
Journal of Mathematical Imaging and Vision 14: 225–236, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Multiple Contour Finding and Perceptual Grouping using Minimal Paths

LAURENT D. COHEN
CEREMADE, UMR 7534 Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny,

75775 Paris cedex 16, France
cohen@ceremade.dauphine.fr

Abstract. We address the problem of finding a set of contour curves in an image. We consider the problem of
perceptual grouping and contour completion, where the data is a set of points in the image. A new method to find
complete curves from a set of contours or edge points is presented. Our approach is based on a previous work
on finding contours as minimal paths between two end points using the fast marching algorithm (L. D Cohen and
R. Kimmel, International Journal of Computer Vision, Vol. 24, No. 1, pp. 57–78, 1997). Given a set of key points,
we find the pairs of points that have to be linked and the paths that join them. We use the saddle points of the
minimal action map. The paths are obtained by backpropagation from the saddle points to both points of each pair.

In a second part, we propose a scheme that does not need key points for initialization. A set of key points is
automatically selected from a larger set of admissible points. At the same time, saddle points between pairs of key
points are extracted. Next, paths are drawn on the image and give the minimal paths between selected pairs of points.
The set of minimal paths completes the initial set of contours and allows to close them. We illustrate the capability
of our approach to close contours with examples on various images of sets of edge points of shapes with missing
contours.

Keywords: perceptual grouping, salient curve detection, active contours, minimal paths, fast marching, level sets,
weighted distance, reconstruction, energy minimization

1. Introduction

We are interested in perceptual grouping and finding a
set of curves in an image with the use of energy mini-
mizing curves. Since their introduction, active contours
[11] have been extensively used to find the contour of
an object in an image through the minimization of an
energy. In order to get a set of contours of different
objects, we need many active contours to be initialized
on the image. The level sets paradigm [2, 14] allowed
changes in topology. It enables to get multiple contours
by starting with a single one. However, these do not give
satisfying results when there are gaps in the data since
the contour may propagate into a hole and then split to
many curves where only one contour is desired. This
is the problem encountered with perceptual grouping
where a set of incomplete contours is given. For ex-
ample, in a binary image like the ones in Fig. 1 with a

drawing of a shape with holes and spurious edge points,
human vision can easily fill in the missing boundaries,
remove the spurious ones and form complete curves.
Perceptual grouping is an old problem in computer vi-
sion. It has been approached more recently with energy
methods [10, 17, 18]. These methods find a criteria for
saliency of a curve component or for each point of
the image. In these methods, the definition of saliency
measure is based indirectly on a second order regular-
ization snake-like energy ([11]) of a path containing the
point. However, the final curves are obtained generally
in a second step as ridge lines of the saliency criteria
after thresholding. In [19] a similarity between snakes
and stochastic completion field is reported. Motivated
by this relation between energy minimizing curves like
snakes and completion contours, we are interested in
finding a set of completion contours on an image as a
set of energy minimizing curves.



226 Cohen

Figure 1. Examples of incomplete contours.

In order to solve global minimization for snakes, the
authors of [6] used the minimal paths, as introduced in
[12, 13]. The goal was to avoid local minima without
demanding too much on user initialization, which is
a main drawback of classic snakes [4]. Only two end
points were needed. The numerical method has the ad-
vantage of being consistent (see [6]) and efficient using
the Fast Marching algorithm introduced in [16]. In this
paper we propose a way to use this minimal path ap-
proach to find a set of curves drawn between points in
the image. As a first step, a set of end points is assumed
to be given. We also introduce a technique that auto-
matically finds the end points. This can be also viewed
as an extension of the minimal path approach by find-
ing automatically, based on construction of a minimal
energy global map, a set of key end points. In order
to find a set of most salient contour curves in the im-
age, we draw the minimal paths between pairs of linked
neighbors selected among the key end points.

In our examples, the potential P to be minimized
along the curves is usually an image of edge points
that represent simple incomplete shapes. These edge
points are represented as a binary image with small
potential values along the edges and high values at the
background. Such a potential can be obtained from real
images by edge detection (see [5]). The potential could
also be defined as edges weighted by the value of the
gradient or as a function of an estimate of the gradient of
the image itself, P = g(‖∇ I‖), like in classic snakes.
In these cases the chosen function has to be such that
the potential is positive everywhere, and it has to be
decreasing in order to have edge points as minima of
the potential. The potential could also be a grey level
image as in [6].

The problems we solve in this paper are presented
as follows:

• Minimal path between two points: The solution pro-
posed in [6] is reviewed in Section 2.

• Minimal paths between a given set of pairs of points
is a simple application of the previous one.

• Minimal paths between a given set of unstructured
points: We propose a way to find the pairs of linked
neighbors and the paths between them in Section 3.

• Minimal paths between an unknown set of point: Our
main contribution concerns the automatic finding of
key points and the drawing of minimal paths that
leads to completed curves as presented in Section 4.

Finally, in Section 5, we conclude with possible exten-
sions.

