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Multiple Description
Coding: Compression
Meets the Network

Vivek K Goyal

Y
our paper on the influence of medieval orna-
ments on contemporary art is due tomorrow.
Luckily you have the latest wireless modem for
your laptop, and hundreds of pieces from the

Metropolitan Museum of Art collection are displayed on
its web site. But as you examine the pictures, your web
browser repeatedly gets stuck with partially loaded web
pages. You see a reliquary, but an empty box sits where a
scepter should appear; you find a Modigliani, but com-
pression artifacts cause a Magritte to appear wrongly
cubist.

A lot of things could be going wrong; thus, many tech-
nological improvements could save you. Having more an-
tennas on your laptop would make
multipath a virtue instead of an impedi-
ment and could result in higher
throughput and better reliability. More
cellular base stations imply smaller cells
and could lead to fewer conflicts with
other users in your cell. Your wireless
service provider could have higher
capacities in the wired connections to
its base stations. The whole wired infra-
structure could be better, with fewer
packets lost due to buffer overflows.
The museum web site could handle
more simultaneous connections or
could be cached closer to you. Each of
these changes could improve your
browsing experience.

This article focuses on the com-
pressed representations of the pictures.
The representation does not affect how
many bits get from the web server to your laptop, but it
determines the usefulness of the bits that arrive. Many dif-
ferent representations are possible, and there is more in-
volved in the choice than merely selecting a compression
ratio.

The techniques presented here represent a single infor-
mation source with several chunks of data (“descrip-
tions”) so that the source can be approximated from any

subset of the chunks. By allowing image reconstruction to
continue even after a packet is lost, this type of representa-
tion can prevent a web browser from becoming dormant.

Separate Layers, Separate Responsibilities
Network communication has many separations of func-
tions and levels of abstraction. This is both the cause and
product of assigning various design and implementation
tasks to different groups of people. In networking, there is
the canonical seven-layer open systems interconnection
(OSI) reference model. The layers range from the physical
layer, characterized by voltage levels and physical connec-

tors, to the application layer, which in-
teracts with the user’s software
application. All these layers are involved
in the example of accessing the Met web
site from an untethered laptop.

Beyond the OSI layering, there is a
further separation that most people
take for granted. This separation is
between generating data to be trans-
mitted (creating content) and the de-
livery of content. The artistic aspect
of content generation—writing,
drawing, photographing, and com-
posing—is not an engineering func-
tion. However, the engineer has
great flexibility in creating represen-
tations of audio, images, and video to
deliver an artistic vision. This article
addresses the generation of content
and how it is affected by unreliable

content delivery.

Where Does a Conventional System Go Wrong?
Current systems typically generate content with a progres-
sive coder and deliver it with TCP, the standard protocol
that controls retransmission of lost packets. Though these
techniques are well suited to many applications, putting
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them together can produce avoidable delays when pack-
ets are lost.

Suppose L packets, numbered from 1 to L, are used to
send a compressed image and that the receiver recon-
structs the image as the packets arrive. In a progressive
transmission, the quality improves steadily as the number
of consecutive packets received, starting from the first, in-
creases.(Two articles in this Magazine give details on im-
age representations that are good for progressive
transmission. Embedded coding allows the compressed
data to be cut off at any point with commensurate image
quality [95]. The more flexible concept of scalability is
used in the JPEG2000 standard to facilitate many types of
progressive transmission [92].) The order of the packets

is critical; for example, if packets {1,2,4,5, ..., L} are re-
ceived, the quality is proportionate to the reception of
only two packets.

Progressive transmission works well when the packets
are sent and received in order without loss. But when a
packet is lost, the reconstruction stalls until that particular
packet is received. Unfortunately, TCP-based content de-
livery suffers from these stalls because the delay in receiv-
ing a retransmitted packet may be much longer than the
interarrival times between received packets.

In creating packets that are only useful if all earlier
packets have been received, the source coding (compres-
sion) in the conventional system puts too much faith in
the delivery mechanism. On the other hand, the delivery
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Box 1
Why Wait When You Don’t Have to?

This box illustrates how the representation used for an
image can affect a user’s experience during a down-

load. Three types of source codes are used: a
nonprogressive code designed purely for compression
efficiency, a progressive code, and an MD code. The first
two are combined with a retransmission protocol but the
third is not.

Assuming that the display software reconstructs an
image as packets arrive, the displayed image could
change in time as shown to the right.

In all three cases the image is represented with six
packets, and the third packet is lost in transmission.
For the first two cases, the loss is temporary in that the
lost packet is eventually retransmitted and received at
time 20.

Up until the first packet loss, the progressive scheme
is clearly the best. However, the image quality stalls until
the retransmission of the third packet is successfully
completed. At the end, the nonprogressive code is the
best, but only slightly better than the progressive code.
Using MD, the image quality continues to improve as
packets arrive, despite the loss of the third packet. From
soon after the first loss until the retransmission is com-
plete, the MD code gives the best image. For many appli-
cations, it is not worth waiting for the retransmission to
get a slight improvement in image quality.

Make no mistake: if there were no packet losses, the
progressive solution would be the best, and this is what is
most commonly used now. However, when packets are
lost, using MD coding can get a useful image to the user
more quickly.
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mechanism assumes all the transmitted packets are
needed at the receiver; this might not be true with differ-
ent source coding.

What Are the Alternatives?

If losses are inevitable, representations that make all of the
received packets useful, not just those consecutive from the
first, can be of great benefit. Multiple description (MD)
coding creates such representations, and the possible im-
provement is demonstrated in Box 1. To gain robustness
to the loss of descriptions, MD coding must sacrifice some
compression efficiency. Thus, MD coding should be ap-
plied only if this disadvantage in compression is offset by
the advantage of mitigating transport failures.

This article is structured in two parts. The abstract
model for MD coding is described in the first part with
history and initial motivation. Although packet-based
communication is a key application today, the abstract
model can be connected to several other communication
scenarios. In fact, MD coding was originally intended for
the circuit-switched telephone network. The second part
of the article describes methods and applications of MD
coding. The introduction focused on images to match the
theme of this special issue, but MD coding is equally ap-
plicable to audio and video. Throughout the article, de-
tailed descriptions of both the theory and the practical
techniques are set off in boxes. Readers may wish to refer
to the background material on source coding and
quantization in the first article of this Magazine [34]. The
topics of the article are covered more thoroughly in [33].

The MD Model

From the information theory literature, one could get the
impression that MD coding arose as a curious analytical
puzzle and then found application years later. More accu-
rately, MD coding has come full circle from explicit prac-
tical motivation to theoretical novelty and back to
engineering application.

Like so much of communication technology, MD cod-
ing was invented at Bell Laboratories in connection with
communicating speech over the telephone network. Un-
fortunately, some of this work, though documented

through citations in technical reports, was not archived.
Little of it is known inside Bell Laboratories and almost
none is known outside.

The hallmark of the telephone system is reliability. But
outages of transmission links are inevitable. They arise
from device failures and also from routine maintenance
and upgrades. Thus, achieving high reliability requires
mechanisms to handle outages.

In the 1970s, as today, the primary mechanism for
providing uninterrupted service despite link outages was
to divert calls to standby transmission links. The need for
standby links increases costs and implies that not all the
installed links are used in normal operation.

To improve reliability without standby links, the infor-
mation from a single call could be split and sent on two
separate links or paths. In normal operation, both halves
of the transmitted data would be combined for the usual
voice quality; an outage of one link or the other would al-
low for communication at reduced quality. In [28], this
idea of channel splitting is attributed to W.S. Boyle. A ci-
tation of [67] and the later archived document [68] indi-
cate that this idea may have been originated by Miller.
Another early document on this topic is [9].

Miller sketched a few simple methods for sending digi-
tal and analog information over split, discrete-time, ana-
log links. Miller’s methods for digital information are all
more or less equivalent to Gray coding [85]. For analog
information, he was clearly interested in speech. Because
of its decaying frequency spectrum, speech that is initially
sampled at the Nyquist rate can be subsampled by two
without too much aliasing. Thus, sending odd-numbered
samples on one channel and even-numbered samples on
the other works reasonably well. More details on a related
technique are given below.

Miller and Boyle worked primarily on the physical
layer, designing optical equipment. In 1978 and 1979,
the idea of channel splitting became popular with two
groups in Bell Laboratories: speech coders and informa-
tion theorists. Gersho, spanning these two camps, was in-
strumental in this spread. He learned of the problem from
Goodman, proposed an encoding technique [28], and
likely was the first to share the idea with Jayant, Ozarow,
Witsenhausen, Wolf, and Wyner.
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▲ 1. Speech coding for channel splitting as proposed by Jayant [50]. Speech sampled at 12 kHz is split into odd and even streams.

These are separately encoded by DPCM.



Speech Coding for Channel Splitting
Jayant, working independently of Miller, also proposed a
separation of odd and even samples in a speech coding
method for channel splitting [50]. Jayant’s simple, yet
quite effective system is depicted in Fig. 1. A similar sys-
tem had been motivated by random losses in
packet-switched telephony [52].

The usual practice in telephony is for a speech signal to
be bandlimited to 3.2 kHz and sampled at 8 kHz. In
Jayant’s system, the initial sampling is at 12 kHz so that
subsampling by a factor of two results in only slight
aliasing. The odd- and even-numbered samples are com-
pressed separately with differential pulse code modula-
tion (DPCM) and sent on two separate channels.
Quantization step sizes are adapted once for each block of
several millisecond duration.

Decoding from both channels requires a DPCM de-
coder for each channel and the interleaving of the sam-
ples, resulting in a signal with 12 kHz sampling and some
amount of DPCM quantization noise. To decode from a
single channel, adaptive linear interpolation is used. It is
almost the same thing to consider this to be speech sam-
pled at 6 kHz with aliasing and quantization noise.

Judging by both SNR and informal perceptual testing,
this technique works very well for the range of 2 to 5
bits/sample (24 to 60 kbits/s): The quality of either
half-rate reception in a system designed for total rate R is
similar to that of the full-rate reception in a system opti-
mized for total rate R / 2. In particular, at 60 kbits/s even
the half-rate receiver approaches “toll quality.” The good
performance is not surprising because, at the bit rates
used for telephony, halving the sampling rate while keep-
ing the quantization unchanged is a reasonable way to
halve the bit rate.

A mathematical idealization of this system is analyzed in
Box 2. It is critical that the odd- and even-numbered sam-
ples have redundancy. If the redundancy was removed be-
fore odd/even separation—for example, with linear
prediction—the performance would be unacceptable.

Scalar Quantization for Channel Splitting
To see the difficulty of channel splitting for a source
without redundancy, consider trying to communicate a
single real number x ∈ −[ , ]1 1 with 4 bits. The natural
choice, which is optimal if the source is uniformly dis-
tributed, is the uniform quantizer shown in Fig. 2(a)
with black labels. No manner of splitting the four bits
into two pairs for transmission over two channels is sat-
isfactory; any estimate computed only from the channel
that does not receive the most significant bit will, on av-
erage, be poor.

