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Multistage vector quantization (MSVQ) is a technique for low complexity implementation of high-dimensional quantizers, which
has found applications within speech, audio, and image coding. In this paper, a multiple-description MSVQ (MD-MSVQ) targeted
for communication over packet-loss channels is proposed and investigated. An MD-MSVQ can be viewed as a generalization of a
previously reported interleaving-based transmission scheme for multistage quantizers. An algorithm for optimizing the codebooks
of an MD-MSVQ for a given packet-loss probability is suggested, and a practical example involving quantization of speech line
spectral frequency (LSF) vectors is presented to demonstrate the potential advantage of MD-MSVQ over interleaving-based MSVQ
as well as traditional MSVQ based on error concealment at the receiver.
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1. INTRODUCTION

Multiple-description (MD) quantization [1, 2] has received
considerable attention in recent research due to its poten-
tial applications in lossy communication systems such as
packet networks. In order to achieve robustness against chan-
nel losses, an MD quantizer assigns two or more codewords
(to be transmitted on separate packets) for each input sam-
ple (or more generally, a vector of parameters representing
a frame of samples) in such a manner that the source in-
put can be reconstructed with acceptable quality using any
subset of codewords, with the best quality being obtained
when the complete set is available. In this paper, we propose
an MD multistage vector quantizer (MD-MSVQ) and an al-
gorithm for optimizing such a quantizer jointly for a given
source and a lossy channel whose loss probability is known.
Multistage vector quantization (MSVQ) [3] (also known an
residual vector quantization) is a computationally efficient
technique for realizing high-dimensional vector quantizers
(VQs) with good rate-distortion performance and has been
considered for many applications, including speech [4, 5],
audio [6], and image coding [7]. Given the importance of
network-based multimedia applications, it is of considerable
interest to study MSVQ in the context of packet-loss chan-
nels.

Since an MSVQ generates a set of codewords for each
source vector, it naturally provides a means of transporting a
given source vector in multiple-packets and thereby achiev-

ing some robustness against random packet losses. Moti-
vated by this observation, a previous work [8] considered
a particular transmission scheme in which the outputs of
different stages in an MSVQ are interleaved in two differ-
ent packets. It was shown that an MSVQ can be designed to
produce lower distortion at a given packet-loss probability,
by accounting for interleaving in the optimization of stage
codebooks. Based on the experimental results obtained with
both speech LSF coding and image coding, [8] concludes
that interleaving-optimized MSVQ can yield lower distortion
compared to the commonly used approach of repeating the
information in last correctly received frame in the event of a
packet loss. The goal of this paper is to formulate the prob-
lem in the setting of MD quantization, by recognizing the
fact that stage interleaving given in [8] is a special case of a
more general class of MD quantizers. In MD-MSVQ, each
stage consists of a set of multiple description codebooks with
an associated index assignment (IA) matrix [2]. The inter-
leaving scheme considered in [8] essentially corresponds to
an MD-MSVQ in which the IA matrix of the first stage is
constrained to be a diagonal matrix, while those of the other
stages are constrained to be either a row vector or a column
vector. As will be seen, MD-MSVQ designs with more gen-
eral IA matrices can exhibit a better rate-distortion tradeoff.
We present an algorithm for optimizing an MD-MSVQ for
a given source (training set) and a set of channel (packet)-
loss probabilities. While MD-MSVQ can be applied to any
source, the advantage of more general MD-MSVQ over the
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interleaving-based scheme is demonstrated here using an ex-
ample involving 10-dimensional MSVQ of speech LSF vec-
tors based on an input weighted distortion measure. This
paper focuses on 2-channel MD-MSVQ; however, the given
formulation is applicable to an n-channel case as well.

2. MD-MSVQ: STRUCTURE AND OPERATION

A block diagram of a 2-channel, K-stage MD-MSVQ is
shown in Figure 1, where the source input X € R is d-
dimensional random vector. A 2-channel MD-MSVQ is es-
sentially a set of 3 MSVQs, MSVQ,, MSVQ;, and MSVQ,,
operating in parallel. However, the three quantizers do not
operate independently. Rather, the code vectors of the three
quantizers of each stage are linked to form 3-tuples and the
encoding is carried out simultaneously using a joint distor-
tion measure. In MD coding terminology, MSVQy is the cen-
tral quantizer and MSVQ, and MSVQ), are the side quantiz-
ers. The kth stage of MSVQ,, is a d-dimensional VQ e
with N code vectors and the rate RY = (1/d)log, &)
bits/sample, where m = 0,1,2 and k = 1,...,K. Let Ugf) de-
note the quantization error (residual) of Qy, 0% the quan-
tized version of U'Y), and X% the reconstructed version of
the input X using the first k stages of MSVQ,,, (for the sake of
notational consistency, let UY = Xand U = X3). Then,
it is easy to see that

