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Abstract

A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is

based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM

variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the

so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme.

The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple

flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is

demonstrated through a set of numerical case studies of varying complexity.

Keywords Crack detection · XFEM · Genetic algorithms · CMA-ES

1 Introduction

The advent of low-cost and easily deployable sensor tech-

nologies, has in recent years sparked a significant rise in

the deployment of monitoring technologies for large-scale

structural systems [1]. Due to the flexibility of technologies

involved, Structural Health Monitoring (SHM) methods are

available in various forms, i.e., vibration-based [2] or static

monitoring [3], periodic and short-term versus continuous

and long-term deployments, visual inspections versus non-

destructive evaluation [4,5]. etc.

Availability of monitoring data may be exploited in a

number of tasks pertaining to the life-cycle assessment and

management of infrastructure systems including condition

and reliability assessment [6], updating/calibration of sim-

ulation models [7], prediction of performance and residual

life (prognostics) [8], damage identification and fault detec-
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tion (diagnostics) [9]. The damage detection task is one of

particular importance and is often considered as the focus

of SHM processes, which may be defined across four lev-

els [10]: (i) detection of damage; (ii) localization of damage;

(iii) quantification of the severity and extent of damage; and

(iv) estimation of the future performance of the component

(or system) as damage accumulates.

While the first tasks of damage detection, and potentially

localization, may be often achieved on the basis of data

processing alone, the more refined diagnostic levels typi-

cally require the combined use of a simulation model for the

monitored system. Availability of a system model enables

formulation of a so-called inverse problem procedure [11],

where the task lies in updating the system’s representation in

a way which reveals its current status, and is thereby infor-

mative with respect to the nature of the induced damage, e.g.

fatigue, cracking or component failure. Availability of mon-

itoring data drives the inverse problem formulation, which

aims to minimize the difference between the model predic-

tion and the structural response data acquired via monitoring.

This may often be solved by means of optimization methods

based on least squares or based on Bayesian analysis [12,13].

In an optimization setting, monitoring data such as accel-

eration [14], strain [15], acoustic emission, wave propagation

[16], or impedance [17] data essentially establish the tar-

get function to be optimized, while structural properties and

the characteristics of potential damage (geometry, location,
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extent of flaw) form the optimization variables. The inverse

problem solution calls for multiple analyses of the so-called

forward problem, i.e., the simulation of the system given

prescribed structural and flaw properties. In this sense, it is

evident that the problem may become computationally tax-

ing when forward analysis of complex systems is involved,

including analyses in the three dimensional space. Since it

is oftentimes desired to perform the diagnostic tasks in the

short time that follows an initial indication of damage, the

corresponding analysis tools ought to ensure rapid computa-

tion.

Within this context, a number of techniques have been

proposed in recent literature for cutting down on computa-

tion while maintaining estimation accuracy, the majority of

which rely on reduced order representations. A first approach

pertains to the use of surrogate models [18,19], which are

often data-driven albeit not necessarily linked to first prin-

ciples (physical) information. A second alternative however,

pertains to reduced representations that are founded on the

principles of computational mechanics, such as multiscale

schemes [20] for composite systems, component mode syn-

thesis methods [21] for structural dynamics problems, or the

extended Finite Element Method (XFEM) for linear elastic

fracture mechanics [22].

In the case of fracture, a significant challenge faced by

reduced order representations lies in the tackling of the non-

linearities that are associated with the fracture or damage

process. These typically require inclusion of a large number

of modes for accurately capturing the high-frequency nature

of the solution around the damage zone. The latter may in

general not be entirely precomputed due to the non-linearities

in the damage and fracture processes.

To address this, a number of possibilities exist, mainly

relying on updating the reduced space on-the-fly. The inter-

ested reader is referred to the work of Kerfriden and cowork-

ers and the publications therein, where Newton–Krylov

[23], local–global [24] domain-wise model order reduction

[25], and Bayesian approaches [26] are proposed. Those

algebraic-based model order reduction techniques may be

complemented by multiscale approaches, as in [27], where

a scale-selection approach is proposed for determining the

optimal model for a given region. Finally, statistical-based

approaches have been proposed [28] in order to determine

the fracture process zone based on the lack of ability of

reduced order models to represent the failure of the sys-

tem.

In this paper, and motivated by previous works of the

authoring team in the two-dimensional domain, we rely

on XFEM for solution of the forward problem. XFEM

alleviates the need for remeshing [29,30] for diverse flaw

locations and geometries thereby significantly cutting down

on the computational toll of the forward analysis [31].

XFEM has been proven adept in the modeling of multi-

ple shaped inclusions/void and cracks with XFEM [32,33],

as well as in the modeling of arbitrarily-shaped objects as

demonstrated by Benowitz and Waisman [34], and Jung and

Taciroglu [35].

Complimentary to the forward problem, an appropriate

optimization procedure need be enforced. Heuristic opti-

mization [36] is particularly suited to such an end, since

it allows for flexibility in the formulation of the forward

problem, which need not be linear, convex, or smooth. Due

to this feature, different forms of heuristic procedures have

been adopted in the context of Structural Health Monitoring.

Hunaidi [37] employs evolution-based Genetic Algorithms

(GAs) for non-destructive assessment of pavements on the

basis of surface waves tests; Farley et al. [38] adopt an

artificial neural network approach for defect detection via

ultrasonic signals; Lee et al. [39] formulate an inverse scat-

tering problem on the basis of Particle Swarm Optimization;

while Bernieri et al. [40] reconstruct cracks via eddy current

testing and a machine learning approach.

