) 188th band of a 64×64 synthetic data with SNR of 30 dB. (c)–(g)
Abundance map corresponding to each endmember.

Fig. 3. Performance of MCG-NMF with respect to algorithm parameters NI, α, and β. (a) Parameter NI. (b) Parameter α. (c) Parameter β.

Experiment 2 (Robustness to Noise): In this experiment, we

aim to test the robustness of MCG-NMF on the data with dif-

ferent levels of SNR. The datasets employed here are generated

under the same conditions as the previous experiment except

that their SNRs vary from 15 to 35 dB at an interval of 5 dB.

Additionally, the data with SNR at infinity are also used to

test MCG-NMF under the noise-free condition. Fig. 4(a) and

(b) shows the performance of all the algorithms according to

SAD and RMSE, respectively. We can see that MCG-NMF

outperforms other baseline algorithms on all of the datasets with

significant performance improvement for both endmembers and

abundances. As is expected, both SAD and RMSR of all the

algorithms get worse with decreasing SNR, especially for the

SAD values of MVCNMF and SGSNMF. This indicates noise

interference is an important factor affecting the performance.

Moreover, compared with the other methods, MCG-NMF shows

more stable performance by providing similar SAD and RMSE

values, respectively, on datasets with different levels of noise.

This demonstrates that our method has better robustness to noise

disturbance.

Experiment 3 (Generalization to Mixing Degree): Our goal

here is to investigate the generalization capability of MCG-NMF

on the datasets with different mixing degrees. We generate the

desired data by adjusting θ from 0.5 to 0.9 at an interval of 0.1

and fixing SNRs of all the data to be 30 dB. The performance of

all the methods on different datasets is given in Fig. 5. Note that

the term “purity” in Fig. 5 is used to indicate different mixing

degrees of the data. We can see that the performance of all the

methods gets better with the increase of purity. According to

the SAD measures, MVCNMF shows the worst performance

on all datasets, whereas MCG-NMF performs better than the

others when the data have higher purity, such as 0.7 to 0.9.

On the datasets with lower purity, such as 0.7, our method

has comparative SAD with GLNMF; it shows slightly worse

performance than GLNMF when the purity is 0.5. As for the

RMSE values, it can be seen from Fig. 5(b) that MCG-NMF is
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Fig. 4. Performance of MCG-NMF on synthetic datasets with different levels of SNR. (a) SAD. (b) RMSE.

Fig. 5. Performance of MCG-NMF on synthetic datasets with different mixing degrees. (a) SAD. (b) RMSE.

Fig. 6. Performance of MCG-NMF on synthetic datasets with different number of pixels. (a) SAD. (b) RMSE.

better than the other methods when the purity varies from 0.7 to

0.9. Meanwhile, it has comparative performance with GLNMF,

SGSNMF, NMF-PPK when purity equals to 0.6. On data with

purity 0.5, our method performs slightly worse than GLNMF and

SGSNMF. On the whole, MCG-NMF has better generalization

ability on datasets with different mixing degrees.

Experiment 4 (Sensitivity to Pixel Numbers): The purpose of

this experiment was to analyze the sensitivity of MCG-NMF

to the number of pixels in the data. We used datasets with

the pixel numbers of 36× 36, 64× 64, 100× 100, 144× 144,

and 196× 196, respectively. The other generating parameters

of these datasets remain the same as those employed in Exper-

iment 1. The SAD and RMSE values of all the algorithms are

shown in Fig. 6(a) and (b), respectively. As can be seen, the

unmixing accuracy increases when the data have more pixels,

which is rational since NMF-based methods can obtain more

accurate statistical information as the sample size increases.

By comparing all algorithms according to RMSE values, we
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Fig. 7. Performance of MCG-NMF on synthetic datasets with different number of endmembers. (a) SAD. (b) RMSE.