One way to use scalar quantizers for channel splitting
was recognized almost immediately. Different uniform
quantizers, shown in red and blue in Fig. 2(b), are used
for the two channels, with the quantizers offset so that
combining the information from both gives one addi-
tional bit of resolution. To avoid clutter, the reconstruc-
tions computed when both channels are available are not
shown; if q x

1
110( )= and q x

2
101( )= , for example, x

must be in the interval [7/16, 9/16] and thus is recon-
structed to 1/2.

Although the reconstructions from either channel
alone are good, the quantizers in Fig. 2(b) have a glaring
weakness: the total rate over both channels is 6 bits per
sample even though the reconstruction quality when
both channels are received is only about as good as with
the 4-bit quantizer in Fig. 2(a). Reudink was the first to
propose channel splitting techniques that do not in-
crease the total rate so much and do not rely entirely on
preexisting redundancy in the source sequence. Fig.
2(c) is inspired by one of Reudink’s families of
quantizer pairs.

Individually, the red and blue quantizers are strange in
that their cells are not connected. But together, they com-
plement each other by having cells with small intersec-
tions. For example, knowing q x

1
100( )= only limits x to

[1/4, 3/8] ∪ [1/2, 3/4]; also knowing q x
2

100( )= then
localizes x to the interval [1/2,5/8]. Each quantizer in Fig.
2(c) has only six outputs. If we are willing to call these
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(a) (b) (c)

▲ 2. (a) A four-bit uniform scalar quantizer. With the natural labelling of cells (black), there is no way to split the output into two pairs of

bits such that each pair gives a reasonable estimate of the input. Another labelling (red and blue) is somewhat better, but still does

not consistently give good estimates (see Box 7). (b) Two three-bit quantizers that complement each other so that both outputs to-

gether give about four-bit resolution. (c) More complicated quantizers together attain four-bit resolution while each having fewer out-

put levels.



log .
2

6 26≈ -bit quantizers, the quantizer pair in Fig. 2(c)
attains 4-bit resolution with lower total rate than the
quantizers in Fig. 2(b).

Though Reudink’s work was archived as a technical re-
port [81], it was not published. His techniques for
memoryless sources were reinvented, analyzed in detail,
and popularized many years later by Vaishampayan [96].
Reudink also developed techniques for correlated sources
that built upon work by Gersho.

Gersho proposed the use of modulo-PCM encoding
for channel splitting [28]. Returning to the quantizer in
Fig. 2(a), consider the problem of estimating x after re-
ceiving only the two least significant bits. (This is called a

modulo-PCM representation of x because the PCM rep-
resentation is reduced modulo 4 [25].) Because there are
two missing (most significant) bits, we know only that x
lies in one of four intervals of length 1/8. Now suppose
that the previous sample is also available and is highly cor-
related with the present sample. This correlation can be
used to choose the most likely amongst the four intervals
or to produce a linear least-squares estimate conditioned
on the previous sample. For channel splitting, one chan-
nel can carry the most significant bits of the even-num-
bered samples and the least significant bits of the
odd-numbered samples. This assignment of bits to chan-
nels was suggested by Goodman and studied by Quirk
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Box 2
Channel Splitting by Odd/Even Separation

In signals with high correlation between consecutive sam-
ples, the odd- and even-numbered samples carry almost

the same information. This is exploited in the channel split-
ting scheme for speech shown in Fig. 1. With mathematical
idealizations of the speech signal and of the encoding of the
separate odd and even sequences, we can assess how well this
simple technique works.

Consider a discrete-time source sequence generated as

x k a x k z k k[ ] [ ] [ ],= − + ∈1 1 Z,

where z k[ ] is a sequence of independent, zero-mean Gaussi-
an random variables. This is a first-order autoregressive
(AR) signal model [74]. The scalar constant a1,| |a1 1< , is the
correlation between consecutive samples. Setting the vari-
ance of z k[ ]to1 1

2−a is a normalization that makes x k[ ]have
unit power.

The performance of the best possible compression of x k[ ]
is described by the distortion rate function of the source (see
Box 3). The distortion rate functions of Gaussian AR sources
can be computed easily for any rate [6]; simple distortion
rate expressions hold except at very low rates. For the given
source

( )D R a R aR( ) log ( ).= − ≥ +−1 2 11
2 2

2 1for

The separation of odd and even samples gives sequences
x k x k1 2 1[ ] [ ]= + and x k x k2 2[ ] [ ]= . Each of these is an AR
sequence with correlation a1

2 between consecutive samples.
The lower correlations make the split sequences harder to
compress than the original source. Using the new correlation
a1

2 in place of a1 in the previous formula gives the best possi-
ble performance of the full-rate decoder:

( ) ( )D R a R aR
full for( ) log= − ≥ +−1 2 11

4 2
2 1

2 .

The loss in compression efficiency created by the
odd/even separation is a constant multiplicative increase in
distortion (for large enough rates)

D D D R afull( )/ ( ) = +1 1
2 .

The half-rate decoder that receives the even samples has
the same distortion on the even samples as the full-rate de-
coder. In addition, it must estimate the odd samples from the

even samples. In Jayant’s system, missing samples are esti-
mated by linear interpolation between the two neighboring
received samples. The resulting mean-squared interpolation
error is ( ) ( / )( )1 1 2 11

2
1
2− + − +a a Dqω , where Dq is the

mean-squared quantization error and ω ∈[ , ]0 1 depends on
the correlation of the quantization error. Averaging the dis-
tortion on odd and even samples, the performance of each
half-rate decoder is thus

D R a a D Rhalf full( ) ( ) ( ) ( )= − + −





+

+1

2
1

1

2
1

1

2
1

2
1
2 ω

.

Using the conservative assumption of ω =1 gives the per-
formances shown below for a1 0 98= . . For clarity, SNR in
decibels, −10 10log D, is plotted instead of distortion.

The performance of the half-rate decoder approaches an
asymptote for high rates because of the interpolation error.
However, at low rates the performance is competitive with,
and at times better than, the full-rate decoder at half the rate
(dashed curve). This is consistent with the results obtained
with speech signals [50].

Correlated samples can be exploited to produce MDs of
other sources. For images, separating odd- and even-num-
bered samples both horizontally and vertically leads to sim-
ple techniques for generating four descriptions [94]. Any
method can be used to compress the four subsampled images
of quarter size.
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[77]. Reudink’s generalization combined the grouping of
nearby cells seen in Fig 2(c) with the grouping of highly
separated cells in modulo-PCM.

The Information Theory of Channel Splitting
At the same time that Gersho, Jayant, Quirk, Reudink,
and possibly others worked on channel splitting for
speech, Witsenhausen recognized that channel splitting
poses intriguing information theoretic problems. Since
the speech coding work was barely known outside Bell
Laboratories, and not much known inside, subsequent
practical work seems to have been inspired by the infor-
mation theory literature.

A Formal Problem

Channel splitting inspired the following question (stated
first without mathematics): If an information source is
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Source
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Encoder

Channel 2

Channel 1
Decoder 1

Decoder 0

Decoder 2

{ }Xk
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{ }Xk
(0)^

{ }Xk
(2)^

▲ 3. Scenario for MD source coding with two channels and three

receivers. The general case has M channels and 2
1M− receivers.

Box 3

A Rate Distortion Primer

The articles of this special issue discuss the approximate
representation of signals, mostly images. There is always

a trade-off between the length of the representation (rate)
and the quality of the approximation (distortion). Rate dis-
tortion theory is the branch of information theory devoted
to bounds on achievable rates and distortions. Tight bounds
are difficult to compute in all but a few simple situations.
Nevertheless, rate distortion bounds give valuable intuition
on how quality should vary with description length.

This box defines a few technical terms and gives an exam-
ple of a rate distortion function. For readers new to informa-
tion theory, this should make it easier to understand Boxes 2
and 4 and some of the main text. The definitions given here
are simplified from [13] by assuming a real, memoryless
source and a single-letter distortion measure; to learn more,
read [6], [13], [43].

Assume that a source produces a sequence of independent,
identically distributed, real random variables X 1, X 2 ,… , X n.
A distortion measure d gives a nonnegative numerical rating
d x x( , ɵ) to how well a source letter x is approximated by a re-
production ɵx. The distortion between sequences
x x x xn

n
( ) ( , , , )= 1 2 … and ɵ ( ɵ , ɵ , , ɵ )( )x x x xn

n= 1 2 … is defined by

d x x
n

d x xn n

i

n

i i( , ɵ ) ( , ɵ )( ) ( ) =
=
∑

1

1

.

The most common distortion measure is the squared error
d x x x x( , ɵ) ( ɵ)= − 2 . The squared error distortion between se-
quences of length n is the squared Euclidean norm between
the sequences divided by n.

A source code is a mechanism for approximately represent-
ing a source sequence. For a sequence x n( ) of length n, a source
code with rate R consists of an encoder mapping α from all
possible source sequences to an index in { , , , }1 2 2…

nR fol-
lowed by a decoder mapping β from { , , , }1 2 2…

nR to a repro-
duction sequence ɵ ( )x n . The distortion associated with the code
is defined as the expected value of the distortion measure ap-
plied to the source and reproduction:

( )( )( )[ ]D E d X Xn n= ( ) ( ),β α .

A rate distortion pair ( , )R D is called achievable if, for
some positive integer n, there exists a source code with
length n, rate R, and distortion D. The closure of the set of
achievable rate distortion pairs is called the rate distortion
(RD) region. The rate distortion function R D( ) is the mini-
mum rate such that ( , )R D is in the RD region. Conversely,
the distortion rate function D R( ) is the minimum distortion
such that ( , )R D is in the RD region. Note that these all de-
pend on the source and distortion measure.

The boundary of an RD region is nearly impossible to de-
termine by working directly from the definitions. First, it is
hard to design a length-n source code to minimize D for a
given R, or vice versa. (Explicit source codes of the type de-
scribed here are usually called fixed-rate vector quantizers.
The difficulty of optimizing vector quantizers is discussed in
[20], [29], [44].) Moreover, the boundary points are gener-
ally not attained with finite n; thus, finding even a single
boundary point seems to require a sequence of optimal
source codes.

The main theorem of rate distortion theory turns a hope-
less situation into a merely difficult one. This theorem
equates the rate distortion function to the result of a con-
strained minimization problem for a scalar conditional den-
sity [6], [90]. Though difficult, this minimization problem
has been solved for a few sources and distortion measures.
For example, a Gaussian source with variance σ 2 has distor-
tion rate function

D R R( ) = −σ 2 22

for squared error distortion. Although this is just a single ex-
ample, it bounds the distortion rate functions of all continu-
ous-valued sources: For a source with probability density
f x( ) and variance σ 2 , the distortion rate function with
respect to squared error satisfies

1

2
2 2 22 2 2 2

π
σ

e
D Rh R R− −≤ ≤( )

where h f x f x dx= −∫ ( ) log ( )2 is called the differential en-
tropy. The upper bound above shows that, for a given vari-
ance, Gaussian sources are the most difficult to compress.
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Box 4
The MD Rate Distortion Region

The MD rate distortion region, or simply MD region, for
a particular source and distortion measure is the closure

of the set of simultaneously achievable rates and distortions
in MD coding. (The meaning of “achievable” is an extension
from the one-description rate distortion problem. See Box
3.) For the two-description case, the MD region is the clo-
sure of the set of achievable quintuples( , , , , )R R D D D1 2 0 1 2 .