k-1
XP =XD+>00, forl<k<K, m=0,1,2 (1)
i=1

and it follows that the overall quantization error of MSVQ,,,,
X - Xﬁf ), is the quantization error U%O of the last stage (,‘fo ),

Let the quantization index of (Q,(jf) be I,Sf) e {1,... ,Nﬁf)}.
Then, for a given input X, the MD-MSVQ encoder trans-
mits the outputs of MSVQ,, T} = (Il(l), ... ,I{K)) at the rate
of R} = ZszlR(lk) (bits/sample) and those of MSVQ,, T, =
(Iz(l),...,IZ(K)) at the rate of R, = Zszlek) over two inde-
pendent channels (or, if you will, on two separate packets),
which can breakdown (or be lost) randomly and indepen-
dently. The outputs of the central quantizer MSVQ, are not
transmitted. Instead, each code vector in (,?(()k) is labeled by
a unique pair of code vectors from (,‘ng) and (ng) in such a
manner that (I{k),lék)) uniquely determines Iék). Note how-
ever that a given code vector in either (,‘ng) or (Qék) can be
associated with more than one code vector in @\ The given
relation can also be described by an index assignment (IA)
matrix A® of size N® x N{¥, where N¥ < NOUNF [2].
Suppose Ith code vector of (Q(()k) is associated with the ith code
vector in @5") and the jth code vector in é‘lék). Then, (i, j)th
element of A% is [. Note that it is possible to have some el-
ements in A% unassigned. These correspond to redundant
pairs of codewords (19, 1{P), which are never transmitted
simultaneously. The key point here is that if both sets T} and

T, are received by the decoder, then the corresponding set of

(1)

central quantizer indexes (I .,I(SK)) can be determined

and the receiver can reconstruct the output of MSVQ, at the
rate R, + R, bits/sample. On the other hand, if only T} or T
is received, the output of MSVQ, cannot be uniquely deter-
mined, in which case the receiver can reconstruct exactly the
output of either MSVQ), (at rate Ry) or MSVQ, (at rate R;).
The reconstruction accuracy of the central quantizer and the
two side quantizers cannot be chosen independently, and the
goal of MD-MSVQ design is to optimize the stage codebooks
o as to minimize an average distortion measure. Note that,
if neither Ty nor T is received, then an appropriate loss con-
cealment method has to be employed.

Distortion measure and encoding

Let the distortion caused by quantizing X into X be measured
by D(X, X). Also, denote the average distortion of MSVQ,, by
D, 2 E{D(X,XX)}, where, Dy is the central distortion and

D, and D, are the side distortions [2]. With the rates (R, R,)
fixed, two equivalent formulations are possible for the un-
derlying optimization problem. First, we can minimize Dg
subject to upper bounds on D and D,. This leads to the min-

imization of the Lagrangian [2]
£ = Do+ M D1 + 1Dy, (2)

where the choice of 11,1, > 0 determines the tradeoff be-
tween the central distortion and the side distortions. The sec-
ond formulation is applicable if the probabilities p; and p,
of not receiving T; and T, at the receiver, respectively, are
known (e.g., packet-loss probabilities). In this case, the over-
all average distortion is given by

E{D(X,X)}
= (1=p1)(1 = p2)Do+ (1 = p1)paDy
+p1(1 = p2) D2 + p1paDec

p2

_ D D P
= (1=p)(1-p2)| Dot 225

D Do,
—p) 2] +p1p2
(3)

where D, is the average distortion of the error concealment
used when both T} and T, are lost. That is, if we let A, =
p2/(1—p2)and A, = p1/(1— p1), minimizing £ is equivalent
to minimizing the overall average distortion E{D(X, X) }.
The optimal encoding in an MSVQ with K stages involves
enumerating through all possible length K sequences of stage
codewords to choose the one which yields the minimum dis-
tortion reconstruction of a given source vector. This can be
achieved by considering the MSVQ encoder as a tree-encoder
with a depth K [3], wherein each node of the kth depth level
corresponds to a code vector from the kth stage codebook
of the MSVQ. Since a full tree-search is impractical, reduced
complexity search methods such as M-L algorithm [9] are
used in practice to achieve near-optimal encoding. Similar
search methods can be employed in MD-MSVQ as well. The
only exception in this case is that each node of the kth depth
level in the encoding tree now corresponds to a triplet of code
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a@®: kth stage quantizer of MSVQ,,
Iiylf ). Quantization index of @ﬁylf )

