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ABSTRACT 

While efficient graph-based representations have been 
developed for modeling combinations of low-level network 
attacks, relatively little attention has been paid to effective 
techniques for visualizing such attack graphs.  This paper 
describes a number of new attack graph visualization techniques, 
each having certain desirable properties and offering different 
perspectives for solving different kinds of problems.  Moreover, 
the techniques we describe can be applied not only separately, but 
can also be combined into coordinated attack graph views.  We 
apply improved visual clustering to previously described network 
protection domains (attack graph cliques), which reduces graph 
complexity and makes the overall attack flow easier to 
understand.  We also visualize the attack graph adjacency matrix, 
which shows patterns of network attack while avoiding the clutter 
usually associated with drawing large graphs.  We show how the 
attack graph adjacency matrix concisely conveys the impact of 
network configuration changes on attack graphs.  We also 
describe a novel attack graph filtering technique based on the 
interactive navigation of a hierarchy of attack graph constraints.  
Overall, our techniques scale quadratically with the number of 
machines in the attack graph. 

 
CR Categories and Subject Descriptors: K.6.5 [Management 

of Computing and Information Systems]: Security and Protection 
– unauthorized access 

 
Keywords: Network attack modeling, network attack graphs, 

topological vulnerability analysis, graph visualization, graph 
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1 INTRODUCTION 

The utility of organizing multi-step network attacks into graphs 
is well established.  Such attack graphs allow one to see, step by 
step, the various ways an attacker can incrementally penetrate a 
network.  A network vulnerability considered in isolation may not 
appear to pose a significant threat.  But the interdependency of 
vulnerabilities and the connectivity of a network make such 
analysis incomplete.  Even well administered networks may be 
vulnerable to attacks, because of the security ramifications of 
offering a variety of services. 

Attack graphs allow the security analyst to assess the true 
vulnerability of critical network resources, and to understand how 

vulnerabilities in individual network services contribute to overall 
vulnerability.  Attack graphs can function in defensive as well as 
offensive modes, in applications as diverse as network hardening 
and what-if analysis, fine tuning and alarm correlation for 
intrusion detection systems, enemy course-of-action prediction, 
automated attack response, and penetration testing. 

Attack graphs have traditionally been created manually, e.g., by 
security red teams.  But more recently, significant progress has 
been made toward generating attack graphs automatically from 
models of networks and attacker exploits, notably [1–12].  Given 
the creation of such models from network discovery tools, 
vulnerability databases, etc., the resulting attack graphs are 
potentially huge.  Despite not generally being reported in the 
literature, there are many practitioners today dealing with very 
large attack graphs. 

While it is currently possible to generate very large and 
complex attack graphs, relatively little work has been done for 
managing their complexity.  Information visualization techniques 
have begun to be applied to information security, particularly for 
visualizing network traffic [13–16] and intrusion detection events 
[17–18].  These techniques are useful for visual clustering, pattern 
recognition, anomaly detection, etc. for situational awareness.  
But they generally treat attack events independently of one 
another, as opposed to forming sequences of events.  As such, 
they do not address the particular needs of attack graph 
complexity management. 

In this paper, we describe a number of new techniques for 
managing attack graph complexity through visualization.  We 
introduce a form of visual clustering with reduced complexity and 
improved cognitive flow for a previously described attack graph 
representation based on the protection domain abstraction [19].  
This approach is particularly advantageous as the number of 
exploits across protection domains increases. 

We also show how direct visualization of the attack graph 
adjacency matrix avoids the clutter often associated with the 
drawing of large graphs.  Here we rely on known attributes of 
network machines to help cluster graph edges in the adjacency 
matrix visualization.  For example, when adjacency matrix rows 
and columns are sorted by internet protocol (IP) address, 
protection domains (in this case, subnets) are evident from the full 
intra-domain connectivity and relatively sparse inter-domain 
connectivity.  We show how the adjacency matrix lends itself well 
to visualizing differences between attack graphs, e.g., as a result 
of network configuration changes. 