As described in Box 3 for the basic rate distortion prob-
lem, the MD region can, in principle, be determined by opti-
mizing sequences of MD source codes. Again, as with the
RD region, this computation is not feasible. However, as the
theory stands, MD regions are inherently more difficult to
determine; unlike RD regions, MD regions have not been
completely characterized in terms of single-letter informa-
tion theoretic quantities (entropies, conditional entropies,
mutual informations, ... ).

A theorem of El Gamal and Cover [22] shows how to de-
termine achievable quintuples from joint distributions of
source and reproduction random variables. The points that
can be obtained in this manner are not all achievable quintu-
ples, so these points are called inner bounds to the MD region.
Other characterizations of achievable points in terms of in-
formation theoretic quantities have been given in [103],
[119], but these also generally do not give the entire MD re-
gion. The achievable region of [103] generalizes the regions
of [22] and [119] to more than two descriptions.

Points that are certainly not in the MD region are called
outer bounds. The simplest outer bounds come from rate dis-
tortion functions. For Decoder 1 to have distortion D1, it
must receive at least R D( )1 bits per symbol. Making similar
arguments for the other two decoders gives the bounds

R R R D1 2 0+ ≥ ( ) (1)

R R D ii i≥ =( ), ,for 1 2. (2)

Because of the conflict in making the individual and joint de-
scriptions good, the bounds (1) and (2) are usually loose.

The MD region is completely known only for
memoryless Gaussian sources and the squared error distor-
tion measure. For this source and distortion measure,
Ozarow [72] showed that the MD region is precisely the
largest set that can be obtained with the achievable region of
El Gamal and Cover. This case gives insight into the limita-
tions in MD coding. Furthermore, the MD region for any
continuous-valued memoryless source with squared error
distortion can be bounded using the MD region for Gaussian
sources [117].

For a memoryless Gaussian source with variance σ2
2, the

MD region consists of ( , , , , )R R D D D1 2 0 1 2 that satisfy

D ii

R i≥ =−σ 2 22 1 2, , ,for (3)

D R R D D
R R

D0
2 2

1 2 1 22 1 2≥ ⋅− +
σ γ

( )
( , , , ) (4)

where γ D =1 if D D D1 2
2

0+ > +σ and

( )
γ D

R R
D D D D

=
− − − − − − +

1

1 1 1 21 2 1 2
2

2
1 2)( ) )

( )

(5)

otherwise. The key relation is (4), which indicates that the
central distortion must exceed the distortion rate minimum
by the multiplicative factor γ D. When one or both side dis-
tortions is large, γ D =1 so the central reconstruction can be
very good. Otherwise, there is a penalty in the central distor-
tion.

In the balanced case, where R R1 2= and D D1 2= ,
Ozarow’s result can be used to prove the following side dis-
tortion bound for a source with unit variance [33]:

[ ]D D D D
R R

R R

1 0 0
2

0

2

1

2
1 1 1 2

1 1 2

1 2

1

≥ + − − −



− −

− +

− +

min ( ) / ,( )

( }2

0
) / D
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The bound (7) is plotted below for several values of the
base rate r. An interesting thing to glean from this bound is
the slope of the low-redundancy D1 versusρcharacteristic:
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At ρ = +0 , the slope is infinite. To interpret this, consider start-
ing with a system that achieves the rate distortion bound for the
central decoder and then increasing the rate by a small amount.
The infinite slope means that the small additional rate will have
much more impact if dedicated to reducing the side distortion
than if dedicated to reducing the central distortion.

In many of the situations where MD codes are used—or
should be used—some linear combination of central and side
distortions is a good performance measure. (The weights
could correspond to probabilities of receiving certain combi-
nations of descriptions.) The infinite slope of (8) indicates
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described with two separate descriptions, what are the
concurrent limitations on qualities of these descriptions
taken separately and jointly? Wyner presented this ques-
tion, along with preliminary results obtained with
Witsenhausen, Wolf, and Ziv at an information theory
workshop in September 1979. This eventually came to be
known as the MD  problem.

The MD situation, with two descriptions, is shown
schematically in Fig. 3. An encoder is given a sequence of
source symbols { }X

k k

N

=1
to communicate to three receiv-

ers over two noiseless (or error corrected) channels. One
decoder (the central decoder) receives information sent
over both channels while the remaining two decoders
(the side decoders) receive information only over their re-
spective channels. The transmission rate over Channel i is
denoted by R

i
, i =1 2, , in bits per source sample. The re-

construction sequence produced by Decoder i is denoted
by { ɵ }( )

X
k

i

k

N

=1
, and distortions attained by these recon-

structions are denoted by D
i
, i =0 1 2, , . The technical

meaning of attaining a particular distortion at a particular
rate is described in Box 3.

As drawn, Fig. 3 suggests a situation in which there are
three separate users or three classes of users. This could
arise in broadcasting on two channels. The same abstrac-
tion holds if there is a single user that can be in one of
three states depending on which descriptions are re-
ceived. The introductory material is consistent with the
latter interpretation.

MD coding is difficult because of conflicting require-
ments. If you design a good description at rate R

1
to send

over Channel 1 and another good description at rate R
2

to
send over Channel 2, there is no reason for the two descrip-
tions together to be a good way to spend R R

1 2
+ total

bits. Similarly, a good compressed representation at rate
R R

1 2
+ cannot easily be split into two useful descriptions.
Heuristically, good descriptions at rates R

1
and R

2
are

similar to each other; therefore, combining them at the cen-
tral decoder does not give much advantage over just using
the better one. Making descriptions individually good, yet
not too similar, is the fundamental tradeoff of MD coding.

The MD model leads to several problems in rate dis-
tortion theory and practical compression. The central
theoretical problem is to determine, for a given source
and distortion measure, the set of achievable values for
the quintuple ( , , , , )R R D D D

1 2 0 1 2
. In compression, one

may attempt to explicitly design and implement good
encoders and decoders. The theoretical bounds are ad-
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that such a system should ideally have nonzero redun-
dancy.

When actual performance is considered, instead of
bounds, the large effect of a small amount of redundancy
is again observed. The MD coding technique with corre-
lating transforms (Box 9), for example, easily allows con-
tinuous variation of the redundancy and exhibits infinite
side distortion slope at zero redundancy [36], [37].

Under the assumptions R R1 2 1= >> and
D D

R

1 2
2 12 1= ≈

− −( )ν with 0 1< ≤ν , γ
D

can be estimated
as( )4 1

1
D

− . Thus bound (4) gives D D
R

0 1
2 41 4 2 1⋅ ≥

−( / )σ .
For this reason, Ozarow’s result is often interpreted as
an exponential lower bound on the product of central
and side distortions. MD quantization techniques can
attain the optimal rate of exponential decay of this prod-
uct [97], [98].

Box 5
Minimal Breakdown Degradation

Much of the MD literature, including [2], [7], [111],
[113], [114], [119], is focused on the memoryless

binary symmetric source (BSS) with Hamming distor-
tion. This means the source produces a sequence of bits
with independent flips of a fair coin and that the distor-
tion is measured by the expected fraction of bits that are
incorrect in the reconstructed sequence. The source is in-
compressible: achieving zero Hamming distortion re-
quires a rate of 1 bit per source symbol.

Suppose a BSS is communicated in an MD system
with R R1 2 1 2= = / and D0 0= . Since the total rate of 1
bit per symbol is precisely the minimum rate needed to
achieve zero central distortion, there seems to be little
room to achieve good side reconstructions. How small
can d D D= =1 2 be? This is termed the minimal break-
down degradation [7], [111], [113], [114].

Since the source bits are independent and incompress-
ible, it might seem that the best one can do is send half of
the source bits on each channel. In this case, either side
decoder receives half of the bits and can correctly guess
half of the remaining bits, so d =1 4/ is achieved.

It is remarkable that the minimum common side
distort ion is lower than 1/4—specif ica l ly ,
d = − ≈( )/ .2 1 2 0 207. Obtaining this side distortion
with the specified rates depends on choosing a suitable
conditional distribution for the pair of side decoder re-
constructions ( ɵ , ɵ )X X1 2 given the source bit X .

A conditional distribution that can be used to
show the achievability of d = −( )/2 1 2 is as follows.
When X =1, have the source bit reproduced correctly
at both side decoders; i.e., ( ɵ , ɵ )X X1 2 =(1,1) with
probability 1. When X =0, place probabilities
3 2 2− , 2 1− , and 2 1− on (0,0), (1,0), and
(0,1), respectively. One can easily check that the
side distortion d = −( )/2 1 2 is achieved and that X

can always be recovered from the pair ( ɵ , ɵ )X X1 2 . Cal-
culations detailing why this conditional distribution
can be brought about with R R1 2 1 2= = / are given in
[7] and [33]. Generalizations to more channels are
considered in [103] and [112].

Source
{ }Xk

Encoder

Channel 2

Channel 1
Decoder 1

Decoder 0

{ }Xk
(1)^

{ }Xk
(0)^

▲ 4. The successive refinement problem. It is obtained from the

MD problem when one of the side decoders is removed.

Box 4 (Continued)



dressed in Box 4, and we will turn to practical techniques
and applications after a look at related problems.

Related Problems

Much of the early theoretical MD work was for coding
memoryless binary sources with no more total bits than
would be necessary to communicate the source in one de-
scription. This is consistent with the original motivation
of channel splitting: providing a fail-safe quality level
without increasing the transmitted bit rate. A key result is
described in Box 5.

Several other problems can be recognized retrospec-
tively as special cases of MD coding. Removing Decoder 2,
as in Fig. 4, gives what is known as successive refinement
(SR) coding. Unlike in MD coding, the channels in SR
coding play asymmetric roles. One channel (Channel 1) is
received by both decoders, while the other (Channel 2) is
received by only one decoder. Thus the information sent
on Channel 2 need not be useful in isolation, i.e., without
Channel 1. The description on Channel 2 is said to refine
the information on Channel 1. The theoretical bounds for
SR coding are established in [23], [57]-[59], and [82].

The SR coding abstraction applies to layered broad-
casting when the decoders represent different users. The
two classes of users are labeled 0 and 1. Both receive
Channel 1, but only Class 0 receives Channel 2. This situ-
ation may occur in wireless transmission with
multiresolution constellations [78] or in packet commu-
nication when multicasting to users with different avail-
able bandwidths [64].

When the decoders in Fig. 4 represent two different
states of the same user, SR coding can be used for pro-
gressive transmission. The information on Channel 1 is
sent first and the receiver uses Decoder 1. If communica-
tion is not terminated at this point, the information on
Channel 2 is then sent, and the receiver uses Decoder 0.