2. Minimal Paths and Weighted Distance

2.1. Global Minimum for Active Contours

We present in this section the basic ideas of the method
introduced in [6] to find the global minimum of the ac-
tive contour energy using minimal paths. The energy
to minimize is similar to classical deformable models
(see [11]) where it combines smoothing terms and im-
age features attraction term (Potential P):

E(C) =
∫

�

{w1‖C ′(s)‖2 + w2‖C ′′(s)‖2

+ P(C(s))} ds (1)

where C(s) represents a curve drawn on a 2D image
and � is its domain of definition. For classic active con-
tours, s may be any parameterization of the curve while
with a geometric model, s is the arclength, L is the
length of the curve and � = [0, L]. The authors of [6]
have related this problem with the recently introduced
paradigm of the level-set formulation. In particular, its
Euler equation is equivalent to the geodesic active con-
tours [2]. The method introduced in [6] improves en-
ergy minimization because the problem is transformed
in a way to find the global minimum. It avoids the solu-
tion being sticked in local minima. It reduces the user
initialization to giving the two end points of the contour
C . Let us explain each step of this method.

2.2. Problem Formulation

Most of the classical deformable contours have no con-
straint on the parameterization s, thus allowing the pa-
rameterization itself to be part of the minimization. In
[6], contrary to the classical snake model (but sim-
ilarly to geodesic active contours), s represents the
arc-length parameter, which means that ‖C ′(s)‖ = 1,



Multiple Contour Finding 227

leading to a geometric energy form. Considering a sim-
plified energy model without the second derivative term
leads to the expression E(C) = ∫ {w‖C ′‖2+P(C)} ds.
Assuming that ‖C ′(s)‖ = 1 leads to the formulation

E(C) =
∫

�=[0,L]
{w + P(C(s))} ds (2)

The regularization of this model is now achieved by
the constant w > 0. This term integrates as

∫
�

w ds =
w × L and allows to control the smoothness of the con-
tour (see [6] for details).

We now have an expression in which the internal en-
ergy can be included in the external potential. Given a
potential P ≥ 0 that takes lower values near desired fea-
tures, we are looking for paths along which the integral
of P̃ = P + w is minimal. The surface of minimal ac-
tionU is defined as the minimal energy integrated along
a path between a starting point p0 and any point p:

U(p) = inf
Ap0 ,p

E(C) = inf
Ap0 ,p

{ ∫
�

P̃(C)(s)) ds

}
(3)

whereAp0,p is the set of all paths between p0 and p. The
minimal path between p0 and any point p1 in the image
can be easily deduced from this action map. Assuming
that potential P �= 0 (this is always the case for P̃), the
action map has only one local minimum which is the
starting point p0. The minimal path is found by a simple
back-propagation, that is a gradient descent on the min-
imal action map U starting from p1 until p0 is reached.
Thus, contour initialization is reduced to the selection
of the two extremities of the path. We explain in the next
section how to compute efficiently the action map U .

2.3. Fast Marching Resolution

In order to compute this map U , a frontpropagation
equation related to Eq. (3) is solved:

∂C

∂t
= 1

P̃
�n. (4)

It evolves a front starting from an infinitesimal circle
shape around p0 until each point inside the image do-
main is assigned a value for U . The value of U(p) is
the time t at which the front passes over the point p.

The Fast Marching technique, introduced in [16],
was used in [6] noticing that the map U satisfies the

Eikonal equation:

‖∇U‖ = P̃ and U(p0) = 0. (5)

Classic finite difference schemes for this equation tend
to overshoot and are unstable. An up-wind scheme was
proposed by [16]. It relies on a one-sided derivative that
looks in the up-wind direction of the moving front, and
thereby avoids the over-shooting associated with finite
differences:

(max{u − Ui−1, j , u − Ui+1, j , 0})2

+(max{u − Ui, j−1, u − Ui, j+1, 0})2 = P̃2
i, j , (6)

giving the correct viscosity-solution u for Ui, j . The im-
provement made by the Fast Marching is to introduce
order in the selection of the grid points. This order
is based on the fact that information is propagating
outward, because the action can only grow due to the
quadratic Eq. (6).

This technique of considering at each step only the
necessary set of grid points was originally introduced
for the construction of minimum length paths in a graph
between two given nodes in [8].

The algorithm is detailed in Table 1. An example is
shown in Fig. 2. The Fast Marching technique selects
at each iteration the Trial point with minimum action
value. In order to compute this value, we have to solve
Eq. (6) for each trial point, as detailed in Table A.1 in
appendix .

Thus it needs only one pass over the image. To per-
form efficiently these operations in minimum time, the
Trial points are stored in a min-heap data structure
(see details in [16]). Since the complexity of the oper-
ation of changing the value of one element of the heap
is bounded by a worst-case bottom-to-top proceeding
of the tree in O(log2 P), the total work is bounded
O(P log2 P) for the Fast Marching on a grid with P
nodes.

Figure 2. Finding a minimal path between two points. On the left,
the potential is minimal on the ellipse. In the middle, the minimal
action or weighted distance to the marked point. On the right, minimal
path using backpropagation from the second point.



228 Cohen

Table 1. Fast Marching algorithm.