For the solution of the inverse problem in the particular

domain of flaw/crack detection, Rabinovich et al. [41,42],

combine and XFEM approach with GAs for crack identifica-

tion in static and dynamic 2D problems. Waisman et al. [43]

and Chatzi et al. [44], extend and experimentally validate

the XFEM–GA scheme for identification of generalized flaw

types. Sun at al. [45] presented an adaptive algorithm, once

again relying on XFEM, able to detect multiple flaws without

prior knowledge on their number by means of an Enhanced

Artificial Bee Colony (EABC) algorithm [46] and a sweeping

window method for dynamic problems [47]. Yan et al. [48]

introduce a guided bayesian inference approach for detec-

tion of multiple flaws. Jung and Taciroglu employ XFEM

for identification of an arbitrarily shaped scatterer embed-

ded in elastic heterogeneous media [35]. Nanthakumar et

al. [49] combine XFEM to the Multilevel Coordinate Search

(MCS) method to detect cracks and voids in piezoelectric

materials, while in a later work [50] they employ deriva-

tives of the level sets for the optimization step in order to

increase the robustness and efficiency of their method. In

a more recent work [51], the same authoring team applies

the XFEM–MCS scheme to the detection of multiple cracks

in piezoelectric structures under dynamic electric loads. In

Ma et al. [52] XFEM is incorporated in a three step algo-

rithm for the detection of multiple flaw clusters. Finally,

XFEM is employed in damage detection schemes for dams

in the works of Alalade et al. [53] and Pirboudaghi et

al. [54].

A characteristic feature of the aforementioned works is

their confinement and demonstration in the two-dimensional

domain. The extension in the third dimension comes with a

number of challenges, some of which have recently been

tackled in a robust 3D XFEM scheme introduced by the

authoring team [55,56]. This XFEM scheme was coupled
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with a Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [57] in a first attempt to apply XFEM based

crack detection to 3D problems [58]. In the present work, the

proposed XFEM variant is combined to a multiscale opti-

mization strategy consisting of a discontinuous step utilizing

genetic algorithms and a continuous step utilizing the CMA-

ES algorithm [57] in order to detect multiple cracks in 3D

solids.

2 Inverse problem formulation

Inverse problems aim at identifying the latent and unknown

parameters of a system given measured information on its

response and commonly, albeit not necessarily, a compu-

tational model of the system. The estimation of structural

response for a prescribed set of model parameters using an

available model structure may be considered as the forward

problem. In the present case, this forward problem is solved

via a 3D XFEM approach.

For the specific case of detection of multiple flaws in

the form of cracks, the unknown parameter set comprises

the number, location, shape, size and orientation of existing

cracks in a structure. While various sensors may be employed

for monitoring structural response, we here assume avail-

ability of strain information at specific locations along the

structure obtained via conventional strain gauges. Due to its

low cost and ease of deployment this monitoring option is

often adopted, albeit distributed sensing alternatives, such as

fiber optics solutions [59], may also be adopted.

The inverse formulation may then be summarized as the

following optimization problem [41,43]:

Find θi such that

F (θi ) → min (1)

where θi is a set of parameters used to describe the number,

location, shape, size and orientation of the cracks and F is

the objective function given by:

F (θi ) =
∥
∥ǭ

h (θi ) − ǭ
m
∥
∥

‖ǭm‖
(2)

where ǭ
h (θi ) are the numerically computed strains at the

sensor locations and ǭ
m are the measured strains at the same

locations. The strain components for all sensor locations con-

sidered are arranged in vectors containing nc × ns elements,

where nc is the number of components of the strain tensor

(nc = 9 for the 3D case), and ns pertains to the number of

sensors.

Fig. 1 Cracked body and boundary conditions

3 Solution of the forward problem using
XFEM

For the solution of the optimization problem posed in the

previous section, several evaluations of the fitness function,

for different values of the design variables, are required.

These evaluations correspond to solutions of the forward

problem, for different crack numbers, shapes, sizes and loca-

tions, and should be obtained in a robust and efficient way,

ensuring minimization of the associated computational toll.

In the present work, the extended finite element method

(XFEM) [30], and in particular the variant introduced in

Reference [56], is employed for the solution of forward prob-

lems. The method has already been successfully used in 2D

crack detection schemes [41,43] due to its ability to repre-

sent discontinuities without requiring any modification of the

finite element mesh, a feature which is crucial for this cat-

egory of applications where the forward problem has to be

solved for a very large number of different crack configura-

tions. In the following subsections, the forward problem is

mathematically formulated and the solution method is pre-

sented.

3.1 Problem statement

The problem consists of a linear elastic solid Ω (Fig. 1)

cracked at several locations and bounded by the boundary

Γ where:

Γ = Γ0 ∪ Γu ∪ Γt ∪ Γc (3)

Γ0 is the part of the boundary where no boundary conditions

are applied. Γu is the part of the boundary where displace-

ments ū are imposed as Dirichlet boundary conditions. Γt is

the part of the boundary where surface tractions t̄ are applied

as Neumann conditions. Γc is the surface of the cracks.
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The equilibrium equations are formulated in weak form

as:

Find a kinematically admissible displacement field u ∈ U

such that ∀v ∈ V

∫

Ω

ǫ(u) : D : ǫ(v) dΩ =
∫

Ω

b · v dΩ +
∫

Γt

t̄ · v dΓ (4)

where:

U =
{

u|u ∈
(

H1 (Ω)

)3
, u = ū on Γu

}

(5)

and

V =
{

v|v ∈
(

H1 (Ω)

)3
, v = 0 on Γu

}

(6)

Functions of H1 (Ω) are implicitly discontinuous along

the crack surfaces.

In the above, ǫ is the small strain field, D is the elasticity

tensor and b is the applied body force per unit volume.

3.2 Crack representation

As is commonly the case in XFEM [60–62], cracks are rep-

resented implicitly using the level set method. Level set

functions, denoted as φ and ψ , are defined for an arbitrary

point x as follows:

– φ is the signed distance from the crack surface defined

as:

φ (x) = min
x̄∈Γc

‖x − x̄‖ sign
(

n+ · (x − x̄)
)

(7)

where n+ is the outward normal to the crack surface and

sign () is the sign function.

– ψ is a signed distance function such that ∇φ · ∇ψ = 0

and φ (x) = 0 and ψ (x) = 0 defines the crack front.