Rgf): Rate of (,'ng )in bits/sample

Ug,lf ): Quantization error of (,‘25,11( )

65«;«]: ). Quantized value of Ugf)

f(i,’f’: Reconstructed source vector, after k stages
k=1,...,Kandm =0,1,2

FiGure 1: The structure of the proposed 2-channel MD-MSVQ encoder with K stages. The outputs of MSVQ; and MSVQ), are transmitted
over two independent channels (packets). The output of MSVQ, is not transmitted.

(k=1) (k-1) (k-1
0 » €

vectors (¢y ,€ ) together with an associated path

cost
_1) ~(k-1)
D(k)(u(k 1),c0 )

= D(ugk’l), cgk71)> +/11D(u(lk’1), c(lk*U) +A,D (ugk—l)’ c§k71)) ,
(4)

where UKk-1 £ (u((,k_”,u(lk_l),ugk_l)) denotes the quanti-
zation error triplet of the (k — 1)th stage (due to the index

assignment, it is sufficient to specify E(()k_l)

matically determines the corresponding pair (E(l
Note that compared to an ordinary MSVQ (which corre-
sponds to A; = A, = 0), the increase in encoding complexity
of MD-MSVQ is only due to the use of this modified distor-
tion measure, which is quite marginal.

only which auto-
k=1) Alk—1
L&),

Relation to stage interleaving

The interleaving scheme studied in [8] can easily be seen as
a special case of the above described MD-MSVQ. In that
scheme, the quantization indexes (Ij,...,Ix) of a K-stage
(single description) MSVQ are divided into two sets, which
are transmitted in two separate data packets. One packet car-
ries (I, I3, Is, ... ) while the other carries (I1,1,14,...). Note
that the first-stage index is repeated in both packets, as the
subsequent indexes are not meaningful without the first one.
With the given packetization scheme, an approximation to
the source vector can be obtained by using only the alter-
nate stage indexes in either of the packets. This transmission
scheme corresponds to a particular index assignment con-
figuration in MD-MSVQ. Since the first-stage is a repetition

code, we set R(11> = R(22> = Rél). In this case, the IA matrix
has the size Nél) X Nél) and only the diagonal elements are

assigned. Now, in order to account for the transmission of
alternate stage outputs on two channels (packets), we choose
the stage index assignments to satisfy the following condi-
tions. For even stages, k = 2,4,..., we set ng) = R(()k) and
ng) = 0. In this case, the IA matrices are column vectors of
size Nék> X 1. For odd stages, k = 3,5,..., we set ng) = ng)
and R = 0, which implies that the IA matrices are row
vectors of size 1 x Ni*'. The resulting MD-MSVQ is equiv-
alent to stage-interleaving. Since the first stage is a repeti-
tion code, this scheme is inefficient when both packets are
received (which is the most frequent event in practice). It will
be seen that, by using more general IA matrices for all stages
(e.g., by dividing the total bit rate of each stage equally be-
tween MSVQ,; and MSVQ),), we can achieve a better trade-
off between central and side-distortions, and hence a lower
average distortion.

3. DESIGN AND OPTIMIZATION

The design of an MD-MSVQ entails the optimization of
three MSVQs: MSVQ, MSVQ, and MSVQ); jointly to min-
imize (2), subject to constraints imposed by the IA matrices
A® ke =1,... K. As the distortion measure, we consider the
input weighted square error of the form [3, Chapter 10]

D(X)ﬁ) = (X_Q)wa(x_ﬁ)’ (5)

where Wy is a d X d symmetric positive definite matrix whose
elements are functions of the input vector x and ()T de-
notes the transpose. In this paper, we propose a codebook
design algorithm based on [9], wherein stage codebooks are
improved iteratively based on a training set of source vec-
tors, much the same way as in the well-known Lloyd algo-
rithm for ordinary VQ design [3]. In the context of ordinary
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MSVQ, two basic approaches have been proposed for code-
book optimization [9]: (i) sequential design, and (ii) joint
design. In sequential codebook design [9], the kth stage is
optimized to minimize the distortion of source reconstruc-
tion using up to k stages, assuming that the stages 1,...,k— 1
are fixed, and the codebooks are optimized sequentially from
the first stage to the last stage. In this paper, the sequential
approach is adapted for MD-MSVQ. According to [9], while
the joint method resulted in faster convergence, the final so-
lutions reached by both methods were nearly identical in or-
dinary MSVQ design.