Algorithm for 2D Fast Marching

• Definitions:
– Alive set: all grid points at which the action value

U has been reached and will not be changed;
– Trial set: next grid points (4-connexity neigh-

bors) to be examined. An estimate U of U has
been computed using Eq. (6) from alive points
only (i.e. from U);

– Far set: all other grid points, there is not yet an
estimate for U ;

• Initialization:
– Alive set: reduced to the starting point p0, with;

U (p0) =U (p0)=0;
– Trial set: reduced to the four neighbours p of p0

with initial value U (p) = P̃(p) U (p)=∞);
– Far set: all other grid points, with U=U=∞;

• Loop:
– Let p = (imin, jmin) be the Trial point with the

smallest action U ;
– Move it from the Trial to the Alive set (i.e. U (p)=

Uimin, jmin is frozen);
– For each neighbor (i, j) (4-connexity in 2D) of

(imin, jmin):
∗ If (i, j) is Far, add it to the Trial set and com-

pute Ui, j using Eq. (6).
∗ If (i, j) is Trial, update the action Ui, j using

Eq. (6).

3. Finding Multiple Contours from a Set
of Key Points pk

The method of [6], detailed in the previous section al-
lows to find a minimal path between two endpoints. We
are now interested in finding many or all contours in an
image. A first step for multiple contours finding in an
image is to assume we have a set of points pk given
on the image and then find contours passing through
these points. We will discuss later how to define these
points, in particular in Section 4. For the moment we
assume the points are either given by a preprocessing
or by the user. We propose to find the contours as a set
of minimal paths that link pairs of points among the
pk’s. If we also know which pairs of points have to be
linked together, finding the whole set of contours is a
trivial application of the previous section. This would
be similar to the method in [9] which used a dynamic
programming approach to find the paths between suc-
cessive points given by the user. The problem we are
interested in here is also to find out which pairs of
points have to be connected by a contour. Since the set

of points pk’s is assumed to be given unstructured, we
do not know in advance how the points connect. This
is the key problem that is solved here using a minimal
action map.

3.1. Main Ideas of the Approach

Our approach is similar to computing the distance map
to a set of points and their Voronoi diagram. However,
we use here a weighted distance defined through the
potential P . This distance is obtained as the minimal
action with respect to P with zero value at all points pk .
Instead of computing a minimal action map for each
pair of points, as in Section 2, we only need to compute
one minimal action map in order to find all paths. At the
same time the action map is computed we determine
the pairs of points that have to be linked together. This
is based on finding meeting points of the propagation
fronts. These are saddle points of the minimal action
U . In Section 2, we said that calculation of the minimal
action can be seen as the propagation of a front through
Eq. (4). Although the minimal action is computed us-
ing fast marching, the level sets of U give the evolution
of the front. During the fast marching algorithm, the
boundary of the set of alive points also gives the posi-
tion of the front. In the previous section, we had only
one front evolving from the starting point p0. Since all
points pk are set withU(pk) = 0, we now have one front
evolving from each of the starting points pk . In what
follows when we talk about front meeting, we mean
either the geometric point where the two fronts coming
from different pk’s meet, or in the discrete algorithm
the first alive point which connects two components
from different pk’s (see Figs. 3 and 4).

Figure 3. Ellipse example with four points. On the left the incom-
plete ellipse as potential and four given points; on the right the min-
imal action map (random LUT to show the level sets) from these
points.



Multiple Contour Finding 229

Figure 4. Zoom on saddle point between two key points.

Our problem is related to the approach presented at
the end of [6] in order to find a closed contour. Given
only one end point, the second end point was found
as a saddle point. This point is where the two fronts
propagating both ways meet. Here we use the fact that
given two end points p1 and p2, the saddle point S
where the two fronts starting from each point meet can
be used to find the minimal path between p1 and p2.
Indeed, the minimal path between the two points has
to pass by the meeting point S. This point is the point
half way (in energy) on the minimal path between p1

and p2. Backpropagating from S to p1 and then from
S to p2 gives the two halves of the path. This is in fact
an approximation, due to some discretization error in
finding the meeting point S. If high precision is needed,
a subpixel location of saddle points can be made based
on the final energy map. In order to get the precise
minimal path between the two points, we could also
back-propagate from the second points to the first as in
Section 2, but computation time would be then much
increased.

3.2. Some Definitions

Here are some definitions that will be used in what
follows.

• For a point p in the image, we note Up the minimal
action obtained by Fast Marching with potential P̃
and starting point p.

• X being a set of points in the image, UX is the mini-
mal action obtained by Fast Marching with potential
P̃ and starting points {p, p ∈ X}. This means that all
points of X are initialized as alive points with value
0 and all their 4-connexity neighbors are trial points.
This is easy to see that UX = minp∈X Up.

• The region Rk associated with a point pk is the set
of points p of the image closer in energy to pk than
to other points p j . This means that minimal action
Upk ≤ Up j , ∀ j �= k. Thus, if X = {p j , 0 ≤ j ≤ N },
we have UX = Upk on Rk and the computation of UX

is the same as the simultaneous computation of each
Upk on each region Rk . These are the simultaneous
fronts starting from each pk .

• The region index r is r(p) = k, ∀p ∈ Rk . (Voronoi
Diagram for weighted distance).