Additionally, a polar coordinate system is defined along

the crack front with coordinates [60–62]:

r =
√

φ2 + ψ2, θ = arctan

(
φ

ψ

)

(8)

These coordinates refer to a plane normal to the crack front.

3.3 Discretization

The weak form is discretized using a stable XFEM vari-

ant introduced in the authors’ previous works [55,56].

The method was shown to provide increased accuracy and

improved conditioning when compared to standard XFEM.

Moreover, it enables the use of higher order enrichment func-

tions in 3D linear elastic fracture mechanics.

Perhaps the most critical feature of extended and general-

ized finite element methods (X/GFEM) is the enrichment of

the FE approximation with functions which are able to rep-

resent known features of the solution. Enrichment is realized

by employing the partition of unity (PU) method [63]:

u (x) =
∑

∀I
NI (x) uI

︸ ︷︷ ︸

FE approximation

+
∑

∀I
N∗

I (x) Ψ (x) bI
︸ ︷︷ ︸

enriched part

(9)

where NI (x) are the FE interpolation functions, uI are FE

degrees of freedom (dofs), N∗
I (x) is a basis of functions that

form a partition of unity, Ψ (x) are the enrichment functions

and bI are the enriched degrees of freedom.

While in PU-FEM enrichment is applied globally to all

the FE nodes, in XFEM enrichment is only applied locally

to approximate local phenomena such as cracks and discon-

tinuities. This can be achieved by appropriately defining the

set of enriched nodes, as will be done in the following.

In linear elastic fracture mechanics two different enrich-

ment functions are employed, the modified Heaviside or jump

enrichment functions:

H(φ) =
{

1 for φ ≥ 0

−1 for φ < 0
(10)

which are used to represent the displacement jump along the

crack surfaces, and the asymptotic or tip enrichment func-

tions:

F j (r , θ) =
{√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}

(11)

which are used to represent the asymptotic fields around the

crack front.

Since enrichment is applied locally, the nodal sets where

each enrichment function is used have to be appropriately

selected:

– Jump enrichment is used for nodes belonging to elements

that are divided in two parts by the crack surface.

– Tip enrichment is used for nodes belonging to elements

that contain the crack front (topological enrichment), or

for nodes that lie in a certain distance (enrichment radius)

from the crack front (geometrical enrichment). In the first

case sub optimal convergence rates are obtained [64,65].

In the second, while optimal convergence is achieved,

conditioning problems are caused, for the solution of

which, special techniques are necessary [65–67].
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Fig. 2 Front elements, nodes and boundaries

Fig. 3 Local coordinate ξ of the front elements

Functions N∗
I (x) used for the partition of unity enrich-

ment are typically selected to coincide with the FE shape

functions
(

NI (x) ≡ N∗
I (x)

)

. In the variant used herein how-

ever, an alternative definition is used which has been shown

[55,56] to provide improved conditioning of the resulting

stiffness matrices. More specifically, a superimposed mesh

of special elements discretizing the crack front is introduced,

as illustrated in Fig. 2 and the shape functions correspond-

ing to those front elements are used as a basis for the PU

enrichment.

The shape functions of the front elements are defined as

simple 1D FE shape functions:

Ng (ξ) =
[

1 − ξ

2

1 + ξ

2

]

(12)

where ξ is the local coordinate of the superimposed element

(Fig. 3). This parameter is defined in detail in References [55,

56].

Blending problems between the standard and the enriched

part of the approximation [68–70] are dealt with using the

techniques developed in the works of Fries [68] and Ventura

et al. [69] and applied in a 3D framework in our previous

works [55,56]. These introduce a weight function ϕ (x) that

assumes a value of unity for the fully enriched elements,

and linearly fades to zero for the blending elements. The

blending area, along which the weight function fades to zero,

can consist of one or several layers of elements [56].

The displacement approximation for the method is:

u (x) =
∑

I∈N

NI (x) uI

+ ϕ̄ (x)
∑

J∈N j

NJ (x) (H (x) − HJ )bJ

+ ϕ (x)

⎛

⎝

∑

K∈N s

N
g

K (x)
∑

j

F j (x)

−
∑

T ∈N t

NT (x)
∑

K∈N s

N
g

K (xT )
∑

j

F j (xT )

⎞

⎠ cK j

(13)

where N is the set of all nodes in the FE mesh. N j is the

set of jump enriched nodes. This nodal set includes all nodes

whose support is split in two by the crack and in addition

belong to elements where the weight function ϕ̄ (x) assumes

values greater than zero. N t is the set of tip enriched nodes.

This nodal set includes all nodes that belong to an element

with at least one node inside the enrichment radius. N s is the

set of nodes in the superimposed mesh.

4 Parametrization and constraints

Since the present work is only one of the first attempts to

extend flaw detection schemes [41,43,44] in 3D, some sim-

plifications are made in order to reduce the complexity of the

general problem. Two main simplifications are made, with

regard to the crack geometries and interactions.

The first aims at reducing the number of parameters used

to represent crack geometries by only employing elliptical

cracks for the forward problem, and approximating cracks of

different shapes by appropriately varying the ellipse param-

eters. Although this approach may seem somehow limited, it

provides the possibility to model a variety of crack shapes,

while requiring a relatively small number of parameters to

describe each crack.

A second simplification is assumed with respect to the

interactions between different cracks. Although multiple

cracks are considered, we herein only investigate cases where

the minimum distances between the different cracks are

larger than some predefined value. The above approach is

necessary in order to avoid crack intersections which would

pose problems in the solution of the forward problem with

XFEM, since the treatment of intersecting cracks in 3D can

be problematic.

The above simplifications can be overviewed as follows.

The scheme developed in this work aims at determining the
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Fig. 4 Parametrization of an elliptical crack

number and locations of existing cracks and roughly esti-

mating their sizes and shapes. The accurate determination of

the geometrical shapes of the cracks, including crack inter-

sections, exceeds the above aim and in addition would be

limited by the amount and accuracy of the available struc-

tural response measurements.