Good SR source codes share the following character-
istic: The most important data is sent on Channel 1 (thus
to all users in a broadcast or first in sequence) and addi-
tional data to improve the reconstruction quality is sent
on Channel 2. For example, most significant bits can be
sent on Channel 1 and least significant on Channel 2.
For images, a coarse or low pass version can be sent on
Channel 1 with additional details sent on Channel 2; this
is easy and common with wavelet representations [92],
[95], [107].

Another antecedent network communication problem
was introduced by Gray and Wyner in 1974 [45]. Instead

of having a single source sequence to communicate over
two channels to three receivers, they have a sequence of
pairs of random variables {( , )}X Y

k k k

N

=1
to communicate

to two receivers over three channels. Receiver 1 is inter-
ested only in{ }X

k
and forms its estimate from Channel 1

and a common channel. Receiver 2 has its own private
channel and is interested in the other sequence{ }Y

k
. This

is a special case of MD coding with three channels and
seven receivers [103].

Applications

The application of MD coding requires a correspondence
between “descriptions” and units of data that are trans-
ported between a sender and one or more receivers. As in
our opening scenario, the packets in a data network are a
good example. Further examples are detailed in this section.

Having established this analogy to the abstract model,
MD coding is unlikely to be useful in the absence of the
following conditions:

▲ One or more users sometimes fail to receive one or more de-
scriptions. In point-to-point communication this means
descriptions are sometimes lost. In broadcasting or
multicasting, it may mean there are some users that al-
ways get a proper subset of the descriptions. If all the us-
ers always receive all of the descriptions, there is no need
to worry about the robustness of the source code.

▲ Various quality levels (distortions) are acceptable and distin-
guishable. Essentially, the distortion measure must reflect
utility. The reconstructions produced at side decoders
should be more valuable than nothing, and central distor-
tions lower than side distortions should create some value.

These two conditions determine, respectively, the
where (communication media) and what (types of infor-
mation sources) for applications of MD techniques. How
to do MD coding well intimately depends on both of
these. The remainder of this article addresses the how,
where, and what of MD coding.

How to Generate MDs

The design of a source code always depends intimately on
the source. However, there are a few basic components
that appear in many practical techniques, like prediction,
quantization, decorrelating transforms, and entropy cod-
ing [34]. MD codes can also be built from these basic
components, along with channel codes and MD versions
of quantizers and transforms.

This section focuses on MD quantizers and transforms.
But first, let us consider the simplest ways to produce
MDs. One is to partition the source data into several sets
and then compress independently to produce descriptions.
Interpolation is used to decode from any proper subset of
the descriptions. The separation can be into odd- and
even-numbered samples, as shown in Fig. 1, or a similar
separation for more than two descriptions or multidimen-
sional data. This technique can be very effective (see Box
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MD coding has come full circle
from explicit practical motivation
to theoretical novelty and back
to engineering application.



2), but it relies entirely on the redundancy, in the form of
correlation or memory, already present in the source.

Modern compression systems tend to begin by reduc-
ing redundancy with prediction and decorrelating trans-
forms (see the earlier articles of this special issue [34],
[92], [95], [106]). An odd/even separation of the result-
ing transform coefficients is not effective. To be comple-
mentary to these systems, a technique must work well on
memoryless sources. All of the techniques described be-
low work independently of the memory of the source.

Progressive Coding and Unequal Error Protection

A trivial way to send two descriptions is to send the same
description twice. The description can be produced with
the best available compression technique. When only one
description is received, the performance is as good as pos-
sible; however, no advantage is gained from receiving
both descriptions.

A more flexible approach is to repeat only some frac-
tion of data. It would be nice if the repeated data was the
most important, and thus this type of fractional repetition
is naturally matched to progressive source coding. To
produce two R-bit descriptions, first encode to a rate
( )2 − ζ R with a progressive source code, withζ ∈[ , ]0 1 . The
first ζR bits are the most important and thus are repeated
in both descriptions. The remaining 2 1( )− ζ R bits can be
split between the descriptions. This is depicted as follows:

Description 1 ζR ( )1−ζ R

Description 2 ζR ( )1−ζ R

The box indicates redundancy added by repetition. Be-
cause some bits are protected with a rate-1/2 channel code
(repetition) and the other bits are unprotected, this is
called an unequal error protection (UEP) strategy for MD
coding. (The rate of a channel code is defined in Box 6.)

UEP easily generalizes to more than two descriptions.
To produce L descriptions, use channel codes with rates
1 2 1/ , / ,...,L L . The general case is clear from the follow-
ing depiction of a system with four descriptions:

Description 1 ζ1R ζ 2 R ζ3 R ζ4 R

Description 2 ζ1R ζ 2 R ζ3 R ζ4 R

Description 3 ζ1R ζ 2 R ζ3 R ζ4 R

Description 4 ζ1R ζ 2 R ζ3 R ζ4 R

Vertically aligned portions are outputs of the same chan-
nel code.

The main design difficulty in using UEP is deciding
how much of the data to code at each channel code rate.

Techniques for this assignment given in [70] and [76]
optimize a scalar objective function.

To assess the value of UEP as an MD coding tech-
nique, one can compare the rate distortion region (see
Box 4) to the corresponding region attained with UEP.
These regions can be determined completely for two de-
scriptions, memoryless Gaussian sources, and squared er-
ror distortion. The difference in the regions can be
characterized by comparing the minimum attainable cen-
tral distortions for fixed values of the side distortions. The
maximum over all rates and side distortions of this differ-
ence is about 4.18 dB [33]. The boundedness of the gap
can be taken as a positive result, but 4.18 dB is significant.
Analogous comparisons show that the maximum gap in-
creases for more descriptions [103].

MD Quantization

In Fig. 2 and the related discussion, we saw how
quantizers can be used to produce two complementary
descriptions of the same scalar quantity. The example in
Fig. 2(b) has two similar, ordinary-looking quantizers
offset from each other. With B-bit quantizers producing
each description, the central decoder has approximately
( )B +1 -bit resolution. This is a high redundancy (using2B

total bits for ( )B +1 -bit resolution), so it is not a good so-
lution unless the side reconstructions are very important.

Reudink [81] invented several techniques with lower
redundancy, one of which is exemplified by Fig. 2(c).
Later Vaishampayan [97] independently developed a the-
ory for designing MD scalar quantizers. (Details are given
in Box 7.) This theory was extended from fixed-rate
quantization to entropy-constrained quantization in [99].

MD scalar quantization is flexible in that it allows a de-
signer to choose the relative importance of the central dis-
tortion and each side distortion. For the moment,
consider the balanced case where R R

1 2
= and D D

1 2
= .

At high rates, the central and side distortion can be traded
off while keeping their product constant [97], [99]. The
exponential decay of this product as a function of the rate
matches the optimal decay implied by [72]. The leading
constant terms are consistent with what would be ex-
pected from high-resolution analysis of ordinary (single
description) scalar quantizers [98].
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Channel splitting inspired the
following: If an information
source is described with two
separate descriptions, what are
the concurrent limitations on
qualities of these descriptions
taken separately and jointly?



Extending the formalism of MD scalar quantization to
vectors is easy. However, the index assignment problem be-
comes more difficult because the code vectors cannot be
naturally ordered. In addition, the encoding complexity in-
creases with dimension. An elegant technique that avoids
these difficulties is the MD lattice vector quantization
(MDLVQ) of Servetto et al. [89], [101]. The index assign-
ment problem is simplified by lattice symmetries, and the
lattice structure also reduces encoding complexity [12].
More details are given in Box 8. Other MD quantization
techniques are described in [26], [27], and [49].

MD scalar quantization can be applied to transform
coefficients. This is analyzed for high rates in [5], where it
is shown that the transform optimization problem is es-

sentially unchanged from conventional, single descrip-
tion transform coding. The next two techniques also use
transforms and scalar quantizers, but in contrast they get
their essential MD character from the transforms.

MD Correlating Transforms

The basic idea in transform coding is to produce
uncorrelated transform coefficients because otherwise
there is statistical dependency that could be exploited to
improve performance (see [34], which details and quali-
fies this). For MD coding, statistical dependencies be-
tween transform coefficients can be useful because the
estimation of transform coefficients that are in a lost de-
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Box 6
Channel Coding

Channel codes are used to protect discrete-valued data
against errors and erasures. They can be used in conjunc-

tion with ordinary or progessive source codes to produce
MD codes. This box gives a few definitions and properties of
channel codes and then contrasts the philosophies behind
channel coding and MD coding.

A block channel code that maps k input symbols to n out-
put symbols, with n k> , is called an( , )n k code and is said to
have rate k n/ . Block channel codes are often systematic,
meaning that the first k of the n output symbols are the input
symbols themselves.

Suppose n k= +1 and the symbols to be encoded are b-bit
binary numbers. Add to the inputs z z zk1 2, , ,… a parity
symbol zn obtained from the bitwise exclusive-or of the in-
puts: z z zn k= ⊕⋅⋅⋅⊕1 . Then any one lost symbol can be recov-
ered by computing the exclusive-or of the k received
symbols. However, there is no way to fully recover the in-
puts if more than one symbol is lost.

For n k> +1, the n k− redundant symbols added by a sys-
tematic ( , )n k code generalize the concept of parity. The
codes can be designed so that the k input symbols can be re-
covered from any k of the n output symbols. Decoding fails if
more than n k− outputs are lost. Because the code is system-
atic, there may be some input symbols among the received
symbols; the other input symbols are difficult or impossible
to recover. This causes a sharp drop-off in reconstruction
quality which is called the “cliff effect.”

Lower rate codes withstand more losses, but send less in-
formation (fewer input symbols) per channel symbol. So
how should the code rate be chosen? The code rate is typi-
cally chosen as high as possible subject to a maximum proba-
bility of decoding failure. This computation of code rate
depends on the block length; short blocks necessitate low
rate codes.

Assume the output symbols are lost independently and
with a common probability p. When n is large, the number
of received descriptions is predictable in that its standard de-
viation is small in comparison to its mean. Because of this
predictability, one can choose k so that the probability of de-
coding error is small and the rate is as high as possible. In
more technical terms, for any ε >0 and  k n p= − −( )( )1 1 ε ,
the probability of failed decoding can be made arbitrarily

small by choosing n large enough. When ε is very small, the
number of input symbols communicated  n p( )( )1 1− −ε is
only slightly smaller than the expected number of symbols
received n p( )1− .

Channel codes do not work as well with small values of n;
to have a low probability of failure requires k significantly less
than n p( )1− . For example, suppose p =0 2. , k = 4, and n =5.
The probability of losing more than one description, and
hence being unable to decode the channel code, exceeds 0.26.
With k =3, the probability of failure drops below 0.06, but a
(5,3) code seems to have too much redundancy because the
probability of receiving four or more symbols exceeds 0.73.

In the communication of continuous-valued informa-
tion—the primary concern in this article—the discrete-val-
ued inputs to a channel code are the outputs of a source code.
Perfect transmission of the source coder output is an artificial
aim; the real goal is to have a low-distortion reconstruction
of the original source.