We introduce a novel interactive attack graph filtering scheme 
using an attack graph constraint hierarchy (tree).  This allows the 
user to interactively navigate the tree hierarchy to specify filtering 
constraints that control which subset of the attack graph is 
currently visible.  In our approach, there are navigational links 
within the constraint tree itself, as well as bidirectional links 
between the constraint tree and the filtered attack graph.  We also 
show how intrusion alarms associated with vulnerability-based 
attack graph exploits can be linked to the constraint tree and 
highlighted on the attack graph. 

The techniques we describe can be applied not only 
individually, but also in combination, to provide coordinated 
multiple views of an attack graph.  Each view has certain 
strengths, and when combined, this provides great flexibility for 
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user interaction.  These techniques apply to general attack graphs, 
such as ones generated from network vulnerability data, intrusion 
detection alarms, etc.  They also apply regardless of whether the 
attack graph is constrained to particular starting points(s) and/or 
attack goal(s).  Overall, the worst-case complexity of these 
techniques is quadratic in the number of network machines. 

In the next section, we review related work in this area.  In 
Section 3, we show how visual clustering can reduce attack graph 
complexity using the protection domain abstraction.  Section 4 
shows how attack graph adjacency matrix visualization, when 
combined with ordering by IP address, provides a view of attack 
connectivity that avoids the clutter of large drawn graphs.  This 
section also shows the value of the adjacency matrix visualization 
for representing attack graph changes.  Section 5 introduces a 
novel approach for interactive visual attack graph filtering, 
including navigational links and highlighting for intrusion alarms.  
In Section 6, we summarize our work and present our conclusions. 

2 PREVIOUS WORK 

Various approaches have been described for generating attack 
graphs.  These generally start with models of network security 
conditions and sets of rules (attacker exploits) that induce new 
conditions based on existing ones.  Valid sequences of exploits 
are then generated, and organized as a graph.  The various 
methods fall under the major categories of logic-based 
approaches, e.g., symbolic model checking [1–3], and graph-
theoretic approaches [4–12]. 

Early approaches to generating attack graphs generally had 
serious scalability problems, because of the state explosion 
problem.  More recent approaches represent dependencies among 
state transitions (exploits) [8–12] rather than explicitly 
enumerating states.  This reduces complexity from exponential to 
low-order polynomial.  Despite the complexity reduction of the 
exploit-dependency representation, such attack graphs can still be 
difficult to manage for larger, less secure networks.  The 
particular problems of attack graph complexity management 
(from a usability standpoint) have been largely unexplored. 

An approach has been proposed [19] that reduces attack graph 
complexity within so-called protection domains (cliques of an 
attack graph) from quadratic to linear.  However, in that approach, 
the visual clustering of machines into protection domains is done 
via graph edges, which introduces unnecessary complexity and 
makes the attack flow more difficult to follow.  We show how the 
same information can be better conveyed through visual clustering 
as opposed to additional graph edges.  We also reduce complexity 
by removing redundant exploits, i.e., when a set of exploits from 
an inter-domain machine is the same as from the intra-domain 
machines.  Like [19], our approach employs clustered graphs, first 
introduced in [20], with more recent work being represented by 
[21]. 

While our new visual representation of protection domains 
reduces complexity (in comparison to [19]), for larger and more 
complex graphs, edge clutter can still dominate.  We therefore 
apply adjacency matrix visualizations to attack graphs.  We also 
visualize these in a novel way by highlighting attack graph 
changes caused by changes to the network configuration. 

Adjacency matrix visualizations have been applied in other 
domains, such as browsing web hyperlinks [22], viewing 
networked information spaces [23], assessing project 
requirements [24], and managing large software projects [25].  A 
number of advantages of adjacency matrix visualizations pointed 
out in previous work apply to attack graphs as well.  Adjacency 
matrices address the edge-clutter problem inherent in traditional 
node-link graph visualizations, especially for larger, less secure 
networks.  They also place a strong emphasis on graph edges, in 
this case, attacker exploits.  This allows one to access at a glance 

where network attacks are possible.  With adjacency matrices, 
groups of edges can be manipulated as a single unit, which is 
particularly convenient for our matrix row/column ordering based 
on IP addresses.  They also avoid the typically expensive 
computations associated with graph layout algorithms, which are 
better suited to less dense graphs. 