4.1 Parametrization

The parameters involved in the definition of each elliptical

crack are the coordinates of its center point x0 ({x0, y0, z0}),
the angles of rotation about the three axes φx , φy and φz and

lengths a and b. Angles φx , φy and φz are used to produce

vectors n, t1 and t2 by rotating unit vectors e1, e2 and e3. All

of the above parameters are illustrated in Fig. 4.

4.2 Constraints for a single crack

While the range of values assumed by the design variables

may be restricted by upper and lower bounds, for complex

structure geometries invalid crack locations may still be gen-

erated which would result in unnecessary solutions of the for-

ward problem. In order to avoid such occurrences, a method

of determining the relative position of the cracks with respect

to the structure is introduced herein. This method represents

the boundaries of the structure via implicit functions and eval-

uates this function for several points on the crack surface.

4.2.1 Radial basis functions

The implicit functions used in the present work are radial

basis functions [71] (RBF) and they are defined so as to

assume negative values in the interior of the structure, pos-

itive values in the exterior and a value equal to zero on the

structure boundaries.

Radial basis functions are constructed from a set of points

xi , i = 1, . . . , N lying on and off the surface to be described.

In general they assume the form:

s (x) = p (x) +
N

∑

i=1

λi R (‖x − xi‖) (14)

where p is a low degree polynomial: p (x)={a1, a2, . . . , al}·
{p1, p2, . . . , pl}T where ai are coefficients to be determined,

pi are the elements of the polynomial basis and l is the num-

ber of polynomial terms used R is the basic function, common

choices for this function are:

– The thin plate spline: R (r) = r2 log (r)

– The Gaussian: R (r) = e−cr2

– The multiquadric: R (r) =
√

r2 + c2

– The biharmonic spline: R (r) = r

– The triharmonic spline: R (r) = r3

in the above r = ‖x − xi‖. The variable r in this case is not

to be confused with the polar coordinate used in Sect. 3.

λi are coefficients to be determined.

By employing the known values of the function si at points

xi a system of equation can be created:

(

A P

PT 0

) (

λ

a

)

=
(

s

0

)

(15)

where

Ai j = R
(∥
∥xi − x j

∥
∥
)

, i, j = 1, . . . , N

Pi j = p j (xi ) , i = 1, . . . , N , j = 1, . . . , l

The solution of the above system yields the values of the

coefficients ai and λi which in term make possible the eval-

uation of the RBF at any given point.

4.2.2 Determination of invalid cracks

Once the RBF representation of the structure has been con-

structed, a set of control points lying on the crack surface is

generated for each candidate crack. For the elliptical cracks

considered in the present work, those points are generated

according to the pattern illustrated in Fig. 5. The relative

position of the crack with respect to the structure can be

determined from the signs of the RBF at the control points.

For instance, if the sign of the RBF is negative for all the

control points then crack lies entirely inside the structure.

Moreover, from the signs and values of the RBF at the

control points some other cases can be identified:

– When only a fraction of the control points assume pos-

itive values, then the corresponding crack intersects the

structure boundary and, since such cases are also of inter-

est, it is considered valid. However, the percentage of

positive values should lie within certain bounds in order

to avoid situations where a very small or a very large

part of the crack lies outside the structure. Those cracks,
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Fig. 5 Control points on the crack surface

besides being physically meaningless, could potentially

cause numerical problems and should be discarded.

– If the majority of points assume low values (below a pre-

defined tolerance), the crack is considered invalid since

an actual crack would not lie on the structural boundary.

This case could also cause numerical problems.

– If the RBF repeatedly alternates in sign along a line of

points (Fig. 5), then the crack is discarded since only

simple intersections of the crack with the boundary are

considered.

Considering the above, some further remarks can be made

regarding the definition and use of the RBF in the present

application:

– Since the RBF values of several points are taken into

account in order to determine the position of the crack

with respect to the structure, the zero iso-surface of the

function does not need to coincide very accurately with

the structure boundaries. As a result the number of points

needed to define the RBF can be kept relatively small,

making the generation and evaluation of the function

faster.

– The RBF function can be modified in order to restrict the

search space in a part of the structure where the cracks are

expected to be lying, thus making the whole procedure

faster.

4.3 Constraints for multiple cracks

The procedure described above for a single crack has to

be applied for each individual crack in the case of multi-

ple cracks. Additionally, overlapping or intersecting cracks

have to be detected and discarded.

4.3.1 Detection of overlapping cracks

In order to detect overlapping or intersecting cracks a bound-

ing box is first defined for each crack as in Fig. 6. The sides

Fig. 6 Bounding box used to prevent crack intersections

of the bounding boxes are given the values 2ai +2c, 2bi +2c

and 2c where a and b are the lengths defining the correspond-

ing crack. Parameter c should be attributed a large enough

value in order to ensure that enriched elements belonging to

different cracks do not overlap. Subsequently, the separat-

ing axis theorem [72] is employed to determine whether two

bounding boxes intersect.

For a given set of candidate cracks the detection of inter-

sections is achieved by investigating all possible crack pairs

and determining weather the corresponding bounding boxes

intersect. If two bounding boxes are found to intersect, then

one of the corresponding cracks is discarded. In our current

implementation the selection of the crack to be discarded

is being done arbitrarily since it is assumed the cracks will

be either overlapping or in close proximity therefore either

of the cracks will eventually converge to the actual crack if

retained.

A more refined method for performing the above selec-

tion would consist of evaluating the fitness function for both

cracks and eliminating the crack leading to the worst value.

Such a criterion might lead in faster convergence of the opti-

mization process in the expense of increasing the numerical

cost of the evaluation of individual crack configurations. Nev-

ertheless, a detailed comparison would exceed the purposes

of the present work.

5 Inverse problem solution

For the solution of the inverse problem a multiscale strategy,

similar to Reference [46] is employed, which utilizes two

different optimization algorithms. In what follows, the two

algorithms are first briefly described with the proposed hybrid

strategy introduced next.