MD coding directly attacks the problem of communicat-
ing the continuous-valued source. MD codes can be de-
signed with concern for every combination of received
descriptions with appreciable probability. If so desired, this
can give performance that varies gracefully with the number
of received descriptions where a technique based on conven-
tional channel coding would exhibit the cliff effect.
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scription is improved. This idea for MD coding was origi-
nated by Wang et al. [109]. The transform in this
technique explicitly adds redundancy where odd/even
separation uses similar inherent redundancy.

Suppose X
1

and X
2

are independent, zero-mean
Gaussian random variables with variances σ

1

2 and σ
2

2 ,
σ σ

1

2

2

2≠ . The possibility proposed in [109] to use
Y X X

1

1 2

1 2
2= +− / ( )and Y X X

2

1 2

1 2
2= −− / ( )as descrip-

tions of the vector ( , )X X
1 2

. (Ignore for the moment that
these would have to be quantized.) Obviously, ( , )X X

1 2

can be recovered from both descriptions. The descriptions

Y
1

and Y
2

are correlated with correlation coefficient
( ) ( )σ σ σ σ

1

2

2

2 1

1

2

2

2+ − − . Thus, when one description is lost it
can be more effectively estimated from the received de-
scription than if X

1
and X

2
were used as descriptions.

Though [109] uses only this transformation, one can ex-
tend the technique to more general mappings from
( , )X X

1 2
to ( , )Y Y

1 2
and to longer vectors [36], [37].

Instead of producing correlated transform coefficients
and then quantizing them, quantizing first and then ap-
plying a transform turns out to work better [71], [110].
Although the transform maps from a discrete set to a dis-
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Box 7
MD Scalar Quantization

This box gives a formal notation for MD quantization and
a systematic way to construct scalar quantizer pairs like

the ones in Fig. 2. A fixed-rate MD scalar quantizer is com-
prised of an encoder α 0 and three decoders β 0 , β 1, and β 2 .
(Compare to the decomposition of an ordinary source code
in [34, Fig. 1].) The encoder α 0 produces from each scalar
sample x a pair of quantization indices ( , )i i1 2 , and the three
decoders produce estimates from ( , )i i1 2 , i1, and i2 , respec-
tively. In Fig. 2(b) and (c), for example, the i1 and i2 indices
are shown in blue and red, respectively. The β 1 and β 2 de-
coder mappings are indicated by vertical positions; the ac-
tion of β 0 is implicit.

Vaishampayan [97] introduced a convenient way to visu-
alize the encoding operation and its range. First, the encod-
ing is decomposed as two steps: α α0 = ℓ � . The initial
encoderα is a regular quantizer, i.e., it partitions the real line
into cells that are each intervals. The index assignment ℓ takes
the index produced by the ordinary quantizerα and produces
the pair of indices ( , )i i1 2 . The index assignment must be in-
vertible so that the central decoder can recover the output of
α. The visualization technique is to write out ℓ−1, forming the
index assignment matrix.

For the quantizer of Fig. 2(b), the index assignment ma-
trix is

000 001 010 011 100 101 110 111

000 0

001 1 2

010 3 4

011 5 6

100 7 8

101 9 10

110 11 12

111 13 14

(The cells of the encoderα, taken in increasing values of x,
are numbered from 0 to 14.) This matrix shows the redun-
dancy in the representation through having only 15 of 64

cells occupied. It shows the quality of side reconstructions
by the small ranges of values in any row or column.

An index assignment matrix with a higher fraction of oc-
cupied cells leads to a quantizer pair with lower redundancy.
The matrix below corresponds to the quantizers in Fig. 2(c):

000 001 010 0111 100 101

000 0 1

001 2 3 5

010 4 6 7

011 8 9 11

100 10 12 13

101 14 15

The extended range of values in any row or column (a maxi-
mum difference of 3, as compared to 1 in the previous index
assignment) indicates higher side distortions.

If the index assignment matrix is full, there is no redun-
dancy, and, necessarily, the side distortions are quite high.
With a four-bit quantizerα, the following is the best that can
be done with no redundancy. These index assignments are
also marked in Fig. 2(a).

00 01 10 11

00 0 1 5 6

01 2 4 7 12

10 3 8 11 13

11 9 10 14 15

In designing an MD scalar quantizer, one can optimizeα,
β 0 ,β 1, andβ 2 quite easily. The optimization of the index as-
signment ℓ is very difficult. Thus, instead of addressing the
exact optimal index assignment problem, Vaishampayan
[97] gave several heuristic techniques that likely give close to
the best possible performance. The basic ideas are to number
from upper-left to lower-right and to fill from the main diag-
onal outward as in the examples above.



crete set, it can be designed to approximate a linear trans-
form [36], [37]. See Box 9 for more details and an
example.

MD Coding with Frames

The final technique has great similarity to a block channel
code and attempts to alleviate the “cliff effect” (see Box
6). Suppose the source produces a vector x N∈� . The
idea introduced by Goyal at el. [40], [41] is to left-multi-
ply by a rectangular matrix F M N∈ ×

� , M N> , to produce
M transform coefficients. These are scalar quantized and
partitioned into L sets, L M≤ , to form L descriptions.
Under some mild conditions, the multiplication by F is a
frame expansion [14], [19], so this representation is
called a quantized frame expansion (QFE).

The source vector x can be simply estimated from the
quantized expansion coefficients y Q Fx= ( ) as a

least-squares problem: ɵx y Fxx= −argmin
2
. In this

case, the distortion is proportional to N M/ . More com-
plicated reconstruction methods can improve the accu-
racy of the estimate [10], [42], [79].

The loss of some coefficients is equivalent to deleting
the corresponding rows of F to get F′. As long as F′ has
rank N, this does not change the reconstruction tech-
niques. If the rank of F′ is less than N, a simple estimate is
ɵ

:
x x

x F x y
=

′ =
argmin

2
. With statistical information,

better estimates can be computed.
The role of the frame operator F is similar to that of a

block channel code. From N symbols (in this case real
numbers, while a block channel code would have a dis-
crete domain) it produces M symbols with linear depend-
encies. In QFE, the dependent quantities are quantized,
breaking the strict linear dependence. Thus, each trans-
form coefficient gives some independent informa-
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Box 8

MD Lattice Vector Quantization

The formalism of MD scalar quantization (given in Box 7)
applies to vector quantization (VQ) without modifica-

tion. For vectors of length N, the domain for the encoder α
and codomain of the decoders β 0 , β 1, and β 2 is RN .

Unless constraints are placed on encoding and decoding
mappings, MDVQ may be impractical. First, the complexity
of the initial quantization mappingα increases exponentially
with the dimension N. Second, the heuristic design of the in-
dex assignment ℓ in MDSQ does not extend to MDVQ be-
cause there is no natural order on RN .

MD lattice vector quantization (MDLVQ) [89], [101]
avoids these difficulties by using the symmetries of lattices.
A latticeΛ ⊂RN and a sublatticeΛ Λ′ ⊂ are chosen. The first
latticeΛ fixes the resolution at the central decoder. The sec-
ond lattice Λ′, which is required to be a scaled and rotated
version of Λ, determines the reconstruction points for the
side decoders. Quantization is simplified by making α a
nearest-neighbor encoder for Λ. The optimal index assign-
ment ℓ:Λ Λ Λ→ ′ × ′ is relatively simple because, under
high-resolution conditions, it can be defined on an elemen-
tary cell and then extended to the whole space with appro-
priate symmetries.

Below on the left, all the points form a lattice Λ and the
larger points are a geometrically similar sublatticeΛ′. On the
right is an optimal index assignment.

As an example, for a vector quantized to the fine-lattice
point denoted by ab, the reconstructions at the side decod-

ers are a and b. The index assignment has been designed so
that the side reconstructions are nearby elements of the
coarse lattice Λ′. The side reconstructions cannot always be
the closest coarse lattice points because the index assignment
would then not be invertible.

MDLVQ was originally limited to the balanced case with
R R1 2= and D D1 2= . Diggavi et al. [16] extended this
method to unbalanced descriptions by using two different
sublattices and a similar index assignment technique.

In MDLVQ the choice of Λ fixes the central distortion
and the choice of Λ′ determines some minimum side distor-
tion. A generalization by Kelner et al. [35], [55] altersα but
not ℓ to give a continuum of central and side distortion oper-
ating points for any lattice and sublattice. This is achieved by
encoding to minimize a weighted sum of central and side
distortions; in contrast, α in the original encoding mini-
mizes the central distortion. In addition, the points in Λ can
be optimized while keeping Λ′ fixed to further improve per-
formance. These changes have only a small impact on the en-
coding complexity.

The diagrams below show the partitioning with the orig-
inal encoding (left), with a weighted minimization of central
and side distortions (center), and with optimization of fine
lattice points (right).

The weighted minimization makes the points in the
coarse lattice ′Λ preferable to the other points because they
have lower side distortions. The optimization of Λ with Λ′
fixed makes the cells more spherical.
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tion—even those in excess of N coefficients. An example
is given in Box 10.

Optimizations of F for MD coding are presented in
[39] and [65]. Methods that use infinite-dimensional op-
erators are given in [4], [17], [18], and [116].

Where to Use MDs

Packet Networks

It is almost automatic to connect packets in a packet net-

work to descriptions in MD. This possibility is men-
tioned in the majority of recent works presenting MD
techniques and seems to be the driving force behind the
rapid development of these techniques.

Packets are lost in data networks for a variety of rea-
sons. On the Internet, this creates a packet loss probabil-
ity that varies widely with time of day, day of the week,
and connection routing. Adding to problems created by
congestion, the Internet is becoming more heteroge-
neous as backbone capacities increase and more
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Box 9
MD Coding with Correlating Transforms

A correlating transform adds redundancy between trans-
form coefficients that makes these coefficients easier to

estimate if they are lost. For example, let
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whereθ is a positive real number and x1 and x 2 are independ-
ent Gaussian random variables with variances σ1

2 and σ 2
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is called a correlating transform.
Now suppose y1 and y2 are descriptions of x.

(Quantization is neglected for now.) Since y1 and y2 are
jointly Gaussian, the conditional expectation of x given ei-
ther description alone is a linear function:
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This side distortion ranges from σ1
2 / 2 to σ 2

2 2/ asθ varies be-
tween zero and infinity. Thus, if θ is chosen appropriately,
the side distortion compares favorably with the
( )1/4)(σ σ1

2
2
2+ average side distortion that results from using

x1 and x 2 as descriptions.
Two issues have been neglected: quantization and how θ

affects the rate for a given central distortion. Suppose y1 and
y2 are uniformly quantized with a small step size∆. Asθ is in-

creased above σ σ2 1
22/( ), the magnitude of the correlation

increases and thus the rate increases. Also, as θ is increased
above 2 1 2− / , the transform strays further from orthogonality
so the central distortion increases (see [34, Box 3]). The in-
crease in rate is a necessary concession to lower the side dis-
tortions. However, the increase in central distortion can be
eliminated by quantizing in the original coordinates and
then applying a transform to the quantized values.