TABLE I
MEANS AND STANDARD DEVIATIONS (%) OF THE SAD ON WASHINGTON DC MALL DATASET

can see that our method has the comparative performance with

GLNMF on datasets with the size of 36× 36 and 196× 196
pixels. However, it outperforms all the baseline algorithms on the

other datasets. According to the SAD values, the performance of

our method is comparable with GLNMF on data with 36× 36
pixels, whereas our method shows obvious superiority with the

increasing of the number of pixels. This can be attributed to the

fact that the adopted multiple clustering strategy can provide

more accurate guidance for the endmember estimations when

the data comprise more pixels.

Experiment 5 (Effectiveness to Endmember Numbers): Here,

the performance of the five algorithms is evaluated on the

datasets generated by mixing a different number of endmembers

from five to ten. Apart from the endmember numbers, all the

synthetic data have the same size of 64×64 pixels, and are

created with θ = 0.7 and SNR= 30 dB. Fig. 7(a) and (b) shows

the performance of the five algorithms w.r.t. SAD and RMSE

criteria, respectively. We can see that the performance of all

the algorithms will degrade when the number of endmembers

increases in the data. As shown in Fig. 7(a), it is apparent that

MVCNMF gives the worst performance on all the datasets and

MCG-NMF performs better than the other alternative methods.

As regards the RMSE values, we can see from Fig. 7(b) that

MVCNMF performs worse than the other four methods, whereas

MCG-NMF can perform best when the data contain a relatively

small number of endmembers, such as 5–7. When the datasets

have more endmembers, e.g., 8–10, MCG-NMF can show an

RMSE performance comparable with NMF-PPK, GLNMF, and

SGSNMF. On the whole, MCG-NMF can provide effective per-

formance on the datasets with different numbers of endmembers.

Experiment 6 (Convergence on Different Datasets): In this

experiment, we investigate the convergence of our method by

Fig. 8. Convergence curves of MCG-NMF on datasets with different sizes.

Fig. 9. Pseudocolor image of the HYDICE Washington DC Mall data.

testing it on datasets with different sizes. We adopt the same

data as those used in the previous experiment. Fig. 8 plots the

curves of reconstruction error between the original data and the

reconstructed ones given by our algorithm. By comparing the

curves shown in Fig. 8, we can see that MCG-NMF converges

faster on datasets with smaller size. This is reasonable consider-

ing that fewer components need to be estimated in the abundance
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Fig. 10. Abundance maps estimated by MCG-NMF, GLNMF, NMF-PPK, SGSNMF, MVCNMF, SDNMF-TV, MVNTF, and VCA-FCLS on Washington DC
Mall data. (a) Grass. (b) Tree. (c) Roof. (d) Street. (e) Water.

matrix when MCG-NMF is tested on the data with smaller size.

It is easy to see that for datasets with a size of 36× 36 and

64× 64 pixels, respectively, MCG-NMF can converge within

1000 iterations. When it runs on the data with moderate size,

such as100× 100 and144× 144pixels, MCG-NMF will iterate

about 1500 times before its convergence. On datasets of larger

size, e.g., 196× 196 pixels, 2500 iterations are needed to reach

its convergence.

C. Experiments on Real Hyperspectral Data

In this section, the proposed MCG-NMF method is applied

to two widely used real-world HSIs: the Washington DC Mall

dataset and the Cuprite dataset. We compare the performance

of our method with seven representative methods: GLNMF,

NMF-PPK, SGSNMF, MVCNMF, sparsity-constrained deep

NMF with total variation (SDNMF-TV) [57], MVNTF, and
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Fig. 11. Comparison between the reference signatures of endmembers (blue solid line) and the estimated ones (red dotted line) given by MCG-NMF on Washington
DC Mall data. (a) Grass. (b) Tree. (c) Roof. (d) Street. (e) Water.