5.1 Genetic algorithms

Genetic algorithms (GAs) are a category of optimization

tools inspired by biological evolution [73,74]. Solutions to

optimization problems are obtained by iteratively improving
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a set of candidate solutions in an attempt to mimic natural

evolution processes. Following the GA terminology, the set

of candidate solutions is termed the population of individuals,

while each iteration corresponds to a generation. Each indi-

vidual in the population is represented by set of genes whose

numerical equivalent is a binary array. Moreover, in order

to mimic natural selection through survival of the fittest, a

fitness value is assigned to each individual by evaluating the

fitness function which usually coincides with the objective

function [75]. Typically the following steps take place in a

genetic algorithm:

Initialization Once the number of parameters and the pop-

ulation size have been set the initial population is

generated, usually randomly.

Selection The fitness function is evaluated for all the indi-

viduals in each generation and only a percentage of the

population, corresponding to the highest fitness values,

is selected to form the next generation.

Reproduction During this step the fittest individuals from

each generation reproduce to form the next generation,

two processes are involved in this reproduction:

Crossover The genes of two individuals (parents) are com-

bined, through recombination of the bits corresponding

to their bit representation, to form an offspring.

Mutation During the reproduction procedure, some bits are

randomly flipped in order to simulate mutations that

occur in the biological reproduction process.

During this step another practice, called elitism, is commonly

used which consists of allowing the fittest individual or indi-

viduals to survive, unaltered, in the next generation.

The above steps are repeated until some prescribed ter-

mination criteria are met. The parameters involved in the

above steps are user-defined and include the population size,

crossover rate, mutation rate and the termination criteria. The

most widely adopted termination criteria include the def-

inition of a maximal number of generations, a predefined

target value for the fitness function, as well as a maximal

consecutive number of generations without improvement in

the fitness values.

5.2 Covariancematrix adaptation evolution strategy
(CMA-ES)

In this method [57,76] candidate solutions are generated from

a multivariate normal distribution whose parameters, namely

the distribution mean, covariance matrix and step size, are

updated such that the probability of obtaining improved solu-

tions is increased.

Distribution mean The distribution mean is updated so that

the probability of successful candidate solutions is

increased. This is achieved by setting the mean in each

iteration equal to the weighted average of a predefined

number of candidates with the best fitness values from

the previous iteration.

Covariance matrix The covariance matrix is updated so

that the probability of successful search directions is

increased and in addition information from previous gen-

erations is utilized.

Step size The step size is adjusted in order to avoid prema-

ture convergence while yet ensuring that the algorithm

converges fast enough.

5.3 The proposedmultiscale strategy

The basic idea behind the strategy proposed herein, is sim-

ilar to the one introduced in Sun et al. [46]. In particular, a

two step procedure is adopted where in the first step a dis-

crete optimization algorithm is used to obtain the number

and approximate location, size, and orientation of the cracks

while in the second step a continuous optimization algorithm

is employed to refine the values of the parameters obtained in

the first step. The discrete optimization step is employed in

order to reduce the complexity of the original problem and

obtain an approximate solution which is used as an initial

guess for the continuous step where a more accurate solution

can be obtained. The two steps are described in detail in the

following.

5.3.1 Discrete optimization step

In the first step of the procedure, in which Genetic Algorithms

are used as an optimization tool, the number of cracks is iden-

tified, therefore topological variables [45] are employed to

activate/deactivate candidate cracks. Moreover, the original

identification problem is simplified in order to minimize the

number of parameters to be identified thus accelerating the

convergence to the approximate solution. The reduction of

the number of parameters is achieved in two ways, firstly by

assuming the shape of the cracks to be detected circular rather

than elliptical and secondly by reducing the number of binary

digits used to represent each of the parameters involved in

the optimization process.

At this stage, the parameters described in Sect. 4.1 are

encoded as follows:

x0, y0, z0 The coordinates of the center of the ellipses are

encoded as:

pi = pimin + (pimax − pimin) θi (16)

where pi are the coordinates, pimin and pimax are the min-

imum and maximum values allowed for these coordinates
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and θi are the design variables used in the genetic algo-

rithm. In order to represent variables θi , n binary digits

are used and the resulting values are divided by 2n so

that the variables assume n possible values between 0

and 1. The number of digits defines the total number of

possible crack locations and should be chosen according

to the geometry of the solid. It should be noted that a

different number of digits for each variable can be used.

The minimum and maximum values define a box which

should contain the whole domain of interest.

a, b In the first step of the procedure cracks are considered to

be circular, therefore the two ellipse parameters are equal

and a single variable is required for their representation.

The encoding used for this variable is the same as the one

used for the previous variables (Eq. 16) and the minimum

and maximum values should be chosen according to the

expected size of the cracks to be detected.

φx , φy, φz Since cracks are assumed to be circular only the

first two angles are used at this stage. The encoding used

is again that of Eq. (16) and the minimum and maximum

values are set to 0 and π respectively while the number

of digits used is n = 2 which results in 4 possible val-

ues for each angle. For these parameters variables are

divided by 2n + 1 so that the value π is not included

in the possible values for the angles since it is equiv-

alent to the value 0. For the specific choice n = 2

the possible values for each angle are 0, π/4, π/2 and

3π/4.

At this step of the algorithm, candidate solutions that vio-

late the constraints described in Sect. 4 are penalized by

being assigned large fitness values. For those solutions the

forward problem does not have to be solved. Also, it is pos-

sible that the solution produced by this step contains two or

more overlapping cracks. Although those cracks might be

activated through their corresponding topological variables,

the procedure described in Sect. 4.3 will discard all but one of

the overlapping cracks and therefore the value of the fitness

function obtained will correspond to a single crack at that

specific location. At the end of the step cracks that have been

discarded through the above process are considered inactive

and as a result are not considered in the next step of the

optimization procedure.