The quantization of x yields an element of the set ∆Z 2 .
We wish to have an invertible transform ɵ:T ∆ ∆Z Z

2 2→ that

approximates T . Transforms of this type can be obtained in
several ways [47], [118], [8] and can also be used for single
description transform coding [32].

An example for θ =6 5/ is depicted below. Each
([ ] / ,[ ] / )x x1 2∆ ∆∆ ∆ position is labeled with ( / , / )y y1 2∆ ∆ ,
where y T x= ɵ([ ] )∆ and [ ]⋅ ∆ denotes rounding to the nearest
multiple of ∆. The solid curves connect the ( , )x x1 2 pairs on
the grid that map to( , )y1 0 or( , )0 2y ; they are like inverse im-
ages of the axes. These curves are somewhat erratic, but they
approximate the dashed straight lines which are the points
with at least one component of Tx equal to zero. This shows
that ɵT is a relabeling of the points ∆Z 2 , but at the same time
approximates the linear transform T .

Analyzed under the assumptions of high-resolution
quantization theory, the use of a discrete transform lowers the
central distortion by a factor of 2.6 in this example. Details on
all of the calculations above can be found in [33], [37].

The discrete transform ɵT performs a relabeling similar to
an index assignment in MD quantization. However, unlike
MD quantization, all index vectors are possible; thus, the re-
dundancy is “softer” than in MD quantization. When one or
more correlated transform coefficients are lost, the range of
possible source values is infinite, but the posterior distribu-
tion of source values may be peaked. This is suggestive of the
fact that correlating transforms are a good way to add a little
redundancy, but a bad way to add a lot [33], [37].
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low-bandwidth, wireless devices are connected. If the
packet injection rate is not matched to the capacity of the
bottleneck link, dropping packets becomes necessary. For
example, packets injected at a rate sustainable on a fiber
link might be routed to a wireless link, necessitating
packet drops. If the network is able to provide preferential
treatment to some packets, a progressive source code is
suitable. Networks, however, usually will not look inside
packets and discriminate; packets are dropped at random,
making a perfect setting for MD coding.

The conventional way to handle a packet loss in a data net-
work is to retransmit the lost packet. Retransmission proto-
cols, whereby the receiver tells the sender either what arrived
or what did not arrive, facilitate end-to-end reliability despite
unreliable links. When packet losses are sporadic, not the re-
sult of consistently insufficient bandwidth, retransmission

makes efficient use of network resources; packets are each
successfully sent once, and the additional load on the network
is just the small amount of feedback from the receiver. On the
other hand, when packet losses are frequent, retransmission
can create an even more congested environment. This vicious
circle can result in intolerable delay, especially for real-time
services. TCP, the retransmission protocol usually used on
the Internet, avoids thisbydropping thepacket injection rate.

A few things can preclude retransmission. The most
obvious is a lack of feedback. In some situations with
packetized communication, the receiver either has no way
to get a message back to the sender, or it is too expensive.
Too much feedback creates a problem, applicable to
broadcast, called feedback implosion. In broadcasting,
acknowledgment or negative acknowledgment messages
from every receiver to the broadcaster creates too much
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Box 10
Quantized Frame Expansions with Erasures

A quantized frame expansion gives measurements of an
N-dimensional vector in M directions, M N> . The

simplest interesting case is with N = 2 and M =3. For exam-
ple, let
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where x1 and x 2 are independent Gaussian random variables
with unit variance. Then the transform coefficients y1, y2 and
y3 are also Gaussian random variables with unit variance, but
they are not independent. We will consider the quantized
transform coefficients to be three descriptions of x.

The information in any one quantized transform coeffi-
cient is the position of the source vector relative to a set of
( )N −1 -dimensional hyperplanes perpendicular to the corre-
sponding row of F. Thus, the quantized version of y1 gives
the position of x relative to lines perpendicular to ( , )1 0 , as
shown in blue below. The green and red boundaries corre-
spond to the quantized values of y2 and y3 , respectively.
Quantizing x1 and x 2 directly, instead of using any trans-
form, represents x using the cells formed by the blue and ma-
genta lines.

The partition on the left shows the cells to within which a
decoder that receives all the descriptions can isolate x. Note
from this partition that even though y1, y2 and y3 are linearly
dependent, their quantized values each give some informa-
tion unavailable in the other two. This makes the partition

on the left the finest.
The center partition shows the information available

from two descriptions. It would be better if the cells were
squares (see [34, Box 3]), but it is not possible to design F
so that the rows are pairwise orthogonal (excluding a row
of zeros).

For a numerical comparison with a block channel code,
suppose each transform coefficient yi is quantized with an
optimal eight-bit quantizer to obtain ɵyi . The quantization
noise power is E y yi i[( ɵ ) ] .− ≈ ⋅ −2 588 10 . The MSE per compo-
nent ( / ) [ ɵ ]1 2

2
E x x− will be less than this value when three

descriptions are received and more otherwise.
The classical approach with a block channel code is to ap-

ply an eight-bit quantizer to each component of x, yielding
two eight-bit strings w1 and w2 . These strings are each used
as descriptions, and a third parity description is formed from
the bitwise exclusive-or or Z 2 addition of these strings:
w w w3 1 2= ⊕ . The first two descriptions can be be recovered
from any two of the three descriptions. However, receiving
all the descriptions is no better than receiving two, and the
third description is essentially useless alone.

The per component MSE distortions for all of the possi-
ble combinations of received descriptions are given in the
following table:

Descriptions {1,2,3} Any two
{1}
or
{2}

{3} ∅

Parity 88 10 5. ⋅ − 88 10 5. ⋅ − 0.5 1 1

QFE 58 10 5. ⋅ − 1 2 10 4. ⋅ − 0.5 0.5 1

The quantized frame system is worse in one situation and
better in two others; the best choice depends on the likeli-
hoods of these events and other design criteria. The advan-
tages of QFE are the symmetry of the three descriptions and
the fact that each description contains information that can-
not be inferred completely from the other two.



traffic. Moreover, the broadcaster cannot afford to honor
independent retransmission requests from each receiver.

Where retransmission is possible its primary drawback
is delay. Whether positive or negative acknowledgments
are used, retransmission implies an added delay of at least
one round-trip transport time. Furthermore, each re-
peated transmission may be lost, so the delay may be arbi-
trarily large. Small delays are of critical importance in
interactive communications. Also, for streaming audio or
video, the transport delay variation determines the size of
buffer required and the buffering delay.

The alternative to retransmission is to make do with
whatever arrives upon first transmission. This is exactly
MD coding. The established way to improve robustness
without retransmission is to use a conventional channel
code (see Box 6). In the networking literature, channel
coding is usually referred to as forward error correction
(FEC). Note that reliable use of channel codes requires
long block sizes, which in turn creates the difficulties as-
sociated with delay.

The length of an FEC code is limited to the number of
packets used in the communication since robustness co-
mes from placing channel code output symbols in differ-
ent packets. As an example, consider a network using
Internet Protocol, Version 6 (IPv6) [15]. An IPv6 node
is required to handle 576-byte packets without fragmen-
tation, and it is recommended that larger packets be ac-
commodated. Accounting for packet headers, a 576-byte
packet may have a payload as large as 536 bytes. With
packets of this size, a typical Internet image may be com-
municated in about ten packets. (This number of packets
is based on the mode of JPEG image sizes of the Hot 100
web sites reported in [46].) Ten is low for the number of
output symbols of a channel code, so good performance
is hard to attain with FEC.

In summary, MD techniques seem appropriate for
packet networks when retransmission is not possible, long
delays are not acceptable, and/or the number of packets
needed is more than one but not too large. Routing diver-
sity—where packets are purposely sent on different routes
to insure against the failure of a single route—increases the
applicability of MD coding, as does the high packet loss
probability on wireless links [30], [31]. The importance of
latency requirements is described in [91].

Distributed Storage

Perhaps even more than packet communication, distrib-
uted storage matches the MD framework well. Consider a
database of images stored at several locations with MD en-
coding. A typical user would have fast access to the local
image copies; for higher quality, one or more remote cop-
ies could be retrieved and combined with the local copy.

Distributed storage is common in the use of edge serv-
ers for popular content. In current implementations,
identical data is stored at the servers, so there is no advan-
tage in receiving multiple copies. Storage can also be dis-
tributed to make the reliability of each device less

important; lowering reliability requirements can decrease
costs [75].

Frequency-Hopping Wireless Systems

In wireless channels, bit errors are usually more impor-
tant than losses of chunks of information; hence, error
correcting codes are critical. However, there are situa-
tions in which a wireless channel is naturally decomposed
into more than one virtual channel. MD coding may be
appropriate on these virtual channels. Two such scenarios
are frequency-hopping systems and radio broadcast with
separate upper- and lower-neighboring interferers.

Frequency-hopping systems provide robustness to the
sensitivity of bit error probability as a function of carrier
frequency. Having the transmitter hop through a set of
carrier frequencies, in a manner known to the receiver,
gives insurance against picking a bad carrier frequency:
some frequencies will be good, and others will be bad.
This is especially important when the channel varies
quickly or feedback is not available, and thus the transmit-
ter cannot know these variations.

Now suppose that the variation of the propagation en-
vironment is such that the error characteristics are ap-
proximately constant for a unit time interval and that the
transmitter hops among L carrier frequencies in this in-
terval. The L carrier frequencies can be considered sepa-
rate channels for an MD source code. Channel codes can
be applied separately for each carrier frequency. For some
channels all errors will be corrected; the other channels
are considered lost.

SEPTEMBER 2001 IEEE SIGNAL PROCESSING MAGAZINE 89

Box 11

How Was Box 1 Created?

The images shown in two right columns of Box 1 rep-
resent an honest experiment. The SPIHT coder [84]

publicly-available at http://www.cipr.rpi.edu/research/
SPIHT/ was used to encode the standard 512-by-512
pixel goldhill image at 1.2 bits/pixel. (A 128-by-128
pixel segment is shown.) The resulting bits are split into
six equal-sized packets for the middle column. To pro-
duce the right column, a UEP scheme is applied to the
SPIHT output to generate six descriptions at 0.2 bits/
pixel/description.

The SPIHT coder is a state-of-the-art progressive
coder, so the performance in the middle column is essen-
tially as good as possible. Guided by theoretical results
for memoryless Gaussian sources, we should not expect
the UEP scheme to be nearly optimal among MD cod-
ers. Thus the right column could be improved upon.

The images in the left column are a bit contrived. For
illustration, a SPIHT-compressed image is used at a
slightly higher rate (1.3 bits/pixel), and the transmission
in packets is imagined to correspond to a decomposition
in six horizontal strips. In principle, with a nonprogressive
representation it could be impossible to recover anything
meaningful from one or two of six packets.



Choosing the number of frequencies L is critical.
Larger L gives more diversity within a fixed time interval
and thus allows the use of longer, more effective channel
codes. However, hopping more frequently is technologi-
cally more difficult because, for example, of synchroniza-
tion and signal acquisition times. This can cause the time
available for the transmission of data to be shortened and
hence for the data rate to be reduced. This type of tradeoff
between diversity and data rate is present in the Bluetooth
standard [1, Sect. 4.4.2]. MD coding requires some di-
versity, but would tend to work with lower diver-
sity—hence higher data rates—than methods based
purely on channel coding. See [115] for related results.