To start the algorithm, an initial set of stage codebooks
and TA matrices are required. In this paper, we have used
random initializations for both codebooks and IA matrices.
A random IA matrix can be obtained by randomly populat-

ing the matrix A®) with possible values of I} such that each
element is unique. The codebooks can be initialized by ran-
domly picking vectors from the training set [3]. The initial-
ization is performed sequentially, starting from the 1st stage,
so that an input training set is available for every stage. Note
that the encoding rule (4) defines simultaneously the quanti-
zation cells of all three quantizers of the given stage. In a de-

sign iteration, the quantization cells of a given quantizer aQy
are first estimated for the current codebook, and the code-
book optimal for these quantization cells is then computed,
as described below. In training set-based design, the quanti-
zation cells of a codebook are defined by the subsets of train-
ing vectors encoded into each code vector. Note that, once
the IA matrices are defined, the codebooks are optimized for
fixed IA matrices.

From (1) and (4), it follows that minimizing the to-
tal average distortion of the kth stage, given the outputs
of the stages 1,...,k — 1, is equivalent to minimizing
E{D(k)(‘u(k’l),ﬁ(()k*l))}. Let ci,’;)] be the code vector for the

quantization cell ng)] of %, where j= L. N%® and

m = 0,1,2. If the TA matrix A® and the quantization cells

are fixed, then the optimal value of cff;)j is given by the gener-
alized centroid [3, equation 11.2.10]

m,j

chx argrn(i)nE{D(Uﬁ,’f‘l),cgi)j) | UKD ¢ ijf)]} (6)
Ke)

m,j

For the distortion measure in (5), the expectation in (6) be-
comes

(k
Gy
T

= Ef(UD — ) Wi (U0 — ) Julkb e o) 1
(7)

By letting V., g(cﬁ,’;}j) = 0, we obtain

- k - k

E{W, (U0 - ) jukhealll =0, )
from which it follows that the optimal code vectors are given

by

oW = [E{wx |uf e o }]

)
E{WxUED | UkD e ol ],

forj=1,..., Nr(,fc ). The code vectors given by this expression
can be conveniently estimated using a source training set as
follows. In a given design iteration, the source training set
is encoded using a tree-search (M-L algorithm) to minimize
(4). This is equivalent to computing the quantization cells of
each quantizer in the MD-MSVQ, which essentially gener-

ates a set of input vectors Ta¥ for every stage k = 1,...,K

of MSVQ,,, (m = 0,1,2), each partitioned into N,(f ) subsets
T,,(lf(j), j=1... N, according to the codeword in @' into
which those vectors were encoded. Then, the conditional ex-

pectations in (9) can be estimated using the weighted sample

average computed from T,,i?. Note that the weighting matrix
Wx has to be computed from those source training vectors

(i.e., inputs to the Ist stage) which produce the subset Tnﬁf})
at the kth stage. Once all the stage codebooks have been re-
computed, the average distortion of the resulting system is
estimated, and the codebook update iterations are repeated

until the distortion converges.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, the performance of several MD-MSVQs is
evaluated and compared. For this purpose, we consider
transmitting 10-dimensional speech LSF vectors over a chan-
nel with random packet loses, where the probability of losing
any packet is the same. The LSF vectors required for train-
ing and testing the codebooks were generated with the Fed-
eral Standard MELP coder [10], using the speech samples
from the TIMIT database [11] as the input. The designs were
carried out using (5) as the distortion measure, with weigh-
ing matrix Wy chosen according to [12, equations (8), (9),
(10), and (11)]. On the other hand, in order to objectively
evaluate the performance of our LSF quantizer designs, the
frequency weighted spectral distortion (FWSD) within the fre-
quency band 0—4 kHz, given below, is used [10]:

4000

n 2
B 2]

|A(f)]

10log,, df,

(10)

FWSD (x,%) — J;Oj

0

where A(f) and A( f) are the original and quantized LPC
filter polynomials [12] (corresponding to LSF vectors x and
X), respectively, B(f) is the Bark weighting factor [10], and
By is a normalization constant (this distortion measure has
been found to closely predict the perceptual quality of recon-
structed speech [10]). It is generally accepted that spectral
distortion less than 1 dB is inaudible in reconstructed speech
[12].