We also go beyond [19] by applying attack graph filtering as a 
complementary approach to complexity management.  Rather than 
employing a general-purpose graph filter (e.g., [26]), we define 
filtering constraints based on the network attack problem.  We 
arrange these constraints in novel forward and backward pointing 
trees, which allow interactive constraint specification.  In this 
way, one can navigate constraints (which uniquely identify attack 
graph elements), to interactively select sub-graphs of interest. 

3 VISUALLY CLUSTERED PROTECTION DOMAINS 

We now show how visual clustering can reduce complexity and 
improve cognitive flow for attack graphs using the protection 
domain abstraction.  Typically, the greatest cause of high attack 
graph complexity is unrestricted connectivity (e.g., no firewall 
filtering) among a set of machines.  When such so-called 
protection domains (attack graph cliques) are known, complexity 
can be greatly reduced. 

In the standard exploit dependency representation, attack graph 
complexity is O(scn2), for n machines in the attack graph.  Here, s 
is the average number of exploits against a machine, independent 
of any particular attacking machine, which might be in the range 
of say one to 30.  The factor c is the average number of security 
conditions per machine, which in practice is perhaps one to five. 

Employing the protection domain abstraction, complexity is 
reduced to O(scm2), where m the number of machines that have 
exploits launched across protection domains only.  That is, 
exploits among within-subnet machines are implicitly rather than 
explicitly represented.  Worst-case complexity is thus determined 
by the number of machines m involved in across-subnet exploits 
only.  Clearly m < n in all cases, but for networks in which there is 
significant connectivity limitation among protection domains 
(e.g., via firewalls), it may be that m << n, resulting in dramatic 
improvements in complexity.  For example, for a 200-machine 
protection domain, with a single exploitable vulnerability on each 
machine, complexity is reduced from 2002 = 40,000 to 200, a 
reduction of 2 orders of magnitude. 

Figure 1 shows an example low-level attack graph, in which no 
aggregation of exploits and security conditions has been applied.  
This attack graph was generated from a network model created 
from Nessus [27] vulnerability scans, which includes the effects 
of firewall filtering.  In particular, 16 network machines are 
distributed among four subnets, with firewall filtering among 
subnets, and no filtering within subnets.  The subnets thus each 
define protection domains in our model. 

Figure 2 shows the same attack graph as Figure 1, this time 
applying the protection domain abstraction.  Security conditions 
for each machine are aggregated to a single vertex, as are sets of 
exploits between each pair of machines.  Each machine vertex is 
labeled with the number of intra-domain exploits against it, and 
within a protection domain all machines can execute those 
exploits against each another.  Starting and goal machines are 
colored green and red, respectively. 

In Figure 2, domain membership is indicated by graph edges 
from machine to domain, as in [19].  In contrast, consider 
Figure 3, in which protection domain membership is indicated by 
visual clusters rather than graph edges.  Graph complexity is 
reduced by avoiding domain member ship edges, i.e., for n 
machines there are n fewer edges.  With the visual clusters, it is 
much easier to see domain membership by not having to follow 
graph edges to domain nodes. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Low-level attack graph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Protection domain membership via graph edges. 

Figure 3 includes another improvement over the visual 
representation in [19], in the form of a redundancy reduction.  In 
particular, for instances in which the exploit set across a 
protection domain matches the intra-domain exploits for the 
victim machine, the exploit set is omitted, since it can be inferred 
from the machine label. 

The advantage of protection domain membership via visual 
clustering is even more obvious as the number of exploits across 
protection domains increases.  In Figure 4, we change the firewall 
filtering in the network model so that there are significantly more 
exploits across protection domains.  In comparison to Figure 2, 
the complexity in Figure 4 has increased considerably. 

Figure 5 indicates protection domain membership with visual 
clusters as opposed to graph edges, for the same network as in 
Figure 4.  While complexity has increased considerably for 
domain membership via graph edges, it has increased comparably 

much less for membership via visual clusters (compare Figure 3 
and Figure 5).  Figure 6 shows protection domain visual clustering 
applied to an even larger network, i.e., 75 machines in 5 subnets, 
with a significant number of across-subnet exploits.  For this 
attack graph, the starting and goal machines are unspecified, and 
machines without inter-domain exploits have been aggregated. 