• A saddle point S(pi , p j ) between pi and p j is the
first point where the front starting from pi to compute
Upi meets the front starting from p j to compute Up j ;
At this point, Upi and Up j are equal and this is the
smallest value for which they are equal.

• Two points among the pk’s will be called linked
neighbors if they are selected to be linked together.
The way we choose to link two points is to select
some saddle points. Thus points pi and p j are linked
neighbors if their saddle point is among the selected
ones.

3.3. Saddle Points and Reconstruction
of the Set of Curves

The main goal of our method is to obtain all significant
paths joining the given points. However, each point
should not be connected to all other points, but only
to those that are closer to them in the energy sense. In
order to form closed curves, each point pk should not
have more than two linked neighbors. The criteria for
two points pi and p j to be connected is that their fronts
meet before other fronts. It means that their saddle point
S(pi , p j ) has lower action U than the saddle points be-
tween these points and other points pk . The fact that
we limit each pk to have no more than two connections
makes it possible that some points will have only one
or no connection. This helps removing some isolated
spurious points or getting different closed curves not
being connected together. We illustrate this in the ex-
ample of Fig. 9 where one of the pk is not linked to



230 Cohen

Figure 5. Ellipse example with four points. On the left the saddle
points are found, and backpropagation is made from them to each of
the two points from where the front comes; on the right, the minimal
paths and the Voronoi diagram obtained.

any other point since all the other points already have
two linked neighbors. In case we also need to have
T-junctions, the algorithm can be used with a higher
number of linked neighbors allowed for each endpoint.
A non symmetric relation may also be used to link each
point to the closest or the two closest ones, regardless of
whether these have already two or more neighbors. In
the exemple of Fig. 9, such an approach would link the
spurious points with the circles. Postprocessing would
be needed to remove undesired links, based on high
energy for example.

Once a saddle point S(pi , p j ) is found and selected,
backpropagation relatively to final energy U should be
done both ways to pi and to p j to find the two halves of
the path between them. We see in Fig. 5 this backprop-
agation at each of the four saddle points. At a saddle
point, the gradient is zero, but the direction of descent
towards each point are opposite. For each backpropa-
gation, the direction of descent is the one relative to
each region. This means that in order to estimate the
gradient direction towards pi , all points in a region dif-
ferent from Ri have their energy put artificially to ∞.
This allows finding the good direction for the gradi-
ent descent towards pi . However, as mentioned earlier,
these backpropagations have to be done only for se-
lected saddle points. In the fast marching algorithm we
have a simple way to find saddle points and update the
linked neighbors.

As defined above, the region Rk associated with a
point pk is the set of points p of the image such that
minimal energy Upk (p) to pk is smaller than all the
Up j (p) to other points p j . The set of such regions Rk

covers the whole image, and forms the Voronoi dia-
gram of the image (see Fig. 5). All saddle points are
at a boundary between two regions. For a point p on
the boundary between R j and Rk , we have Upk (p) =

Up j (p). The saddle point S(pk, p j ) is a point on this
boundary with minimal value of Upk (p) = Up j (p).
This gives us a rule to find the saddle points during the
fast marching algorithm.

Each time two fronts coming from pk and p j meet for
the first time, we define the meeting point as S(pk, p j ).
This means that we need to know for each point of the
image from where it comes. This is easy to keep track
of its origin by generating an index map updated at each
time a point is set as alive in the algorithm. Each point
pk starts with index k. Each time a point is set as alive,
it gets the same index as the points it was computed
from in formula (6). In that formula, the computation
of Ui, j depends only on at most two of the four pixels in-
volved. Following notations of Table A.1 in appendix,
this means the neighbor points A1 and B1. These two
pixels have to be from the same region, except if (i, j)
is on the boundary between two regions. If A1 and B1

are both alive and with different indexes i and j , this
means that regions Ri and R j meet there. If this happens
for the first time, the current point is set as the saddle
point S(pi , p j ) between these regions. A point on the
boundary between Ri and R j is given the index of the
neighbor point with smaller action A1. At the boundary
between two regions there can be a slight error on in-
dexing. This error of at most one pixel is not important
in our context and could be refined if necessary.

3.4. Algorithm

The algorithm for this section is described in Table 2
and illustrated in Figs. 3 and 5. When there is a large
number of pk’s, this does not change much the compu-
tation time of the minimal action map, but this makes
more complex dealing with the list of linked neighbors
and saddle points. This may generate more conflicting
neighbor points, and due to the constraint of having at
most two linked neighbors, some gaps may remain be-
tween contours. The method can be applied to a whole
set of edge points or points obtained through a prepro-
cessing. This was actually our first step in this work
([3]). However, choosing few key points simplifies the
computation of saddle points and linked neighbors and
the geometry of the paths. When there are few key
points, they are not too close to each other. Finding all
paths from a given set of points is interesting in the case
of a binary potential defined, like in Fig. 3, for percep-
tual grouping. It can be used as well when a special
preprocessing is possible, either on the image itself to
extract characteristic points or on the geometry of the



Multiple Contour Finding 231

Table 2. Algorithm of Section 3.