MD-MSVQ systems compared in this paper are sum-
marized in Table 1. In this table, the kth stage of an MD-
MSVQ is specified by the triplet (Nék), Nl(k) ) Nz(k)) where N;Sf ) ,
m = 0, 1,2, is the number of code vectors in central and side

codebooks. Accordingly, the transmission rates on two MD
channels are R(lk) = log ZNl(k) and ng) = log zNz(k) bits/vector,
respectively. Note that if Nék> = Nl(k> = Nz(k), then only
the diagonal elements of the IA matrix are used, and con-

sequently, the two transmitted descriptions Xﬁ’” and )Aigk) will
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TABLE 1: MD-MSVQ systems used for comparison. The triplet (Nék),Nl(k),Nz(k)), m = 0, 1,2, for stage k is the number of code vectors in
central and side codebooks. R; and R, are the total rates in bits/vector of MSVQ; and MSVQ),. R is the total transmission rate per LSF vector.

Stage 1 Stage 2 Stage 3 Stage 4 R, R, R
System A (128,16,8) (64,8,8) (64,8,8) (64,8,8) 13 12 25
System B (128,128,128) (64,64,1) (32,1,32) — 13 12 25
System C (32,32,32) (32,32,1) (32,1,32) (32,32,1) 15 10 25
System D (128,-,-) (64,-,-) (64,-,-) (64,-,-) — — 25

TaBLE 2: The average frequency-weighted spectral distortion of the systems in Table 1, optimized for different packet-loss probabilities P;.
SDcentrat 18 the central distortion, SDyig is the side distortion, and SDgyerage is the total average distortion.

PL @central (dB) @side (dB) @average (dB)
A B C D A B C D A B C D

.001 0.86 1.35 1.23 0.86 7.57 2.49 2.87 8.52 0.87 1.35 1.23 0.86
.005 0.92 1.35 1.23 0.86 5.85 2.47 291 8.52 0.97 1.36 1.25 0.90
.01 0.97 1.35 1.23 0.86 4.98 2.44 2.90 8.52 1.05 1.37 1.27 0.95
.05 1.16 1.37 1.29 0.86 3.26 2.36 2.69 8.60 1.37 1.47 1.43 1.30
.1 1.30 1.41 1.38 0.86 2.75 2.29 2.51 8.63 1.60 1.60 1.62 1.64
.15 1.39 1.49 1.43 0.86 2.73 2.22 2.37 8.72 1.76 1.76 1.76 2.04
.20 1.46 1.54 1.48 0.86 2.72 2.14 2.27 8.74 1.92 1.88 1.87 2.44

be identical (i.e., a repetition code). This is the case in the
first stage of System B and System C. Also note that the rest of
the stages in these two systems have rate 0 (codebook size
of 1) for one of the descriptions. Thus, these two systems
are equivalent to stage interleaving MSVQ described in [8].
On the other hand, System A uses a general index assignment
scheme in which the total rate allocated to each stage is split
more evenly between the two MD channels. All three systems
have the same total bit-rate as the standard MELP coder [10]
(in the 2.4 kbps MELP coder, 54 bits are used for each frame,
out of which 25 bits are allocated for the LSF vector). Fur-
thermore, the rate allocation for each stage in System A is
also the same as in the standard MELP coder. Hence, when
optimized for very low packet-loss probabilities, it yields the
same distortion as the standard coder. This is not the case
with the other two systems. Note also that System C has a
smaller central codebook for the first-stage compared to Sys-
tem A, while having the same number of stages. On the other
hand, System B has the same central codebook size for the
first stage as in System A, but at the expense of having only 3
stages. As will be seen below, this results in different central-
side distortion tradeoffs. System D in Table 1 is a traditional,
single description MSVQ with a total rate of 25 bits/vector,
used here as a reference for comparison. To deal with the
packet losses in this case, we adopt the error-concealment
strategy recommended for standard speech codecs such as
the 3GPP adaptive multirate (AMR) speech codec [13]. That
is, in the event of the loss of nth packet, the current LSF is re-
constructed according to X(n) = aX(n—1)+(1—a)X, where
X is the mean value of the LSF vectors and « = 0.95.