4 ATTACK GRAPH ADJACENCY MATRIX VISUALIZATION 

Despite the complexity reduction provided by protection 
domain visual clusters, there are fundamental scalability problems 
with drawing graphs directly (so-called node-link visualizations).  
As larger graphs are drawn, edge clutter begins to dominate, and it 
becomes increasingly difficult to trace edges and distinguish them 
from one another. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Protection domain membership via visual clustering 

(compare to Figure 2). 

An alternative is to visualize the attack graph adjacency matrix.  
There are several factors that can make attack graphs larger and 
denser, so that adjacency matrices become more attractive.  An 
obvious factor is the size of the network under analysis.  Our 
society has become increasingly dependent on networked 
computers, and the trend towards larger networks will continue.  
For example, there are enterprises today consisting of tens of 

thousands of machines.  Also, less secure networks clearly have 
larger attack graphs.  There is a tendency for network 
administrators to protect their domain borders, but to leave 
machines in their domain relatively unsecured against each other.  
This may result in attack subgraphs that are very densely or even 
fully connected.  Machines might each have several exploitable 
vulnerabilities (we have seen cases of as many as 20 per 
machine), and exploits are generally linked quadratically.  When 
considered across an enterprise, especially given global internet 
connectivity, attack graphs are potentially huge. 

Adjacency matrix visualization could be done for any level of 
attack graph aggregation, by assigning individual matrix 
rows/columns for any such aggregate nodes.  In general, 
adjacency matrix rows and columns can be put in arbitrary orders.  
But orderings that tend to cluster graph nodes by common edges 
are clearly desirable.  We could then treat such clusters of 
common connectivity as a single unit. 

Figure 7 is the adjacency matrix A for the 75-machine attack 

graph in Figure 6.  Here, the matrix rows and columns are attacker 

and victim machines, respectively.  An element ai,j of A is true 

(black) when machine i launches at least one exploit against 

machine j in the attack graph, and is otherwise white.  We sort the 

rows and columns of A according to machine IP address. 

From IP address ordering, machines in the same subnet appear 
in consecutive rows and columns of the adjacency matrix.  The 
unrestricted connectivity within subnets (protection domains) thus 
causes the fully-connected blocks of machines on the main 
diagonal. 

Figure 4: Protection domain membership via graph edges (additional inter-domain exploits). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Additional inter-domain exploits (compare to Figure 4). 

 
In Figure 7, block Ai,j of the adjacency matrix indicates exploits 

launched from machines in Subnet i to machines in Subnet j.  
There are a number of apparent features in the adjacency matrix.  
For example, there are solid blocks of machines (3 in block A1,2 , 
and one each in blocks A2,3 and A3,2) with consecutive ranges of 
attacking/attacked IP addresses.  In blocks A1,4, A2,5, and A4,5, IP 
addresses are scattered rather than consecutive.  In block A4,1, 
machine x.x.4.12 attacks machine x.x.1.6. 

Figure 7 also shows how multi-step attacks can be traced on the 
adjacency matrix.  As an example, it shows two possible multi-
step attacks against Subnet 5 (block A5,5), starting from Subnet 1 
(A1,1).  One attack follows the sequence A1,1, A1,4, A4,4, A4,5, A5,5.  
The other attack follows the sequence A1,1, A1,2, A2,2, A2,5, A5,5. 

The adjacency matrix visualization is particularly well suited to 
showing differences between attack graphs.  This is illustrated in 
Figure 8 and Figure 9.  Figure 8 shows a baseline attack graph, 



before any changes have been made to the network configuration.  
Other than the main-diagonal subnets, there are 2 other major 
features.  The vertical lines extend over all matrix rows, 
representing vulnerable web servers scattered through the network 

and accessible from all other machines.  Also, there are 
exploitable vulnerabilities from Subnet 2 to Subnet 3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Protection domain membership via visual clusters (75-machine network). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Adjacency matrix visualization (75-machine network). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Baseline attack graph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Attack graph differences. 

Figure 9 is a difference matrix that represents a set of attack 
graph changes from the baseline.  Here, the vulnerable web 
servers have been patched, thus removing the exploits against 
them (indicated in yellow).  Also, new vulnerabilities have been 
introduced from Subnet 2 to Subnet 4, with the corresponding 
new exploits marked in orange. 