VCA [5] followed by FCLS [53] (VCA-FCLS). The first four are

NMF-based methods and have been used in the experiments with

synthetic data. SDNMF-TV is a recently proposed deep NMF

unmixing method with the sparsity and piecewise smoothness

constraints enforced on the abundances. MVNTF performs the

unmixing tasks under the framework of nonnegative tensor

factorization. VCA is a method based on the geometrical char-

acteristic of HSIs. It can only be used to extract endmembers,

and corresponding abundances are next estimated by the FCLS

approach. In our experiments, average results are obtained by

running each algorithm twenty times. The algorithm parameters

for all baseline methods adopt the same values as those in

their original works. Additionally, in each run of NMF-PPK on

the Washington DC Mall data, two endmembers are randomly

selected as known in advance, whereas on the Cuprite data, three

endmembers are enumerated randomly as prior information.

1) Washington DC Mall Dataset: The first real HSI is the

Washington DC Mall dataset collected by the airborne HY-

perspectral Digital Imagery Collection Experiment (HYDICE)

sensor over the Washington DC Mall area. Recently, this datum

has been extensively used in experiments of HU. The original

data have 1280× 307 pixels with 210 bands covering wave-

lengths from 0.4 to 2.5µm. Their spatial and spectral resolutions

are approximately 2.8 m and 10 nm, respectively. A subimage

with 150× 150 pixels from the original data is used in the

experiments, and Fig. 9 shows its pseudocolor image. Here, we

assume there are mainly five kinds of endmembers contained in

the target area including tree, grass, roof, water, and street [58],

[59]. Before unmixing, the bands corrupted by noise seriously,

as well as the water vapor absorption bands (including bands

103–106, 138–148, and 207–210) were both removed from the

data and 191 bands remained. In the experiments, the reference

endmembers are generated by manually choosing some pixels

from the original data cube and their positions are marked with

red circles in Fig. 9.

Fig. 12. False-color image of the selected subimage from AVIRIS Cuprite
data.

To evaluate the accuracy of endmember extraction quantita-

tively, the SAD values of all the algorithms are listed in Table I.

It can be seen from Table I that MCG-NMF shows the best

performance by achieving the lowest SAD for three cases, as

well as the lowest average SAD value. SDNMF-TV and VCA

only provide one case of the lowest SAD, respectively. We can

see that MCG-NMF can achieve much lower standard deviations

for both single endmember and the average value w.r.t. all the

endmembers. For comparison purposes, the visible abundance

maps obtained by our method and the other seven baselines are

shown in Fig. 10. In addition, Fig. 11 illustrates the estimated

endmember signatures by MCG-NMF and the reference sig-

natures. It can be seen that the estimated endmembers are in

good accordance with the referenced ones. It demonstrates that

MCG-NMF can provide satisfactory endmember estimations.

2) Cuprite Dataset: The second real HSI used in our exper-

iment is the Cuprite data that was captured on June 19, 1997 by
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TABLE II
MEANS AND STANDARD DEVIATIONS (%) OF THE SAD ON CUPRITE DATASET

Fig. 13. Abundance maps estimated by MCG-NMF on Cuprite data. (a) Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite.
vv (f) Montmorillonite. (g) Muscovite. (h) Nontronite. (i) Pyrope. (j) Sphene.

the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

sensor over Cuprite, NV, USA. These data include 224 bands

with the wavelength from 0.4 to 2.5µm. Their spectral and space

resolutions are approximately 10 nm and 20 m, respectively.

Since Cuprite is a mining area, rich minerals, such as alunite,

nontronite, kaolinite, etc., are widely distributed in the scene,

and the minerals here are commonly highly mixed. Therefore,

these data are frequently used to test the HU methods. Also,

ground truth and a geological summary of this site were provided

in past literature [60]. We selected a subimage with 250× 191
pixels from the original HSI, and the false-color image of it is

shown in Fig. 12. Before the experiment, the bands with low

SNR and water vapor absorption bands (including bands 1-2,

104-113, 148-167, and 221-224) are deleted, and the remaining

188 bands were used.