Algorithm with previously defined pk

• Initialization:
– pk ’s are given
– ∀k, V (pk) = 0; R(pk) = k; pk alive.
– ∀p /∈ {pk}, V (pk) = ∞; R(p) = −1; p is far

except 4-connexity neighbors of pk ’s that are trial
with estimate U using Eq. (6).

• Loop for computing V =U{pk ,0≤k≤N }:
– Let p = (imin, jmin) be the Trial point with the

smallest action U ;
– Move it from the Trial to the Alive set with V (p)

= U (p);
– Update R(p) with the same index as point A1 in

formula (7) (see appendix). If R(A1) �= R(B1)

and we are in case 1 of Table A.1 where both
points are used and if this is the first time regions
R(A1) and R(B1) meet, S(pR(A1), pR(B1)) = p
is set as a saddle point between pR(A1) and
pR(B1). If these points have not yet two linked
neighbors, they are put as linked neighbors and
S(pR(A1), pR(B1)) = p is selected,
For each neighbor (i, j) (4-connexity) of
(imin, jmin):
∗ If (i, j) is Far, add it to the Trial set and

compute U using Eq. (6);
∗ If (i, j) is Trial, recompute the action Ui, j ,

and update it.
• Obtain all paths between selected linked neighbors

by backpropagation each way from their saddle point
(see Section 3.3).

initial set of points to choose more relevant points. In
what follows we give a way to find automatically a set
of key points.

4. Finding a Set of Key Points pk

The problem is now, given a potential, finding automat-
ically a set of points pk that can be used as start and end
points for the minimal path approach. This way a set of
most representative curves would be found in the im-
age. The way end-points are linked together is similar
to the previous section, except we determine the set of
endpoints during the minimal action computation. We
will see below that the method we propose here has
two advantages. First, it avoids computing the energy
map to a point when it is not useful. This permits to
have much lower computation time for the final energy
map (P log2 P multiplied by an order less than log N ,
with N the number of key points). Second, we need
to store only one energy map, which means each point
has only one value of the energy kept. In order to make
“classical” backpropagation between all pairs of points,

we would have to store and manage with the whole set
of energy maps for all points pk . We proposed below a
variation of the algorithm of Section 3, which dynam-
ically adds key points and updates the minimal action
map. Once the set of key points is found, the final result
is the same as in Section 3, but only one computation
is needed, and we do not need a second step running
algorithm of Section 3 with the found p′

k’s.

4.1. Algorithm

The main idea is to find iteratively new points on the
image and say that two points have to be linked by
a minimal path if the fronts starting from these points
meet before they meet any other front. As before, in or-
der to get closed curves, we look for two linked neigh-
bors for each point. This means that each key point is
linked by a minimal path to at most two key points.

In order to find the next key point, we look for the
point that has the highest action among a subset of ad-
missible points. This point is the most far in energy
from the previously obtained key points. The main al-
gorithm is described in Table 3 and detailed in the next
sections.

4.2. Admissible Points

The setA of admissible points should contain all points
that are likely to be on the curves we are looking for.

Table 3. Main algorithm.

Algorithm with automatic selection of pk

• The set A of admissible points is defined in Section
4.2;

• Initialization:
– p0 is chosen among the admissible points (see 4.2)
– V0 =Up0

• Loop: pk , Vk , 0 ≤ k ≤ n being known:
– Let pn+1 be the admissible point with the highest

value of action Vn ;.
– Compute Vn+1 = U{pk ,0≤k≤n+1}. From this defi-

nition, computation is made easier since Vn+1 =
min(Vn,Upn+1 ). Fast Marching is limited to the
points where Vn+1 ≤ Vn (see Section 4.3).

– Update the set of saddle points (see Section 4.4).
– Stopping criteria: If supA Vn+1 ≤ TU or n ≥

Nmax, where TU and Nmax are given thresholds.
• Select the saddle points.
• Obtain all paths between selected linked neighbors

by backpropagation from their saddle point accord-
ing to the final energy map VN (see Section 4.4).



232 Cohen

Figure 6. Ellipse example: successive partial map computation for five points. From left to right, line 1: potential, admissible points, found
key points, saddle points, final paths and voronoi diagram; line 2: successive partial maps for the 5 key points and final map; line 3: the same
with random color map to visualize level sets.

These are defined as local minima of the potential P
in the general case. For a binary potential defining a
set of contour points, as we usually have for perceptual
grouping, A is included in the set of contour points. In
order to limit the number of admissible points, we add
the condition on a smoothed version of the gradient of
the potential to be large enough. This is to impose two
kinds of properties:

• If the set of points contains thick curves, this keeps
only points that are on the boundary.

• This removes spurious isolated edge points.

In order to start the algorithm, a first admissible point
p0 has to be chosen. This can be done either by the user,
or at random, or taking the first of the list. In case we
do not want the user to give the initial point, we can
use a random point p0 only in order to define the next
point p1 obtained by the algorithm. And then we start
again removing the previous p0 and replacing it by p1.
This avoids to get a point in the middle of an open
curve. This gives preference to points that are at ends
of a curve. Another possible interaction with the user
could be to give a region of interest in the image, where
the admissible points will be constrained to be. Thus
the user has only to circle roughly an object in order to
get its contours. A priori information on the grey level
of the object or the background (for example vessels

in medical applications or roads in aerial images) can
also be used as a way to define the set of admissible
points.