5 INTERACTIVE ATTACK GRAPH FILTERING 

A complementary approach to attack graph aggregation is to 
allow the user to interactively filter the graph according to 
selected criteria.  We introduce a novel hierarchical organization 
of attack graph filtering constraints (the constraint tree), which the 
user can navigate via a tree widget. 

This approach fulfills a user requirement of showing only an 
attack subgraph of interest.  For example, one may be comparing 
the attack graph to actual exploits carried out on the network, step 
by step, in support of penetration testing.  Or, one may be 
concerned only with the portion of the attack graph in the 
neighborhood of detected intrusions.  In this sense, our interactive 
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filtering provides focus, while the other visualizations (clustered 
graphs and adjacency matrices) provide context. 

In our approach, the smallest unit of attack graph constraint is a 
pair of exploits linked by a common pre/post condition.  Each 
exploit in such a pair is parameterized by attacker and victim 
machines.  Since the exploits are linked by a common condition 
(on a particular machine), the victim machine in the “from” 
exploit is the attacker machine in the “to” exploit. 

Figure 10 demonstrates our attack graph constraint approach.  
The constraint tree is in the upper left panel.  There are 6 levels in 
the tree (from left to right): 

1. Attacker machine in the “from” exploit 
2. Victim machine in the “from” exploit 
3. Specific “from” exploit between attacker and victim 
4. Particular postcondition of “from” exploit 
5. Victim machine in the “to” exploit 
6. Specific “to” exploit to victim 

To illustrate this, in Figure 10 the link from exploit 
telnet(m12,m8) to exploit rpc_cmsd(m8,m10) is circled, and 
the corresponding nodes in the constraint tree are identified.  Note 
here that the attacker machine in the “from” exploit (Level 1 
above) is clipped from view in the figure. 

Traversing the tree from the root to a leaf uniquely identifies a 
(forward-pointing) condition link between a pair of exploits. Non-
leaf nodes represent sets of links that meet the criteria up to that 
level.  In other words, a node’s children represent steps in the 
attack graph that occur after it.  Similarly, one can define a 
backward oriented tree that represents links into rather than away 

from a selected node. 
In our approach, the constraint tree controls which portion of 

the full attack is visible.  That is, (right) clicking on a tree node 
commits a constraint specification according to that node.  Higher 
(leftmost) nodes in the tree correspond to less specified 
constraints, resulting in larger subsets displayed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Attack graph constraints. 

Figure 10 also includes a panel (lower right) for intrusion 
detection events, which have navigational links to constraint tree 
nodes.  Left-clicking an intrusion detection event leads to the 
corresponding “from” exploit in the constraint tree.  From there, 
for example, one could immediately right click to view all 
possible exploits (against all possible machines) that directly 
follow the intrusion event.  Or one could navigate lower into the 
tree, at each level specifying more specific constraints.  Once the 
desired level is reached, right-clicking commits the constraint 
specification. 

In Figure 10, the filtered attack graph is shown in the right 
panel.  The full-detail view is shown here, although in general this 
panel starts with a higher level overview (such as protection 
domains) with detail drilldown.  In the figure, intrusion detection 
events are highlighted red, and one-step attack responses are 
highlighted in orange (remaining exploits are blue). 

Additional navigational controls help the user efficiently 
explore the attack graph.  When a leaf node is reached (in which a 
“to” exploit has been specified), ctrl-g brings focus to that part of 

the tree in which that “to” exploit is now a “from” exploit.  In this 
way, the user can continue to grow the attack graph in either a 
forward or backward direction, depending on whether the forward 
or backward tree is being used.  There are also navigational links 
from the (filtered) attack graph itself back to the constraint tree, 
i.e., to the point where the selected exploit is a “from” exploit. 

We note that there is a very close correspondence between our 
attack graph constraint tree and the adjacency matrix visualization 
described earlier.  In particular, sequences of selected points in the 
adjacency matrix correspond to sequences of corresponding leaf 
nodes in the constraint tree.  In fact, these 2 interactive views can 
be linked and used interchangeably.  This brings all of the views 
we have described into a coordinated set, each giving the user 
different perspectives on the attack graph. 