In our experiment, ten types of main minerals are assumed

to be present in the target scene in accordance with the existing

literature [5], [10]. The reference signatures used to evaluate

the unmixing performance of our method are chosen from the

USGS mineral spectral library [5]. Table II lists the SAD values

given by all algorithms. The best performance is marked in bold

font. According to the SAD values in Table II, MCG-NMF

has the largest number of best performance instances. When

comparing all the algorithms based on the average values w.r.t.

all the endmembers, our method also shows the best performance

by providing the lowest SAD. MCG-NMF shows better per-

formance improvement by giving a significantly smaller mean

standard deviation, which indicates the better robustness of the

proposed method. In addition, the abundance distributions of

all the endmembers estimated by MCG-NMF are shown as

color abundance maps in Fig. 13, in which the higher color

temperature of a pixel indicates the larger proportion of exis-

tence of corresponding endmembers. Besides, Fig. 14 illustrates

the comparison between the endmember signatures estimated

by MCG-NMF and the referenced ones. We can see that the

estimated signatures of Alunite, Buddingtonite, Dumortierite,

Montmorillonite, Nontronite, as well as Sphene, are in better

accordance with the referenced ones.

3) Running Time on Two Real Datasets: To validate the

efficiency of our algorithm on computation time, we tested

all the algorithms on Cuprite and Washington DC Mall data.

Table III gives the average running time of them. From Table III,

we can see that VCA needs much less running time compared

with the other methods since it is a geometric projection-based

method that needs fewer iterations. Among the methods based on

NMF and NTF, MVNTF needs the most running time, followed
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Fig. 14. Comparison between the reference endmembers (blue solid line) and the estimated ones (red dotted line) given by MCG-NMF on Cuprite data. (a)
Alunite. (b) Andradite. (c) Buddingtonite. (d) Dumortierite. (e) Kaolinite. (f) Montmorillonite. (g) Muscovite. (h) Nontronite. (i) Pyrope. (j) Sphene.

TABLE III
RUNNING TIME ON THE REAL DATASETS (IN SECONDS)

by MVCNMF, on both datasets. For the Washington DC Mall

data, the running time of GLNMF is the least, and our method

requires a slightly longer time than SGSNMF. As to Cuprite

data, NMF-PPK and SGSNMF consume less time than the other

factorization-based algorithms. Although MCG-NMF demands

more time than GLNMF, it performs much better than MVNTF,

MVCNMF, and SDNMF-TV.

V. CONCLUSION

In this article, an MCG-NMF method for HU is proposed

under a self-supervised framework. By conducting clustering

analysis on the HSI, the PESs implied in the data, as well as the

PADs for each endmember, are obtained as guidance information

to construct effective regularization for an NMF-based unmixing

model. Multiple clustering that can interact with the unmixing

model is incorporated into the optimization process of NMF. In

this way, more accurate PESs and abundance distributions can

be learned in a self-supervised manner, and help the estimated

endmembers and abundances to be more consistent with the

real ones. In addition, the proposed algorithm not only has

strong generalization capability for data with different mixing

degree and pixel numbers but also better robustness to noise

disturbance. With a series of experiments on synthetic data and

real hyperspectral images, the effectiveness of the proposed

algorithm has been demonstrated by comparing it with some

state-of-the-art algorithms.

Two issues are worth studying in further work. First, because

of the LSMM model adopted in this work, the unmixing per-

formance of the proposed method maybe degraded when an

HSI includes a number of pixels with an intimate mixture.

In this circumstance, the unmixing approach with a NLSMM

model is more suitable. Therefore, in a future study, we will

research nonlinear unmixing methods with semisupervised in-

formation based on effective nonlinear techniques, such as the

kernel method. Next, in this work, the PES and the PAD are

estimates based on the results of multiple clustering, which only

exploits the spectral information of an HSI without considering

its spatial contexture information. In further research, both the

spectral and spatial information will be jointly utilized to learn

the semisupervised information of endmembers and abundances

via effective techniques, e.g., superpixel segmentation. This is

expected to bring more accurate guidance for NMF and thus

provide superior unmixing performance.
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