4.3. Fast Marching and Partial Map Computation

For the first point p0, the fast marching described in
Section 2.3 is used to compute V0 =Up0 . For the fol-
lowing points pk , the same fast marching could be used
to obtain Vn+1 = U{pk ,0 ≤ k ≤ n+1} with pk, 0 ≤ k ≤ n +1
as initial alive points with value 0, as in Section 3. How-
ever, it is not necessary sary to compute the whole map
again. In order to estimate Vn+1, we need to compute
Upn+1 only for those points that have a value smaller
than the previously obtained energy map Vn . In the
fast marching algorithm, each time a point p has to
be put as alive with a value U (p), it is compared to
the previous map Vn . If Vn(p) > U (p), the point is
put as alive with value Vn+1(p) = U (p) =Upn+1(p),
and its neighbors are updated as usual in Table 1. In
case Vn(p) ≤ U (p), the point is put as alive with
values Vn+1(p) = Vn(p), and U (p) = ∞ and no up-
date is done on its neighbors. This is a way to stop
propagation around this point. This makes the whole
propagation stop as soon as we passed over all points
that are closer in energy to pn+1 than to the other
previous pk .



Multiple Contour Finding 233

Figure 7. Curve example: same as in Fig. 6 with successive partial
map computation for four points.

Therefore, the computation of the whole map does
not cost much more than computation of the fast march-
ing a few times over the image (a rough estimation is
log N times, with N the number of pk’s instead of N
times in case we would recompute the map at each
step). Thus the computation time of this step is not too
much dependent on the number of key points. We see
in Fig. 6 an example of running this algorithm on the
ellipse image. Notice the order in which the points pk

were chosen. The first p0 is on the top of the ellipse.
In consequence the second point p1 is on the bottom.
Then p2 and p3 are on right and left. On the second and
third rows of the figure, we show the partial map com-
putation, that is the set of pixel for which a new value
of minimal action was computed. For such a simple
example, we see in the energy map to the first point p0

that the second key point is in fact the saddle point be-
tween p0 and itself. Notice that this saddle point would
be enough to find the complete ellipse through back-
propagation both ways to p0 as we did for finding a
closed curve in [6]. In the second example, on Fig. 7,
the two extreme points on right and left are found first
and then the two in the middle.

4.4. Finding the Saddle Points

In the fast marching algorithm, as we modified it in the
previous section, we have a simple way to find and up-
date the linked neighbors and saddle points. The defini-
tion and criteria for finding a saddle point is the same as
in the algorithm of Section 3. However, since we add
key points at each step, some saddle points detected
earlier are not saddle points anymore. So we have to
check each time a saddle point is set as alive in a new
region. It is then removed from the set of saddle points
(see Fig. 8). This comes from the fact that this point

Figure 8. The saddle point between p1 and p2 is not a saddle point
anymore when it becomes included in region R3.

is no more on the boundary of the previously obtained
regions. Often, the new key point added was itself a
saddle point, and it is also removed from the set of
saddle points.

Since the saddle point between two key points may
change during the algorithm, it is easier to define the
selected saddle points only at the end, once all key
points are known.

We see in Figs. 6 and 7 results on simple curves
for the determination of key points and their selected
saddle points. In both cases, the paths that are obtained
correspond to the completed curve that have filled in the
holes. Figure 9 illustrates the capacity of our method to
deal with a contour image including spurious points and
more than one curve. In the example of Fig. 10, more
complex data is taken and we show the results with 30
and 40 key points. We see that the main contours are
the same, the completed large square and a set of other
curves. The result gives a simplified and completed set
of contour curves. We see in this example that limiting
the number of linked neighbors to at most two linking
paths can change the way the contours are completed.
We show in this figure the energy of the found paths.
Each time we compute a path between two points pk

and p j , we know the saddle point S(pk, Pj ) and its en-
ergy VN . This energy is in fact equal to the cost of the
path which links S(pk, p j ) to pk and to p j . Therefore

Figure 9. Two circles; From left to right: potential, key points and
final paths.



234 Cohen

Figure 10. Complex exemple: From left to right, line 1: potential,
final paths with energy as grey level and final paths with 30 key
points; line2: same with 40 key points.

the energy of the path between pk and p j is equal to
2VN (S(pk, p j )). The smaller this energy is, the more
reliable the path can be considered. It could be a criteria
to choose the best curves if necessary in more complex
images as in [17]. Notice in Fig. 10 that you can only
compare the energy of different paths in the same im-
age, but the two images are not represented with the
same color map.
We show in Fig. 11 an application of our approach
combined with the saliency map of [10]. In such an ex-
ample, the given dots are too few to enable finding the
circle as a minimal path. Indeed, taking two opposite
points on the ellipse, the minimal path between them
will not be along the ellipse but rather along a straight
line. By passing through low potential points (in black)
along the circle, the path will also pass through more
high potential points (background in white). Thus ap-
plying the method of [10] gives a saliency map that is
much more dense than the original image. Taking the
saliency map as potential, our approach allows find-
ing the whole circle as a set of minimal paths between
points determined automatically. The set of admissible
points here can be either the initial set of points of the
original image or the set of points obtained by a thresh-
old on the saliency map. We can also find the ellipse by

Figure 11. Finding a set of minimal path using a saliency map as
potential. From left to right, original data, saliency map, ridge lines
and minimal paths.