Hybrid Digital Broadcast

In radio broadcasting, stations are separated in the spec-
trum: FM stations are separated by 200 MHz and AM
stations are separated by 10 kHz. The frequencies are as-
signed geographically so that equal or neighboring fre-
quencies are not used in close proximity. Still, at the edge
of a radio station’s range the interference from a station
with neighboring frequency may be significant. For a
given station, because of geography, some users will have
interference at the upper edge of the band and other will
have it at the lower edge.

Recently, ways to add digital information to radio
broadcasts without significantly degrading the audio
quality for legacy receivers have been devised [51], [73].
These systems put the digital information at the edges of a
station’s band because there it has the least impact on au-
dio quality. Because of the different interference at upper
and lower edges of the band, these edges make for good
MD channels: some users will get only one or the other
channel, and other users will get both.

General Principles, Again

The MD model is quite explicit, but it can be simplified and
generalized by saying: Do not require the transport mecha-
nism (modulation, channel coding, transmission protocol)
to be flawless, and design the source coding appropriately.

This paradigm calls into question the meaning of the ca-
pacity of a channel. Intuitively, it is less demanding to ask
for every bit that gets across the channel to be correct than
to ask for every bit that is transmitted to correctly get across
the channel. This leads to new capacity definitions and, po-
tentially, higher capacities [21]. Ideally, an MD source
code would make all the received data useful and the loss of
some of the transmitted data not catastrophic. Further-
more, the dependencies in descriptions could be used to
improve demodulation and decoding performance [93].

What Can MDs Be Used On?

Convinced, hopefully, that MD coding applies to various
communication media, let us turn to the data itself. What
types of data can MD coding be applied to? As was em-
phasized earlier, the data must be useful at various quality

levels. In very few cases is this true for text (e-mails, news-
paper articles, etc.) or numerical data (stock quotes, part
specifications, etc.). However, it is true for most data that
are lossily compressed including speech, audio, image,
video, and volumetric data.

Each of the generic techniques described in this article
can be applied to various types of data, but each applica-
tion has its own idiosyncrasies. There are too many com-
binations to describe in detail. Thus, this final part of the
article serves mostly as a guide to the literature.

Audio

Speech coding for the telephone network was the original
motivation for MD coding. The first technique used simple
odd/even separation [50]. More recent techniques use pre-
diction [48], [100], perceptual models [60], and repetition
with optimized bit allocations [54]. The inclusion of correlat-
ing transforms inaperceptual audio coder isdescribed in [3].

Images

The recent surge in MD coding was sparked by a pair of
image coding papers. In a paper that has not received
much attention, a two-dimensional analogue of odd/even
separation was presented in [94]. The correlating trans-
form method was introduced in the context of image cod-
ing in [109]. Better results obtained with more general
correlating transforms appear in [110]. Other trans-
form-based techniques are given in [11] and [53].

Progressive image codes are common and very effec-
tive. Thus, several research teams have attempted to apply
UEP to progressively compressed images or to integrate
UEP into such coders. Examples include [66], [69], [76],
and [102]. The application of UEP is combined with ad-
ditional channel coding for wireless channels in [83].

MD scalar quantizers are introduced in a wavelet im-
age coder in [88] and quantized frames are applied to im-
ages in [10] and [38].

Video

The use of MD coding instead of retransmission or long
channel codes is often motivated by delay. This is critical
for the data that is projected to dominate network traffic:
streaming video.

Several MD coding techniques have been proposed for
video. In [62], a codec relatively similar to H.263 is pro-
posed with the addition of MD protection of the most
significant DCT coefficients in the macroblocks whose
errors are most difficult to conceal. Also in an H.263
framework, a technique for MD coding of motion vectors
is presented in [56]. Other techniques that alter predic-
tion loops include [80], [99].

Because of latency and jitter requirements and high data
rates, sending streaming video on packet networks is chal-
lenging. Joint design of the compression technique and
transport protocols can yield significant improvements.
This is considered, for example, in [61], [86], and [87].
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Summary

Dividing critical tasks between yourself and a partner re-
quires a certain faith. If that faith is rightly absent, each
participant should plan accordingly. So it is with the divi-
sion between compression and transport. If the transport
mechanism is imperfect, the source coding should be ad-
justed to accommodate transport failures.

The building blocks of today’s systems are superb un-
der certain idealizations. Progressive coding is good with
perfect transport. Retransmission is good when there is
feedback from the receiver to the transmitter and the de-
lays are not prohibitive. Conventional channel codes
work best when the fraction of received symbols is pre-
dictable. In contrast, MD codes are designed for the im-
perfect and unpredictable transport in many real systems.
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cević, and M. Vetterli, “Quantized frame expansions

as source-channel codes for erasure channels,” in Proc. IEEE Data Compres-

sion Conf., Snowbird, UT, Mar. 1999, pp. 326-335.

[42] V.K. Goyal, M. Vetterli, and N.T. Thao, “Quantized overcomplete expan-

sions in �
N: Analysis, synthesis, and algorithms,” IEEE Trans. Inform. The-

ory, vol. 44, pp. 16-31, Jan. 1998.

[43] R.M. Gray, Source Coding Theory. Boston, MA: Kluwer, 1990.

[44] R.M. Gray and D.L. Neuhoff, “Quantization,” IEEE Trans. Inform. The-

ory, vol. 44, pp. 2325-2383, Oct. 1998.

[45] R.M. Gray and A.D. Wyner, “Source coding for a simple network,” Bell

Syst. Tech. J., vol. 53, no. 9, pp. 1681-1721, Nov. 1974.

[46] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and J. Rubas,

“Dynamic adaptation in an image transcoding proxy for mobile web brows-

ing,” IEEE Pers. Commun., vol. 5, pp. 8-17, Dec. 1998.

[47] J. Hong, “Discrete Fourier, Hartley, and cosine transforms in signal pro-

cessing,” Ph.D. dissertation, Columbia Univ., 1993.

[48] A. Ingle and V.A. Vaishampayan, “DPCM system design for diversity sys-

tems with applications to packetized speech,” IEEE Trans. Speech Audio

Processing, vol. 3, , pp. 48-57, Jan. 1995.

[49] H. Jafarkhani and V. Tarokh, “Multiple description trellis-coded

quantization,” IEEE Trans. Commun., vol. 47, pp. 799-803, June 1999.

[50] N.S. Jayant, “Subsampling of a DPCM speech channel to provide two

‘self-contained’ half-rate channels,” Bell Syst. Tech. J., vol. 60, no. 4, pp.

501-509, Apr. 1981.

[51] N.S. Jayant, E.Y. Chen, J.D. Johnston, S.R. Quackenbush, S.M.

Dorward, K. Thompson, R.L. Cupo, J.-D. Wang, C.-E.W. Sundberg, and

N. Seshadri, “The AT&T in-band adjacent channel system for digital audio

broadcasting,” in Proc. Int. Symp. Digital Audio Broadcasting, Toronto, ON,

Mar. 1994, pp. 254-267.

[52] N.S. Jayant and S.W. Christensen, “Effects of packet losses in waveform

coded speech and improvements due to an odd-even sample-interpolation

procedure,” IEEE Trans. Commun., vol. 29, pp. 101-109, Feb. 1981.

[53] W. Jiang and A. Ortega, “Multiple description coding via polyphase trans-

form and selective quantization,” in Proc. SPIE Conf. Visual Commun. and

Image Processing, San Jose, CA, 1999, vol. 3653, pp. 998-1008.

[54] W. Jiang and A. Ortega, “Multiple description speech coding for robust

communication over lossy packet networks,” in Proc. IEEE Int. Conf. Multi-

media & Expo, New York, NY, July-Aug. 2000, vol. 1, pp. 444-447.

[55] J.A. Kelner, V.K. Goyal, and J. Kovacevic, “Multiple description lattice

vector quantization: Variations and extensions,” in Proc. IEEE Data Com-

pression Conf., Snowbird, UT, Mar. 2000, pp. 480-489.

[56] C.-S. Kim and S.-U. Lee, “Multiple description motion coding algorithm

for robust video transmission,” in Proc. IEEE Int. Symp. Circuits and Systems,

Lausanne, Switzerland, May 2000, vol. 4, pp. 717-720.

[57] V. Koshelev, “Multilevel source coding and data-transmission theorem,”

in Proc. VII All-Union Conf. Theory of Coding and Data Transmission,

Vilnius, USSR, 1978, pt. 1, pp. 85-92.

[58] V. Koshelev, “Hierarchical coding of discrete sources,” Probl. Peredachi.

Inf., vol. 16, no. 3, pp. 31-49, 1980.

[59] V. Koshelev, “An evaluation of the average distortion for discrete scheme

of sequential approximation,” Probl. Peredachi. Inf., vol. 17, no. 3, pp.

20-33, 1981.

[60] G. Kubin and W.B. Kleijn, “Multiple-description coding (MDC) of

speech with an invertible auditory model,” in Proc. IEEE Workshop Speech

Coding, Porvoo, Finland, June 1999, pp. 81-83.

[61] K.-W. Lee, R. Puri, T. Kim, K. Ramchandran, and V. Bharghavan, “An

integrated source coding and congestion control framework for video

streaming in the Internet,” in Proc. IEEE INFOCOM, Tel Aviv, Israel, Mar.

2000, vol. 2, pp. 747-756.

[62] W.S. Lee, M.R. Pickering, M.R. Frater, and J.F. Arnold, “A robust codec

for transmission of very low bit-rate video over channels with bursty er-

rors,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 1403-1412,

Dec. 2000.

[63] T. Linder, R. Zamir, and K. Zeger, “The multiple description rate region

for high resolution source coding,” in Proc. IEEE Data Compression Conf.,

Snowbird, UT, Mar.-Apr. 1998, pp. 149-158.

[64] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered

multicast,” in Proc. ACM SIGCOMM, Stanford, CA, Aug. 1996, pp.

117-130.

[65] S. Mehrotra and P.A. Chou, “On optimal frame expansions for multiple

description quantization,” in Proc. IEEE Int. Symp. Information Theory, Sor-

rento, Italy, June 2000, p. 176.

[66] A.C. Miguel, A.E. Mohr, and E.A. Riskin, “SPIHT for generalized multi-

ple description coding,” in Proc. IEEE Int. Conf. Image Processing, Kobe, Ja-

pan, Oct. 1999, vol. 3, pp. 842-846.

[67] S.E. Miller, “New transmission configuration,” Bell Labs, lab notebook

#55637, May 1978.

[68] S.E. Miller, “Fail-safe transmission without standby facilities,” Bell Labs,

Tech. Rep. TM80-136-2, Aug. 1980.