The average FWSD of MD-MSVQs optimized for differ-
ent packet-loss probabilities are shown in Table 2. Several ob-
servations are noteworthy. First, the advantage of more gen-
eral index assignments compared to stage interleaving index

assignments is clear. In particular, System A has much lower
central distortion at low-loss probabilities, compared to Sys-
tem B and System C. This is primarily due to the use of rep-
etition codes for the first stage in the latter two systems. Fur-
thermore, in System A, the rate of the central quantizer in
each stage is determined by the channel-loss probability. That
is, at low-loss probabilities all the elements in the A matrices
are assigned to a code vector in the central codebook, that

is, the size of the k-stage central codebook is Nl(k) X Nz(k).
Thus, the quantizer is biased towards lowering the central
distortion which dominates the average distortion at low-loss
probabilities. As the loss probability increases, some of the el-
ements in the TA matrices will be left unassigned and hence
the number of code vectors in the central codebook is re-
duced, that is, the central codebook size becomes less than
Nl(k) X Nz(k). This allows for central distortion to be traded-
off for side-distortion to achieve the minimum average dis-
tortion for the given loss probability (i.e., Nék) = Nl(k> X Nz(k)
shown in Table 1 for System A are actually the size of the ini-
tial codebook, and the size of the final codebook produced
by the design algorithm depends on the channel-loss proba-
bility). On the other hand, restricted IA schemes in Systern B
and System C do not allow the size of the central codebook
to vary as a function of the channel-loss probability. Rather,
it is only possible to vary the values of the fixed number of
code vectors during the optimization. It can be seen that, in
comparison to MD systems, the average FWSD of the tra-
ditional System D is quite poor at higher loss probabilities.
The fact that the central distortion of System D is indepen-
dent of the channel probability is obvious, since in this case
the quantizer is not adapted to the loss probability. However,
in comparison to MD-MSVQ systems, the side distortion of
System D is quite high. The side distortion in System D is
due to the error in predicting the current LSE based on the
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TaBLE 3: The percentage of decoded frames with FWSD in 2—4 dB range, >4 dB range, and the percentage of frames with FWSD in 2-4 dB

range at the output of central decoder (MSVQ,) only.

P, 2-4dB > 4dB 2—4 dB (central)
A B C D A B C D A B C D

.001 0.45 7.40 4.41 0.45 0.18 0.03 0.05 0.10 0.43 6.85 4.21 0.43
.005 0.73 7.82 4.84 0.46 0.77 0.08 0.18 0.50 0.50 7.12 4.25 0.43
.01 1.37 8.24 5.43 0.48 1.30 0.14 0.03 1.0 0.72 7.24 4.28 0.43
.05 8.46 12.27 10.48 0.53 2.30 0.62 1.18 4.8 2.29 7.29 4.62 0.43
1 17.4 17.5 17.90 0.60 2.25 1.23 1.78 9.84 4.84 7.34 6.62 0.43
15 23.9 23.60 22.72 0.64 2.65 1.88 2.48 14.7 6.54 8.93 7.19 0.43
.20 30.9 27.68 26.93 0.72 3.29 2.64 3.17 19.6 7.88 9.60 7.52 0.43
previously reconstructed LSF (which depends on the correla- 3 - — 7
tion between consecutive LSF vectors). As the loss probabil- J
ity increases, the probability of losing two consecutive LSFs /55
increases and so does the prediction error. Hence System D = 257 K
exhibits the undesirable property that the side distortion in- = /
creases with the channel-loss probability. § g

In addition to the average spectral distortion, another jg 2t // A
widely used predictor of quality of speech reconstructed from 5 S %’/
quantized LSFs is the percentage of speech frames having % L M:’,‘,‘ﬁ?”
spectral distortion above a certain threshold. Experimental -8 K TR Aniie-mmn TG T
results have shown that such outlier statistics of quantized o ’;4:’—::?“ ‘
LSF frames have a direct relationship to the perceptual qual-  Eabiaitatate IOt -
ity of speech [12]. In particular, it has been observed that 1t . ;/4”‘97
the distortion in reconstructed speech is inaudible if the av- | S ad ;
erage spectral distortion of LSFs is not more than 1 dB, while 103 1072 107!