Table 4. Partial Fast Marching algorithm with saddle
points update.

Details of the Loop in Algorithm of Table 3

• Extra Initialization:
– R(p0) = 0
– ∀p �= p0, R(p) = −1

• Loop: pk , Vk , 0 ≤ k ≤ n being known:
– Let pn+1 be the admissibel point with the highest

value of action Vn ; remove pn+1 from the set of
saddle points.

– Compute Vn+1 = min(Vn,Upn+1 . Fast Marching
is initialized again to compute Upn+1 as in Table 1
but limited to the points where Vn+1 ≤ Vn . We
start with Vn+1 = Vn . Loop:
∗ Let p = (imin, jmin) be the Trial point with the

smallest action U ;
∗ Move it from the Trial to the Alive set;
∗ If U (p) < Vn(p), set Vn+1(p) = U (p), update

R(p) = n + 1. If p is a saddle point, remove it
from the set of saddle points. For each neighbor
(i, j) (4-connexity in 2D) of (imin, jmin):
· If (i, j) is Far, add it to the Trial set and compute

U using Eq. (6);
· If (i, j) is Trial, recompute the action Ui, j and

update it.
∗ If U (p) ≥ Vn(p), set Vn+1(p) = Vn(p), U (p)

= ∞, no update on R(p) and linked neighbors
is needed and no trial point is added. If this is
the first time that region n + 1 meets region of
index R(p), S(pR(p), pn+1) = p is set as a
saddle point between pR(p) and pn+1.

• For each point keep as selected only at most the two
linked neighbors for which the saddle points have
smaller energy.

looking for ridge curves on the saliency map but there
are many spurious ridge curves obtained.

We summarize the ideas of Sections 4.3 and 4.4 in
Table 4, giving details of the main algorithm that were
omitted in Table 3.

5. Perspectives and Conclusion

We presented a new method that finds a set of contour
curves in an image. It was applied to perceptual group-
ing to get complete curves from a set of noisy contours
or edge points with gaps. The technique is based on
previous work of finding minimal paths between two
end points [6]. However, in our approach, we do not
need to give the start and end points as initialization.
In a first method, we assume given a set of key points,
and we found the pairs of key points that had to be
linked by minimal paths. In a second method, the set



Multiple Contour Finding 235

Figure 12. Our method permits to find a path inside the labyrinth.
On the left the potential is obtained by reverse video from the contour
potential of Fig. 10. In the middle, we require two pk ’s and on the
right three.

of key points is automatically extracted from a set of
admissible points, which can be the whole set of edge
points. At the same time this set of points is obtained,
saddle points between pairs of points are found. Once
this set is obtained, paths are drawn on the image from
the selected saddle points to both points of each pair.
This gives the minimal paths between selected pairs of
points. The whole set of paths completes the initial set
of contours and allows to close these contours.

The algorithms described in this paper apply to var-
ious potentials as well. This is only the definition of
admissible points that may be different and adapted to
each application. We show in Fig. 12 an example of
a “labyrinth” potential. The potential is small in the
black area, and high along contours. Contours act in
this example as barriers that stop the front propaga-
tion. Finding a minimal path between given end points
would find the path inside the labyrinth as shown for
example in [7, 16]. We show the resulting paths by ask-
ing to find automatically successively two and three key
points. Our method enables to find automatically paths
inside the labyrinth without even giving any start or end
points. Thus it can be similarly applied to find edges or
significant lines in real images.

Appendix A

Algorithm for 2D Up-Wind Scheme

Notice that for solving Eq. (6), only alive points are
considered. This means that calculation is made us-
ing current values of U for neighbors and not esti-
mate U of other trial points. Considering the neighbors
of grid point (i, j) in 4-connexity, we note {A1, A2}
and {B1, B2} the two couples of opposite neigh-
bors such that we get the ordering U(A1) ≤U(A2),
U(B1) ≤U(B2), and U(A1) ≤U(B1). Considering that

Table A.1. Solving locally the upwind scheme.

1. • If � ≥ 0, u should be the largest solution of Eq. (7);
– If the hypothesis u > U (B1) is wrong, go to 2;
– If this value is larger than U (B1), this is the solution;

• If � < 0, B1 has an action too large to influence
the solution. It means that
u > U (B1) is false. Go to 2;

Simple calculus can replace case 1 by the test:

1 bis. If P̃i, j > U (B1) −U (A1),

u = u(b1) + u(A1) +
√

2P̃2
i, j − (u(B1) − u(A1))2

2 is
the largest solution of Eq. (7) else go to 2;

2. Considering that we have u < U (B1) and
u ≥ U (A1), we finally have u = U (A1) + P̃i, j .

we have u ≥ U(B1) ≥ U(A1) the equation derived is

(u − U(A1))
2 + (u − U(B1))

2 = P̃2
i, j (7)

The discriminant � of Eq. (7) is computed, we solve
the equation as shown in Table A.1.