[69] A.E. Mohr, E.A. Riskin, and R.E. Ladner, “Generalized multiple descrip-

tion coding through unequal loss protection,” in Proc. IEEE Int. Conf. Im-

age Processing, Kobe, Japan, Oct. 1999, vol. 1, pp. 411-415.

[70] A.E. Mohr, E.A. Riskin, and R.E. Ladner, “Unequal loss protection:

Graceful degradation of image quality over packet erasure channels through

forward error correction,” IEEE J. Select. Areas Commun., vol. 18, pp.

819-828, June 2000.

[71] M.T. Orchard, Y. Wang, V. Vaishampayan, and A.R. Reibman, “Redun-

dancy rate-distortion analysis of multiple description coding using pairwise

correlating transforms,” in Proc. IEEE Int. Conf. Image Processing, Santa

Barbara, CA, Oct. 1997, vol. I, pp. 608-611.

[72] L. Ozarow, “On a source-coding problem with two channels and three re-

ceivers,” Bell Syst. Tech. J., vol. 59, no. 10, pp. 1909-1921, Dec. 1980.

[73] H.C. Papadopoulous and C.-E.W. Sundberg, “Simultaneous broadcasting

of analog FM and digital audio signals by means of adaptive precanceling

techniques,” IEEE Trans. Commun., vol. 46, pp. 1233-1242, Sept. 1998.

92 IEEE SIGNAL PROCESSING MAGAZINE SEPTEMBER 2001



[74] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed.

New York: McGraw-Hill, 1991.

[75] D.A. Patterson, G. Gibson, and R.H. Katz, “A case for redundant arrays

of inexpensive disks,” in Proc. ACM SIGMOD, Chicago, IL, June 1988, pp.

109-116.

[76] R. Puri and K. Ramchandran, “Multiple description source coding using

forward error correction,” in Conf. Rec. 33rd Asilomar Conf. Sig., Sys., &

Computers, Pacific Grove, CA, Oct. 1999, vol. 1, pp. 342-346.

[77] M. Quirk, “Diversity coding for communication systems,” Bell Labs, En-

gineer’s Notes (not archived), Dec. 1979.

[78] K. Ramchandran, A. Ortega, M. Uz, and M. Vetterli, “Multiresolution

broadcast for digital HDTV using joint source/channel coding,” IEEE J. Se-

lect. Areas Commun., vol. 11, pp. 6-23, Jan. 1993.

[79] S. Rangan and V.K. Goyal, “Recursive consistent estimation with bounded

noise,” IEEE Trans. Inform. Theory, vol. 47, pp. 457-464, Jan. 2001.

[80] A.R. Reibman, H. Jafarkhani, Y. Wang, M.T. Orchard, and R. Puri,

“Multiple description coding for video using motion compensated predic-

tion,” in Proc. IEEE Int. Conf. Image Processing, Kobe, Japan, Oct. 1999,

vol. 3, pp. 837-841.

[81] D.O. Reudink, “The channel splitting problem with interpolative coders,”

Bell Labs, Tech. Rep. TM80-134-1, Oct. 1980.

[82] B. Rimoldi, “Successive refinement of information: Characterization of the

achievable rates,” IEEE Trans. Inform. Theory, vol. 40, pp. 253-259, Jan. 1994.

[83] D.G. Sachs, A. Raghavan, and K. Ramchandran, “Wireless image trans-

mission using multiple-description based concatenated codes,” in Proc. SPIE

Image Video Processing, San Jose, CA, Jan. 2000, vol. 3974, pp. 300-311.

[84] A. Said and W.A. Pearlman, “A new fast and efficient codec based on set

partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 6, pp. 243-250, June 1996.

[85] M. Schwartz, Information Transmission, Modulation, and Noise, 4th ed.

New York: McGraw-Hill, 1990.

[86] S.D. Servetto and K. Nahrstedt, “Video streaming over the public internet:

Multiple description codes and adaptive transport protocols,” in Proc. IEEE

Int. Conf. Image Processing, Kobe, Japan, Oct. 1999, vol. 3, pp. 85-89.

[87] S.D. Servetto and K. Nahrstedt, “Broadcast-quality video over IP,” IEEE

Trans. Multimedia, vol. 3, pp. 162-173, Mar. 2001.

[88] S.D. Servetto, K. Ramchandran, V. Vaishampayan, and K. Nahrstedt,

“Multiple description wavelet based image coding,” IEEE Trans. Image

Processing, vol. 9, pp. 813-826, May 2000.

[89] S.D. Servetto, V.A. Vaishampayan, and N.J.A. Sloane, “Multiple descrip-

tion lattice vector quantization,” in Proc. IEEE Data Compression Conf.,

Snowbird, UT, Mar. 1999, pp. 13-22.

[90] C.E. Shannon, “Coding theorems for a discrete source with a fidelity crite-

rion,” IRE Int. Conv. Rec., part 4, vol. 7, pp. 142-163, 1959. Reprinted

with changes in Information and Decision Processes, R. E. Machol, Ed. New

York: McGraw-Hill, 1960, pp. 93-126.

[91] R. Singh, A. Ortega, L. Perret, and W. Jiang, “Comparison of multiple

description coding and layered coding based on network simulations,” in

Proc. SPIE Image Video Proc., San Jose, CA, Jan. 2000, pp. 929-939.

[92] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG2000 still im-

age compression standard,” IEEE Signal Processing Mag., vol. 18, pp. 36-58,

Sept. 2001.

[93] M. Srinivasan, “Iterative decoding of multiple descriptions,” in Proc. IEEE

Data Compression Conf., Snowbird, UT, Mar. 1999, pp. 463-472.

[94] P. Subrahmanya and T. Berger, “Multiple descriptions encoding of images,”

in Proc. IEEE Data Compression Conf., Snowbird, UT, Mar. 1997, p. 470.

[95] B.E. Usevitch, “A tutorial on modern lossy wavelet image compression:

Foundations of JPEG 2000,” IEEE Signal Processing Mag., vol. 18, pp.

22-35, Sept. 2001.

[96] V. Vaishampayan and A.A. Siddiqui, “Speech predictor design for diver-

sity communication systems,” in Proc. IEE Workshop Speech Coding for Tele-

communications, Annapolis, MD, Sept. 1995, pp. 69-70.

[97] V.A. Vaishampayan, “Design of multiple description scalar quantizers,”

IEEE Trans. Inform. Theory, vol. 39, pp. 821-834, May 1993.

[98] V.A. Vaishampayan and J.-C. Batllo, “Asymptotic analysis of multiple de-

scription quantizers,” IEEE Trans. Inform. Theory, vol. 44, pp. 278-284,

Jan. 1998.

[99] V.A. Vaishampayan and J. Domaszewicz, “Design of entropy-constrained

multiple-description scalar quantizers,” IEEE Trans. Inform. Theory, vol. 40,

pp. 245-250, Jan. 1994.

[100] V.A. Vaishampayan and S. John, “Balanced interframe multiple descrip-

tion video compression,” in Proc. IEEE Int. Conf. Image Processing, Kobe,

Japan, Oct. 1999, vol. 3, pp. 812-816.

[101] V.A. Vaishampayan, N.J.A. Sloane, and S.D. Servetto, “Multiple de-

scription vector quantization with lattice codebooks: Design and analysis,”

IEEE Trans. Inform. Theory, to be published.

[102] N. Varnica, M. Fleming, and M. Effros, “Multi-resolution adaptation of

the SPIHT algorithm for multiple description,” in Proc. IEEE Data Com-

pression Conf., Snowbird, UT, Mar. 2000, pp. 303-312.

[103] R. Venkataramani, G. Kramer, and V.K. Goyal, “Multiple description

coding with many channels,” IEEE Trans. Inform. Theory, in preparation.

[104] R. Venkataramani, G. Kramer, and V.K. Goyal, “Bounds on the achiev-

able region for certain multiple description coding problems,” in Proc. IEEE

Int. Symp. Information Theory, Washington, DC, June 2001, p. 148.

[105] R. Venkataramani, G. Kramer, and V.K. Goyal, “Successive refinement

on trees: A special case of a new MD coding region,” in Proc. IEEE Data

Compression Conf., Snowbird, UT, Mar. 2001, pp. 293-301.

[106] M. Vetterli, “Wavelets, approximation and compression,” IEEE Signal

Processing Mag.,  vol. 18, pp. 59-73, Sept. 2001.

[107] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Englewood

Cliffs, NJ: Prentice-Hall, 1995.

[108] J. Walrand, Communication Networks: A First Course, 2nd ed. Boston,

MA: McGraw-Hill, 1998.

[109] Y. Wang, M.T. Orchard, and A.R. Reibman, “Multiple description image cod-

ing for noisy channels by pairing transform coefficients,” in Proc. IEEE Workshop

on Multimedia Signal Processing, Princeton, NJ, June 1997, pp. 419-424.

[110] Y. Wang, M.T. Orchard, V. Vaishampayan, and A.R. Reibman, “Multi-

ple description coding using pairwise correlating transforms,” IEEE Trans.

Image Processing, vol. 10, pp. 351-366, Mar. 2001.

[111] H.S. Witsenhausen, “On source networks with minimal breakdown deg-

radation,” Bell Syst. Tech. J., vol. 59, no. 6, pp. 1083-1087, July-Aug. 1980.

[112] H.S. Witsenhausen, “An achievable region for the breakdown degrada-

tion problem with multiple channels,” Bell Labs, Tech. Rep.

TM81-11217-3, Jan. 1981.

[113] H.S. Witsenhausen and A.D. Wyner, “Source coding for multiple de-

scriptions II: A binary source,” Bell Syst. Tech. J., vol. 60, no. 10, pp.

2281-2292, Dec. 1981.

[114] J.K. Wolf, A.D. Wyner, and J. Ziv, “Source coding for multiple descrip-

tions,” Bell Syst. Tech. J., vol. 59, no. 8, pp. 1417-1426, Oct. 1980.

[115] S.-M. Yang and V.A. Vaishampayan, “Low-delay communication for

Rayleigh fading channels: An application of the multiple description

quantizer,” IEEE Trans. Commun., vol. 43, pp. 2771-2783, Nov. 1995.

[116] X. Yang and K. Ramchandran, “Optimal subband filter banks for multi-

ple description coding,” IEEE Trans. Inform. Theory, vol. 46, pp.

2477-2490, Nov. 2000.

[117] R. Zamir, “Gaussian codes and Shannon bounds for multiple descrip-

tions. IEEE Trans. Inform. Theory, vol. 45, pp. 2629-2635, Nov. 1999. See

[63] for generalizations to locally quadratic distortion measures.

[118] A. Zandi, J.D. Allen, E.L. Schwartz, and M. Boliek, “CREW: Compres-

sion with reversible embedded wavelets,” in Proc. IEEE Data Compression

Conf., Snowbird, UT, Mar. 1995, pp. 212-221.

[119] Z. Zhang and T. Berger, “New results in binary multiple descriptions,”

IEEE Trans. Inform. Theory, vol. 33, no. 4, pp. 502-521, July 1987.

SEPTEMBER 2001 IEEE SIGNAL PROCESSING MAGAZINE 93