5.3.2 Continuous optimization step

In the second part of the multiscale strategy, the results

obtained in the previous stage are used as an initial solu-

tion for the CMA-ES algorithm. The number of cracks is

assumed to have been correctly determined in the previous

step. Furthermore, the scaling of the parameters and the ini-

tial step size used in the algorithm are chosen so that the

search space is confined in a small part of the original search

space around the initial values. This is achieved by using the

following encoding for the parameters of the problem.

pi = pi0 +
θi

10
dpi (17)

where pi0 are the initial values of the parameters obtained in

the previous step, dpi are the half lengths of the search space

(in the direction of each parameter) and θi are the design

variables used in the algorithm.

In the above, half lengths of the search spaces are given a

value equal to the distance of two consecutive possible values

(length of the search space for each variable divided by 2n)

of the previous step of the algorithm. The design variables

are initialized to zero and the step size is set to σ = 3 which

implies that the final solution lies in the interval 0 ± 2σ =
0 ± 6.

For the parameters that were omitted in the first step (a

and θz) a slightly different approach is used. Regarding the

parameters of the ellipse, the value computed in the first step

(were the two parameters were assumed equal) is used as

an initial value for parameter b for which the encoding of

Eq. (17) is used. Parameter a which should be larger than or

equal to parameter b is obtained as the sum of parameter b

and an additional parameter ainc:

a = b + ainc (18)

where the additional parameter is computed as:

ainc =
|θa |
10

da (19)

In the above, θa is the design variable corresponding to ainc,

da is the maximum allowed difference between a and b and

the absolute value is used to prevent ainc from assuming neg-

ative values and therefore b from assuming larger values than

a.

Regarding angle φz , the following encoding is employed:

φz =
θφz

10

π

2
(20)

in order to restrict the possible values of the angle in the

interval [−π/2, π/2].

At this step candidate solutions that violate constraints are

re-sampled.

5.3.3 Discussion

In the strategy described above, the problem to be solved

in each individual step is of reduced complexity in com-

parison to the original problem definition. In the first step,

the dimension of the search space is significantly reduced
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by removing some of the problem parameters, and reducing

the number of binary digits used to represent the remaining

ones. In the second step, the search space is restricted in a

small region around the solution obtained in the previous

step. Moreover, in the second part of the algorithm the num-

ber of cracks is considered to have already been determined,

and as a result the problem is further simplified. Without

these simplifications, the complexity of the problem would

render convergence extremely slow, or even impossible.

6 Numerical examples

The potential of the proposed method is demonstrated in

three numerical examples involving the detection of multiple

cracks in solids of varying geometrical complexity.

The forward problem is solved using topological enrich-

ment in order to reduce the computational cost associated

with the numerical integration of the asymptotic enrichment

functions. The XFEM variant used for the solution of the

forward problems is still advantageous in this case since as

shown in Reference [56] it provides improved conditioning

and accuracy compared to standard XFEM.

The additional meshes required to discretize the crack

front are automatically generated by dividing the circum-

ference of the candidate cracks in segments of equal length,

the approximate length of those segments is set to 2h, where

h is the mesh parameter. Since edge cracks are also con-

sidered it is possible that several of the elements created lie

entirely outside the solid considered therefore resulting in

zero stiffness matrix entries which of course do not affect the

solution.

For the evaluation of constraints, as mentioned in Sect. 4.2,

the structure boundaries are represented using radial basis

functions based on biharmonic functions and linear polyno-

mials. Moreover, parameter c used in the definition of the

bounding boxes described in Sect. 4.3.1 is given the value

5h. This value may seem large compared to the one required

for standard XFEM in 2D, however the following factors

need to be taken into account:

– In the XFEM variant used, the set of tip enriched nodes

is larger than in standard XFEM since it involves nodes

belonging to elements which lie along the layer surround-

ing the elements containing the crack front. Although

those additional nodes and elements do not result in addi-

tional dofs, they are considered enriched and therefore

have to be associated to one of the cracks. In addition, for

curved crack fronts and unstructured meshes, additional

elements might be characterized as enriched due to some

of their nodes being enriched. Therefore the distance was

extended to avoid such occurrences and to ensure the

presence of at least one standard element between two

enriched elements.

– It is considered that cracks are far enough so that no inter-

action between cracks takes place and that cracks which

are in close proximity can be approximated by a single

larger crack. As a result, the allowed distance between

cracks can be further increased to prevent evaluations of

the forward problem for cases that are not of interest and

to avoid the aforementioned numerical problems.

Due to the stochastic nature of the algorithms used, the

problems were solved 10 times and in the following repre-

sentative runs from each problem are presented.

The method used for the forward problem was imple-

mented in a C++ code utilizing the Gmm++ library [77]

for linear algebra operations. The unstructured meshes used

were generated using the gmsh mesher [78] and results were

visualized using Paraview [79,80].

For the optimization algorithms the MATLAB ga function

and the MATLAB implementation of the CMA-ES algorithm

[57,81] developed by the Koumoutsakos group (CSE Lab),

at ETH Zurich were used.

6.1 Detection of two edge cracks in a unit cube

The first example involves the detection of two edge cracks

in a unit cube. The cube is fixed at one side and subjected to

a uniform load at the other side as illustrated in Fig. 7a. The

geometry parameters are defined as Lx = L y = L z = 1 unit

and the load has a unit value (P = 1 unit). Academic material

properties E = 200,000 units and ν = 0.2 are used. The cube

is meshed with a structured mesh consisting of 51 × 51 × 51

tetrahedral elements. A network of 5 × 5 sensors is assumed

to be located in each free face of the cube (Fig. 7b)). The

strains measured by those sensors are simulated using a finer

mesh of 101 × 101 × 101 tetrahedral elements. The location

of the cracks is shown in Fig. 10.

The RBF representation of the cube used for the evaluation

of constraints in created using a set of 10 × 10 points on

each edge of the cube. In Fig. 8 the zero iso surface of this

RBF representation is illustrated. As can be seen the zero iso

surface is not an accurate representation of the boundaries

of the cube since it is only used to determine the relative

location of candidate cracks with respect to the structure.