having less than 2% of speech frames with more than 2 dB
spectral distortion and no speech frames with spectral dis-
tortion greater than 4 dB [12]. These criteria are used as the
basis for comparison in Table 3. It can be observed here that,
while the percentage of outlier frames in System A is compar-
atively higher at low-loss probabilities, it becomes compara-
ble to those in System B and System C as the loss probability
increases. This is consistent with the results in Table 2, where
System A shows a much more pronounced tradeoff between
central and side distortions. In order to more clearly demon-
strate the advantage of System A over the interleaving-based
systems, we also list in Table 3 (last four columns) the per-
centage of frames with FWSD between 2—4 dB at the output
of the central decoder (the percentage of frames at the cen-
tral decoder output with FWSD >4 dB was less than 0.1% in
all four systems). It can be noted that, while in all systems
most of the outlier frames occur during packet losses, Sys-
tem A produces much lower percentage of outlier frames in
central decoding compared to System B and System C. This
advantage was evident in the speech output produced by Sys-
tem A. This is due to the fact that, even though the intermit-
tent packet losses degrades the output quality of some speech
frames, the listening experience appeared to be significantly
affected by the output of the central decoder (i.e., transparent
quality may be obtained most of the time, accompanied by
occasional artifacts during losses). Although the central de-
coder performance of System D is unaffected by the channel
quality, the percentage of outlier frames with FWSD greater
than 4 dB is substantially higher than in the MD-MSVQ sys-

Channel-loss probability (Pchannel)

=©- Pgesign = -001
-8- Pdesign =.05

-A- Pdesign =.2
i Pdesign = Pchannel

F1GURE 2: The sensitivity of MD-MSVQ (Systerm A) to variations in
packet-loss probability. Pyesign refers to the channel-loss probability
for which the given system was optimized. Note that the system with
Pyesign = Pehannel is optimal for the given channel.

tems. This was also evident in the speech output produced
by System D, which sounded markedly poor at loss probabili-
ties above 5%. Thus, the advantage of MD-MSVQ over tradi-
tional MSVQ with error concealment is clear. It is also worth
emphasizing the fact that MD-MSVQ is a generic technique
in the sense that it does not rely on correlation between con-
secutive vectors to deal with channel losses. Indeed, the per-
formance of an MD-MSVQ system can be further enhanced
by exploiting the intervector correlation at the receiver (e.g.,
by appropriately combining MD decoding with prediction-
based error concealment).

Since an MD-MSVQ is optimized for a specific channel-
loss probability, it is also of importance to investigate the ro-
bustness of MD-MSVQ against variations in the loss prob-
ability, that is, when the actual-loss probability Pchannel is
different from the design value Pyesign. In Figure 2, we
present the average FWSD of 4 different MD-MSVQs with
Pyesign = .001,.05,.2, and Pyesign = Pehannel, evaluated at loss
probabilities ranging from Pchanne = .001 to .2. It can be
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concluded that MD-MSVQs are robust against the variations
in the channel-loss probability around the design value. Also
note that MD-MSVQs optimized for higher-loss probabili-
ties show a relatively small variation in the FWSD over the
given range of loss probabilities, compared to the one opti-
mized for a low loss probability (Pgesign = .001). It is thus
possible to adapt MD-MSVQ to varying channel conditions
and maintain near-optimal performance, by having a num-
ber of codebooks optimized to a set of different loss proba-
bilities.

5. CONCLUDING REMARKS

An algorithm for designing MD-MSVQ based on an input-
weighted square error to match the channel-loss probabil-
ity, together with experimental results obtained by trans-
mitting 10-dimensional speech LSF vectors over a random
packet-loss channel, has been presented. It has been shown
that previously studied stage interleaving-based MSVQ [8]
is included in MD-MSVQ as a special case of stage index
assignment, and that by choosing more general index as-
signments, one can achieve a better rate-distortion trade-
off. Thus, MD-MSVQ is a potential approach to realizing
robust high-dimensional VQ for network-based communi-
cation of speech, audio, and image sources. It is also worth
pointing out that the given approach may be extended to
realize more general tree-structured VQ (TSVQ) [3] in MD
form, as MSVQ is a special case of TSVQ.
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