Figure 11 shows additional drilldown capabilities for our 
approach.  Beginning on the left, and continuing clockwise, one 
starts at a higher-level aggregate view, e.g., machines and exploit 
sets between them.  Clicking on an exploit set moves to individual 
exploit sets for each direction of attack between the 2 machines. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Attack graph drilldown. 

Selecting one of the exploit sets in Figure 11 in shows all 
exploits in the set, with all relevant conditions included in the 
attack graph.  Clicking an exploit shows its full set of 
preconditions and postconditions.  From there, one can query a 
vulnerability database for details about specific conditions. 

6 IMPLEMENTATION DETAILS 

There are a number of key challenges in implementing the 
techniques we describe here.  These include (1) collecting and 
managing data about networks and their vulnerabilities, (2) 
building network attack models in terms of security conditions 
and attacker exploits, (3) analyzing the models through simulated 
attacks to produce attack graphs, (4) aggregating and filtering the 
attack graphs, (5) drawing the graphs, and (7) providing 
interactive controls for attack graph navigation. 

Our implementation employs a layered architecture.  Data 
collection is handled in two (parallel) layers.  Data about the 
network is collected via vulnerability scanning tool(s) such as 
Nessus [27].  Data about reported vulnerabilities in various 
hardware and software components (e.g., Bugtraq [28] and many 
others) is collected and maintained in a relational database.  From 
the vulnerability scanner data, network models are created 
automatically.  From the data on reported vulnerabilities, exploits 
are modeled.  Exploit modeling is generally done manually, for 
assured accuracy, although when included as part of the standard 
process for accessing reported vulnerabilities this usually takes 
little extra effort. 

Creation of attack graphs (from the network attack model) is 
carried out by a custom intelligent analysis engine.  This analysis 
engine simulates incremental network penetration through the 
application of modeled exploits against the network model.  
Throughout analysis, the engine maintains the network security 
state as it evolves under incremental attacker penetration, and 

forms the attack graph by matching exploit preconditions and 
postconditions. 

In the aggregation/filtering layer, elements of the attack graph 
are clustered according to machine, exploits between pairs of 
machines, etc.  Each cluster is in turn mapped to the original 
subgraph it represents.  To handle attack graph constraints, graph 
edges are stored in hierarchical data structures that mirror the 
forward and backward pointing constraint trees.  Graph drawing is 
performed via AT&T Graphviz [29].  The resulting graph images 
are rendered, and embedded with interactive links from graph 
clusters to their corresponding subgraphs.  These results are all 
web content, which can be shared with others who do not have the 
tool themselves 

Our attack graph generation and visualization technology has 
been transitioned to a commercial product – Secure Element’s C5 
Attack Predictor (C5 AP) [30].  C5 AP is designed for security 
experts (e.g., penetration testers) who want to use predictive 
modeling for non-invasive vulnerability analysis on client 
networks, and includes daily updates on new vulnerabilities and 
exploits. 

7 SUMMARY AND CONCLUSIONS 

In this paper, we have described a complementary collection of 
coordinated views for network attack graphs.  Each view provides 
different perspectives, and the views can be linked to increase 
their effectiveness.  While most previous work has focused on 
attack graph generation, we develop ways to visually analyze the 
potentially very large graphs that may result. 

We reduced the visual complexity for a previously described 
attack graph representation based on the protection domain (attack 
graph clique) abstraction.  We showed how this visual 
representation is particularly advantageous as the number of inter-
domain exploits increases. 



We also described visualization of the attack graph adjacency 
matrix, in which we took advantage of IP address ordering to help 
cluster adjacency matrix rows and columns.  We showed how the 
adjacency matrix is ideal for highlighting the impact of network 
configuration changes on the attack graph. 

We introduced a novel interactive attack graph filtering 
technique, based on a hierarchy of attack graph constraints.  It 
allows the user to interactively navigate the constraint hierarchy to 
control the visible subset of the attack graph.  We also link 
intrusion detection events to the constraint tree, which allows 
exploration of intrusion origin/impact.   

The techniques we described apply to general attack graphs, 
including ones based on network vulnerabilities and/or intrusion 
detection alarms.  They also apply to either fully unconstrained 
graphs, or graphs constrained to by starting/goal conditions.  
Overall, these techniques have quadratic worst-case complexity. 
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