The limits for the parameters used in the first step of the

optimization procedure of Sect. 5.3 were set to x0min = 0

units, x0max = 1 unit, y0min = 0 units, y0max = 1 unit,

z0min = 0 units, z0max = 1 unit, amin = bmin = 0.15 units

and amax = bmax = 0.30 units. Three binary digits (8 possi-

ble values) where used for the representation of parameters

x0, y0, z0 and two (4 possible values) for the rest of the

parameters. The maximum number of cracks allowed in the

medium is set to four and through the use of topological vari-
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Fig. 7 Unit cube. a Geometry

and loading, b sensor locations.

The geometry and load

parameters are defined as

Lx = L y = L z = 1 unit and

P = 1 unit

(a) (b)

Fig. 8 Unit cube, zero iso surface of the radial basis function used to

describe the cube boundaries for the imposition of constraints

ables can be adjusted to the actual number of cracks (two).

The population size was set to 40 individuals, the mutation

rate was set to 0.4 in order to prevent the algorithm from

converging to local minima and the optimization was set to

run for 2000 evaluations of the fitness function.

For the second part of the procedure the default parameters

of the CMA-ES algorithm are adopted resulting in a popu-

lation of 12 individuals. The scaling of parameters defined

in Subsection 5.3.2 results in each variable assuming values

in the interval [−10, 10] which would require an initial step

size equal to σ0 = 6. However, since the initial values of

the parameters should already be close to the actual solution

the initial step size is given a smaller value equal to σ0 = 3.

The maximum allowed difference between the two param-

eters of the ellipse is set to da = 0.10 units. The CMA-ES

algorithm is set to run for 2000 evaluations of the forward

problem.

In Fig. 9 the fitness function value achieved by the best

individual of the population is given as a function of the

number of evaluations of the fitness function, while in

Fig. 10 the best solution after different numbers of evalu-

Fig. 9 Convergence of the proposed multiscale strategy for the problem

of a unit cube with multiple cracks

ations is illustrated. In Table 1 the actual and detected values

of the parameters describing the crack geometry are pro-

vided.

6.2 Detection of three edge cracks in a beam under
three point bending

In this example a beam under three point bending,as illus-

trated in Fig. 11, is considered with edge cracks in three

different locations. The geometry parameters are defined as

Lx = 0.6 units, L y = 0.15 units, L z = 0.15 units and the

load is given a unit value (P = 1 unit). Academic material

properties E = 200, 000 units and ν = 0.3 are used. A net-

work of 4 × 8 sensors is assumed to be located in each of the

long sides of the beam (Fig. 11).

The beam is meshed with an unstructured mesh consist-

ing of 68,439 tetrahedral elements and 14,039 nodes. For

simulating measurements a finer mesh consisting of 491,244

tetrahedral elements and 89,757 nodes is used. Both meshes
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Fig. 10 Best candidate solution

after different numbers of

evaluations for the problem of a

unit cube with multiple cracks

Table 1 Actual and detected values for the parameters describing crack

geometries for the problem of a unit cube with multiple cracks

Parameter Actual value Identified value

Crack 1 Crack 2 Crack 1 Crack 2

x0 0.95 −0.05 1.0075 −0.0751

y0 0.64 0.35 0.6337 0.3538

z0 0.65 0.40 0.6606 0.4062

φx 0.1667 π −0.125 π 0.1625 π −0.0060 π

φy 0.125 π 0 0.1320 π 0.8750 π

φz 0 0.5 π 0.02 π 0.01 π

a 0.29 0.33 0.4043 0.3320

b 0.29 0.29 0.2831 0.3340

Fig. 11 Geometry, loading and sensor locations for the beam under

three point bending. The geometry and load parameters are defined as

Lx = 0.6 units, L y = 0.15 units, L z = 0.15 units and P = 1 unit

Fig. 12 Meshes used for the three point bending problem. a Coarse

mesh for the solution of the forward problem and b fine mesh for sim-

ulating measurements

used are illustrated in Fig. 12 while the locations of the cracks

are shown in Fig. 14.

The limits for the parameters used in the first step of the

optimization procedure were set to x0min = −0.3 units,
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Fig. 13 Convergence of the proposed multiscale strategy for the prob-

lem of a beam under three point bending

x0max = 0.3 unit, y0min = −0.075 units, y0max = 0.075

unit, z0min = −0.075 units, z0max = 0.075 unit, amin =
bmin = 0.04 units and amax = bmax = 0.08 units. For the

representation of parameters x0, y0 and z0, 4, 2 and 2 binary

digits were used respectively, two (4 possible values) for the

angles defining the plane of the ellipse and one for the ellipse

parameter. The population was set to 40 individuals and the

mutation rate to 0.4 as in the previous example, however the

the optimization was set to run for 4000 evaluations of the

fitness function due to the increased complexity.

For the second part of the procedure the default parameters

of the CMA-ES algorithm are adopted and the algorithm is

set to run for 2000 evaluations of the forward problem. The

maximum allowed difference between the parameters of the

ellipse is set to da = 0.04 units.

The fitness function value achieved by the best individual

of the population is given as a function of the number of

evaluations of the fitness function in Fig. 13, while in Fig. 14

the best solution after different numbers of evaluations is

shown.

As illustrated in Fig. 14, a quite accurate fit can be achieved

for all three cracks, nevertheless the number of evaluations

required (6000) would be prohibitive for larger models. In

addition, an increased number of evaluations was required

in the first step compared to the previous example due to the

increased number of cracks. However, the number of cracks

would not be known in the general case, therefore a large

number of evaluations (probably larger than the one used

herein) might be necessary.

6.3 Detection of two edge cracks in a wind turbine
blade

In the last example a more complicated geometry is used to

test the proposed scheme. More specifically, the geometry of

a wind turbine blade with two edge cracks is considered. It

should be noted that the example is only of academic inter-

est since several simplifications are made which render the

problem quite unrealistic. The most important of those sim-

plifications are the following:

– A uniform material is considered for the whole blade. In

reality the blade is hollow and made of a composite mate-

rial, whose modeling complexity lies beyond the scope

of this initial investigation.