Acknowledgments

This works started with the end of DEA project of
Frédéric Claudel [3] and was continued in part with
the DEA project of Benjamin Mauroy [15]. I thank
them for their work at CEREMADE during summers
of 1998 and 1999 respectively. I would like to thank
Ron Kimmel for all his help with this paper and the
reviewers for their useful suggestions to improve this
paper.

References

1. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active con-
tours,” International Journal of Computer Vision, Vol. 22, No. 1,
pp. 61–79, 1997.

2. F. Claudel, “Extraction de contours implicites dans des images
par des méthodes énergétiques,” CEREMADE, Technical Re-
port, September 1998. Rapport de DEA et Ecole Centrale, pro-
posé et dirigé par Laurent Cohen.

3. L.D. Cohen, “On active contour models and balloons,” Computer
Vision, Graphics, and Image Processing: Image Understanding,
Vol. 53, No. 2, pp. 211–218, 1991.

4. L.D. Cohen and I. Cohen, “Finite element methods for active
contour models and balloons for 2-D and 3-D images,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI, Vol. 15, No. 11, pp. 1131–1147, 1993.

5. L.D. Cohen and R. Kimmel, “Global minimum for active contour
models: A minimal path approach,” International Journal of
Computer Vision, Vol. 24, No. 1, pp. 57–78, 1997.



236 Cohen

6. T. Deschamps and L.D. Cohen, “Minimal paths in 3D images
and application to virtual endoscopy,” in Proc. sixth European
Conference on Computer Vision (ECCV’00), Dublin, Ireland,
26, pp. 543–557, June – 1 July 2000.

7. E.W. Dijkstra, “A note on two problems in connection
with graphs,” Numerische Mathematic, Vol. 1, pp. 269–271,
1959.

8. D. Geiger, A. Gupta, L. Costa, and J. Vlontzos, “Dynamic pro-
gramming for detecting, tracking, and matching deformable
contours,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 17 No. 3, pp. 294–302, 1995.

9. G. Guy and G. Medioni, “Inferring global perceptual contours
from local features,” International Journal of Computer Vision,
Vol. 20, No. 1/2, pp.113–133, 1996.

10. M. Kass, A. Witkin, and D. Terzopoulos,“Snakes: Active contour
models,” International Journal of Computer Vision, Vol. 1, No.
4, pp. 321–331, 1988.

11. R. Kimmel, A. Amir, and A. Bruckstein, “Finding shortest paths
on surfaces using level sets propagation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-Vol. 17, No. 6,
pp. 635–640, 1995.

12. R. Kimmel, N. Kiryati, and A.M. Bruckstein, “Distance
maps and weighted distance transforms,” Journal of Math-
ematical Imaging and Vision, Vol. 6, pp. 223–233, 1996.
Special Issue on Topology and Geometry in Computer
Vision.

13. R. Malladi, J.A. Sethian, and B.C. Vemuri, “Shape modeling
with front propagation: A level set approach,” IEEE Trans. on
PAMI, Vol. 17, No. 2, pp. 158–175, 1995.

14. B. Mauroy, “Chemins minimaux en analyse d’images,”
CEREMADE, Technical Report, September 1999. Rapport de
DEA, proposé et dirigé par Laurent Cohen.

15. J.A. Sethian, Level Set Methods: Evolving Interfaces in Geome-
try, Fluid Mechanics, Computer Vision and Materials Sciences,
Cambridge Univ. Press, Cambridge, UK, 1996.

16. A. Shaashua and S. Ullman, “Structural saliency: The detection
of globally salient structures using a locally connected network,”
in Proc. Second IEEE International Conference on Computer
Vision (ICCV’88), December 1988, pp. 321–327.

17. L.R. Williams and D.W. Jacobs, “Stochastic completion fields:
A neural model of illusory contour shape and salience,” in
Proc. Fifth IEEE International Conference on Computer Vision
(ICCV’95), Cambridge, USA, June 1995, pp. 408–415.

18. L.R. Williams and D.W. Jacobs, “Local parallel computa-
tion of stochastic completion field,” in Proc. IEEE Computer
Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’96), San Francisco, USA, June 1996.

Laurent David Cohen was born in 1962. He was student at the Ecole
Normale Supérieure, rue d’Ulm in Paris, France from 1981 to 1985.
He received the Master’s and Ph.D. degrees in Applied Mathematics
from University of Paris 6, France, in 1983 and 1986, respectively.

From 1985 to 1987, he was member at the Computer Graphics
and Image Processing group at Schlumberger Palo Alto Research,
Palo Alto, California and Schlumberger Montrouge Research,
Montrouge, France and remained consultant with Schlumberger
afterwards for many years. He began working with INRIA, France in
1988, mainly with the medical image understanding group Epidaure.

Since 1990, he is Research Scholar with the French National
Center for Scientific Research (CNRS) in the Applied Mathema-
tics and Image Processing group at CEREMADE, University Paris-
Dauphine, Paris, France. His research interests and teaching at
the university are applications of variational methods and Par-
tial Differential Equations to Image Processing and Computer
Vision, like active contours, deformable models, minimal paths,
surface reconstruction, Image registration, Image segmentation and
restoration.