– Static loading is considered.

– The crack locations considered are not consistent with

the ones observed in actual turbine blades.

In Fig. 15 the geometry of the blade as well as the sen-

sor locations and applied boundary conditions are illustrated.

Sensors are placed following the geometry of the blade,

moreover one end of the blade is considered fixed (Fig. 15)

Fig. 14 Best candidate solution

after different numbers of

evaluations for the problem of

beam under three point bending
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Fig. 15 Wind turbine blade geometry, sensor locations and boundary

conditions

while a uniform pressure P = 10 is applied in a small area

on the edge of the other end (Fig. 15). Academic material

properties E = 200,000 units and ν = 0.3 units were used.

Two unstructured meshes were used for the problem, a

fine mesh for the simulation of the measured response of

the blade consisting of 1,154,327 linear tetrahedral elements

and 212,325 nodes (Fig. 16b), and a coarser mesh for the

solution of forward problems consisting of 174,580 elements

and 36,325 nodes (Fig. 16a).

The limits for the parameters used in the first step of the

multiscale scheme of Sect. 5.3 were set to x0min = −0.035

units, x0max = 0.05 unit, y0min = −0.12 units, y0max = 0.12

unit, z0min = 0.2 units, z0max = 1.6 unit, amin = bmin =
0.08 units and amax = bmax = 0.20 units. For the repre-

sentation of parameters x0, y0, z0 1, 2 and 4 binary digits

(2, 4 and 16 possible values) were used respectively while

two digits (4 possible values) were used for the rest of the

parameters. In Fig. 17 all possible crack locations resulting

from the above parameters are depicted. As in the previous

example the possible number of cracks was set to four, the

population size was set to 40 individuals, the mutation rate

was set to 0.4 and the optimization was set to run for 2000

evaluations of the fitness function.

The default parameters of the CMA-ES algorithm are

again adopted for the second part of the procedure. The max-

imum allowed difference between the two parameters of the

ellipse is set to da = 0.10 units.

In Fig. 18 the fitness function value achieved by the best

individual of the population is given as a function of the num-

ber of evaluations of the fitness function, while in Fig. 19 the

optimal solution after successive evaluations is illustrated. It

should be noted that because of the more complicated geome-

try, the whole ellipses are plotted rather than only the parts of

the ellipses that lie within the structure as in previous exam-

ples. In Fig. 20 the deformed shape of the blade with the actual

and predicted cracks is plotted and in Fig. 20 the deformed

shape of the blade is given with the actual and the detected

cracks. Although the accuracy is decreased compared to the

previous examples, the number of cracks and rough locations

can still be obtained. This reduced accuracy can be attributed

mostly to the fact that the applied loading does not activate

both cracks equally making it harder to accurately detect the

upper crack.

It should be remarked that due to the increased complex-

ity of the present problem and the stochastic nature of the

optimization procedure it is not always possible to detect

Fig. 16 Meshes used for the

wind turbine blade problem. a

Coarse mesh for the solution of

forward problems and b fine

mesh for simulating

measurements

(a) (b)
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Fig. 17 Possible crack locations for the first step of the multiscale crack

detection scheme for the case of a wind turbine blade

Fig. 18 Convergence of the proposed multiscale strategy for the prob-

lem of a wind turbine blade with multiple cracks

both of the cracks, this is illustrated in Fig. 21 where the

best candidate obtained at the first step of the procedure is

given for alternative runs. More specifically, in the first case

(Run 1) both cracks are detected while in the following two

cases (Run 2 and Run 3) only one of the cracks is accurately

detected. The second run in particular is of special interest

since one of the detected cracks (the upper crack) would

result in zero or negative crack opening displacements and

therefore would be physically meaningless. In the present

version of the method no particular care was taken for those

Fig. 19 Best candidate solution after different numbers of evaluations

for the problem of a wind turbine blade with two edge cracks

Fig. 20 Deformed shape of the blade with the actual (left) and detected

cracks (right)

cases, however in future works those cases can be dealt with

either by locating and penalizing those cracks or by including

contact which would prevent negative crack openings.

7 Conclusions

A methodology for the detection of multiple cracks in 3D

solids of arbitrary geometries was presented, resulting via
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Fig. 21 Best candidate from the first step of the solution for three alter-

native runs

fusion of a recently introduced XFEM variant [55,56] with

a multiscale optimization strategy. The latter comprises a

discrete step, where genetic algorithms are employed, and a

continuous step employing the CMA-ES algorithm [57].

The method was tested in numerical examples involv-

ing the detection of multiple cracks in solids of non-regular

geometries and promising results were obtained. Neverthe-

less, before the method may be implemented onto practical

problems several improvements have been identified as

future work, for alleviating certain methodological limita-

tions. More specifically:

– The computational cost associated with the solution of

the forward problems is high, which in turn increases the

total computational cost since those problems need to be

solved thousands of times. This could be a prohibiting

factor for several applications, thus special techniques,

such as model order reduction [24,25,82], would be

required to extend the method’s applicability.

– In some cases the cracks detected by the method are phys-

ically meaningless since they involve zero or negative

crack opening displacements. This can be dealt with by

detecting and penalizing those cracks or by including

contact in the model of the forward problem.

– Despite adoption of a rather high number of sensors, the

inverse problem may result as ill-conditioned, especially

for the more complex geometry and loading conditions

of the third problem tested. A possible remedy to this

problem could result via use of multiple loading cases,

as in the work of Rabinovich et al. [41]. Such a rem-

edy would only be possible once the size of the forward

problems has been reduced, as mentioned above, since it

would further increase the total number of evaluations of

the forward problem.

The proposed method offers a highly promising tool

towards the accurate detection of multiple cracks in com-

plex engineered systems, simulated in the three dimensional

domain.
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